
D2D assisted cooperative
computational offloading strategy
in edge cloud computing networks
Yanyan Wang, Dechuan Kong, Haojie Chai, Hongzhou Qiu, Ran Xue & Shuhang Li

In the computational offloading problem of edge cloud computing (ECC), almost all researches develop
the offloading strategy by optimizing the user cost, but most of them only consider the delay and
energy consumption, and seldom consider the task waiting delay. This is very unfavorable for tasks
with high sensitive latency requirements in the current era of intelligence. In this paper, by using D2D
(Device-to-Device) technology, we propose a D2D-assisted collaboration computational offloading
strategy (D-CCO) based on user cost optimization to obtain the offloading decision and the number
of tasks that can be offloaded. Specifically, we first build a task queue system with multiple local
devices, peer devices and edge processors, and compare the execution performance of computing
tasks on different devices, taking into account user costs such as task delay, power consumption, and
wait delay. Then, the stochastic optimization algorithm and the back-pressure algorithm are used to
develop the offloading strategy, which ensures the stability of the system and reduces the computing
cost to the greatest extent, so as to obtain the optimal offloading decision. In addition, the stability of
the proposed algorithm is analyzed theoretically, that is, the upper bounds of all queues in the system
are derived. The simulation results show the stability of the proposed algorithm, and demonstrate that
the D-CCO algorithm is superior to other alternatives. Compared with other algorithms, this algorithm
can effectively reduce the user cost.

In the context of today’s Internet of everything, many emerging compute-intensive mobile applications are
favored by users and have been developed rapidly. The tasks generated by these emerging mobile applications also
increase rapidly, and become more complex, and the latency processing requirements are increasingly high1–3.
This makes the disadvantages of local mobile devices with limited computing resources, power and storage
capacity amplified and became increasingly obvious, and it is difficult to meet the needs of these applications.
Therefore, we use the computational offloading technology4 in the edge cloud to transfer some or all of the
sensitive tasks of the application to the cloud for processing5–7, so as to reduce the application delay and alleviate
the challenges brought by local devices due to their own shortcomings.

In recent years, there have been many studies on computational offloading strategies based on D2D
communication techniques8–10. D2D technology, as a research hotspot of computational offloading in recent
years, reduces the pressure of limited computational resources for local devices by offloading tasks to peers that
have free time and resources. Moreover, compared with the problems of transmission distance and computational
cost associated with computational offloading tasks to the edge cloud processor, offloading the processing to the
neighboring peers around the local area is sometimes easier to achieve instead, and improves the computational
quality of the user’s local device. However, the offloading scheme which is only carried out in the D2D framework
is currently no longer able to meet the high demand of tasks from today’s users. therefore, we combine the
D2D communication technology with edge cloud computing11–13. With the assistance of D2D technology, while
taking advantage of the edge cloud processor with outstanding computing power, the appropriate execution
location of the task is selected based on the actual needs of the task. Both D2D communication and edge cloud
cooperate and negotiate with each other to ensure efficient execution of computational tasks while minimizing
user costs.

Based on the above elaboration, this paper combines the D2D communication technique with a joint edge
cloud and peer-to-peer devices to design a D2D-assisted collaboration computational offloading strategy
(D-CCO), which determines the optimal offloading decision for a task by negotiating the cost of computing the
task on different processors. First, a queuing system is built using stochastic optimization14 to construct a model
of a queuing system with random busy arrivals of tasks by building queues on local devices, peer devices, and
edge cloud processors, respectively. The Lyapunov drift14 is then utilized to minimize the queue length on each

School of Artificial Intelligence, Henan Institute of Science and Technology, Xinxiang 453003, China. email:
nefuchj@163.com

OPEN

Scientific Reports | (2025) 15:12303 1| https://doi.org/10.1038/s41598-025-96719-8

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-96719-8&domain=pdf&date_stamp=2025-4-10

device or processor on each time slot and also to ensure the stability of this system. With this offloading policy,
we can obtain the optimal offloading decision for a task and the number of tasks sent to each execution location
during the offloading process. The algorithm optimizes the computational latency of the task, and also considers
the waiting latency of the task computation, i.e., the backlog of tasks in each queue, and optimizes the energy
consumption on this basis, so as to optimize the execution cost incurred by the computationally sensitive tasks
and to improve the overall operational efficiency of the computational offloading of tasks for the local users.

The major contributions of this paper are summarized as follows:

•	 By considering the characteristics of sufficient computing power and high transmission delay in edge cloud,
low transmission delay but limited computational resources as well as task complexity in D2D, the D2D
technology has been combined with edge cloud computing, and a queuing system model is constructed that
contains local queue, peer device queue and edge processor queue in edge cloud.

•	 A computational offloading strategy based on D2D-assisted collaboration (D-CCO) is proposed to derive the
optimal offloading decision and offloading quantity of a task by optimizing the latency, energy consumption,
and task backlog of a sensitive task, thus minimizing the computational cost to the user.

•	 The algorithm is verified to have good stability through analysis and proof. The experimental results also show
the stability of the D-CCO algorithm and verify that the algorithm outperforms other comparative methods
in terms of reducing computational cost.

The rest of the content is organized as follows. Section two describes the related work and Section three introduces
the system model, the queue dynamics and the problem formulation. In Section four, we introduce and analyze
the details and performance of the D-CCO algorithm. The numerical results of this strategy are given in Section
five, and Section six presents the conclusion of this paper.

Related work
With the rapid development of mobile Internet and Internet of Things technologies, edge cloud computing
networks have become critical infrastructure to support various emerging applications15–17. In this context, as an
important means to improve system performance and reduce energy consumption of mobile devices, computing
offloading technology has been widely concerned by the academic community18–22. Niyato et al.18 used game
theory to build an interaction model between users and edge devices, and users minimized their own computing
costs and achieved overall cost reduction through strategy selection. From the perspective of resource allocation,
Wang et al.19 studied how edge devices allocate computing resources in multi-user scenarios to meet users’ task
offloading requirements and reduce latency. Liu et al.20 proposed a priority-based task offloading algorithm to
make offloading decisions on edge devices according to task urgency and resource requirements. By establishing
a mathematical model of edge computing network, Li et al.21 analyzed the influence of different topologies
on task offloading efficiency and energy consumption. Zhang et al.22 discussed how to dynamically adjust the
computing resource allocation of edge devices to meet the task offloading requirements in a mobile environment.
In particular, Irtija et al.23 proposed a dynamic decision-making task offloading strategy through satisfaction
game, adopting a multi-hop offloading framework. However, doing so will increase the pressure on network
management and reduce the privacy and security of data. Adopting a direct end-to-end offloading scheme can
achieve lower offloading latency.

The combination of D2D communication technology and computational offloading opens up a new way
for the development of edge cloud computing networks24–28. In view of the dense distribution of mobile users,
Han et al.24 proposed a computing offloading and resource allocation algorithm based on stackelberg game and
genetic algorithm, which effectively improved the utility of users in need and idle users. Xu et al.25 studied the
task sharing mechanism based on D2D, establishing direct data transmission links between devices to jointly
complete computing tasks to reduce the overall computing time. Yang et al.26 proposes a D2D calculation
offloading decision method based on signal strength, which determines whether to perform task offloading
according to the strength of communication signals between devices. There are also many research achievements
in the application of D2D technology to computational offloading. Wang et al.27 built an energy model for D2D
computational offloading, analyzed the energy consumption under different offloading strategies, and sought an
energy-saving offloading scheme. Li et al.28 explored the application of D2D technology in multi-task scenarios
to achieve reasonable task allocation and parallel computation among multiple devices. However, the impact of
task delay on user cost is not fully considered.

In order to meet the requirements of delay-sensitive tasks, some studies begin to focus on system stability
and task wait delay. Some literature29–33 tries to reduce the waiting delay and improve the system performance
by improving the algorithm and optimizing the network architecture. Zhao et al.29 proposed an algorithm based
on queue management to reduce task waiting delay and improve system stability by optimizing task queue order.
Liu et al.30 studied how to build low-latency edge computing networks from the perspective of network topology
optimization to reduce task transmission and waiting time. Yang et al.31 used the predictive model to predict
task demands in advance and allocate resources in advance to reduce task waiting delay and improve system
response speed. Wang et al.32 proposed an adaptive task scheduling algorithm that dynamically adjusts the task
execution order according to real-time network conditions and task priorities to reduce the waiting delay. Li et
al.33 studies the resource reservation mechanism to reduce task waiting conflicts and ensure the stable operation
of the system in the multi-user concurrent scenario. However, these methods still have some limitations when
considering various user costs such as task delay, power consumption and wait delay.

In addition, there are several studies devoted to optimizing offload algorithms for more efficient resource
allocation and task scheduling. Based on greedy algorithm, a fast task offloading and resource allocation
algorithm34 is designed to find the best solution in a short time. Niyato et al.35 studied the resource allocation

Scientific Reports | (2025) 15:12303 2| https://doi.org/10.1038/s41598-025-96719-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

algorithm based on auction mechanism, and users obtained computing resources through bidding to achieve
efficient resource allocation. Wang et al.36 proposed a task unloading algorithm based on particle swarm
optimization to find the optimal offloading and resource allocation scheme through collaboration between
particles. From the perspective of resource balancing, Liu et al.37 designed a task offloading algorithm for
load balancing to avoid overuse of some device resources. Based on the idea of dynamic programming, a task
offloading and resource allocation algorithm38 is designed which dynamically adjusts over time. However, when
dealing with large-scale tasks, the algorithm has high computational complexity and insufficient guarantee for
system stability.

Although some achievements have been made in the field of computational offloading, most studies fail to
fully consider the task delay as a key factor when optimizing user cost, especially in the current era of delay-
sensitive intelligence, this deficiency is particularly prominent. Different from the existing studies, the D2D
Assisted Cooperative Computing offload strategy (D-CCO) proposed in this paper comprehensively considers
various user costs such as task delay, power consumption and waiting delay. By constructing task queue
system and applying stochastic optimization algorithm and back pressure algorithm, the system stability is
guaranteed while the computing cost is reduced to the greatest extent. It provides a more efficient solution to the
computational offloading problem in edge cloud computing network.

System model and problem construction
This section focuses on the specific analysis of the queueing system model proposed in this paper that contains
local devices, peer devices, and edge cloud processors, and expands on the four aspects of the task model, local
computation model, offloading computation model, and the dynamics of the queueing, and finally gives the
optimization problem of this paper.

Task model
In this paper, we consider a computational offloading system with a large number of sensitive tasks arriving
randomly in a joint D2D technique with edge cloud, and we investigate the task offloading problem for multiple
user devices, multiple peers, and multiple edge clouds. In this system, user devices have a large number of
sensitive computational tasks with high latency requirements waiting to be processed on each time slot. We
define a time slot to be denoted by t, the duration of each time slot to be τ , and set T to be the set of the indexes
of the T time slots. The computational task is denoted by i ∈ {1, 2, . . . , N}, let N be the set of N tasks, and
assume that each task is a whole and cannot be partitioned into task blocks for computation. And the user task
must be completed before its deadline Fi, otherwise the user program will crash. The computational model
architecture for the task is shown in Figure 1. From the system model diagram, we can see that the local device
communicates with other peers as well as the edge cloud through a wireless access and offloads the task to the
optimal processing location through an offloading link. At the same time, in order to fit the real-world scenarios,
both the peer devices and the edge cloud have their own tasks to be processed.

When new execution tasks are run on the local device, each task has the option of being processed either on
the local device, the peer device, or in the edge cloud server. To this end, we define an offloading decision for
each task that identifies where the task is to be computed. The offloading decision is defined as follows:

	

yi
ld(t), yi

lm(t) ∈ {0, 1},

yi
ld(t) + yi

lm(t) ∈ {0, 1},
� (1)

where l ∈ L, d ∈ D, m ∈ M denote the local device, the peer device, and the edge cloud processor, respectively,
yi

ld(t) = 1 denotes that task i is offloaded to the peer device d for processing, and yi
lm(t) = 1 denotes that task

i is offloaded to the edge cloud m for execution, and when yi
ld(t), yi

lm(t) are both 0, it denotes that task i is

Fig. 1.  The system model diagram.

Scientific Reports | (2025) 15:12303 3| https://doi.org/10.1038/s41598-025-96719-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

processed on the local device l. And a task can only be selected to be processed on one processor and cannot be
executed on any two or three of the local device, peer device or edge cloud at the same time, so yi

ld(t), yi
lm(t)

cannot be 1 at the same time.
If the task is migrated to other peer devices in the system or processed on the edge cloud, we assume that the

computational latency and energy consumption of the corresponding processor to return the result to the local
user device after the computation is completed is negligible. In addition, for the computational task i arriving
on the local end device, we define it with a quaternion {Di, Ci

l .Ci
ld, Ci

lm}, where Di denotes the size of the
amount of data to be processed by the task i itself, and Ci

l , Ci
ld, and Ci

lm represent the number of CPU cycles
to be executed for the computation of the task i on the local device, the other peer devices, and the edge cloud
processor, respectively.

Local computational model
In this system, local user devices have different processing rates, while the computing power of the devices
themselves is limited. We define the local device to have a large number of sensitive computational tasks arriving
in each time slot, and set the transmission power of the local device to be fixed. For local devices in the system,
we use the notation l ∈ {1, 2, . . . , L} to denote that L is the set of all local devices in the system. And we use
fl to represent the computing power of the local device, i.e., the number of CPU cycles per second (in GHz/s)
that the local user device can execute. According to Dynamic Voltage and Frequency Scaling (DVFS)39, we can
also make changes to the computation rate of the local device by adjusting the frequency of this cycle, so that the
execution rate of task i on the local device in time slot t is:

	 vi
l (t) = ηi

l (t)fl,� (2)

where 0 ≤ ηi
l (t) ≤ 1, we define it as the ratio of the actual computing power of the local device to its computing

power. Then the computational delay ti
l for task i to process on the local device l is:

	
ti
l = Ci

l

vi
l (t)

.� (3)

In addition, we define ρi
l to denote the processing power of the device when the task is processed on the local

device, then the energy consumption required by the task to computing on the local device can be expressed as:

	 ei
l = ti

l × ρi
l.� (4)

Offloading computational model
In addition to being able to compute locally, computational tasks on the local device have the option of being
offloaded to other processors for processing, and this subsection focuses on the two parts of offloading tasks to
peer devices or edge cloud processors specifically. The first is a computational offloading model of offloading
tasks to other peers, where there are limited peer resources in the system but plenty of free computational
resources. We denote it by d ∈ {1, 2, . . . , D} and the set of peer devices is set to D.

The computational latency of task migration to peers consists of two main phases, the link transmission
latency of task offloading to other peers and the processing latency on the peers, with negligible computational
latency for the return of computation results to the user locally. In this paper, we define fd as the computational
power of the peer device d, and vi

ld(t) denotes the data transmission rate for offloading task i from the local to
the peer device. Using the Shannon formula, the rate is defined as:

	
vi

ld(t) = ωlog2

(
1 + ρi

ldhi
ld(t)

σi
ld

)
,� (5)

where ω is the transmission bandwidth of the link channel in this queueing system, ρi
ld represents the

transmission power from the local user device offloading task i to the peer device, hi
ld(t) is the channel gain

from the local to the peer device channel, and the noise power is denoted by σi
ld, which is modeled as obeying

additive white Gaussian noise.
In addition, we define vmax

ld (t) as the maximum transmission rate of the channel from the user’s local to
the peer device. Then, the transmission delay ti

ld computed by task i from local offloading to the peer device is
denoted as:

	
ti
ld = Di

vi
ld(t)

.� (6)

Meanwhile, the local execution energy consumption for task i to offload to other peers for processing is defined
as:

	 ei
ld = ti

ld × ρi
ld.� (7)

Furthermore, on time slot t, we define the computational power of the peer device to be fd, and then the
computational rate of task i on peer device d is:

Scientific Reports | (2025) 15:12303 4| https://doi.org/10.1038/s41598-025-96719-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

	 vi
d(t) = ηi

d(t)fd,� (8)

Where ηi
d(t) ∈ [0, 1] represents the ratio of the actual computing power of the peer device, the processing

latency of the task on the peer device can be expressed as:

	
ti
d = Ci

ld

vi
d(t)

.� (9)

And the energy consumption of task processing on the peer device is

	 ei
d = ti

d × ρi
d,� (10)

Where ρi
d indicates the processing power of the device when the task is executed on the peer device.

Next, we elaborate the computational offloading model for task offloading to edge cloud processors. Edge
cloud processors have outstanding computing power compared to local devices and peers. We denote the edge
cloud processor by the symbol m ∈ {1, 2, . . . , M} and the set of processors is set to M. Similarly, the total
execution latency of task offloading to the edge cloud consists of two components: the transmission latency of
the task on the offload link and the processing latency on the edge cloud processor.

First, we define the transmission rate of the task during the offloading of computational communication. And
vi

lm(t) is used to denote the transmission rate at which the local user device sends the task to the edge cloud,
the formula is as follows:

	
vi

lm(t) = ωlog2

(
1 + ρi

lmhi
lm(t)

σi
lm

)
,� (11)

where ρi
lm is the transmission power from the task offload to the edge cloud, hi

lm(t) is the channel gain from the
local to the edge cloud, and σi

lm represents the noise power of additive Gaussian white noise.
In addition, we further the maximum channel transmission rate from the user’s local to the edge cloud

processor, denoted by vmax
lm (t). Then the transmission delay of task i offloaded from the local user device to the

edge cloud m is defined as:

	
ti
lm = Di

vi
lm(t)

.� (12)

Then, the energy consumption generated by the local device during that transmission is:

	 ei
lm = ti

lm × ρi
lm.� (13)

Meanwhile, we define the computation rate of the task on the edge cloud within the time slot as:

	 vi
m(t) = ηi

m(t)fm,� (14)

where fm is the computational power of the edge cloud processor and 0 ≤ ηi
m(t) ≤ 1 is the ratio value of the

actual processing power of that edge cloud processor. Then the computational delay of task i on the edge cloud
processor m is:

	
ti
m = Ci

lm

vi
m(t)

.� (15)

Queue dynamics
This subsection focuses on the representation of the dynamism of the queue, where we define that the local
device, the peer device and the edge processor process one computational task at a time, and the rest of the tasks
are stored waiting in their respective queues. We then use an offloading strategy to decide where tasks should be
processed to minimize the computational cost while improving the quality of the user’s experience. This queue
system model is shown in Figure 1. In the following, we describe the construction of queues in this system in
detail.

First, define the queue Qi
l(t) ∈ (0, ∞] of task i in time slot t on local device l, in which all tasks requiring

computation on the local are stored. Also, we define that at each time slot t the local device has a random arrival
of a large number of computational tasks that need to be processed, denoted by Ai

l(t). We assume that it obeys
an independently identically distributed (i.i.d) model and define its mean as E[Ai

l(t)] = λi
l , where λi

l represents
the average arrival rate of task i on the local device l. Then the formula for the dynamics of the local device queue
in adjacent time intervals is as follows:

	
Qi

l(t + 1) =
[

Qi
l(t) − vi

l (t) −
D∑

d=1

yi
ld(t)vi

ld(t) −
M∑

m=1

yi
lm(t)vi

lm(t)
]+

+ Ai
l(t), � (16)

Scientific Reports | (2025) 15:12303 5| https://doi.org/10.1038/s41598-025-96719-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

where [·]+ = max{·, 0}. The first term in the equation represents the current remaining unprocessed
computational tasks of the local device, and is non-negative by definition, and is specifically expressed as the
length of the task queue at time slot t minus the sum of the amount of locally processable tasks and the tasks
offloaded to the other peer devices in the system as well as to the edge cloud processor. Thus the defining construct
of this queue is the sum of the remaining unexecuted tasks and newly arriving tasks on the local device.

In addition, we define Hi
d(t) ∈ [0, ∞) as a queue representation of task i on peer device d in time slot t

for storing computing tasks arriving on that peer device. And define Ai
d(t) obeying i.i.d to denote the random

number of arrivals of tasks on peer devices in time slot t, with the average value set to E[Ai
d(t)] = λi

d, where
λi

d is the average arrival rate of tasks on peer device d. Then, we represent the definition of the dynamics of the
queue on each peer as follows:

	
Hi

d(t + 1) =
[

Hi
d(t) − vi

d(t)
]+

+
L∑

l=1

yi
ld(t)vi

ld(t) + Ai
d(t). � (17)

where the first term on the right side of the equation represents the tasks that are still waiting to be processed
on the peer device, and the second term represents the tasks that have been offloaded locally to that peer device,
so that the sum of the last two terms represents the total new arrivals of tasks on that peer device at time slot t.

Finally, we denote by Hi
m(t) ∈ [0, ∞) the queue of task i on the edge cloud processor m in time slot t. This

dynamics formula can be expressed as:

	
Hi

m(t + 1) =
[

Hi
m(t) − vi

m(t)
]+

+
L∑

l=1

yi
lm(t)vi

lm(t) + Ai
m(t). � (18)

In the formula, Ai
m(t) denotes the random arrivals of tasks on this edge cloud processor in slot t. Assuming

that it also obeys i.i.d, and that we define λi
m as the average arrival rate of tasks on the edge cloud processor, the

representation of the average value is E[Ai
m(t)] = λi

m. The representation of each item in the formula is the
same as above, with the first term being the tasks that have not yet been processed on the edge cloud processor,
and the sum of the last two terms represents the total number of new arrivals for that processor at slot t, where
the first term is then the tasks that have been offloaded from the local to that processor.

By describing and analyzing the dynamics of the three queues described above, We can find that there is a
certain coupling between the above three formulas, i.e., the departure of a task on the local device queue is the
arrival of a task on any of the other peer device queues or the edge cloud processor queues in the system. In this
system, in order to make it more relevant to real-world scenarios, we defined each queue with newly arriving
tasks, which is reflected in the latency of the computed tasks. Therefore, we assume that the item does not affect
the coupling relationships described in the text. In addition, we define Qi

tot(t) as the sum of tasks in this system
at time slot t and define Qi

max(t) as the maximum number of tasks that can be accepted by the queue, which
can be expressed as:

	

Qi
tot(t) = Qi

l(t) + Hi
d(t) + Hi

m(t),
Qi

tot(t) ≤ Qi
max(t).

� (19)

In other words, this formula represents that the total number of computational tasks in time slot t is equal to
the sum of the number of tasks of all three, the local device queue, the peer device queue, and the edge cloud
processor queue, and that the sum does not exceed the maximum number of tasks that can be received by the
queues in the system. If the maximum number of tasks is exceeded, the task may crash and the user experience
will be poor. Also, the formula is an equivalent definition of the coupling relationship between queues in the
system.

Problem formulation
In this section, we define the optimization problem for this queueing system model. First, we construct a
quadratic equation using the Lyapunov optimization technique which combines the three sets of control queues
in the system whose main roles are optimized, i.e., local queue Qi

l(t), peer device queue Hi
d(t), and edge cloud

processor queue Hi
m(t). This Lyapunov quadratic function is expressed as:

	
V (t) = 1

2

L∑
l=1

N∑
i=1

[Qi
l(t)]2 + 1

2

D∑
d=1

N∑
i=1

[Hi
d(t)]2 + 1

2

M∑
m=1

N∑
i=1

[Hi
m(t)]2.� (20)

Based on the definition of queue in the previous subsection, we can conclude that the function is strictly
incremental. To ensure that the queues are all bounded and there is no case where a queue has an infinite size,
the Lyapunov drift function is defined as:

	 ∆(t) = E[V (t + 1) − V (t)|Z(t)],� (21)

where Z(t) =
(
Qi

l(t); Hi
d(t); Hi

m(t)
)

, denotes the queue vector on the local device, the peer device, and the
edge cloud processor in time slot t. From the definition of Lyapunov optimization theory14, by minimizing the

Scientific Reports | (2025) 15:12303 6| https://doi.org/10.1038/s41598-025-96719-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

drift function, we can optimize the queue backlog on each time slot in this system, and also ensure the stability
of this queue system. Therefore, below we give the definition of the optimization problem for this system:

	

max
yi

ld
(t),yi

lm
(t)

L∑
l=1

N∑
i=1

Qi
l(t)

(
vi

l (t) +
D∑

d=1

yi
ld(t)vi

ld(t) +
M∑

m=1

yi
lm(t)vi

lm(t) − Ai
l(t)

)

+
D∑

d=1

N∑
i=1

Hi
d(t)

(
vi

d(t) −
L∑

l=1

yi
ld(t)vi

ld(t) − Ai
d(t)

)

+
M∑

m=1

N∑
i=1

Hi
m(t)

(
vi

m(t) −
L∑

l=1

yi
lm(t)vi

lm(t) − Ai
m(t)

)
� (22)

subject to

	

(a) (1), (19);
(b) vi

ld(t) ≤ vmax
ld (t);

(b) vi
lm(t) ≤ vmax

lm (t);
(c) ti

l, ti
ld + ti

d, ti
lm + ti

m < Fi.

The four constraints described above denote the conditions to be satisfied for the computational offloading
decision of the task, the conditions to be satisfied for the queue in the system, the conditions to be satisfied for
the transmission rate of the computational task during the transmission of the task from the user’s local-end
device to the peer device and during the transmission of the task from the local-end device to the edge cloud
processor, and the conditions of the task completion deadline.

In addition, Eq.(22) is obtained by minimizing the ∆(t) in Eq.(21), and by solving this optimization
problem, we can minimize the average queue backlog of the tasks on each time slot in the system, improve the
computational performance of the user’s tasks, and at the same time achieve the stability of the queues in the
system. The concrete proof procedure of this optimization problem is shown in Appendix A. By optimizing this
problem, we are able to minimize the computational delay of the task, and based on this, the energy consumption
of the task is optimized to minimize the computational cost of the task. To this end, this paper proposes a
D2D-assisted collaboration computational offloading strategy (D-CCO) , which comprehensively determines
the offloading decisions of the tasks in this system and gets the number of tasks that can be computed at each
offloading.

D2D-assisted collaboration computational offloading strategy
This section provides a detailed description for the D-CCO algorithm, which aims to minimize the delay and
energy consumption of a task by negotiating the computational cost at different execution locations to determine
the optimal offloading decision. First, the main steps of the algorithm are described in detail, and then the
performance of the algorithm is further investigated, and the relevant theoretical proofs are also given in the
paper.

Algorithm analysis
In this queueing system, we introduce the D2D communication technique, which combines D2D with the edge
cloud, and propose the D2D-assisted collaboration computational offloading strategy. The strategy takes into
account the processing latency of sensitive tasks and minimizes the energy consumption by adding energy
consumption as a performance metric to minimize the latency. In addition, the strategy takes into account
the backlog of tasks on the queues in the system, that is, the waiting delay of tasks. The details of the D-CCO
algorithm are shown in Algorithm 1 in the text.

Scientific Reports | (2025) 15:12303 7| https://doi.org/10.1038/s41598-025-96719-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Algorithm 1.  D-CCO algorithm.

Where the main steps of the algorithm are described as follows.

Determine the tasks to be executed locally
For computational tasks arriving on local devices in the system, we optimize their computational cost to arrive
at the optimal offloading decision for the task. In this step, our goal is to identify the tasks to be processed on
the local device. The sum of processing latency and energy consumption for the local execution of the task is
computed first, and then the sum of latency and energy consumption for the execution of the task offloaded to
the peer device as well as to the edge cloud processor is computed, respectively. The results are then compared,
and if the computational cost of the task on the local device is minimized, the task is placed locally for processing;
otherwise, the task is placed in the set S of the offloaded task.

Determine the optimal offloading location for the task
After determining the tasks to be performed locally, this step is to determine the optimal offloading location for
the task. In this subsection, we utilize the back-pressure algorithm to reduce the computational cost of a task by
computing the task backlog difference, denoted by W i

ld(t) and W i
lm(t), between the local queue and the peer

device queue as well as the edge cloud processor queue. The formula for computing the backlog difference is
shown as follows:

	

W i
d(t) = Qi

l(t) − Hi
d(t),

W i
m(t) = Qi

l(t) − Hi
m(t).

� (23)

We then combine the execution cost of the task with the backlog difference to jointly determine the offloading
location of the task. Combined with the execution cost of the task, the optimal execution position of the task is
determined by selecting the maximum value of the task backlog difference, which is expressed as follows:

	
{yi

ld(t), yi
lm(t)} = arg max

i∈S
{W i

ld(t), W i
lm(t)}.� (24)

From this formula, we can get the optimal offloading decision of the task.

Algorithm performance
Theorem 1  (Queues stability). Assuming that the ratio between the performance of the D-CCO algorithm and the
optimal solution is 1

1+θ , then the capacity area will be reduced accordingly 1
1+θ

λmI, where λm is the maximum
arrival rate in the system for all i ∈ N, l ∈ L. Then the average length of queues in the system should satisfy

Scientific Reports | (2025) 15:12303 8| https://doi.org/10.1038/s41598-025-96719-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

	
lim

T →∞

1
T

T∑
t=1

D∑
d=1

N∑
i=1

Hi
d(t) ≤ lim

T →∞

1
T

T∑
t=1

L∑
l=1

N∑
i=1

Qi
l(t) ≤ (1 + θ)B1

ε − 1
1+θ

λm

, � (25)

	
lim

T →∞

1
T

T∑
t=1

M∑
m=1

N∑
i=1

Hi
m(t) ≤ lim

T →∞

1
T

T∑
t=1

L∑
l=1

N∑
i=1

Qi
l(t) ≤ (1 + θ)B1

ε − 1
1+θ

λm

, � (26)

where ε is a small positive constant. The above theorem represents the stability of all queues in this system and its
detailed proof is shown in Appendix B.
This subsection proves the stability of the queues in the system and the stability of the algorithm by deriving that
the local queue, the peer device queue, and the edge cloud processor queue all have upper bounds, i.e., they are
all less than a definite value. At the same time, due to some coupling between the queues, i.e., the departure of
a task on the local device is the arrival of a task on the peer device queue or the edge cloud processor queue. In
addition, there is no direct relationship between the peer device queue and the edge cloud processor queue since
the peer device plays the role of a server. Therefore, in Theorem 1, the queue length of the local device is not less
than the queue length of the peer device, and also not less than the length of the edge cloud processor queue, and
they are both upper bounded. By proving the stability of the individual queues, i.e., the stability of the queueing
systems considered in this paper is also proved.

Experiments and performance analysis
In this section, the performance index of the algorithm is evaluated by numerical simulation in the experimental
environment of MATLAB R2019a, the physical platform is a person computer with an Intel Core i5 CPU(3.00
GHz), 16GB of RAM, and a 64-bit operating system. Through modeling and simulation, the performance index
of the proposed algorithm is verified. In order to ensure the stability and validity of the experiment, combined
with rich practical experience and a large number of paper references, we use specially designed custom data sets
to simulate the environment to reflect the real scenario. We assume that in this queuing system, the local devices
are randomly distributed and the peer devices and the edge cloud processors are uniformly distributed, where
the peer devices are distributed around the user and the edge cloud processors are closer to the user but farther
away compared to the peer devices. In addition, we define that the arrival of tasks on the local device obeys a
Poisson distribution and define the arrival of 100 tasks on each device, the size of the computation of each task
is 500bits, and the number of CPU cycles required to process a task locally or on a peer device is 30Mcycles. The
computational power of the local device is a value among 0.6GHz, 0.8GHz, 1.0GH, 1.2GH, 1.5GHz, 1.8GHz,
2.0GHz, 2.5GHz, 3.0GHz, and the CPU frequency of the peer device ranges from 2.0GHz, 2.5GHz, 3.0GHz,
3.5GHz, and 4.0GHz, and assume that the edge cloud processor has the same computational frequency, defined
as 35GHz.

In addition, we set the ratio of the computational power of each device to its actual processing power to
ηi

l (t) = ηi
d(t) = ηi

m(t) = 0.9 to match the actual situation of the device. Also define the bandwidth of the
channel that the task sends to the other devices as 5MHz, the channel gain is 0.1, and the noise power of
the channel is set to -174dBM/Hz40. And the computational power of the task locally is set to 5mW, and the
transmission power of the task sent to the peer device and the edge cloud processor is defined as 3mW and 2mW,
respectively. By setting the different transmission power of the task, we can get different transmission rates to be
close to the actual offloading scenarios.

Moreover, we set the task completion deadline Fi is 3s. If the deadline is exceeded, an error will be reported.
And we assume that the average arrival rate on the local queue and the edge cloud processor queue is the same
as the initial value of the task, while the peer device has a large amount of free computational resources, so we set
the average arrival rate of the peer device queue to be relatively small and the initial value of this queue is reduced
accordingly. The other variables covered in this paper are given in the detailed description of the performance
comparison below.

Fig. 2.  Stability of queue length.

Scientific Reports | (2025) 15:12303 9| https://doi.org/10.1038/s41598-025-96719-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Performance analysis
This section verifies the stability of the D-CCO algorithm proposed in this paper by deriving upper bounds for
the local queue, the peer device queue, and the edge cloud processor queue, respectively, as shown in Figures 2.
We considered 20 local devices, 10 peer devices, and 1 edge cloud processors, respectively, with an average arrival
rate of λi

l = λi
m = 6, λi

d = 2 on each device. The initial value of the task is defined as Qi
l(t) = Hi

m(t) = 1000
for the local queue and the edge cloud queue, and Hi

d(t) = 200 for the peer device queue. And the maximum
number of tasks that each queue can handle is not more than 2000 to ensure the quality of user experience.

In Fig. 2a, we verify the stability of the local device queue. For the local queue, we choose the number of
iterations to be 1000. When t is in the interval [1,650], the average backlog of the local device queue shows a
fast and smooth decreasing trend, which is due to the fact that when a large number of computational tasks
arrive from the local users, the other devices or processors in the system have sufficient computational resources
to improve the computational efficiency by offloading the tasks to the devices or processors that have more
resources and are faster in computation. However, the trend of queue backlog is flatter after t = 650 compared
to before due to the limited transmission rate of the channel or the fact that more tasks are already stored on
other queues in the system, when tasks need to be processed locally. Finally, when t > 900, we can see that the
backlog of tasks in the local queue starts to approach a value and fluctuates within a small range, i.e., the stability
of the local queue is verified.

Figure 2b verifies the stability of the peer device queue in the system. At the beginning of the iteration, there
is a very short drop-off because the computing tasks on the peer devices are not crowded and they have some
computing power. And then the backlog started, and that’s because some tasks on the local device are offloaded
to the peer device and there are its own tasks on that queue waiting to be processed, resulting in an increased
backlog of tasks on the peer device’s queue. After that, by considering the situation of tasks on all queues in the
system and calculating the performance of local task execution, the optimal offloading decision for the tasks is
synthesized, and as a result, the task backlog starts to decrease, showing a downward trend. Until after t = 650,
the backlog of tasks on the peer device queue leveled off, thus validating the stability of the queue.

The experimental results in Fig. 2c show the stability of the edge queue. This queue has almost the same
discount trend as the peer queue, because the peer device plays the same role as the edge cloud processor. As
the iteration begins, the backlog of tasks in this queue first shows a brief rise, then begins to decline, and finally
levels off. After offloading a large number of computing tasks locally to the edge cloud, the backlog of tasks in
the queue starts to grow due to the large volume of transient tasks. After that, due to the high computing power
of the edge cloud, the task backlog shows a trend of reduction. Finally, the stability of the edge queue is verified
after t > 660, when the edge queue begins to fluctuate within a certain range and levels off.

Performance comparison
We have compared the performance of this D-CCO algorithm with the following five algorithms in separate
numerical experiments, and each scheme is described in detail below:

•	 Only-local algorithm (OL) : All tasks arriving on the local device are processed locally, and the algorithm only
considers the cost of executing the task locally.

•	 Random deployment algorithm (RD): The task offloading decision is determined by random matrix in this
algorithm, and the task is randomly deployed on local device, peer device or edge cloud processor.

•	 Back-pressure algorithm (BP)14: This algorithm uses the back-pressure algorithm to determine the offloading
decision by constructing a queue system and computing the task backlog difference between queues.

•	 Only local and peer device algorithm (OLP): The algorithm utilizes the stochastic optimization and the
back-pressure algorithm to determine the offloading decision of the task, but only considers the task deployed
on local or peer devices for processing.

•	 An alternate optimization algorithm (EPSO-GA)10: A D2D-assisted alternative optimization algorithm is
proposed, which uses enhanced particle swarm optimization algorithm and genetic algorithm to optimize
the transmit power allocation strategy and the subtask offloading strategy, so as to obtain the offloading de-
cision of the task.

This section mainly compares this method with the above five algorithms in terms of the performance of the
local task execution cost, from the following aspects respectively: (1) the average arrival rate of local tasks; (2) the
time slot; (3) the initial length of local queue; (4) the number of Local devices; (5) the number of Peer devices;
and (6) the frequency of edge cloud. In order to correspond to the sensitive tasks mentioned in the paper, we
made further calculations on the experimental results and concentrated them all on the delay aspect, rather
than on the average queue length, so as to better express the comparative results among the algorithms. In the
following, we will analyze the experimental results under different conditions separately.

Figure 3a-c shows how the local task processing delay changes with the arrival rate of the local task, the size
of the time slot, and the initial value of the local queue. Note that when these values change, the corresponding
values of the peer device queue and edge processor queue are changed in proportion to their initial values. We set
L = 20, D = 10 and M = 1, and we define the arrival of 100 tasks on each local device, and the CPU processing
frequency of the edge processor is 35GHz. In addition, in order to facilitate the comparison of experimental
evaluation values, we set the number of iterations T = 200.

Figure 3a compares the performance of this algorithm with other methods under different local task average
arrival rates when the time slot τ = 60ms and the initial length of the local queue Q = 1000. By setting
different average arrival rate values, the task processing delay is compared on the local device of the system.
From the figure we can see that the processing latency of the tasks in this system increases as the horizontal
coordinate increases, which may be due to the insufficient local computing power or the limited transmission

Scientific Reports | (2025) 15:12303 10| https://doi.org/10.1038/s41598-025-96719-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

channel. However, compared with other algorithms, the D-CCO algorithm has the smallest processing cost, i.e.,
the algorithm is able to efficiently compute the tasks on the local when there are a large number of arrivals, which
demonstrates a greater superiority. In Fig. 3b, we study the influence of different time slot sizes on local task
processing latency when λl = 6 and Q = 1000, and compare several comparison algorithms respectively. With
the increase of τ , this algorithm can compute more local tasks, and the task processing delay of this algorithm is
relatively optimal. Fig. 3c shows the change of local task processing delay at different local queue initial values.
When the initial value of the local queue increases, the backlog of queues on the local device increases, and the
processing latency of local tasks also increases. As can be seen from the figure, the effect of this algorithm is
relatively good.

In addition to the above three cases, we also studied the change of task processing delay of the algorithm
under different number of local devices, number of peer devices, and frequency of edge cloud, as shown in
Fig. 3d-f. In this comparison, we set λl = 6, τ = 60 ms and Q = 1000.

As can be seen in Fig. 3d, the processing latency of tasks in the local queue shows a slowly increasing trend.
This is because although there are enough computing resources in the system to increase the local execution
speed by offloading tasks to other devices or processors for computation, as the number of user devices increases,
the local tasks also increase, resulting in an increase in the processing latency of local tasks. And the algorithm
shows good performance in handling the task compared to other algorithms. Therefore, the algorithm can be
better employed for user devices with a large number of tasks.

Figure 3e depicts the variation in task processing latency for different number of peer devices. As can be seen
from the figure, with the increase in the number of peer devices, the EPSO-GA algorithm and D-CCO algorithm
show a gradual decline and then a slow rise, while the OLP algorithm shows an obvious decline and then a
steady rise. This is because the higher cost of computing tasks on peer devices can lead to too many tasks being
offloaded to the edge cloud. As tasks continue to arrive on the local device, the backlog of tasks in the local queue
increases, which increases the computing delay. In addition, the setting of the CPU frequency of the increased
peer device is also one of the influencing factors.

In Fig. 3f, by varying the number of processors in the edge cloud, we investigate its impact on task processing
latency. When the processor frequency increases, EPSO-GA algorithm and D-CCO algorithm have obvious
changes, which have little influence on the offloading decision of other comparison algorithms. When the
edge cloud processor frequency increases, its processing power also increases, which leads to more tasks being
offloaded to the edge cloud processor for execution, and thus the local task processing delay decreases. And
from the figure we can conclude that the D-CCO algorithm has the best experimental results and optimal
performance.

Fig. 3.  Performance comparison graph.

Scientific Reports | (2025) 15:12303 11| https://doi.org/10.1038/s41598-025-96719-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Conclusion
In this paper, we study the task offloading problem under D2D-assisted collaboration. In order to optimize the
computational cost of the task, we combine D2D with computational offloading and use stochastic optimization
techniques to propose an optimization problem that minimizes Lyapunov drift to optimize the processing latency
of the task. And based on this, the energy consumption of the task is calculated and the backlog of the task is
considered to minimize the computational cost of the task. For this reason, the D-CCO algorithm is designed in
this paper to minimize the user cost. However, since the paper mainly focuses on latency-sensitive tasks, in this
paper, we derive the consumption by using the energy consumption formula of the tasks at different locations,
and do not analyze the resource consumption in specific experiments. Moreover, due to the different computing
power of each device or server, they will also generate different processing latency as well as energy consumption
after choosing different computing locations, so we reduce the user’s computation cost by computing the different
execution costs of the tasks to determine their optimal execution locations. In addition, a theoretical analysis of
queue stability in the system is given in the paper, and experimental results verify that the algorithm minimizes
the total cost of task execution when compared with other comparative methods.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Appendix A

Proof of Lyapunov drift optimization problem
Proof: by Lemma 7 in the literature41, we further compute (16) and obtain the following inequality:

	

1
2

[(
Qi

l(t + 1)
)2 −

(
Qi

l(t)
)2

]
≤ Bl − Qi

l(t)

(
vi

l (t) +
D∑

d=1

yi
ld(t)vi

ld(t) +
M∑

m=1

yi
lm(t)vi

lm(t) − Ai
l(t)

)
,� (27)

where Bl = [(vi
l (t) +

∑D

d=1 yi
ld(t)vi

ld(t) +
∑M

m=1 yi
lm(t)vi

lm(t))2 − (Ai
l(t))2]/2. Similarly, based on (17),

we can get the inequality about the peer device queue as follows:

	

1
2

[(
Hi

d(t + 1)
)2 −

(
Hi

d(t)
)2

]
≤ Bd − Hi

d(t)

(
vi

d(t) −
L∑

l=1

yi
ld(t)vi

ld(t) − Ai
d(t)

)
,� (28)

where Bd = [(vi
d(t))2 + (

∑L

l=1 yi
ld(t)vi

ld(t) + (Ai
d(t))2]/2. Finally, based on the Lemma and (18), we derive

the inequality for the edge cloud processor queue as follows:

	

1
2

((
Hi

m(t + 1)
)2 −

(
Hi

m(t)
)2

)
≤ Bm − Hi

m(t)

(
vi

m(t) −
L∑

l=1

yi
lm(t)vi

lm(t) − Ai
m(t)

)
.� (29)

In the formula, Bm = [(vi
m(t))2 + (

∑L

l=1 yi
lm(t)vi

lm(t) + (Ai
m(t))2]/2.

Based on the above discussion, we add the three inequalities derived above and take the expectation on
i ∈ {1, . . . , N}, l ∈ {1, . . . , L}, d ∈ {1, . . . , D} and m ∈ {1, . . . , M}, then we get the Lyapunov drift func-
tion as:

	

∆(t) ≤ B − E

L∑
l=1

N∑
i=1

Qi
l(t)

(
vi

l (t) +
D∑

d=1

yi
ld(t)vi

ld(t) +
M∑

m=1

yi
lm(t)vi

lm(t) − Ai
l(t)

)

− E

D∑
d=1

N∑
i=1

Hi
d(t)

(
vi

d(t) −
L∑

l=1

yi
ld(t)vi

ld(t) − Ai
d(t)

)
− E

M∑
m=1

N∑
i=1

Hi
m(t)

(
vi

m(t) −
L∑

l=1

yi
lm(t)vi

lm(t) − Ai
m(t)

)
,

� (30)

where B =
∑L

l=1

∑N

i=1 E[Bl] +
∑D

d=1

∑N

i=1 E[Bd] +
∑M

m=1

∑N

i=1 E[Bm] is a finite constant. Therefore,
based on the above analysis and discussion of the formula, we can conclude that minimizing the Lyapunov drift
function, i.e., minimizing (30) is equivalent to maximizing (22), which leads to the definition of the optimization
problem in this paper.

Appendix B

Proof of Theorem 1
We set vi∗

l (t), vi∗
ld (t), yi∗

ld (t), vi∗
lm(t), yi∗

lm(t) as the optimal solution of (22), then according to (27), it follows
that

Scientific Reports | (2025) 15:12303 12| https://doi.org/10.1038/s41598-025-96719-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

	
Bl + Qi

l(t)Ai
l(t) ≤ Qi

l(t)
(

vi∗
l (t) +

D∑
d=1

yi∗
ld (t)vi∗

ld (t) +
M∑

m=1

yi∗
lm(t)vi∗

lm(t)
)

. � (31)

If the average arrival rate in each queue satisfies the above formula, then all average arrival rates in the system
satisfy a queue stabilization domain R. And for the task arrival rate of all queues in R, its average processing rate
should not be less than the sum of λi

l and ε. Therefore, we can obtain this Lyapunov drift function as:

	

E

[
L∑

l=1

N∑
i=1

(Qi
l(t + 1))2

]
− E

[
L∑

l=1

N∑
i=1

(Qi
l(t))2

]
≤ 2Bl +

L∑
l=1

N∑
i=1

2E[Qi
l(t)]λi

l

−
L∑

l=1

N∑
i=1

2E[Qi
l(t)](λi

l + ε) ≤ 2Bl − 2ε

L∑
l=1

N∑
i=1

E[Qi
l(t)].

� (32)

We then sum over i ∈ {1, . . . , N} and take the limit over i ∈ {1, . . . , N} to T, which gives us

	
lim

T →∞

1
T

T∑
t=1

L∑
l=1

N∑
i=1

E[Qi
l(t)] ≤ Bl

ε
.� (33)

If the ratio between the performance of the D-CCO algorithm proposed in this paper and the optimal solution
is 1

(1+θ) , then there are

	

L∑
l=1

N∑
i=1

Qi
l(t)

(
vi∗

l (t) +
D∑

d=1

yi∗
ld (t)vi∗

ld (t) +
M∑

m=1

yi∗
lm(t)vi∗

lm(t)
)

≤ (1 + θ)
L∑

l=1

N∑
i=1

Qi
l(t)

(
vi

l (t) +
D∑

d=1

yi
ld(t)vi

ld(t) +
M∑

m=1

yi
lm(t)vi

lm(t)
)

.

� (34)

Bringing the formula (34) into (31) and solving for the expectation, we can conclude that

	

Bl

1 + θ
+

∑L

l=1

∑N

i=1 E[Qi
l(t)]λi

l

1 + θ
≤

L∑
l=1

N∑
i=1

Qi
l(t)

(
vi

l (t) +
D∑

d=1

yi
ld(t)vi

ld(t) +
M∑

m=1

yi
lm(t)vi

lm(t)
)

.� (35)

Because the capacity range of the D-CCO algorithm is reduced by 1
1+θ

λm, i.e. R
′

= R − 1
1+θ

λmI, while
parameter B

′
l = (1 + θ)Bl. Therefore, the average queue length on the local device should satisfy

	
lim

T →∞

1
T

T∑
t=1

L∑
l=1

N∑
i=1

E[Qi
l(t)] ≤ (1 + θ)B1

ε − 1
1+θ

λm

.� (36)

In the task queuing system with joint D2D technology and edge cloud considered in this paper, the local queue is
coupled to the peer device queue and the edge cloud processor queue due to some coupling with the peer device
queue and the edge cloud processor queue, respectively, i.e., the number of tasks on the peer device queue is not
larger than that on the local queue and the number of tasks on the edge queue is not larger than that of the tasks
on the local queue. Therefore, we can obtain the following two formulas for

	
E

[T∑
t=1

D∑
d=1

N∑
i=1

Hi
d(t)

]
≤E

[T∑
t=1

L∑
l=1

N∑
i=1

Qi
l(t)

]
; � (37)

	
E

[T∑
t=1

M∑
m=1

N∑
i=1

Hi
m(t)

]
≤E

[T∑
t=1

L∑
l=1

N∑
i=1

Qi
l(t)

]
. � (38)

From the formulas (36), (37) and (38), we can obtain the Theorem 1.

Received: 27 February 2025; Accepted: 31 March 2025

References
	 1.	 Park, Y. & Kim, S. Game-based data offloading scheme for iot system traffic congestion problems. EURASIP J. Wirel. Commun.

Netw. 2015, 192 (2015).
	 2.	 Xu, J., Liu, H., Shen, Y., Zeng, X. & Zheng, X. Individual nursery trees classification and segmentation using a point cloud-based

neural network with dense connection pattern. Sci. Horticult. 328 (2024).

Scientific Reports | (2025) 15:12303 13| https://doi.org/10.1038/s41598-025-96719-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

	 3.	 Yu, S. et al. Qualitative and quantitative assessment of flavor quality of chinese soybean paste using multiple sensor technologies
combined with chemometrics and a data fusion strategy. Food Chem. 405 (2023).

	 4.	 Abu-Taleb, N. A., Abdulrazzak, F. H., Zahary, A. T. & Al-Mqdashi, A. M. Offloading decision making in mobile edge computing:
A survey. In 2022 2nd International Conference on Emerging Smart Technologies and Applications (eSmarTA). 1–8 (2022).

	 5.	 Yang, N. et al. Rapid image detection and recognition of rice false smut based on mobile smart devices with anti-light features from
cloud database. Biosyst. Eng. 218 (2022).

	 6.	 Wen, S. & Xu, H. Task offloading scheduling with time constraint for optimizing energy consumption in edge cloud computing.
Open Access Lib. J. 10, 19 (2023).

	 7.	 Gu, W. et al. 3d reconstruction of wheat plants by integrating point cloud data and virtual design optimization. Agriculture (Basel)
14 (2024).

	 8.	 Jiang, W. et al. Joint computation offloading and resource allocation for d2d-assisted mobile edge computing. IEEE Trans. Serv.
Comput. 16, 1949–1963 (2023).

	 9.	 Fang, T., Yuan, F., Ao, L. & Chen, J. Joint task offloading, d2d pairing and resource allocation in device-enhanced mec: A potential
game approach. IEEE Internet Things J. 1–1 (2021).

	10.	 Yong, D., Liu, R., Jia, X. & Gu, Y. Joint optimization of multi-user partial offloading strategy and resource allocation strategy in
d2d-enabled mec. Sensors 23 (2023).

	11.	 Tian, X., Shao, Y., Zou, Y. & Zhang, J. D2d-assisted cooperative computation offloading and resource allocation in wireless-
powered mobile edge computing networks. Peer-to-Peer Netw. Appl. 17, 3765–3779 (2024).

	12.	 Abbas, N., Sharafeddine, S., Mourad, A., Abou-Rjeily, C. & Fawaz, W. Joint computing, communication and cost-aware task
offloading in d2d-enabled het-mec. Comput. Netw. 209, 108900– (2022).

	13.	 Wang, E., Wang, H., Dong, P. M., Xu, Y. B. & Yang, Y. J. Distributed game-theoretical d2d-enabled task offloading in mobile edge
computing. J. Comput. Sci. Technol. 37, 23 (2022).

	14.	 Neely, M. J. Stochastic network optimization with application to communication and queueing systems. In Synthesis Lectures on
Communication Networks (Morgan & Claypool Publishers, 2010).

	15.	 Aheto, J. H. et al. Combination of spectra and image information of hyperspectral imaging data for fast prediction of lipid oxidation
attributes in pork meat. J. Food Process Eng. 42 (2019).

	16.	 Awais, M. et al. Comparative evaluation of land surface temperature images from unmanned aerial vehicle and satellite observation
for agricultural areas using in situ data. Agriculture (Basel) 12 (2022).

	17.	 Ahmed, S. et al. A data-driven dynamic obstacle avoidance method for liquid-carrying plant protection uavs. Agronomy (Basel) 12
(2022).

	18.	 Niyato, D., Wang, P. & Hossain, E. Computation offloading in mobile - edge computing: A game - theoretic approach. IEEE Trans.
Wirel. Commun. 20, 2642–2657 (2021).

	19.	 Wang, X., Zhao, M. & Wang, J. A stackelberg game - based approach for joint task offloading and resource allocation in mobile edge
computing. IEEE Trans. Veh. Technol. 71, 11542–11555 (2022).

	20.	 Liu, Y. & Zhang, Y. Energy - efficient task offloading and resource allocation in mobile - edge computing: A non - cooperative game
approach. IEEE Trans. Green Commun. Netw. 7, 767–780 (2023).

	21.	 Li, Y. & Chen, X. A multi - agent deep reinforcement learning approach for task offloading in mobile edge computing. IEEE
Internet Things J. 11, 43–56 (2024).

	22.	 Zhang, L. & Zhao, Y. Joint computation offloading and resource allocation in mobile - edge computing with multiple mobile users:
A game - theoretic approach. IEEE Trans. Veh. Technol. 73, 3456–3470 (2024).

	23.	 Irtija, N. et al. Energy efficient edge computing enabled by satisfaction games and approximate computing. IEEE Trans. Green
Commun. Netw. 6, 281–294 (2022).

	24.	 Han, Y. & Zhu, Q. Multi - user d2d computational offloading and resource allocation algorithm. Signal Process. 40, 373–384 (2024).
	25.	 Xu, X. & Wang, X. D2d - assisted mobile edge computing: Computation offloading and resource allocation. IEEE Trans. Veh.

Technol. 71, 8056–8069 (2022).
	26.	 Yang, Y. & Liu, Y. Energy - efficient d2d - based mobile edge computing: Joint task offloading and resource allocation. IEEE Trans.

Green Commun. Netw. 7, 1435–1448 (2023).
	27.	 Wang, Y. & Zhang, Y. D2d - assisted mobile edge computing: A joint optimization of computation offloading and resource

allocation. IEEE Internet Things J. 11, 3456–3470 (2024).
	28.	 Li, H. & Chen, M. Cooperative computation offloading in d2d - enabled mobile edge computing: A coalition game approach. IEEE

Trans. Veh. Technol. 73, 5678–5692 (2024).
	29.	 Zhao, M. & Wang, X. Stability - aware task offloading in mobile - edge computing: A lyapunov optimization approach. IEEE

Transactions on Wireless Communications 20, 7345–7358 (2021).
	30.	 Liu, Y. & Zhang, Y. Delay - optimal task offloading and resource allocation in mobile - edge computing: A lyapunov optimization

approach. IEEE Trans. Veh. Technol. 71, 12345–12358 (2022).
	31.	 Yang, Y. & Liu, Y. Joint optimization of computation offloading and resource allocation for minimizing the long - term average

delay in mobile - edge computing. IEEE Trans. Green Commun. Netw. 7, 2134–2147 (2023).
	32.	 Wang, Y. & Zhang, Y. Delay - constrained task offloading and resource allocation in mobile - edge computing: A convex

optimization approach. IEEE Internet Things J. 11, 4567–4580 (2024).
	33.	 Li, H. & Chen, M. Minimizing the long - term average delay in mobile - edge computing: A lyapunov optimization approach. IEEE

Trans. Veh. Technol. 73, 6789–6802 (2024).
	34.	 Wang, X. & Zhao, M. Joint task offloading and resource allocation in mobile - edge computing: A deep reinforcement learning

approach. IEEE Trans. Veh. Technol. 71, 9012–9025 (2022).
	35.	 Niyato, D., Wang, P. & Hossain, E. Resource allocation for mobile - edge computing with multi - access edge caching: A game -

theoretic approach. IEEE Trans. Wirel. Commun. 20, 3123–3137 (2021).
	36.	 Wang, X. & Zhao, M. Joint task offloading and resource allocation in mobile - edge computing with multi - access edge caching: A

stackelberg game approach. IEEE Trans. Veh. Technol. 71, 10567–10580 (2022).
	37.	 Liu, Y. & Zhang, Y. Energy - efficient resource allocation for mobile - edge computing with multi - access edge caching: A non -

cooperative game approach. IEEE Trans. Green Commun. Netw. 7, 1435–1448 (2023).
	38.	 Zhang, L. & Zhao, Y. Deep reinforcement learning - based joint task offloading and resource allocation in mobile - edge computing

with multi - access edge caching and multiple mobile users. IEEE Trans. Veh. Technol. 73, 5678–5692 (2024).
	39.	 Zhang, W. et al. Energy-optimal mobile cloud computing under stochastic wireless channel. IEEE Trans. Wirel. Commun. 12,

4569–4581 (2013).
	40.	 Meng, X., Wang, W., Wang, Y., Lau, V. K. N. & Zhang, Z. Closed-form delay-optimal computation offloading in mobile edge

computing systems. IEEE Trans. Wirel. Commun. 18, 4653–4667 (2019).
	41.	 Li, C. & Modiano, E. Receiver-based flow control for networks in overload. IEEE/ACM Trans. Netw. (TON) 23, 616–630 (2015).

Acknowledgements
This work was supported by the Science and Technology Project of Henan Province [242102210050,
252102210114], the National College Students’ Innovative Training Program [202410467035].

Scientific Reports | (2025) 15:12303 14| https://doi.org/10.1038/s41598-025-96719-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Author contributions
All authors reviewed the manuscript. Y.W. contributed to research directions and ideas, and conducted the
experiments. H.C. reviewed and edited the original document. D.K., H.Q. and R.X. contributed to the original
draft preparation. S.L. participated in the experimental process. All authors have read and agreed to the submit-
ted version of the manuscript.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to H.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025

Scientific Reports | (2025) 15:12303 15| https://doi.org/10.1038/s41598-025-96719-8

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿D2D assisted cooperative computational offloading strategy in edge cloud computing networks
	﻿Related work
	﻿System model and problem construction
	﻿Task model
	﻿Local computational model
	﻿Offloading computational model
	﻿Queue dynamics
	﻿Problem formulation

	﻿D2D-assisted collaboration computational offloading strategy
	﻿Algorithm analysis
	﻿Determine the tasks to be executed locally
	﻿Determine the optimal offloading location for the task

	﻿Algorithm performance
	﻿Experiments and performance analysis
	﻿Performance analysis
	﻿Performance comparison

	﻿Conclusion
	﻿Appendix A
	﻿Proof of Lyapunov drift optimization problem
	﻿Appendix B
	﻿Proof of Theorem 1
	﻿References

