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Flood vulnerability mapping has significantly progressed with the advent of Machine Learning (ML), 
bringing greater certainty to predictions. However, conventional supervised ML techniques may not 
be feasible in regions where recorded flood inventory data is scarce. This study introduces a novel 
deep learning approach using a Convolutional Neural Network (CNN)-led Autoencoder to assess flood 
vulnerability under such conditions. The methodology utilizes eleven causative factors, represented 
as geospatial layers, to characterize the regional environment. These layers are processed using CNN 
Autoencoder and K-means clustering to produce a flood risk zonation map for the upper and middle 
basins of the Damodar River. The autoencoder’s reconstruction performance is evaluated using metrics 
Mean Squared Error (MSE), precision, recall, and accuracy apart from cluster-based indices to evaluate 
its classification ability. The resulting map shows that 92% of the study area is safe, while less than 8% 
faces moderate to very high flood risk, aligning with historical patterns and validation analysis. The 
study highlights the strong impact of Drainage Density on model outcomes, while certain factors like 
Aspect introduce noise. These findings provide valuable insights into flood vulnerability, even in data-
scarce regions, aiding proactive mitigation strategies for future flood events.
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Floods worldwide have had a devastating impact throughout recorded history, affecting economic, social, and 
environmental spheres. These events occur due to inundation from an adjacent water body or rapid accumulation 
of excessive rainfall within a short span of time leading to destruction across the spheres mentioned1.Floods can 
be broadly classified into flash floods, River floods, and Coastal floods. Inland basins often grapple with flash 
and river flood types. A river flood is an overflow-led disaster often caused by intense rainfall in the immediate 
vicinity or excess rainfall in upstream areas, leading to flooding downstream. Flash floods, a form of riverine 
flooding, occur when an overwhelming volume of water is rapidly released within a short timeframe, often 
between two to five hours following intense rainfall. These floods are marked by a sudden surge in water velocity, 
leading to severe damage to life and property2. While river-induced floods can cause widespread damage in their 
floodplains, high rainfall even in micro watersheds in the lower mountain slopes or plateau edges causes flash 
floods3.

Tropical regions are particularly susceptible to various hydrological hazards, with tropical floods being 
among the most devastating4. Located in a tropical geographical setting, India ranks second in global flood 
vulnerability5. At the macro level in India, it is relatively lower in northern India and the Western Ghats, while 
the Kosi, Gandak, and Damodar sub-basins have the highest vulnerability6. Flood vulnerability emanates from 
relative positioning with respect to the surrounding area, type of land use, control measures taken, if any, and the 
various water sources the region possesses. So, the first crucial step in managing flood disasters is conducting a 
vulnerability assessment.
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Vulnerability maps act as the first line of defense in the process of Disaster management of floods by ensuring 
preparedness. They help assess the likelihood of flooding in a region based on its geographic characteristics. 
Remote sensing offers the advantage of large-scale predictive control over flood risks, with minimal field inputs7. 
Machine learning (ML) has revolutionized flood disaster management, providing advanced tools for analyzing 
large datasets and identifying complex patterns8. In recent years, a trend of multidisciplinary approach to 
flood risk assessment integrating GIS and ML models has been extensively used9,10. ML algorithms, such as 
artificial neural networks (ANNs), support vector machines, decision trees, and deep learning networks, process 
huge data from multiple sources like satellite imagery, weather stations, and historical recorded data11. In the 
case of flood vulnerability mapping, various thematic maps of geographical and meteorological factors are 
processed and compared with past flood events12. Using past recorded data as a reference to training models 
is supervised learning in ML parlance. ANNs excel at modelling non-linear systems, facilitating accurate flood 
hazard assessment and zonation by integrating GIS and remote sensing data13. Convolutional Neural Networks 
(CNNs), a subset of ANNs, are specialized in image data analysis and achieve high accuracy in tasks like facial 
and action recognition14.

Across the globe, often there is an undercount of small-scale extensive disasters such as localized flooding 
especially due to flash flooding15. This leads to a situation where many regions lack recorded data to perform 
vulnerability mapping through supervised methodologies mentioned in previous sections. The unavailability and 
absence of recorded data bring to the fore unsupervised learning algorithms, which identify natural groupings 
and simplify data, setting the stage for deeper insights through deep learning16.

Materials and methods
Study area
The Damodar River basin stretches across an extensive area of 23,370.98 km2, spanning majorly across Jharkhand 
and West Bengal17. It is one of the major river basins of eastern India and a key socioeconomic driver of the 
adjoining areas. The Damodar River travels through diverse topography characterized by the rugged plateau and 
the fertile alluvial plains. The Damodar River has tributaries such as Barakar, Konar, Tilaiya, and Katri18.

Damodar River Basin is one of India’s most analyzed basins for flood monitoring and risk categorization. 
Most works focus on the lower riparian part of the river19 whereas the upper and middle basin of the river is also 
known for floods, as shown in Fig. 1. The upper and middle basin is predominantly known for the economic 
activity of mining, especially coal. The mining sector is a frequent victim of surface water-led flooding and 
is relatively less scientifically investigated in this part of the world. Though not as rampant as the lower part, 
flooding impact is significant in the light of energy security of India. So, the present study’s focus is to analyze 
flood risk in this mining heartland of India, spanning 18,767.4 km2, as shown in Fig. 1.

Official inventory of floods for the study is absent but various reported news articles, which reveal only a 
few recorded instances, of floods in the study area spanning across the last 3 decades20–24. The reports have 
highlighted the severe impact of heavy rains in the Damodar basin of Jharkhand, including flooding of mines, 
road inundations in Dhanbad, power outages in Jamtara, and bridge collapses due to flash floods in Bokaro, West 
Bardhaman district in West Bengal which are shown as flood points in Fig. 1.

Data used
The Digital Elevation Model of the study area was obtained from the Bhuvan website for this study. Rainfall 
data is obtained from IMD25. The Geology and Geomorphology data are obtained from the Bhukosh website 
of the Geological Survey of India (GSI). The Land Use Land Cover (LULC) base image was obtained from the 
Sentinel-2 imagery. Synthetic Aperture Radar (SAR) imagery of Sentinel-1.

Fig. 1.  Map showing study area using DEM with flood points.
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Methodology
Flood risk is dependent on the climate-morphometric properties of the area under study. The regional 
morphometric features are captured using GIS layers. DEM of the study area is used to derive most of the 
morphological factors like Elevation, Slope, Aspect, Drainage Density, TWI, and SPI. Apart from these, the 
Distance to the river, Geology, Geomorphology, and LULC layers complete the morphology of the basin under 
study. The climatic characteristics of floods are related to precipitation in the area, which in this case is the annual 
rainfall that occurs predominantly in the summer monsoon.

Image overlay analysis of GIS spatial layers is the fundamental technique employed for the risk categorization 
tasks of disasters26. However, the overlay analysis is done using tools like fuzzy logic, Principal component 
Analysis27,28 in GIS software have limited capability in understanding and deducing patterns from the layers 
unless the analysis is linked to a well-established empirical-physical model like RUSLE for soil erosion. As 
mentioned earlier, the present study area lacks scientifically documented flood history; the most appropriate 
approach is the unsupervised Deep learning algorithms, which do not need previous records as a training 
data mandate. The autoencoder (AE) approach was chosen for this study given the image-based input to be 
employed29.

AE is primarily a Deep Neural Network comprising an encoder and a decoder. The encoder compresses the 
input data, a high-dimensional one, into an abstract form while the decoder rebuilds this encoded information 
back to the original input. In this process, hidden layers are used to reduce or build back the dimensions 
sequentially and symmetrically. Such an arrangement is termed Stacked Autoencoder (SAE)30. In this study, 
a novel deep learning methodology integrating SAE with a K-means cluster-based classification for making 
regional flood vulnerability predictions was shown as process workflow in Fig. 2. The methodology can be divided 
into primarily two parts: (1) Use of SAE to sequentially compress the high dimensional flood input datasets into 
a low dimensional encoded and then sequentially decompress and reconstruct the code into the original dataset; 
(2) using a K-means based clustering to learn clusters data from the encoded form and predicting the clusters 
from the original data that are vulnerable to flood inundation based on these learnings.

Neurons in the hidden layers are typically activated using the Rectified Linear Unit (ReLU) function, 
favoured for its computational efficiency compared to the traditional sigmoid function. Additionally, ReLU helps 
mitigate the vanishing gradient problem during the backpropagation process in Deep Learning Neural Networks 
(DLNN), allowing for more effective training of deeper networks31. Backpropagation helps weight adjustments 
by reducing differences in the predicted and the observed data, which is calculated using the mean square cost 
function32. This study employs the Adam algorithm to train the deep neural network model for flash flood 
spatial prediction. Adam’s adaptive learning rate adjustment for each parameter makes it ideal for optimizing 
deep learning models, boosting both speed and performance demonstrated by its rapid convergence rates and 
strong classification performance31.

Layers preparation
Elevation
Elevation plays a crucial role as a conditioning factor in flood dynamics, influencing both the likelihood and 
severity of flood events in a region33. Water flows naturally from higher to lower elevations due to gravity, 
making lower areas more prone to flooding as they accumulate runoff from higher regions. Elevated areas, with 

Fig. 2.  Process workflow.
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their steeper slopes, experience faster runoff and reduced infiltration, often leading to flash floods, especially in 
mountainous regions34. Additionally, higher elevations often receive more rainfall due to the orographic effect, 
further heightening flood risk in these areas. A filled DEM35 is used as an Elevation layer that provides insights 
into height above the mean sea level of the study area, as shown in Fig. 1.

Slope
The elevation difference influences the energy of flowing water, where steeper gradients result in more destructive 
floods due to increased speed and force, causing significant erosion and damage36. An important derivative of 
elevation data is the slope which influences the energy of water flow. In areas with steep slopes, rainfall tends to 
run off quickly, reducing the time for infiltration into the soil. Steep slopes are particularly associated with flash 
floods, as the quick accumulation of runoff can lead to sudden and intense flooding events downslope. A filled 
DEM is used to derive the Slope of the study area in degrees as shown in the Fig. 3b

Aspect
It influences flooded water flow patterns, indirectly impacting flooding by affecting the soil moisture regime. 
Aspect gives the orientation of a pixel of all possible 8 directions, i.e., N, E, S, W, NE, SE, SW, NW. This key input 
indicates the direction of the flow of the flood and acts as a secondary effect on flooding37. For the present study 
area, the aspect is shown in Fig. 3a

Drainage density
Drainage density indicates the stream concentration in a given area and helps understand stream movement in 
hydrological models for varying scenarios. It depends on slope and surface morphology features like fractures 
and joints. It is derived from a basin or watershed, which itself is derived from the DEM of the study area, as 
shown in Fig. 3e. High river network density accelerates surface runoff, increasing flood risk, especially near 
drainage basins and rivers38. Areas with high drainage density are prone to flash floods, while regions with low 
density may experience prolonged, widespread flooding39.

Stream power index (SPI)
The Stream Power Index (SPI) is a measure used to predict the erosive power of flowing water in a landscape 
using slope and contributing area from flow accumulation40. It is derived from Eq. (1) below

	 SP I = A tanβ� (1)

where A is the catchment area and β is the slope in radians. In the present study, in Fig. 3g, high SPI values 
emerged in the high-order streams, indicating that high power to move material is concentrated near the river 
and its tributaries.

Topographic wetness index (TWI)
The Topographic Wetness Index (TWI) is a hydrological parameter that quantifies the spatial distribution of soil 
moisture and the potential for surface saturation41. It is obtained by generating flow accumulation and slope and 
inserting them in Eq. (2)

	
T W I = ln

(
α

tanβ

)
� (2)

where α is the upside slope area and b is the slope gradient (in degrees). In general, the high TWI values and 
flooding are strongly correlated with each other42. High values of TWI correspond to areas favouring water 
accumulation and high runoff, which appropriately correspond to water bodies and basins in the region, as 
shown in Fig. 3f

Distance to river
Flooding tends to decrease as the distance from a river increases, indicating a negative correlation between flood 
risk and proximity to the river. The farther an area is from the river, the less likely it is to experience flooding43. It 
is basically a buffer zone created around the river, signifying a decreasing propensity of flood as one moves away 
from it. The ‘distance to river’ map for the study area is shown in Fig. 3d

Geology and geomorphology
A permeable formation helps absorb rainwater into the ground and, as a result, minimizes flood hazards. 
Similarly, an impermeable formation, such as the presence of igneous and metamorphic rocks increases the 
runoff rate, thereby by the flood risk44. The shapefile thus obtained contains a landscape divided based on 
geological timelines as shown in Fig. 3i. The Quaternary deposits are more permeable whereas the Archean and 
Permian formations are impermeable, while the rocks of Tertiary are intermediate45.

Geomorphology plays a critical role in determining how landscapes respond to hydrological events, 
particularly in the context of flooding46,47. The various geomorphic features, as shown in Fig. 3j, were assigned 
empirical indices based on previous works48–50.

Land use land cover
LULC dynamics significantly impact various hydrological processes, including infiltration, surface runoff, 
evaporation, and evapotranspiration51. ESRI’s AI-based LULC derived from Sentinel-2 imagery is used. Forests 
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and vegetation enhance infiltration and reduce runoff, thereby lowering flood risk. In contrast, barren lands, 
riverbanks, impervious roads, and buildings increase runoff due to their low infiltration capacity52. In this study, 
in Fig. 3h, land use categories of urban, built-up and mining were categorized as single category as they possess 
the general absence of greenery and as a consequence are more vulnerable to flooding.

Rainfall
Monsoonal trough formed over the Indian subcontinent during the summer monsoon passes through much of 
the present study area leading to very high rainfall between the months of June and September in the range of 
1100–1400 mm. The rainfall map shown in Fig. 3c, is generated using the IMD’s 0.25 × 0.25 grid rainfall dataset. 

Fig. 3.  Maps showing (a) Aspect (b) Slope (c) Annual rainfall (d) Distance to river (e) Drainage density 
(f) Topographic wetness index (TPI) (g) Stream power index (SPI) (h) Land use land cover (i) Geology (j) 
Geomorphology.
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Rainfall data between 1973 and 2023 was used. An increased precipitation rate significantly raises the likelihood 
of flooding in flood-prone areas, especially when combined with other contributing factors53.

Method
Pre-processing the layers
The Flood causative factors prepared as 11 GIS layers in the earlier section are stacked as bands of a single raster. 
The raster with eleven bands is given as input to the SAE. Before stacking them, the same resolution and the same 
‘no data’ value for all the layers are ensured.

Autoencoder
The stacked raster is given as input converted into a 3-dimensional array with length, breadth, and layers 
representing them. However, the raster should be made compatible with CNN and memory limitations. So, the 
raster is divided into patches before feeding it to the CNN. The input data is split into 80 and 20, respectively, for 
the training and testing phases of Autoencoder. Before feeding it to the SAE the data in all layers is normalized to 
values between 0 and 1. As iterated earlier the CNN-led autoencoder has 2 parts: encoder and decoder as shown 
in Fig. 4. Each patch is read by the network batch wise for a specified number of epochs. Iterating for the given 
number of epochs, the 10-layered DLNN learns to encode the input data into a concise or smaller form, which 
is the first step of Autoencoder, i.e. Encoding. The encoder part thus creates a ‘Latent space’, in Fig. 2, where the 
original high dimensional data is represented in an abstract low dimensional form. The Decoder part learns to 
bring back the encoded ‘latent’ information to its original state as given in the input. The ‘Loss’ function and 
metrics calculate and provide the ability of the Autoencoder to recreate the original image from the encoded 
representation.

K-means clustering
The algorithm is trained using the Latent space created by the encoder. Different clusters from the encoded 
data are finally used to predict the clusters in the original data. The final output of 5 clusters64 of the flood 
vulnerability classes, which, upon interpretation, represent risk categories, is shown in Fig. 5. The coding part 
mentioned in this section is performed using Python programming language.

Results
Autoencoder metrics and evaluation
The ultimate architecture and criteria used are selected based on the trial-and-error method depending on the 
model’s performance in the testing phase. The Loss function of Mean Square error (MSE) was used to compute 
variation in predicted and actual values of pixels. Apart from that evaluation metrics accuracy, recall, and 
precision were used to understand the reconstruction ability of the autoencoder16,54. As can be inferred from 
Fig. 6a, the loss consistently declined over the epochs and stabilized at 0.052 for training data and 0.084 for 
validation data. Also, metrics accuracy, precision, and recall registered improvement over the epochal runs in 
Fig. 6b–d. Here, accuracy overall is lower, resulting from massive data with many classes. Recall values are also 
on the lower side, indicating the model’s tendency to avoid false positives. Precision in our study provides better 
insights into model performance, with true positive cases being dominant in 90% of the training data and 85% of 
the validation data. Overall, the performance of Autoencoder in regenerating the original image can be termed 
satisfactory from these metrics. The reconstruction closer to the original mirrors the efficacy of the model’s 
latent space, which is used to generate the ultimate flood zonation map. While these metrics evaluate overall AE’s 
performance, the latent space and its understanding of clusters from the input needs evaluation.

For Neural networks and especially Encoder of an AE, t-Distributed Stochastic Neighbour Embedding 
(t-SNE)61 is used to understand the abstract or latent form of data. It is a non-linear dimensionality reduction 
technique designed for visualizing high-dimensional data in 2D or 3D, preserving local structures to reveal 
clusters and patterns. It measures pairwise similarities using a Gaussian distribution in high dimensions and a 
Student’s t-distribution in lower dimensions to address the crowding problem. By minimizing Kullback–Leibler 
(KL) divergence through gradient descent, t-SNE captures complex, non-linear relationships, making it ideal for 
visualizing neural network embeddings, especially image features. Such t-SNE representation of the latent space 
in 2D is shown in Fig. 6e, enabling us to visualize cluster patterns recognised by the AE in the process.

While t-SNE is effective at visualizing clusters, it’s important to quantitatively evaluate how well the data 
has been clustered. Two widely used metrics are the Silhouette Score63 and the Davies-Bouldin Index62. The 
Silhouette Score measures how similar an object is to its own cluster compared to other clusters

	 SilhouetteScores (i) = b (i) − a(i)/max(a (i) , b (i))

where, for a data point i, a(i) is the Average distance from all other points in the same cluster and b(i) = Average 
distance to all points in the nearest neighboring cluster. It ranges from − 1 to 1: + 1 indicates that the data point 
is well matched to its cluster and poorly matched to neighboring clusters. − 1 suggests that the data point might 
be assigned to the wrong cluster. This model’s s(i) turned out to be 0.545 indicates that the clusters formed by 
the t-SNE visualization are well-separated, suggesting the encoder captured meaningful distinctions in the data.

The Davies-Bouldin Index (DBI) evaluates the compactness and separation of clusters. It is a ratio of intra-
cluster distances to inter-cluster distances.

	
DBI = 1

N

N∑
i=1

max
(

Si + Sj
Mij

)
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where, N is the Total number of clusters; Si is the Average intra-cluster distance (compactness) for cluster i; Mij 
is the Distance between the centroids of clusters i and j (separation); For each cluster i, you calculate the ratio of 
the sum of intra-cluster distances (Si + Sj) to the inter-cluster distance Mij with all other clusters j. The maximum 
of these ratios represents the worst-case scenario for cluster i. Lower values (< 1) suggest well-separated clusters. 
Higher values (> 1) indicate overlapping or poorly separated clusters. A DBI of 0.507, in our case, suggests 
the clusters are reasonably compact and well-separated, validating the encoder’s effectiveness in capturing 
meaningful data structure.

Fig. 4.  A schematic representation of the autoencoder workflow used in the study.

 

Scientific Reports |        (2025) 15:33741 7| https://doi.org/10.1038/s41598-025-96781-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Flood vulnerability map
The patterns recognized based on input causative factors culminated into the final flood risk zonation map. The 
clustered dataset obtained has clear demarcations of flood risk zonation. Despite having 5 clusters as shown in 
Fig. 5, the region is primarily divided into 3 categories65 broadly.

•	 Very high–high values: These areas likely have high flood vulnerability. The Southeastern region shows a lot 
of red, indicating a higher likelihood of flooding.

•	 Moderate values: These areas have moderate flood vulnerability in yellow shade. These areas surround the 
high-risk zones.

•	 Very low–low values: These regions are indicated in blue and light green shades. Spread across the western 
and central parts of the region.

Validation
A total of 10 known flood points over the span of three decades were shown in Fig. 1 and overlayed on the 
flood risk zonation map as shown in Fig. 7a. The flood points, except for an outlier, were consistent with the 
map generated. Based on the data availability, one of the floods that occurred in the region in the year 2021 was 
analysed to validate the Risk zonation map further. The region, as shown in Fig. 7b, is drained by the Barakar 
River, a tributary of Damodar. The IMD data25 indicates an unusual and erratic rain of 160 mm on October 30 of 

Fig. 6.  (a) Accuracy; (b) Loss; (c) Precision; (d) Recall; (e) t-SNE.

 

Fig. 5.  Flood risk zonation in the study area.
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the year 2021 can be noticed in Fig. 7d. As covered by various news agencies, the district and surrounding areas 
witnessed the situation of flash floods leading to incidents of bridge collapse and damage to houses, as shown 
in Fig. 7c. The Sentinel-1 imagery, a Synthetic Aperture Radar (SAR) image enhanced for better visualization, 
indicates the overflow of the river at different areas, as shown in Fig. 7b via a before and after scenario. The flood 
intensity can be termed Moderate65 from the damage witnessed, and the area impacted is close to 500 m from 
the affected river. This bears evidence to the final risk map derived indicating the above area in the moderate 
category. Here it must be noticed that vulnerability emanating from all the factors employed in the study is 
such that the area witnessed moderate damage. This is consistent with the fact that the area falls in the middle 
basin of the overall Damodar drainage, where the elevation is close to 300 m above mean sea level; river flow 
is in a mature phase than low-lying plains near coasts, leading to overall moderate damage. Similarly, the high 
flood-vulnerable regions in the adjoining Bardhaman district of West Bengal are in consonance with the Flood 
Atlas map of West Bengal67, with recurring high-intensity floods in the last 3 decades. Historical flood locations 
helped validate the overall vulnerability of the study area, while this flood event analysis helped to validate the 
flood risk classification, further cementing the findings of this study.

Discussion
Floods cause a significant amount of damage not only economically but also environmentally and socially by 
devastating biodiversity and livelihoods, among others. Flood vulnerability maps help in predicting the areas 
that are likely to be flood-prone and, in turn, help plan mitigative and adaptive measures55. The present study 
aims to identify flood-vulnerable areas with sparse historically recorded data but often subjected to flooding. 
This situation is often the case in many areas worldwide, which calls for a rather unsupervised approach because 
supervised machine learning requires training with historical data. For this, a novel combination of Autoencoder 
and K-means clustering was used in this study. The primary result of this study was a flood vulnerability map of 
the study region.

The flood vulnerability map identifies the lower southeastern and eastern of the basin as prone to flooding. 
A histogram graph generated to indicate risk classes as a percentage area covered is shown in Fig. 8. More than 
92% of the study area is labelled as Safe from flooding, whereas less than 8% of the area is under moderate to 
very high risk of flooding. These findings are also in line with earlier studies on flood vulnerability of the entire 
Damodar basin18. The actual flood data collected from various sources like literature, news clippings, and local 
surveys indicate that within the area studied, the areas of Dhanbad, Bokaro, Giridh, parts of Jamtara, and areas 
of Bardhaman in West Bengal have histories of flooding, as mentioned in the earlier section on the study area. 
These parts of the study area are categorized under moderate to very high flooding categories, in line with 
flooding history. Morgan and Dobson et al.56 report on mines and floods, a world wildlife fund (WWF) study, 
indicates mines in these parts are victims of floods. Also, the performance of the autoencoder in recreating the 
original image is satisfactory because the precision, accuracy, and recall values of the model improved, whereas 
the loss function was reduced close to zero by the end of epochs. Also, a positive Silhouette score of 0.545 and 
DBI of 0.507 indicate a good level of pattern recognition by AE.

The impact of each causation factor on reconstruction in SAE was calculated using Perturbating error or 
Reconstruction error, as shown in Fig.  9. It is calculated by removing one of the 11 layers of the input and 

Fig. 7.  Flood event analysis showing (a) Historical flood points on Flood Zonation map (b) SAR imagery of 
Sentinel-1 showing before and after images of flood of 2021 near Jamtara (c) A newspaper clipping reporting 
the damage due to flood (d) IMD data showing the rainfall anomaly.
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running the autoencoder to calculate the loss with respect to the original input. The reconstruction error is 
high if removing the factor has a high impact on the outcome and hence is important in the learning process. 
As indicated in Fig. 9, Drainage Density has created a very high loss among all the factors, indicating its role 
in developing patterns by the encoder witnessed in the final outcome. The factors of Slope, Elevation, TWI, 
and LULC have relatively similar losses in their absence. Flood around the middle basin of Damodar can also 
be attributed to changing land use in the form of urbanization and mining activity, making the land more 
vulnerable, evident in LULC led loss being higher. However, the negative reconstruction error values for Aspect 
and Distance to the River indicate these factors are creating noise to the learning process, evident from their 
very nature of uniformity over the map. It is prudent to note the ‘Distance to River’ role in the model’s learning, 
indicating decreasing risk away from the river, but greater than 92% of the study area being classified as little to 
no risk, leading to it being in the slightly noise category. On the other hand, the aspect’s contribution to pattern 
recognition is minimal from the fact that it only indicates the direction of water flow from pixel to pixel. Hence, 
the huge negative perturbation (noise). The local hills or Monadnocks within the high-risk zone are clearly 
indicated in the very low category despite being closer to the flood-vulnerable areas, indicating the fact that 
elevation layer’s role in the learning. These findings are in harmony with Costache et al.57 where similar studies 
based on the upper and middle basin of a river stretch were analysed for flood risk using ANN. Also, the relative 
importance of factors obtained is similar to the previous studies that employed supervised learning to categorize 
flood risk58,59.

The presence of dams in vulnerable areas helps to mitigate floods downstream, which is one of their prime 
mottos. However, the vulnerability despite such measures emanates from erratic rainfall(as seen in validation), 
haphazard urbanization, dam siltation, and poor communication with respect to the release of dam water, 
often leading to these areas under higher vulnerability are indicated in recent works66.The vulnerable areas 
need attention that includes structural like maintaining the water level in the Dams of Maithon and Panchet 
appropriately, timely desiltation, planned urbanization and non-structural measures including Floodplain 
zonation, mapping, conservation, plantation and vegetation growth around floodplains, emergency response, 
and Disaster preparedness17,58.

Fig. 9.  Causation factor importance using perturbation error.

 

Fig. 8.  Flood risk classes distribution area-wise in percentage.
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Minor upgrades can be made to improve its relevance for a smaller study area, like the use of higher resolution 
images to decode vulnerability on lesser spread features like a single mine. Future scope includes using cross-
comparison studies worldwide, ensemble deep learning techniques, and the use of socio-cultural and political 
factors in prediction. The study has a huge scope in applicability universally especially where the inventory data 
is scarce. Overall, the model suggested in this study could be a valuable tool in disaster preparedness with the 
right set of causative factors.

Conclusion
Floods in the upper and middle of the Damodar basin threaten not only people’s lives but also India’s energy 
security as the coal extracted around the Damodar River forms the bulk of raw material for Thermal power plants 
in different parts of the country. The important economic activity of the region, Mining, is spread along the river 
basin of Damodar. The upper and middle Damodar basin forms one of India’s important economic and energy 
powerhouses; preparation of vulnerability maps forms the crux of planning and decision-making for mitigative 
and adaptation measures. However, studies are often limited to the lower basin of the river. So, this study uses 
a novel combination of Autoencoder and K-means to predict flood-vulnerable regions. The map generated 
categorized the regions in the southeastern and eastern parts of the study area as prone to floods. These results 
agree with the known flood points in the study area. Consequently, the mines and cities of Dhanbad, Bokaro, 
Giridh, and Jamtara districts are under moderate flood threat whereas neighboring areas of Bardhaman district 
of West Bengal are under High flood vulnerability. Also, the model’s learning implied that Drainage Density 
as a causation factor played a bigger part in identifying vulnerability. Overall, the model is extremely useful in 
predicting flood-prone areas, especially where flood inventory is absent.

Data availability
The data of the current study are available from the corresponding author upon reasonable request.
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