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With the rapid development of Internet of Things (IoT) technology, the people’s demand for 
the viewing experience of large-scale sport events is increasing. However, due to the significant 
concentration of time and space in large-scale sports events, which leads to a surge in computation-
intensive tasks, making traditional network models difficult to cope with such high demands. 
Fortunately, with the advantages of flexible deployment of Unmanned Aerial Vehicles (UAVs), UAV-
assisted edge computing technology provides an innovative solution. This paper studies the resource 
allocation problem in UAV-assisted edge computing system for large-scale sport events. Our goal is to 
minimize system energy consumption while satisfying system performance. We formulate the problem 
as a long-term stochastic optimization problem. To address this issue, we propose the efficient 
dynamic resource allocation (EDRA) algorithm. By employing stochastic optimization techniques, the 
original problem is decomposed into multiple sub-problems that can be solved in parallel. We solve 
each subproblem through convex optimization and linear programming. Through theoretical analysis, 
we prove the gap between the proposed solution and the optimal solution. Experiments shows that 
the EDRA algorithm can reduce energy consumption by 32.4% compared to advanced algorithms while 
ensuring stronger system performance.

With the rapid development of the Internet of Things (IoT) technology, edge computing, as a new computing 
paradigm, has attracted extensive attention in recent years. Edge computing significantly reduces data 
transmission latency, improves data processing efficiency, and reduces network bandwidth consumption by 
pushing computing resources and application services from the cloud to the edge of the network1. However, in 
some scenarios, traditional base stations are difficult to work or provide sufficient computing resources, such as 
rescue operations, forest fires, disaster scenarios, and temporary large-scale events2. Taking large-scale sports 
events as an example, due to the increasing demand for viewing experience from spectators and the large number 
of computation-intensive tasks generated during the competition, the traditional network model is difficult to 
cope with such high demand3,4. Especially during the critical moments of the competition, the demand for real-
time data updates, high-definition video streaming and other services increases sharply, which undoubtedly 
poses a huge challenge to the existing computing and network resources5.

Unmanned aerial vehicle (UAV)-assisted edge computing technology provides an innovative solution6. 
UAVs play an increasingly important role in edge computing systems due to their flexible deployment, high 
maneuverability, and extensive coverage. Deployed in the air, UAVs can provide better channel conditions for 
ground devices. Moreover, the flexible deployment capabilities of UAVs enable them to provide high-quality 
short-term services for temporary high-density scenarios7,8. As edge nodes, UAVs can provide fast and reliable 
computing and communication support for large-scale sports events, thus meeting the spectators’ demands for 
high-quality viewing experience9–11.

Although previous efforts have conducted some research on UAV-assisted edge computing in large-scale 
events12, there are still many challenges to face. First, numerous computation-intensive tasks are generated 
suddenly, and it is difficult to accurately predict the generation time of these tasks, and the communication 
conditions in the environment are also random, making it challenging to optimize the system without prior 
information. Second, the computing and communication resources of UAVs and devices are limited, requiring 
us to allocate these resources reasonably while ensuring system performance and cost. Finally, while the addition 
of UAVs can provide better communication conditions for the system, it also increases the complexity of the 
problem. Therefore, ensuring system performance while minimizing system energy consumption in this UAV-
assisted MEC system is challenging.
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This paper studies the task offloading and resource allocation problem in a three-tier UAV-assisted MEC 
system. We aim to minimize the energy consumption of the system while satisfying multiple constraints such 
as computing and communication resources. The CPU frequency and offloading power of devices and UAVs 
are considered as our decision variables. Since the problem is NP-hard13, we utilize mathematical methods to 
transform the problem and further decouple it into four subproblems. We propose the EDRA algorithm, which 
can stabilize the task queue of the system while minimizing system energy consumption as much as possible. 
Theoretical analysis proves the effectiveness of our algorithm. A series of experiments have been conducted 
to demonstrate that EDRA has excellent performance in solving the task offloading and resource allocation 
problem in UAV-assisted MEC systems.

Our main contributions are as follows: 

	1.	 We study the task offloading problem in a scenario that includes multiple devices, UAVs with edge servers, 
and a cloud server, while taking into account the randomness of tasks, channel conditions, and user loca-
tions. Under the premise of satisfying long-term constraints and system performance, we reformulate the 
problem as a long-term stochastic optimization problem to minimize system energy consumption.

	2.	 As the problem is NP-hard, we transform it into a deterministic optimization problem through a series of 
mathematical manipulations. Combining rigorous proofs, we decompose the problem into multiple sub-
problems, each containing only one decision variable, which can achieve (approximate) optimal solutions. 
The efficient dynamic resource allocation (EDRA) algorithm is proposed to solve multiple subproblems on-
line and in parallel.

	3.	 Through theoretical analysis, we prove the gap between the proposed algorithm and the optimal algorithm, 
ensuring the performance of the proposed algorithm. Through a series of parameter analyses, we demon-
strate that the proposed algorithm can adapt to different task arrival rates and device quantities. Through 
comparative experiments, we show that the system can effectively reduce energy consumption while ensur-
ing the task queue length.

The structure of the remainder of this paper is as follows. Section Related work introduces related work. Section 
System model and problem formulation presents the system model and problem formulation. Section EDRA for 
task offloading and resource allocation transforms and decomposes the problem into multiple subproblems, and 
propose the EDRA algorithm. Section Algorithm analysis for EDRA provides a theoretical analysis of the EDRA 
algorithm. Section Evaluation demonstrates the performance of the EDRA algorithm in different environments 
through experimental results and compares it with advanced algorithms. Finally, Sect. Conclusion summarizes 
the paper.

Related work
Recently, many efforts have focused on task offloading and resource allocation problem in the MEC system. 
Ding et al.14 studied a generalized MEC system that incorporates both OMA and NOMA transmission methods. 
They proposed a multi-objective optimization problem to achieve minimal system energy consumption while 
achieving low-complexity resource allocation. Ernest et al.15 applied multi-agent reinforcement learning 
techniques to the computation offloading problem in MEC vehicular networks, obtaining an offloading strategy 
that can achieve maximum energy efficiency. Chu et al.16 studied the caching and task offloading issues in multi-
access edge computing networks. They focused on maximizing user QoE by consolidating a logical resource pool, 
and proposed a method based on approximation and decomposition theory to solve this problem. Tang et al.17 
investigated the offloading problem in multi-access edge computing. They achieved minimized offloading delay 
for IoT terminals by jointly optimizing computing and communication resources. However, the aforementioned 
studies did not take into account the randomness of channel conditions and the unpredictability of task arrivals 
in the environment.

Considering the dynamic variability of the environment, Liu et al.18 designed a dynamic optimization 
algorithm for intensive requests from terminal devices in MEC systems. This algorithm can significantly 
improve system performance by adjusting the offloading decisions and power allocation strategies. Ali et al.19 
studied a multi-user MEC system, where they optimized the offloading decisions from a life-cycle perspective 
without prior information and proposed a SAC-based lifespan maximization algorithm. Li et al.20 investigated 
the problem of minimizing computational delay and energy consumption in MEC systems. They utilized the 
Lyapunov optimization framework to optimize the system while balancing both factors. Sun et al.21 studied the 
long-term energy-efficient task allocation and offloading in MEC systems. By decomposing the original problem 
into multiple subproblems, they achieved an online energy-saving strategy. However, the aforementioned works 
did not consider utilizing UAVs to assist edge computing, thus unable to provide edge computing for scenarios 
requiring temporary, intensive, and low-latency computations.

Sun et al.22 formulated the Time and Energy Minimization Communication Multi Objective Optimization 
Problem (TEMCMOP) for CB in UAV networks and proposed an improved Multi Objective Ant Lion 
Optimization (IMOLO) algorithm to solve the problem. Picano et al.23 studied the computational offloading 
problem in UAV-assisted MEC systems. They proposed an efficient offloading decision algorithm based on 
a matching algorithm while satisfying different QoS constraints. Chen et al.24 investigated a LEO Satellite-
Terrestrial Edge Computing Systems with terrestrial base stations. They considered task offloading under limited 
resources and proposed an offloading algorithm based on potential game theory. Gao et al.25 studied the low-
latency QoE problem in UAV-MEC systems. They proposed a service experience-oriented framework to cache 
user-required content on the edge servers on UAVs, thus improving the overall system performance. Chen et 
al.26 studied the scenario of using UAV to assist users in edge computing when the ground base station cannot 
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work. A hybrid natural inspired optimization algorithm (HNIO) and its discrete optimization version were 
proposed to solve the energy consumption optimization problem in this scenario.

Despite significant efforts in UAV-assisted edge computing, existing works have not fully addressed the 
challenges of random environmental information and system stability while providing an online solution. 
As shown in Table  1, our work takes these issues into consideration. Compared to robust optimization and 
RL14,15,18,19, we balance robustness and efficiency through the dynamic transformation of the stochastic 
optimization framework, explicitly modeling the stochastic optimization problem. In contrast to the above 
works’ approaches to ensuring system performance15,17,22,27, we dynamically guarantee long-term system 
performance by introducing task queues.

Specifically, we formulate the Task Offloading and Resource Allocation in UAV-Assisted MEC for Large 
Sport Events as a stochastic optimization problem. By leveraging stochastic optimization techniques, we can 
provide adaptive solutions online without requiring prior knowledge of task arrival rates and channel conditions. 
Additionally, we ensure system stability by introducing virtual task queues and incorporating them into the 
optimization objective, thereby transforming the originally constrained virtual task queues into part of our 
optimization goal.

System model and problem formulation
System model
As shown in Fig. 1, this paper considers a three-tier UAV-assisted edge computing network, which includes I 
terminal devices, J UAVs equipped with edge servers, and a Cloud Server (CS) that can provide cloud services. 
To provide long-term optimization, time is divided into T equal-length discrete time slots, with each slot having 
a duration of τ , where T ∈ {1, 2, 3, . . . , T }. For convenience, Ni,j  is used to represent the i-th device served by 
UAV j and Ij  represents the set of devices which communicating with UAV j. In each time slot, there are Aj,i(t) 
amount of tasks arriving at device Ni,j , which is influenced by factors such as whether, position movement, etc., 
and the device can choose to process the tasks locally or offload them to the edge server on UAV j. The edge 
server can select to further transmit part of the tasks to the CS for processing based on its own task backlog. 
Table 2 shows the primary notations and definitions for this paper.

Communication model
UAVs equipped with edge servers provide better communication conditions compared to traditional ground 
base stations. This is due to the higher probability of Line-of-Sight (LoS) path communication in ground-to-air 
communication. Therefore, this paper consider a probabilistic geometric LoS model to account for the channel 
gain between devices and UAVs in large-scale sports events.

We use Hj  to represent the flight height of UAV j, and for simplicity, the height of all devices is assumed 
to be 0. The two-dimensional coordinates of UAV j are denoted as (xj(t), yj(t)), and the two-dimensional 
coordinates of device Ni,j  are represented as (xi,j(t), yi,j(t)). The probabilistic geometric LoS channel model 

Fig. 1.  An example of a system model comprising multiple UAVs equipped with edge servers, multiple devices, 
and a cloud server.

 

Key factors Papers

[14] [15] [16] [17] [18] [19] [21] [22] [25] [26] Ours

Consideration of random information No Yes No No Yes Yes Yes No Yes No Yes

UAV Scenario No No No No No No No Yes Yes Yes Yes

System stability assurance No Yes No Yes Yes Yes Yes Yes No Yes Yes

Support for distributed solving No No Yes No No No No Yes Yes No Yes

Table 1.  Comparison of related work based on key factors.

 

Scientific Reports |        (2025) 15:11828 3| https://doi.org/10.1038/s41598-025-96814-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


depends on the angle between the communication entities. We can calculate the angle between UAV j and device 
(xi,j , yi,j) in the t-th time slot based on the horizontal difference as:

	
θi,j(t) = 180

π
arctan( Hj

∥pj(t) − pi,j(t)∥ ).� (1)

After obtaining the UAV j and the device’s coordinates (xi,j , yi,j), we can derive the probabilistic geometric LoS 
(Line-of-Sight) loss model28 between them,

	
P (LoS, θi,j(t)) = 1

1 + a exp(−b(θi,j(t) − a)) ,� (2)

Where a and b are environment-dependent parameters. Additionally, the probability of NLoS link can be easily 
derived as P (NLoS, θi,j(t)) = 1 − P (LoS, θi,j(t)). Moreover, during the transmission of wireless signals, 
there is also the free-space path loss given by:

	
F Lj,i(t) = 20 log10 ||pj(t) − pi,j(t)|| + 20 log10

(4πfc

c

)
,� (3)

Where this formula incorporates the path loss due to distance, related to the Euclidean distance between the 
UAV and the device, and the path loss caused by the diffusion of electromagnetic waves in free space. Here, fc is 
the frequency, and c represents the speed of light.

In summary, similar to29,30, the path loss between the UAV and the device can be expressed as:

	 Lj,i(t) = P (LoS, θi,j(t)) × ηLoS + P (NLoS, θi,j(t)) × ηNLoS + F Lj,i(t),� (4)

Where ηLoS  and ηNLoS  are the additional path loss factors for LoS and NLoS conditions, respectively. Then, the 
channel gain is given by gj,i = 10−

Lj,i(t)
10 .

Similar to31, we assume that the devices communicate with the UAVs using Frequency Division Multiple 
Access (FDMA) transmission. According to Shannon’s theorem32, the transmission rate in the ideal condition 
for a device to offload tasks to the UAV can be expressed as:

Notion Definition

I Number of terminal devices

J Number of UAVs equipped with edge servers

T Number of time slots

τ Duration of each time slot

Ni,j Device i served by UAV j

Aj,i Amount of tasks arriving at device Ni,j

fi,j(t) CPU frequency of device Ni,j  at time t

f l
max Maximum CPU frequency of the devices

Pi,j(t) Transmission power of device Ni,j  at time t

P l
max Maximum transmission power of the devices

fj(t) CPU frequency of UAV j at time t

Pj(t) Transmission power of UAV j at time t

fj
max Maximum CPU frequency of the UAVs

P j
max Maximum transmission power of the UAVs

γc Energy efficiency factor

Qi,j(t) Queue backlog of device Ni,j  at time t

Ui,j(t) Queue backlog of device Ni,j  on UAV j at time t

Rj,i(t) Transmission rate for offloading tasks from device Ni,j  to UAV j

gj,i Channel gain between UAV j and device Ni,j

Bj Bandwidth allocated for communication between device Ni,j  and UAV j

N0(t) Noise power spectral density

σi,j Number of CPU cycles required to process one bit of task on device Ni,j

σj Number of CPU cycles required to process one bit of task on UAV j

Table 2.  Notations and definitions.
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Rj,i(t) = Bj log2

(
1 + gj,i(t)Pi,j(t)

N0(t)

)
,� (5)

Where Bj  is the bandwidth allocated for communication between device Ni,j  and UAV j, Pi,j(t) is the transmit 
power of device Ni,j , and N0(t) is the noise power spectral density.

Task and offloading model
The system is optimized for long-term performance and divided into multiple time slots. In each time slot, tasks 
arrive at device Ni,j  following a Discrete-Time Poisson Process, with the task arrival rate denoted by Ai,j(t)
. Upon receiving tasks33, the device can choose to process them locally or offload them to the edge server on 
the UAV. Unlike some binary offloading models, this work considers scaling the device’s CPU frequency fi,j(t) 
and adjusting the offload power Pi,j(t) for more precise partial offloading. Similarly, the UAV can scale its CPU 
frequency fj(t) and offload power Pj(t) to partially process tasks and offload some to the cloud. This section 
models the task amount and energy consumption in the system.

Energy consumption and task amount of devices
The local computation amount Cl

i,j(t) of the device is related to its hardware characteristics and CPU frequency, 
while the offloaded task amount Co

i,j(t) can be changed by adjusting the offload power to alter the transmission 
rate. They can be expressed as follows:

	
Cl

i,j(t) = fi,j(t)τ
σi,j

, Co
i,j(t) = τRi,j(t).� (6)

Where σi,j  is the number of CPU cycles required by device i to process one bit of task. It is also necessary to 
satisfy Cl

i,j(t) + Co
i,j(t) ≤ Ai,j(t).

The energy consumption of the device is also related to the CPU frequency and offload power34,35. According 
to Joule’s Law, it can be expressed as:

	 Ei,j(t) = γcf3
i,j(t)τ + τPi,j(t),� (7)

Where γc is the energy efficiency factor. The fi,j(t) and Pi,j(t) are subject to the following constraints:

	 0 ≤ fi,j(t) ≤ f l
max, 0 ≤ Pi,j(t) ≤ P l

max.� (8)

Energy consumption and task amount of UAVs
Each UAV’s server can provide services to multiple devices, resulting in the UAV’s CPU being occupied by 
multiple different tasks. We logically divide the CPU frequency of the UAV into f j

i (t) to represent the CPU 
frequency allocated by UAV j to device Ni,j  in time slot t. The same applies to the offload power. Then, the task 
amount processed by the UAV can be expressed as:

	
Dl,j

i (t) = f j
i (t)τ
σj

, Do,j
i (t) = τRj

i (t),� (9)

Where σj  is the number of CPU cycles required for device i to process one bit of task. Dl,j
i (t) represents the 

amount of tasks processed locally, and Do,j
i (t) represents the amount of tasks offloaded to the cloud server for 

processing. The energy consumption can be expressed as:

	
Ej(t) =

I∑
i=0

γcf j
i (t)3τ + τP j

i (t).� (10)

Unlike devices that are only constrained by themselves, all tasks on a UAV share the computing and 
communication resources of that UAV, affecting each other. Task processing and offloading on the UAV need to 
satisfy the following constraints:

	
0 ≤

Ij∑
i=1

f j
i (t) ≤ f l

max, 0 ≤
Ij∑

i=1

P j
i (t) ≤ P j

max, ∀j ∈ J .� (11)

Task queue model
To achieve long-term optimization of the system, we need to ensure that the system is in a state where it can 
process tasks normally. That is, the backlog of tasks processed by the system cannot grow indefinitely. To this 
end, we set up two sets of queues (they are all in a First-In-First-Out (FIFO) manner and processed one by one) 
to ensure that the task backlog on devices and UAVs is not excessive (the cloud service has powerful computing 
capabilities, so the task backlog at the cloud level is not considered for the moment). First, the queue on the 
device can be expressed as:
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	 Qi,j(t + 1) = max{Qi,j(t) + Ai,j(t) − Cl
i,j(t) − Co

i,j(t), 0} ∀t ∈ T ,� (12)

Where Qi,j(t) represents the task backlog status of device Ni,j  at time t, the queue entry variable is the task 
arrival rate Ai,j(t), and the exit variables are the local computation amount Cl

i,j(t) and the offloaded task 
amount Co

i,j(t).
We use Ui,j  to represent the backlog queue for the tasks of device i on UAV j, as follows:

	 Ui,j(t + 1) = max{Ui,j(t) + Co
i,j(t) − Dl

i,j(t) − Do
i,j(t), 0} ∀t ∈ T ,� (13)

Where the entry variable is the offloaded task amount Co
i,j(t) from device i, and the exit variables are the local 

computation amount and the offloaded task amount.

Problem formulation
Given the energy consumption formula for task processing in the system, considering our optimization objective. 
We minimize the energy consumption of the system by optimizing the CPU frequency, offload power of devices, 
CPU frequency, and offload power of UAVs, while satisfying multiple constraints. This is a long-term stochastic 
optimization problem and can be expressed as: 

	
P1: min

ϕi,j (t)
lim

T →∞

1
T

T∑
t=1

J∑
j=1

Ij∑
i=1

Ei,j(t) + Ej(t), � (14a)

	
s.t. lim

T →∞

T∑
t=1

J∑
j=1

Ij∑
i=1

E{Qi,j(t)} < ∞, � (14b)

	
lim

T →∞

T∑
t=1

J∑
j=1

Ij∑
i=1

E{Ui,j(t)} < ∞, � (14c)

	 Cl
i,j(t) + Co

i,j(t) ≤ Ai,j(t), ∀i, j, t � (14d)

	 Dl
i,j(t) + Do

i,j(t) ≤ Co
i,j(t), ∀i, j, t, � (14e)

(8), and (9).
Where ϕi,j(t) = fi,j(t), Pi,j(t), f j

i (t), P j
i (t) is a set of vector variables. Ei,j(t) is the energy consumption 

of device Ni,j  at time slot t, Ej(t) represents the energy consumption of UAV j, and (14a) is our optimization 
goal, which is to minimize the long-term energy consumption of the devices and UAVs. (14b) and (14c) represent 
the long-term constraints that need to be satisfied by the device layer and the UAV layer respectively. (14d) 
represents the task processing capacity constraint of the devices. (14e) represents the task processing capacity 
constraint of the UAVs. (8) and (9) limit the CPU frequency and power of the devices and UAVs respectively.

In fact, solving this long-term stochastic optimization problem is quite challenging. Since the task arrival rate, 
channel conditions in the environment, and other factors are random, it is difficult to make precise predictions. 
Mathematically, this problem is formulated as a mixed-integer nonlinear programming (MINLP) problem, 
which is known to be NP-hard. Traditional mathematical methods find it difficult to provide an optimal solution 
within a reasonable time. Therefore, in the next section, we use stochastic optimization techniques to transform 
the problem into a more tractable static optimization problem.

EDRA for task offloading and resource allocation
Recall our goal of minimizing the system’s energy consumption by optimizing ϕi,j(t). However, in P1, multiple 
variables in ϕi,j(t) are coupled high-dimensional vectors. In this section, we will first transform the direct 
optimization of P1 into optimizing the upper bound of P1, aiming to reduce long-term energy consumption by 
decreasing the upper bound of P1. Additionally, we decouple the multiple variables in ϕi,j(t) and decompose 
them into multiple independent subproblems. This also means that these problems can be solved in parallel, 
improving the efficiency of the solution process.

Problem transform
First, we use the vector ω(t) = {Q1,1(t), . . . , Qi,j(t)} ∪ {U1,1(t), . . . , Ui,j(t)} to represent the overall queue 
backlog and stability conditions of the system at time t and L(ω(t)) = 1

2

∑J

j=1

∑Ij

i=1(Q2
i,j(t) + U2

i,j(t)). 
Clearly, L(ω(t)) is non-negative, and we can judge the backlog situation of the system based on its magnitude. 
To achieve long-term stability, we can express the drift function as:

	 ∆(ω(t)) = E{L(ω(t + 1)) − L(ω(t)|ω(t)}.� (15)

Reducing this drift function is equivalent to reducing the backlog in the queue. However, while we stabilize 
the backlog in the system, we also need to minimize energy consumption as much as possible. In this case, we 
introduce a penalty term into the drift function to obtain the drift-plus-penalty function in order to achieve this 
goal.
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	 D(ω(t)) = ∆(ω(t)) + V E{Etotal(t)|ω(t)}� (16)

Where Etotal(t) represents the total energy consumption of the system at time t. V is a trade-off factor used to 
adjust the optimization focus between the queue and energy consumption. After constructing this drift-plus-
penalty function, we can optimize the overall energy consumption of the system by optimizing the upper bound 
of this function, while also keeping the system in a stable state. The upper bound of D(ω(t)) can be obtained 
by Theorem 1.

Theorem 1  If there is an upper limit Amax for the task arrival rate Ai,j(t), then the following relationship holds:

	

∆(ω(t)) + V E{Etotal(t)|ω(t)}
≤ Z + V E{Etotal(t)|ω(t)}

+
J∑

j=1

Ij∑
i=1

Qi,j(t){Ai,j(t) − Cl
i,j(t) − Co

i,j(t)|ω(t)}

+
J∑

j=1

Ij∑
i=1

Ui,j(t){Co
i,j(t) − Dl

i,j(t) − Do
i,j(t)|ω(t)}

� (17)

Where Z is a constant and 
Z =

∑J

j=1

∑Ij

i=1[A2
i,j(t) + Cl

i,j(t) + 2Co
i,j(t)Cl

i,j(t) + 2Co
i,j(t)2 + (Dl

i,j(t) + Do
i,j(t))2].

Proof  Squaring both sides of the formula (17) can yield:

	 Q2
i,j(t + 1) ≤ {Qi,j(t) + Ai,j(t) − Cl

i,j(t) − Co
i,j(t)}2.� (18)

Expanding the right side of the formula gives:

	 Q2
i,j(t + 1) ≤ Q2

i,j(t) + A2
i,j(t) + (Cl

i,j(t) + Co
i,j(t))2 − Ai,j(t)[Cl

i,j(t) + Co
i,j(t)] + 2Qi,j(t)[Ai,j(t) − Cl

i,j(t) − Co
i,j(t)].� (19)

Extracting the part with upper limit and setting Z1 = (Amax
i,j (t))2 + (Cl,max

i,j (t) + Co,max
i,j (t))2, and 

subtracting Q2
i,j(t) from both sides, we can get:

	 Q2
i,j(t + 1) − Q2

i,j(t) ≤ +Z1 + 2Qi,j(t)[Ai,j(t) − Cl
i,j(t) − Co

i,j(t)] − Ai,j(t)[Cl
i,j(t) + Co

i,j(t)].� (20)

Since Ai,j(t)[Cl
i,j(t) + Co

i,j(t)] is always greater than or equal to 0, we can obtain the following inequality 
through scaling equations:

	 Q2
i,j(t + 1) − Q2

i,j(t) ≤ +Z1 + 2Qi,j(t)[Ai,j(t) − Cl
i,j(t) − Co

i,j(t)].� (21)

Similarly, we can get:

	 U2
i,j(t + 1) − U2

i,j(t) ≤ +Z2 + 2Ui,j(t)[Co
i,j(t) − Dl

i,j(t) − Do
i,j(t)],� (22)

Where Z2 = (Co,max
i,j (t))2 + (Dl,max

i,j (t) + Do,max
i,j (t))2.

Combining the (20) and (21), the Theorem 1 is proven.
By substituting (7) and (10) into (17), we can obtain P2. According to Theorem 1, we can transform the 

original optimization of P1 into the optimization of P2. For brevity, we have simplified the summation and 
expectation of P2, and represent P2 as follows:

	

P2: min
ϕi,j (t)

V τ [γcf3
i,j(t) + Pi,j(t) + γcf j

i (t)3 + P j
i (t)]

+Qi,j(t)[Ai,j(t) − fi,j(t)τ
σi,j

− τRi,j(t)]

+Ui,j(t)[τRi,j(t) − f j
i (t)τ
σj

− τRj
i (t)]

� (23)

Decomposing subproblem
After proving that the drift function with penalty term has an upper bound, we can observe that its upper bound 
is a multivariate function containing four decision variables. Fortunately, after transforming it into an upper 
bound problem, the originally coupled four decision variables become separable. In this section, we decompose 
the original problem into four subproblems and solve them separately using different mathematical methods.
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CPU frequency of the device subproblem
We extract the part related to CPU frequency from the upper bound problem and decouple the problem to 
obtain the following subproblem:

	

P2-1: min
fi,j (t)

−Qi,j(t)fi,j(t)τ
σi,j

+ V γcf3
i,j(t)τ,

s.t. 0 ≤ fi,j(t) ≤ min{f l
max,

Qi,j(t)σi,j

τ
}.

� (24)

The CPU frequency determines the task execution time on each device and UAV. Higher CPU frequencies reduce 
task execution time but increase energy consumption due to the cubic relationship between energy consumption 
and CPU frequency. To optimize the CPU frequency, we formulated it as a convex optimization problem. By taking 
the second derivative of P2-1, we can obtain the extreme points of the function fi,j(t) =

√
[Qi,j(t)/3V γcσi,j ]. 

By observing the relationship between the extreme points and the feasible region, we can conclude:

	

f∗
i,j(t) =




√
Qi,j(t)

3V γcσi,j
,0 ≤

√
Qi,j(t)

3V γcsigmai
≤ fm

fm,otherwise,

� (25)

Where fm = min{f l
max,

(Qi,j (t)+Ai,j (t))σi,j

τ
}.

Offloading power of the device subproblem
By decoupling the part related to offloading power in P-2, we obtain the following subproblem:

	

P2-2: min
Pi,j (t)

−Bj(Qi,j(t) − Ui,j(t))

log2(1 + gj,i(t)Pi,j(t)
N0(t) ) + V τPi,j(t)

s.t. 0 ≤ Pi,j(t) ≤ P l
max.

� (26)

This is a nonlinear optimization problem. We denote the function of P2-1 as F (Pi,j(t)), and introduce xi,j(t) 
as a substitution for gj,i(t)

N0(t)  and yi,j(t) for −Bj(Qi,j(t) − Ui,j(t)). Then, the first-order derivative is:

	
dF (Pi,j(t))

dPi,j(t) = −yi,j(t)τxi,j(t) + τV (1 + xi,j(t)Pi,j(t)) ln 2
(1 + xi,j(t)Pi,j(t)) ln 2 � (27)

And the second-order derivative is:

	
dF 2(Pi,j(t))

dPi,j(t)2 = yi,j(t)τ
x2

i,j(t)
(1 + xi,j(t)Pi,j(t)) ln 2

� (28)

Analyzing the value of yi,j(t), we have: when yi,j(t) < 0, the first-order derivative is always greater than 0. 
When yi,j(t) = 0, F (Pi,j(t)) is linearly dependent on Pi,j(t). When yi,j(t) > 0, the second-order derivative 
is always positive, indicating a minimum occurs when the first-order derivative is 0. This minimum occurs at 
Pi,j(t) = yi,j (t)

V ln 2 − 1
xi,j (t) . Combining these analyses, we obtain the solution:

	

P ∗
i,j(t) =




min{P max
i,j ,

yi,j(t)gi,j(t)
V ln2 − N0(t)

gi,j(t)},V ≤ Z(t),

0,otherwise,

� (29)

Where for simplicity, we use Z(t) to represent xi,j (t)yi,j (t)
ln 2 .

CPU frequency of the UAV subproblem
In this subproblem, we find the optimal CPU Frequency of the UAV through solving following subproblem:

	

P2-3: min
fi

j
(t)

−Ui,j(t)
f i

j (t)τ
σj

+ V γcf i
j (t)3τ,

s.t. 0 ≤
Ij∑

i=1

f j
i (t) ≤ f l

max,

� (30)
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The CPU frequency f j
i (t) of the UAV j needs to be decoupled, but since a UAV has to handle tasks offloaded from 

multiple devices, it cannot be solved as a simple convex optimization problem. Here, we utilize a combination of 
the knapsack problem solving approach and convex optimization. Similar to the approach for P3-1, we first find 
the analytical solution for the CPU frequency allocated to device i:

	

f i,∗
j (t) =




√
Ui,j(t)
3V γcσj

,0 ≤
√

Ui,j(t)
3V γcσi

≤ fn

fn,otherwise,

� (31)

Where fn = min{f j
max,

(Ui,j (t)+Ai,j (t))σj

τ
}. After obtaining the analytical solution for f i

j (t), we treat it 
as weight of the task of device i and apply the knapsack problem solving method, considering the total CPU 
frequency of the UAV as the knapsack capacity. The specific details of the algorithm are outlined in Algorithm 1.

Offloading power of the UAV subproblem
In this subproblem, we decouple the offloading power of UAV j to establish the following subproblem?

	

P2-4: min
Pi,j (t)

−BjUi,j(t) log2(1 + gj
i (t)P j

i (t)
N0(t) )

+V τP j
i (t)

s.t. 0 ≤
Ij∑

i=1

P j
i (t) ≤ P j

max

� (32)

Algorithm 1.  The Proposed EDRA Algorithm
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Similar to solving P2-3, we get an analytical solution firstly for P2-4:

	

P ∗
i,j(t) =




min{P max
j ,

BjUi,j(t)gj
i (t)

V ln2 − N0(t)
gi

j(t)
},V ≤ z(t),

0,otherwise,

� (33)

Where z(t) = BjUi,j(t)gj
i (t)/N0(t) ln 2.

The proposed EDRA algorithm is executed in a distributed manner across the devices and the UAVs’ edge 
servers. Specifically, Subproblems 1 and 2 are distributed and executed on each device, resulting in locally 
optimized computing and offloading decisions, with inputs that are only related to the device’s own task queue. 
Subproblems 3 and 4 yield the computing and offloading decisions for the UAV’s edge servers, and these 
subproblems are executed on the UAV. The specific algorithm design can be found in Algorithm 1.

Complexity analysis
The EDRA algorithm is designed to solve the task offloading and resource allocation in UAV-assisted MEC 
to optimize the energy consumption of system while maintaining the system performance. Previous work 
has also proposed several methods to address this issue, such as prediction-based methods and Game-based 
methods24,36. Unlike these methods, EDRA transforms the stochastic optimization problem into a deterministic 
optimization problem, eliminating the need for specially find the way to predict external environmental 
information. Moreover, the decoupling of the problem allows the algorithm to avoid complex iterations.

Regarding the complexity analysis of the EDRA algorithm, the algorithm has two loops. In each UAV, it is 
required to sort according to the offloading workload of devices and process the tasks offloaded by devices, with 
complexities of O(I log2 I) and O(I), respectively. And the algorithm is currently running during T. Therefore, 
the overall complexity of the algorithm is O(I log2 IJT ).

Algorithm analysis for EDRA
In this section, we prove the performance of the algorithm through rigorous theoretical analysis. By verifying 
that the gap between the queue length and energy consumption of the algorithm and the optimal solution is 
within a constant level, we ensure the performance of the algorithm.

Lemma 1  No matter what data set λ is provided, an optimal decision α∗ can be obtained, which is unaffected by 
the length of the queue.

According to this lemma, we can get as follows:

	

E{Eα∗
total(t)} = E∗

total(λ),

E{Aα∗
i,j (t)} ≤ E{Cl,α∗

i,j (t) + Co,α∗

i,j (t)},

E{Co,α∗

i,j (t)} ≤ E{Dl,α∗

i,j (t) + Do,α∗

i,j (t)}.

� (34)

Proof  The Lemma 1 can be proven by using Caratheodory’s theorem.

Lemma 2  No matter what data set λ is provided, we can get the following equation:

	
EEDRA

total ≤ E∗
total + Z

V
,� (35)

Proof  The decision α and the random data set λ + ε are defined. Thus, we can obtain the following inequality 
based on Lamma 1:

	

E{Eα
total(t)} = E∗

total(λ + ε)
E{Aα

i,j(t)} + ε ≤ E{Cl,α
i,j (t) + Co,α

i,j (t)},

E{Do,α
i,j (t)} + ε ≤ E{Dl,α

i,j (t) + Do,α
i,j (t)}.

� (36)

Recall the inequality (23), and the drift-plus-penalty is as follows when we substitute α into decision set:

	

∆(ω(t)) + V E{Etotal(t)|ω(t)} ≤ Z + V E{o(t)|ω(t))}

+E{
J∑

j=1

Ij∑
i=1

Qi,j(t)[Aα
i,j(t) − Cl,α

i,j (t) − Co,α
i,j (t)]}

+E{
J∑

j=1

Ij∑
i=1

Hi,j(t)[Co,α
i,j (t) − Dl,α

i,j (t) − Do,α
i,j (t)]}

� (37)

Combine (36) with (37) and simplify them, we can get:
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E{∆(ω(t))} + V E{Etotal(t)|ω(t)} ≤ Z + V E∗

total(α + ε) − ε

J∑
j=1

Ij∑
i=1

E{Qi,j(t) + Ui,j(t)}� (38)

Taking the maximum value of t, we get:

	

V

T −1∑
t=0

E{Etotal(t)|ω(t)} ≤ ZT + V T E∗
total(λ + ε)

varepsilon

T −1∑
t=0

J∑
j=1

Ij∑
i=1

E{Qi,j(t) + Ui,j(t)}.

� (39)

Since both ε and Qi,j(t) + Ui,j(t) are always greater than or equal to 0, we have the ability to scale them up:

	
V

T −1∑
t=0

E{o(t)|ω(t)} ≤ ZT + V T E∗
total(λ + ε).� (40)

Lemma 2 can be proven when both sides divide VT and set the value of T to infinity.

Lemma 3  No matter what data set λ is provided, we can get the following equation:

	
L ≤ Z + V (Emax

total − E∗
total)

ε
� (41)

Where L = limT →∞
1
T

∑T −1
t=0

∑J

j=1

∑Ij

i=1 E{(Qi,j(t) + Ui,j(t))|ω(t)}.

Proof  Accodding to (36), we can also derive:

	
ε

T −1∑
t=0

J∑
j=1

Ij∑
i=1

E{(Qi,j(t) + Ui,j(t))} ≤ ZT + V T E∗
total(λ + ε) − V

T −1∑
t=0

E{Etotal(t)|ω(t)}� (42)

For any Etotal(t), there exists Etotal(t) ≤ Emax
total(t) − Emin

total(t). Additionally, V
∑T −1

t=0 E{Etotal(t)|ω(t) ≥ 0} 
can be get. Thus, we can derive:

	
ε

T −1∑
t=0

J∑
j=1

Ij∑
i=1

E{Qi,j(t) + Ui,j(t)} ≤ ZT + V T (Emax
total(t) − Emin

total(t)).� (43)

Similar to Lemma 2, both sides divide εT  and simplify them, then Lemma 3 is proven.

Evaluation
Experiment setup
In this section, we conduct a simulation experiment to analyze the parameters and compare the algorithms on a 
public EUA dataset37, and similar settings28 has been applied in experiments. The aim is to verify the adaptability 
of the algorithm to different operating environments and its superiority compared to other algorithms. We 
simulate a UAV-assisted MEC scenario with dimensions of [500,500,200], which includes 100 devices, 5 UAVs, 
and a cloud server. The devices are located at a height of 0, with randomly generated horizontal coordinates. 
Furthermore, the maximum CPU frequency of the devices is 1GHz, and the maximum offloading power is 0.1W. 
The five UAVs hover randomly within a height range of 100 to 200, and the edge servers on the UAVs have a 
maximum CPU frequency of 10GHz and a maximum offloading power of 1W. Each UAV has a total bandwidth 
of 1 MHz, which is allocated to connected devices through FDMA. It is assumed that the cloud server has 
superior computing capabilities. Devices choose the nearest UAV’s edge server for offloading, with each UAV 
having a maximum capacity of 20 devices. The environmental parameters a and b for communication between 
devices and UAVs are 4.88 and 0.43, respectively, while the coefficients for LoS and NLoS transmission are 0.1 
and 21.

Parameter analysis
As shown in Figs. 2 and 3, we analyze the trade-off parameter V in the drift-plus-penalty algorithm. We use a 
range of 1012 to 9 × 1012 as our values. V serves as a balancing factor that weighs the optimization of the queue 
and the optimization target (system energy consumption). Since V is the coefficient in front of the penalty term, 
a larger V results in a greater optimization effort for energy consumption, which in turn may lead to increased 

Scientific Reports |        (2025) 15:11828 11| https://doi.org/10.1038/s41598-025-96814-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


queue backlog. As V increases, both energy consumption and queue backlog gradually converge, consistent with 
our theoretical analysis. The figures also reflect this understanding.

In Figs.  4 and 5, we multiply the benchmark Ai,j(t) = [0, 106] bits/s by coefficients of 0.8, 1.0, and 1.2, 
representing 80%, 100%, and 120% of the standard task arrival rate. This demonstrates the impact of task arrival 
rates on device energy consumption and backlog, and reflects the ability of the EDRA algorithm to handle 
different degrees of task arrival rates. It can be seen that under different task arrival rates, EDRA achieves 
convergence relatively quickly, and a higher task arrival rate leads to greater energy consumption and queue 
backlog. This is in line with objective conditions.

In Figs. 6 and 7, we test the energy consumption and queue backlog as the number of devices increases from 
40 to 120, while keeping the number of UAVs, task arrival rate, and the maximum CPU frequency of each device 
constant. The results reflect the adaptability of the EDRA algorithm to different numbers of devices, and both 
energy consumption and queue backlog increase as the number of devices increases.

Comparative experiment
In the comparative experiment section, we prepared four algorithms:

EDRA
This is the algorithm proposed in this paper.

Local-only(LO)
This algorithm allows devices to process local computation without task offloading. It serves as one of the 
baseline algorithms for comparison.

Fig. 3.  The queue length of system vs. different trade-off parameter V.

 

Fig. 2.  The energy consumption of system vs. different trade-off parameter V.
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Fig. 6.  The energy consumption of system with the different number of devices.

 

Fig. 5.  The queue length of system with different α (scale factor of arrival rates).

 

Fig. 4.  The energy consumption of system with different α (scale factor of arrival rates).
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Offloading-only(OO)
This algorithm allows devices to offload all tasks to the edge servers for computation. It serves as another baseline 
algorithm for comparison.

IDO (2022)
This algorithm is adapted from the design concept in the paper20, with some modifications to make it operable 
in our environment.

Figure 8 shows the performance of the four algorithms in the simulated UAV-assisted MEC system. Among 
the four algorithms, the OO algorithm has the lowest energy consumption and remains unchanged because 
when devices offload all tasks to the drones, the processing tasks exceed the maximum offloading power, causing 
the offloading power to operate at maximum capacity. The second-lowest energy consumption is achieved by 
the EDRA algorithm proposed in this paper. It can be seen that EDRA converges faster and has lower energy 
consumption compared to the relatively advanced IDO algorithm, as our algorithm decomposes the problem for 
parallel processing. The LO algorithm has the highest energy consumption, nearly double that of our proposed 
algorithm.

Figure 9 shows the comparison the queue backlog of the four algorithms. It can be seen that although the LO 
algorithm has the lowest energy consumption, unfortunately, it achieves this at the cost of generating a significant 
amount of computational energy consumption. Our proposed algorithm has the second-lowest queue backlog, 
significantly lower than the IDO algorithm. As a baseline, the OO algorithm clearly cannot stabilize the queue 
length, which would lead to significant delays in the system’s task processing.

Fig. 8.  The energy consumption of system with different algorithms.

 

Fig. 7.  The queue length of system with the different number of devices.
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Conclusion
In this paper, we investigate the task offloading and resource allocation problem in a UAV-assisted MEC system 
for large-scale sports events, where UAVs are deployed near the venue to provide temporary edge computing 
services. We formulate the system as a stochastic optimization problem and transform the original problem into 
an upper bound problem, then decompose it into multiple subproblems using stochastic optimization techniques. 
Specifically, we obtain optimal or suboptimal solutions for each subproblem through convex optimization, 
linear programming, and other methods. Furthermore, we prove the performance of the algorithm through 
theoretical analysis. We summarize a series of parameter analyses and comparative experiments to evaluate the 
adaptability of the problem in different scenarios and the degree of optimization for energy consumption. The 
experimental results show that the EDRA algorithm can effectively reduce system energy consumption by 32.4% 
compared to advanced algorithms, and more reliably ensure system stability. In future work, we will address the 
task offloading problem in UAV-assisted MEC systems by jointly optimizing UAV deployment scheduling and 
task resource allocation.
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