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Postoperative recurrence of pancreatic adenocarcinoma (PAAD) remains a major challenge. This study 
aims to establish and validate a lipid metabolism-related prognostic model to predict recurrence in 
PAAD patients. The TCGA-PAAD database was used to establish a training cohort, which was validated 
using the ICGC database and multiple center cohorts. A prognostic model based on LASSO Cox 
regression and a nomogram was developed and further validated. Among 196 lipid metabolism-related 
genes, four were selected for the prognostic model. Patients were stratified into high- and low-risk 
groups based on the risk score. Univariate and multivariate Cox regression analyses showed that 
tumor site, T stage, N stage, M stage, and risk score were significantly associated with progression-
free interval (PFI). High-risk patients had worse PFI, overall survival (OS), and disease-specific survival 
(DSS) (all P < 0.05). Time-dependent ROC and decision curve analyses confirmed the superior diagnostic 
capacity of the nomogram. GSEA revealed enrichment in G2M checkpoint, glycolysis, estrogen 
response, and hypoxia pathways for the high-risk group. Additionally, high-risk scores correlated with 
poor immune infiltration, gene mutations, and tumor mutational burden (TMB). Single-cell analysis 
suggested that risk genes interact with various cell types to promote PAAD progression. A novel lipid 
metabolism-related prognostic model was developed and validated to predict recurrence and survival 
in PAAD patients, with strong accuracy and stability.

Pancreatic cancer (PC) is caused by the abnormal and uncontrolled growth of cells in pancreatic tissue. The 
5-year survival rate for pancreatic cancer is 3–4%1. Despite improvements in surgical techniques, treatments 
and perioperative management, the prognosis of PAAD gains poor due to the high rate of tumor recurrence2. 
Recurrence of PAAD is usually classified into early recurrence and late recurrence, which is usually defined by 
a cut-off value of postoperatively one year, and the outcomes are worse for patients with recurrent early than 
patients with late recurrence3. Therefore, screening the recurrence patients in high risk for treatment strategies 
in time, is essential to the long-term survival for patients.

Predicting recurrence of pancreatic cancer postoperatively continues to be the main subject of cancer 
research. Several previous studies have identified features associated with pancreatic cancer recurrence, such 
as clinicopathological factors, tumor tissue microenvironment, tumor imaging, serum CA19-9 levels, and gene 
expression levels (TP53, BFGF, CD34, and VEGF), which have been shown to correlate with survival in pancreatic 
cancer patients4–6. In addition to this, KRAS, TP53, CDKN2A and SMAD4, cancer-associated mutated genes, 
have been taken into account in many studies simultaneously to predict recurrence of pancreatic cancer7.

Lipid metabolism has been increasingly recognized as an important pathway in cancer cells over the last few 
years8,9. Lipids are nutrients composed of fats and lipids that are widely distributed in cellular organelles and are 
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key components of all membranes10. In addition, lipids are stored by cells in lipid droplets (LDs) when there is 
an adequate supply of energy, but on the other hand, nutrient scarcity can trigger homeostatic mechanisms in 
lipids, which can act as second messengers to transduce signals within the cell and serve as an important source 
of energy10. Dysregulation of lipid metabolism contributes to the onset and progression of various metabolic 
diseases, including cardiovascular diseases, diabetes, and malignant diseases11,12.

In pancreatic malignancies, lipid metabolism genes assume heightened importance due to the organ’s 
unique metabolic demands and tumor microenvironmental constraints. The pancreas serves dual endocrine 
and exocrine functions, requiring precise lipid regulation for insulin secretion (via β-cell lipid signaling) and 
digestive enzyme production13. PAAD rasterized by nutrient-poor, desmoplastic stroma and hypoxia, exploits 
lipid metabolic reprogramming to fuel growth under these adverse conditions14. Key lipid genes such as FASN and 
ACSL are frequently overexpressed in PAAD, driving de novo lipogenesis to compensate for erratic extracellular 
nutrient supply while supporting membrane biosynthesis for rapidly dividing cells15. Moreover, lipid droplets 
accumulated via upregulated DGAT1 not only serve as energy reservoirs but also protect against oxidative stress 
a critical survival mechanism in PAAD’s harsh microenvironment16. Hypoxia-inducible lipid metabolism genes 
(HIF-1α-regulated CPT1A) further enable fatty acid oxidation to sustain ATP production when glycolysis is 
limited17. Crucially, pancreatic stellate cell-derived lipids in the tumor stroma are scavenged by cancer cells 
via CD36, creating a parasitic metabolic symbiosis that fuels tumor progression and chemoresistance18. These 
pancreas-specific adaptations underscore why targeting lipid metabolism genes particularly those interfacing 
with stromal crosstalk or stress adaptation holds unique therapeutic potential for pancreatic cancers. These 
metabolic vulnerabilities present promising therapeutic targets, with emerging strategies focusing on FASN 
inhibitors to disrupt de novo lipogenesis19, CD36 blockade to impair lipid scavenging20, and FAO pathway 
modulation. Combinatorial approaches integrating lipid metabolism inhibitors with conventional chemotherapy 
or immunotherapy show particular promise in overcoming therapeutic resistance while addressing the metabolic 
plasticity of malignant cells21.

Currently, a large body of evidence reveals abnormal lipid metabolism in various cancers, including membrane 
formation, lipid synthesis and degradation, and lipid-driven cell signaling12,22. Although there are several high-
quality reviews discussing lipid metabolism in other cancer types23,24, there are currently no studies of lipid 
metabolism reprogramming in early recurrence of pancreatic cancer. Therefore, considering the importance of 
lipid metabolism in malignant tumors, a comprehensive understanding of reprogrammed lipid metabolism has 
a key role in the search for new markers of early PC recurrence.

In this study, we screened the expression of genes related to lipid metabolism in pancreatic cancer and normal 
pancreatic tissue samples from the TCGA database to  develop an innovative model for predicting the prognosis 
of PAADs. The model can be used to predict postoperative recurrence and survival of pancreatic cancer patients. 
In addition, the model also has good performance on other queues. Bioinformatics analysis was used to reveal 
the relationship between the prognosis of PAAD and lipid metabolism.

Materials and methods
Data collection and preprocessing
The Cancer Genome Atlas (TCGA, https://www.tcga.org/) and the ICGC databases were used to gather 
transcriptome profiles and clinical data for patients with PAAD. The TCGA database was queried for 174 patients 
with PAAD. As a validation set, 262 patients were gathered from the ICGC databases and 99 patients’ data 
samples Specifically, the samples used in this study came from surgically removed PAAD tissue from patients 
who underwent surgery. Pancreatic cancer tissue samples included in this study were all from patients who 
underwent radical surgery in the Department of Hepatobiliary and Pancreatic Surgery, PLA General Hospital 
from January 2020 to December 2023. In order to ensure the reliability of the biological characteristics of the 
samples, all operations strictly followed the Guidelines for the construction of Tumor Sample Bank by the 
Chinese Society of Clinical Oncology (CSCO) and the Standardized Procedures for Tumor Tissue Collection 
by WHO. Tissue samples are processed immediately after removal and stored in liquid nitrogen  to minimize 
degradation and ensure their quality. Transfer to -80 °C refrigerator or liquid nitrogen tank for long-term storage.

Data standardization and acquisition
Download data from the TCGA, ICGC and normalize it to fragments per kilobase per million (FPKM) values. 
Pancreatic cancer prognosis related genes were downloaded from online bioinformatics tools (GEPIA2) 
(p < 0.05). Genes with |log2FC|>0.58 and adjP < 0.05 were defined as statistically significant differential genes. 
1035 lipid metabolism related genes (LMRGs) were obtained from published literature (PMID: 37469520).

Formulation and verification of prognostic models for LMGs
To investigate the prognostic significance of LMGs in PAAD, Least Absolute Shrinkage and Selection Operator 
(LASSO) penalized Cox proportional risk regression analyses were used to reduce overfitting. LASSO penalized 
Cox proportional hazards regression analysis was performed to reduce overfitting. The optimal value of the 
penalty parameter (λ) was selected using 10-fold cross-validation based on the minimum criterion Then, 
univariate and multivariate analyses were performed on the 16 genes screened to identify Differentially Expressed 
Genes (DEGs) significantly associated with progression-free interval (PFI) in TCGA -GTEx database within 
pancreatic cancer tumor and normal tissue samples. The R package “glmnet” and the minimum criterion to 
calculate the penalty parameter were used to analyze the above process25. In addition, three prognostic indicators, 
progression-free interval (PFI), overall survival (OS), and disease-specific survival (DSS), were demonstrated 
using Kaplan-Meier survival analysis. Pancreatic cancer patients in the training and validation cohorts were 
categorized into low-risk and high-risk score subgroups based on the median value of the risk score. Risk scores 
were used to predict recurrence in patients with PAAD. Kaplan-Meier survival curves and receiver operating 

Scientific Reports |        (2025) 15:11683 2| https://doi.org/10.1038/s41598-025-96855-1

www.nature.com/scientificreports/

https://www.tcga.org/
http://www.nature.com/scientificreports


characteristic curves (ROC) were used to determine their accuracy, and Decision Curve Analysis (DCA) was 
used to validate the sensitivity of the models. The survival package was used to fit the prognostic model, and the 
stdca.R file was used for DCA analysis. We calculated the risk score using the following formula: Risk score = Σ 
(A_i × Y_i) (A_i represents the coefficient for gene i from the Cox mode; Y_i is the expression level of gene). Risk 
characteristics were correlated with clinical characteristics using stratified analysis. In addition, univariate Cox 
analysis was used to identify clinical characteristics with prognostic value and a nomogram was drawn based on 
the risk score. ROC curves were used to assess the efficacy of the nomogram at 1, 2, and 3 years.

qRT-PCR detection
Total RNA was extracted using Trizol reagent (Invitrogen) according to the manufacturer’s guidelines. cDNA 
was generated by reverse transcription of RNA samples using the RevertAid RT kit (Transgene, AT341-01). 
qPCR was carried out using PowerUp™ SYBR™ Green Master Mix (Thermo Fisher Scientific, A25742) for qPCR 
Detection. Gene amplification levels were detected using the StepOnePlus Real-Time PCR system (Applied 
Biosystems). The relative expression of mRNA was calculated using the 2−ΔΔCt method. Supplementary Table S1 
describes the primers for RT-qPCR (It has been uploaded as supplementary material, Supplementary Table [S1).

Analysis in functional enrichment of DEGs in high and low risk groups
Differential genes between high and low risk groups in TCGA-PAADs were annotated by Gene Ontology 
(GO) and Kyoto Encyclopedia of the Genome (KEGG) (|log2FC|>0.58; adjusted p-value (adjP) < 0.05), which 
accomplished by the R package “ClusterProfiler”26.

Analysis of tumor infiltrating immune cells
The proportional number of immune infiltrating cells in all tumor samples was calculated based on the 
transcriptional profile of PAAD in TCGA. Cell type identification analysis was done using “CIBERSORT” in 
the R software package27. The immune infiltration of the two groups were compared using the Wilcoxon rank 
sum test.

Statistical analysis
Data were expressed as mean ± SEM. In order to identify significant differences in the data, statistical analyses 
were performed with one-way ANOVA or Student’s t-test. This study was conducted using R software (4.2.1). 
Survival analysis of Kaplan-Meier was performed using the log-rank test. One-way multifactorial COX analysis 
gave hazard ratios (HRs) and 95% confidence intervals (CIs). A significant difference between the two groups 
existed when the P value < 0.05. Spearman correlation analysis evaluated the relationship between high and low 
risk group within TMB, MSI, and immunity. Differences with P-values < 0.05 were considered to be statistically 
significant.

Results
Expression of DEGs between normal tissues and tumor tissues
We screened 6725 genes related to pancreatic cancer prognosis from GEPIA2 (http://gepia2.cancer-pku.cn) 
database and collected 1035 genes related to lipid metabolism in pancreatic cancer from the literature (Fig. 1A). 
Ultimately, 196 intersection genes were generated in the two databases (Fig. 1A) (|log2FC|>0.58; P Value < 0.05). 
Then, LASSO regression analysis and Kaplan-Meier survival analysis were used to screen 16 characteristic 
prognostic genes identified (Fig. 1B) (P < 0.05), which were MLYCD, PTGES, AGPAT1, ST3GAL2, HSD17B1, 
PLAAT4, MIGA2, PLAAT3, ARSG. TSPOAP1, PRKACA, CAV1, PIP5K1B, SLCO1B3, FIG4, SPTLC3. The 
minimum parameter determined the penalty parameter (Fig. 1B,C). Seven intersection genes were found to be 
differentially expressed between pancreatic tumor tissues and normal tissues (Fig. 1D, E, P < 0.05). The heatmap 
shows the distribution of screened genes across all samples, indicating relatively stable gene expression across 
samples (Fig. 1F). Pearson correlation analysis shows the intersection of the correlation between gene (Fig. 1G).

Development of prognostic gene model in the training set and testing set
The data of 178 pancreatic cancer patients were screened from the TCGA database, and the genes with prognostic 
features were screened by LASSO regression analysis and Kaplan-Meier survival analysis. We then screened the 
characteristic prognostic genes using LASSO regression analysis and Kaplan-Meier survival analysis (P < 0.05), 
and the seven genes identified, PTGES, ST3GAL2, PLAAT3, PRKACA, PIP5K1B, SLCO1B3 and FIG4, were 
included in the subsequent univariate and multivariate COX analysis (Fig. 2A, B), and a four- gene prognostic 
model was developed. In addition, the KM survival curves of PFI, OS and DSS were plotted for these potential 
genes (Figure 2C–N), and the results showed that these candidate genes had an impact on pancreatic cancer 
recurrence (P < 0.05). Figure  3 also depicts the risk score distribution, patient survival, and expression heat 
map for the four prognostic genes. The univariate and multivariate COX analysis of the genes revealed that 
SLCO1B3, PRKACA, ST3GAL2and PTGES had the ability to operate as independent prognostic variables, with 
SLCO1B3 being beneficial for survival and PRKACA, ST3GAL2and PTGES being detrimental for survival. The 
178 patients were classified into low- and high-risk groups (Fig. 3A) using the risk score formula’s median score. 
To evaluate the sensitivity and accuracy of the prognostic model, Kaplan-Meier curves (Fig.  3D) and time-
dependent receiver operating characteristic (ROC) curves (Fig. 3G) as well as DCA curves (Fig. 3J–M) were 
plotted. The results showed that there was a significant difference in the recurrence curve between the high-risk 
group and the low-risk group (P < 0.001). The AUC values of 1 and 2 years were 0.789 and 0.846, respectively. 
DCA curves at 1 and 2 years showed that the model had good sensitivity. In addition, we validated the model in 
external databases (Fig. 3B, E,H, K,N). We also validated our model by testing the expression of risk-associated 
genes in samples obtained from patients who underwent pancreatectomy at multiple centers (Fig. 3C, F,I, L,O).
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Clinical evaluation of prognostic risk models based on the training set
To examine the clinical utility of prognostic assessment, we investigated the association between risk scores and 
clinical variables using univariate and multivariate COX methods. In univariate COX analysis, we found that 
tumor location, tumor size (T), tumor invasion (N), tumor metastasis (M), and risk score were all significantly 
associated with PFI (Figure 4A) (P < 0.05). Interestingly, there are only the risk score associated with PFI in 
the multivariate COX (Fig. 4B) (P < 0.001). Therefore, lipid metabolism-related genes are closely related to the 
prognosis of low pancreatic cancer, especially early recurrence. We also found variations in tumor location and T, 
N and M stage distribution between patients in the low-risk group and those in the high-risk group (Fig. 4C–H). 
Combined with multivariate Cox regression analysis, the risk score could be used as an independent predictor 

Fig. 1.  Prognosis of lipid metabolism related genes screening and expression. (A) Venn diagram of 
prognosis of lipid metabolism related genes. (B,C) Cross-validation for tuning parameter screening in the 
LASSO regression model. (D,E) Box plot of between the normal and the tumor tissues (*P < 0.05, **P < 0.01, 
***P < 0.001, ***P < 0.0001). (F) heat map of prognostic gene. (G) Pearson correlation analysis.
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of PAAD in all patients. In addition, when the risk score was paired with other clinicopathological parameters, 
the ROC curve showed a rose AUC, suggesting that the risk score was an independent predictor (Fig. 4I–K).

Developing and validating a nomogram that incorporates clinical features
In the TCGA cohort, we constructed a Nomogram diagram combined with clinical information. A total score 
was calculated for each patient by summing the results for each prognostic criterion. Overall score higher in 

Fig. 2.  Univariate Cox regression and the risk model in TCGA. (A,B) Univariate COX analysis of prognosis of 
LMRG. (C–N) The log-rank test of KM curves of the selected genes.
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Fig. 3.  Risk-score model based on differential expression of LMRGs in patients with PAAD. Risk score and 
survival time distributions, and heatmaps of gene-expression levels of the LMRGs signature in the TCGA (A), 
ICGC (B), Multicenter (C)cohorts. KM curves of the risk score model for predicting PFI in the TCGA (D), 
ICGC (E), Multicenter (F) cohorts. ROC curves and AUC values of the risk score model for predicting the 1 
and 2 year PFI times in the TCGA (G), ICGC (H), Multicenter (I) cohorts. DCA curves of the risk score model 
of 1 and 2 year in the TCGA (J,M), ICGC (K,N), Multicenter (L,O) cohorts.
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Fig. 4.  Univariate and Multivariate analysis for hazard ratio values of risk score and clinical characters in 
the training set. Confidence interval (A,B). The relationship between prognostic gene expression and clinical 
factors (C–H). ROC analysis of clinical factors to predict the prognosis of TCGA-PAADs patients (I–K).
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patients with poor clinical outcome (Fig. 5A), with the predicted and actual recurrence rates agreeing perfectly 
in calibration chart (Fig. 5B–D).

Functional analysis based on risk model
We used the “limma” R tool to extract DEGs to further investigate the subclass-related pathways defined by the 
risk model. A total of 26 DEGs were found between the low-risk and high-risk categories in the TCGA cohort 
(Fig. 6A). Among them, 14 genes were up-regulated, and 12 genes were down-regulated. GO enrichment and 
KEGG pathway analyses were performed on the basis of differences between the high-risk and low-risk groups 
(Fig. 6B, C). The enriched pathways were found to be T cell regulation and cytokine regulation related pathways. 
GSEA enrichment analysis revealed that 12 gene sets were up-regulated, and 4 gene sets were down-regulated in 
the high-risk group (Fig. 6D–N).

Risk scores for immune cell infiltration, tumor somatic mutations, and tumor 
microenvironment characteristics in the TCGA-PAADs cohort
Using R package “maftools” shows the high-risk and low-risk groups between somatic mutation distribution 
difference (Fig. 7A). High-risk and low-risk groups of TP53 and Kras gene mutation rate were 72.5% and 60.7%, 

Fig. 5.  Prognostic nomogram for the 1-, 3- and 5-year PFI times of PAADs patients. Nomogram model in 
the TCGA cohort (A). Calibration curves of the nomogram for predicting 1-, 3-, and 5-year PFI in the TCGA 
(B–D).
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Fig. 6.  The enriched item in GO, KEGG, GSEA analysis. (A) Different genes Between the low and high-risk 
categories in the TCGA cohort. (B) The enriched item in gene ontology analysis. (C) The enriched item in 
Kyoto Encyclopedia of Genes and Genomes analysis form Kanehisa laboratories authorization including JAK-
STAT signaling pathway-hsa04630, PI3K-Akt signaling pathway -hsa04151, Chemokine signaling pathway-
hsa04062 (Ref: 250532). (D-N) The Gene Set Enrichment Analysis in HALL marker.
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respectively. Correlation analysis showed a positive correlation between risk scores and tumor mutational burden 
(Fig. 7B), with a higher tumor burden in the higher-risk group (Fig. 7C). The cellular stromal cell score, immune 
cell score, and composite score were calculated using the ESTIMATE method (Fig. 8), and the CIBERSORT 
algorithm was used to calculate the relative number of 22 immune cell types in each PAAD patient (Fig. 8A, B). 
Correlation studies of risk ratings and immune-cell infiltration showed significant differences in the infiltration 
of most immune-cells in the two subtypes (Fig. 8C, D,E). The high-risk group of activation Th2 type auxiliary 
fine is significantly higher than the high-risk group (P < 0.05). In addition, in order to better understand the 
characteristics of immune cells and its connection with DEGs, we use the TIMER database analysis of the 
immune cells abundance and five genetic correlations between prognosis and outcome as supplementary 
material upload added (Supplementary figure S1).

Identification of lipid metabolism related DEGs based on the single cell RNA sequencing
We also downloaded and analyzed pancreatic cancer single-cell data from the GEO database. Seven cell types 
were obtained by dimensionality reduction clustering of all cells, namely mast cells, B cells,  myeloid cells, 
epithelial cells, T lymphocytes, fibroblasts, and endothelial cells (Fig. 9A). Furthermore, these cell subclasses 
were validated with 26 recognized cell markers, as shown in (Fig. 9B). Additionally, the expression of five DE-
LMRGs in each cell type was analyzed. STCGAL2, SLCO1B3, PTGES, and PRKACA were widely distributed in 
various cell clusters (Fig. 9C–F). STCGAL2 and PRKACA mainly expressed in immune cells, SLCO1B3, PTGES 
and FIG4 main expression in the epithelial cells, these genes may be synergies between different cell types, and 
jointly promote the occurrence of pancreatic cancer. AUCell R package was used to analyze the expression of 
DE-LMGRs in all single cell. In general, DE-LMRGs high expression of cell has higher AUC values. When the 
AUC value was set to 0.58, the AUC value (LMRG score) of 1886 cells was above the threshold (Fig. 9G). GO and 
KEGG analyses were performed on DEGs in cell populations with high LMRG scores. GO, according to the results 
of DE- LMRGs mainly involved in WBC migration, myeloid WBC migration, phagocytosis, positive adjustment 

Fig. 7.  The mutation profile in high- and low-risk groups. (A) High-frequency mutations in the genome (B) 
person correlation analysis (C) Tumor Burden Mutation.
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response to external stimuli, leukocyte chemotaxis, cell chemotaxis, the adjustment of the leukocyte migration, 
white blood cell-cell adhesion, the adjustment of the peptide enzyme activity, white blood cells positive regulates 
cell adhesion, The function of cell-cell adhesion of (Fig. 9H). KEGG results showed that DE-LMRGs were mainly 
related to leishmaniasis, tuberculosis, Rheumatoid arthritis, Osteoclast differentiation, Proteoglycan in cancer, 

Fig. 8.  Immune features of risk score. (A,B) Boxplot indicating the levels of immune cell infiltration in high-
risk and low-risk PAAD patient. (C) The difference of stromal risk score, immune score and estimate score. (D) 
The Immune checkpoints expression in high-risk and low-risk group. (E) TIDE score in high-risk and low-risk 
group.
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Amebiasis, Malaria, NF-kappa B signaling pathway, Natural killer cell-mediated cytotoxicity, Staphylococcus 
aureus infections, Leukocyte transendothelial migration, Lipids and atherosclerosis, IL-17 signaling pathways 
(Fig. 9H).

Discussion
In this study, we established a prognostic model for pancreatic cancer using five genes and were able to classify 
all patients into high-risk and low-risk groups. Progression-free interval (PFI) was lower in high-risk patients 
than in low-risk patients. The area under the curve (AUC) of the receiver operating characteristic (ROC) curve 
was used to evaluate and confirm the ability to predict. The DCA curve was used to detect the sensitivity of the 
model. In the training cohort, the nomogram showed a high ability to predict pancreatic cancer recurrence in 
PAAD patients. GSEA analysis showed that the high-risk group was enriched in tumor-related pathways and 
pathological processes such as G2m checkpoint, glycolysis, estrogen response and hypoxia.

Previous studies have shown that genes involved in lipid metabolism are independent prognostic markers for 
many cancer types. In this work, we screened 196 genes related to lipid metabolism prognosis. After performing 
Lasso and COX regression analyses, a predictive model comprised of four genes (SLCO1B3, PRKACA, ST3GAL2 
and PTGES) was utilized to categorize LGGs into high-risk and low-risk categories. Subsequent KM curve, ROC 
curve, and risk factor plot analyses showed that this risk signature performed well for risk grouping of major 
PAADs in both TCGA and CGGA datasets. In addition, a Nomogram model for predicting PFI recurrence 

Fig. 9.  Single cell analysis of risk related genes. (A) Dimensionality reduction clustering in GEO database. (B) 
Marker genes bubble chart. (C–F) Cellular expression map of risk related genes. (G) Plot of AUC area of single 
cell score. (H) GO and KEGG analysis of LMRGs in high-scoring cell populations.
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in PAAD patients was constructed based on genes related to lipid metabolism, and the risk score defined by 
WHO was incorporated into the Nomogram model. Nomogram and ROC curve analysis demonstrate that 
the nomogram could accurately predict PFI in TCGA training cohort, ICGC external validation cohort 1 and 
external validation cohort 2. Therefore, the model can be used to assist in determining the subsequent treatment 
plan for patients.

The developed nomogram demonstrates significant potential for clinical translation by bridging 
multidimensional data into actionable prognostic insights. Its ability to integrate traditional clinicopathological 
variables (TNM staging, treatment modalities) with emerging molecular features (lipid metabolism genes such 
as ST3GAL2, SLCOAB3, PTGES, PRKACA) enables precise risk stratification, particularly in malignancies 
like pancreatic cancer where metabolic reprogramming drives therapeutic resistance. Clinically, this tool may 
guide personalized decision-making for instance, identifying high-risk patients (total points > 100) who could 
benefit from aggressive therapies or targeted metabolic interventions, while sparing low-risk subgroups from 
overtreatment. Additionally, the nomogram’s dynamic adaptability allows real-time updates based on treatment 
response or disease progression, enhancing its utility in longitudinal care. Beyond oncology, such models could 
optimize surgical risk assessment, chronic disease management, and resource allocation in resource-constrained 
settings. By visualizing survival probabilities and comparative outcomes under different therapeutic scenarios, 
the nomogram also serves as a shared decision-making tool, aligning clinical recommendations with patient 
preferences. These applications underscore its role not only as a prognostic calculator but as a platform for 
translating mechanistic discoveries into clinically actionable strategies, ultimately addressing the heterogeneity 
and complexity of modern precision medicine.

Studies have shown that FIG4 forms a protein complex with PIKfyve and Vac14, which plays an important 
role in the regulation of phosphatidylinositol PI (3,5) p2 and PI (5) P. lack of the complexes may lead human 
nervous system related diseases28. As a core regulator of PI (3,5) P2 metabolism, FIG4 is essential for neuronal 
survival, axonal homeostasis, and bone development by maintaining endosom-lysosome system and autophagy 
flux29. Its loss of function leads to a continuum of phenotypes ranging from peripheral neuropathy (CMT4J) to 
systemic developmental disorders (YVS) and is associated with the risk of neurodegenerative diseases such as 
ALS30. The dose-sensitive and tissue-specific regulatory mechanisms of this gene are the key to understanding 
its multieffect pathogenesis31.

SLCO1B3 is used as an androgen transporter gene for the treatment of prostate cancer, and its deletion 
may be a genomic determinant of resistance to androgen deprivation therapy (ADT) in prostate cancer32. In 
addition to this, SLCO1B3 has been associated with poor prognosis of ICC, enhancing HOXC8 expression to 
enhance ICC proliferation and metastasis, while antagonising PD-L1 degradation to induce immune evasion, 
thereby promoting ICC progression33. SLCO1B3 serves as a key organic anion transporter in the liver and some 
tumors. By mediating liver uptake of binding bilirubin, drugs and metabolites, SLCO1B3 maintains bilirubin 
homeostasis and influences drug efficacy and toxicity34. Its specific high expression in digestive tract tumors 
provides a potential strategy for targeted chemotherapy, and the effect of its gene polymorphism on drug 
transport efficiency needs to be considered in individual therapy35.

PRKACA was found to be mutated in the sporadic adrenocortical adenoma (ACA) gene, which drives an 
increase in catalytic protein kinase A (PKA) function and induces the expression of genes associated with tumor 
growth and adrenal steroidogenesis36. While ST3GAL2 was found to be highly expressed in pancreatic cancer 
and significantly associated with low overall survival37. PRKACA is a key molecule of PKA signaling pathway, 
and its normal function depends on the dynamic binding of regulatory subunits and cAMP regulation38,39. 
Constitutive activation or increased sensitivity due to mutations, through abnormal phosphorylation of 
downstream targets (e.g., steroid synthetase, Hedgehog pathway components), triggering either adrenal cortisol 
overproduction (Cushing’s syndrome) or embryonic developmental defects40. The mutant spectrum ranges from 
somatic hotspot mutations (tumors) to germ cell variants (systemic diseases), highlighting the importance of 
dose sensitivity and tissue-specific effects41.

FUBP1 can activate the arachidonic acid (AA) metabolic pathway by regulating prostaglandin E synthase 
(PTGES) expression, leading to lobaplatin resistance in osteosarcoma42. PTGES is a rate-limiting enzyme in 
prostaglandin E2 synthesis. Its membrane-binding properties and glutathione dependent catalytic mechanism 
make it play a central role in inflammation and tumor microenvironment. Although no significant genetic 
association has been shown in breast cancer, its high expression and pro-inflammatory regulation in cancer 
cells suggest a potential function in tumor progression (e.g. immune escape, angiogenesis)43. Targeting PTGES 
may provide a therapeutic strategy for cancer or inflammatory diseases by inhibiting PGE2 production, but its 
dynamic regulatory mechanisms in specific cancer types need to be further investigated44.

PAAD is one of the most aggressive and refractory tumors. Postoperative adjuvant therapy and regular 
follow-up of patients with pancreatic ductal adenocarcinoma have been widely accepted. However, whether 
neoadjuvant therapy can further improve the prognosis of patients with resectable PAAD remains controversial45. 
A growing number of studies have shown that early identification of high-risk patients with poor prognosis 
and timely intervention can improve their prognosis46. In this study, we developed a prognostic model based 
on preoperative status and tumor biomarkers to predict postoperative recurrence and survival in patients 
with resectable PAAD. The model effectively identified high-risk patients with poor prognosis, demonstrating 
robust performance and discrimination. Univariate and multifactorial COX regression analysis showed that 
tumor location, tumor size, tumor invasion, tumor metastasis were independent prognostic factors affecting 
postoperative recurrence in patients with PAAD. It is well known that there are significant prognostic differences 
between patients with pancreatic head and pancreatic body-tail cancers, and in addition to the differences 
between anatomical locations, differences at the genetic-molecular level have been identified and studied in 
both. Pancreatic body tail cancer is related to the squamous subtype of pancreatic cancer and is enriched with 
genetic programmers associated with inflammation, EMT and potential immune evasion mechanisms47. This 
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promotes research work to use novel approaches to better define early recurrence through molecular markers. 
Meanwhile, splenic vascular invasion is also associated with a high recurrence rate and low overall survival after 
surgery for pancreatic coccygeal carcinoma, suggesting the need for neoadjuvant therapy48.

Higher TMB is generally associated with the production of more mutations and neoantigens, which may 
affect the immune response and increase the risk of immune escape. In high-risk patients, higher TMB may lead 
to changes in immune cell infiltration patterns and is associated with lipid metabolism disturbances. In addition 
to this, our results showed that tumor burden mutations were significantly higher in the high-risk group than 
in the low-risk group (p = 0.00011), which is consistent with changes in immune cell infiltration. High TMB 
may increase tumor microenvironment infiltration of immune cells, but immune escape mechanisms may lead 
to inadequate immune response, and this process may be regulated by lipid metabolism. More importantly, 
elevated TMB in high-risk tumors and changes in the immune microenvironment may lead to disturbances in 
lipid metabolism, thus affecting the activity of immune cells and anti-tumor immune response49. Therefore, the 
reprogramming of lipid metabolism may be an important mechanism for immune escape in high-risk tumors.

Over the past decades, the American Joint Committee on Cancer (AJCC) has established a well-defined 
cancer staging system based on 3 key components: local tumor extent (T stage), dissemination to regional lymph 
nodes (N stage), and metastatic spread to distant sites (M stage) (TNM staging)50. The AJCC TNM staging 
system attempts to use anatomical and reproducible parameters to distinguish between groups with different 
survival outcomes. Reliable prediction of survival estimates is critical in cancer treatment. An accurate prognosis 
helps clinicians guide treatment decisions and provides researchers with a tool to adjust cancer staging when 
assessing treatment outcomes51.

Although our study identified ST3GAL2, SLCO1B3, PTGES, and PRKACA as key genes associated with 
lipid metabolism in PAAD, the lack of experimental validation is a notable limitation. Functional analyses, such 
as gene knockdown, overexpression, or pathway analysis, are essential to confirm their biological relevance in 
PAAD progression. Additionally, exploring their interactions with key signaling pathways and correlating their 
expression with clinical outcomes in real-world cohorts will provide valuable insights. We acknowledge that 
experimental validation will strengthen the robustness of our model, offering direct evidence for these genes’ 
roles in lipid metabolism and their potential as therapeutic targets. Future research, including in vitro studies 
and clinical sample validation, is necessary to further elucidate the functional implications of these genes in 
PAAD. Future research may include the following. The LMGRs target gene in pancreatic cancer cell lines was 
knocked down by CRISPR/Cas9 and other techniques to evaluate proliferation, invasion, and lipid metabolism 
changes. In vivo, xenograft models were used to compare the growth and risk of tumor growth/metastasis in 
normal-expression and low-expression groups. Immunohistochemistry of protein expression in pancreatic 
cancer tissue microarray was used to verify the correlation of recurrence survival. Finally, RNA sequencing after 
interfering genes was performed to identify downstream pathways (e.g., lipid biosynthesis, EMT).

However, the exploration of these genes as biomarkers in plasma is also of scientific importance. Studies 
have shown that the level of SLCO1B3 in plasma exosomes of Prostate cancer patients is positively correlated 
with oxaliplatin resistance32, suggesting that it may dynamically monitor chemotherapy resistance in pancreatic 
cancer. A study suggests that ST3GAL2 may be involved in abnormal urine glycosylation in Parkinson’s disease 
(PD) by regulating sialylation modification. This finding provides a new direction for the development of non-
invasive diagnosis of PD (urine test) based on markers of glycosylation52.PGE2/EP4 signaling regulates stem 
cell homeostasis through exosomes, and PTGES, as a key enzyme in PGE2 synthesis, is a necessary prerequisite 
for its signaling pathway. Although the abstract does not directly address the function of PTGES, studies can 
further complement the molecular details of this mechanism by examining PTGES expression or activity and 
resolving its specific role in PGE2 generation and signaling in stem cells53. Although these studies do not indicate 
the expression of LMGRs in plasma, these studies provide a theoretical basis for the value of LMGRs in plasma.

In contrast, few studies have been conducted on the relevance of lipid metabolism-related genes to early 
recurrence of pancreatic cancer. Our study provides new directions for further research. In conclusion, we created 
and validated a risk scoring system for prognosis and risk stratification using lipid metabolism-related genes 
from the TCGA and CGGA datasets and a multicenter pancreatic cancer cohort. The prognostic model showed 
high predictive accuracy. Our exploratory work provides a theoretical basis for further research on the role of 
lipid metabolism-related genes in pancreatic cancer. Since this study is a gene-based bioinformatics study, some 
problems remain. Multi-omics combined with artificial intelligence is the future direction of bioinformatics. 
Therefore, learning new features from multi-omics datas that facilitate prediction of prognosis is an important 
step for machine learning models to predict survival and relapse.

Data availability
The datasets generated and analyzed during the current study are available in the TCGA , ICGC, GEO repos-
itory, [TCGA: https://www.cancer.gov/, ICGC: https://dcc.icgc.org/, GEO: GSE205013]. The validation cohort 
datasets used analysed during the current study available from the corresponding author on reasonable request.
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