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Characteristics of tumors and patients can be used as predictive biomarkers to guide treatment choice. 
Although many potential biomarkers are evaluated each year, only few will eventually be used since 
evidence is usually based on small studies leading to inconclusive results. Such data are often analyzed 
with Cox proportional hazards regression using a multiplicative interaction term between biomarker 
and treatment, with insufficient power and possibly biased results. Instead of analyzing patients who 
do (cases) and do not experience (non-cases) the survival event of interest, case-only analysis with 
logistic regression has been proposed, however with unknown small sample properties. We evaluated 
the performance of case-only analysis with bias-eliminating Firth correction and confidence intervals 
obtained with a profile likelihood method in a simulation study tailored to breast cancer. Our results 
show that this approach is generally inferior to the full cohort analysis but has acceptable properties 
when the marker is protective or null among patients treated with the standard treatment, the event 
rate is low (e.g., a rare event and a protective marker) and treatment assignment is independent of the 
marker level (e.g., in randomized studies). In such situations, the case-only design offers substantial 
cost savings. However, the model is sensitive to these assumptions.
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Personalized medicine aims to find effective treatments for selected individuals. In oncology, for example, the 
selection can be based on the genetics of the tumor or healthy tissue, the tumor (immune) environment, lifestyle 
or comorbidities of patients1. These characteristics, called predictive biomarkers, may predict a patient’s response 
to a particular treatment, i.e., they indicate how one should be treated2. However, even though many candidate 
biomarkers are discovered in laboratories, for instance, by screens on cells, rodents or humans, only few end up 
being used in clinical practice. One reason for this may be the rigorous process biomarkers have to go through, 
culminating in a randomized clinical trial as the last step. Such a trial generally requires a large number of 
patients, access to patient specimen, and standardized assays for biomarker measurement. Unfortunately, these 
studies are often prohibitively expensive or suitable patients with appropriate tissue samples are scarce, so that 
these early clinical studies are often too small. This reduces power and causes small sample bias when suboptimal 
statistical methods are applied, which may lead to abandoning a promising biomarker.

A commonly used statistical method for evaluating a binary predictive biomarker is the Cox proportional 
hazards regression for failure time data3 with a multiplicative interaction term between biomarker and treatment. 
The interaction term indicates whether the relative effect of an experimental treatment in comparison to a 
control treatment differs by biomarker level4–6. In our earlier work7, we show that in particular settings specific 
to studies on predictive biomarkers, this method yields biased results and overestimates the standard error of the 
interaction term for cohort sizes under 600 patients. We also show that bias is reduced when the score function 
of the Cox model is modified with a Firth correction8 and confidence intervals (CIs) are obtained with a profile 
likelihood (PL) approach. However, results of studies with less than 400 patients rarely have sufficient power to 
detect interaction between biomarker and treatment. Thus, there is a need for the development of new statistical 
methods or the adaptation of standard methods for small studies of predictive biomarkers.

It has been shown that the interaction coefficient and treatment effects in biomarker subgroups can be 
estimated in the subset of patients who experience the event of interest, i.e., cases only9–11. The estimation is 
unbiased if the event rate is low, censoring is non-informative, and the biomarker level and treatment assignment 
are independent. With such a design, a simple logistic model can be used instead of a Cox model. The case-only 
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design has been proposed more than a decade ago but has only rarely been applied in biomarker studies12,13. 
Epidemiologists, on the other hand, have used it for a long time to evaluate gene-environment or gene-gene 
interactions on binary outcomes14–16. In such studies, a case-only design is being used as an alternative to the 
case-control design since it obviates the need for genetic assays in non-case subjects and even provides a more 
efficient estimate of the interaction coefficient under the assumption of independence between the genetic and 
the environmental factors. Note that the assumption has to be made in observational studies but it is fulfilled by 
design when treatment is randomized.

Here, we performed a simulation study and designed it using results from real clinical studies on breast 
cancer (BC)17–21. Three of the studies were randomized controlled trials and two were observational series of 
patients. All studies had used archived specimens for biomarker measurements and evaluated interactions with 
either chemotherapy or endocrine therapy on risk of BC relapse or death due to any cause (recurrence-free 
survival, disease-free survival) or death due to BC (breast cancer-specific survival). The simulated data was 
analyzed using cases only with a logistic model corrected with the bias-eliminating approach developed by Firth8 
and a CI calculated using a PL approach. The two approaches are generally recommended for analyses of small 
studies. We compared the results with an uncorrected logistic model on cases only and a Cox model modified 
with the Firth correction on cases and non-cases. More details about the performance of the latter model can be 
found in our earlier work7. The aim of our study was to find scenarios of studies on predictive biomarkers that 
indicate when such studies could be analyzed with a modified case-only model.

Methods
Data generation
N datasets were generated and all n patients within each dataset were assigned to one of four combinations 
of biological marker M (low level: M = 0; high level: M = 1) and treatment T (standard treatment: T = 0; 
experimental treatment: T = 1). The probabilities of assignment to each combination depended on the 
proportion pM  of patients with high marker level, the proportion pT  of patients treated with the experimental 
treatment, and the odds ratio ORMT  of the association between marker and treatment22.

Event times te were generated from a random variable Ue uniformly distributed on the interval [0, 1], M, T, 
and the product MT of M and T:

	
te = − log(Ue)

λeexp (βM M + βT T + βIMT ) .

exp (βM ) = HRM  was the ratio of hazards for high vs. low marker level among patients receiving standard 
treatment, exp (βT ) = HRT  was the ratio of hazards for experimental vs. standard treatment among patients 
with low marker level, exp (βI) = HRI  was the interaction hazard ratio, i.e., the ratio between treatment 
hazard ratios in high vs. low marker level. An exponential survival distribution with a scale parameter λe was 
used to calculate baseline survival with

	
λe = − 1

tend
log (1 − qe) ,

 so that before the end of follow-up tend the proportion of patients with low marker level receiving standard 
treatment who experienced an event was qe, i.e., the exponential survival function S(t) = exp (−λet) at 
tend was S(tend) = 1 − qe. In additional analyses, the baseline survival was calculated with a Weibull survival 
distribution with increasing or decreasing hazard of event occurrence over time. We do not show these results but 
refer to them in the discussion. Censoring times tc were generated similarly from a random uniform variable Uc, 
scale parameter λc, the proportion qc of patients with low marker level receiving standard treatment censored 
before tend (excluding administrative censoring at the end of the study period) and βM = βT = βI = 0 to 
achieve non-differential censoring by marker and treatment. The patient was specified as experiencing an event 
at te if te < min (tc, tend) and censored otherwise at min (tc, tend).

We generated N = 10000 datasets with different values for n (200, 300, 400, 500, 600, 800, 1000), pM  (0.25, 
0.5, 0.75), HRM  (0.6, 0.8, 1, 3, 6), ORMT  (0.5, 1, 2) and HRI  (0.25, 0.5, 0.75, 1) but only one value of 
pT = 0.5, qe = 0.2, qc = 0.2, tend = 5 years and HRT = 1. The different specifications were chosen based on 
real datasets presented and summarized in our earlier work7. Briefly, the sample size in these studies varied from 
117 to 541. The proportion of patients with high marker levels was 14%, 18% and about 50%, and the marker 
effect among patients treated with the standard treatment was either protective (HRM  = 0.67, 0.86) or harmful 
(HRM  = 3.51, 5.39, 6.60). The ratio between odds of high marker level for patients treated with experimental vs. 
standard treatment, i.e., ORMT , ranged from 0.79 to 2.34, and between 42% and 58% of the patients received the 
experimental treatment. Patients with the low marker level benefitted from the experimental treatment (HRT  
between 0.23 and 0.87) and in all studies except one, the benefit of the experimental treatment was greater 
for patients with high vs. low marker levels (HRI  = 0.08, 0.24, 0.37, 0.63, 1.95). However, since a qualitative 
interaction between the marker and the treatment is needed to guide treatment choice23, we simulated scenarios 
with equally efficacious treatments among patients with low marker level (HRT = 1).

Aggregated data from various clinical studies were used as inputs for the simulation study. All studies 
were carried out in accordance with relevant guidelines and regulations. All study protocols were approved 
by responsible institutional committees. The study by de Boo et al.17 was approved by the Ethics Committee 
of the participating medical institutions and the National Agency for Medicines, Finland. The Institutional 
Review Board at the Helsinki University Hospital, Finland, approved the use of archival tissue for the current 
translational study. All seven studies in Knauer et al.18 had been approved by the respective institutional review 
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boards. The ethical committees of Lund and Linköping universities approved the study by Kok et al.19. The study 
by Schouten et al.20 was approved by the Ethical Committee of the University of Heidelberg. The trial described 
in Vollebergh et al.21 was approved by the Institutional Review Board of the Netherlands Cancer Institute. In all 
those studies, informed consent was obtained from all subjects and/or their legal guardian(s).

Data analysis
The generated datasets were analyzed using three different models and two parametrizations of each model, and 
the 95% CIs were calculated according to Wald and PL methods.

A logistic regression of treatment assignment was fitted to case-only data, i.e., K patients who experienced an 
event of interest at times te (e = 1, ..., K), using the formula

	
log

P (T = 1|te, M)
P (T = 0|te, M) = log

pe

1 − pe
+ γT + γIM � (1)

and

	
log

P (T = 1|te, M)
P (T = 0|te, M) = log

pe

1 − pe
+ γT Mlow Mlow + γT Mhigh Mhigh,� (2)

where log (pe/(1 − pe)) was a constant (“offset”) term with pe being the fraction of patients in the full cohort 
at time te assigned to the experimental treatment who were still at risk at time te. Mlow  and Mhigh were binary 
variables indicating patients with low and high marker level, respectively. Additionally, models (1) and (2) with 
modified score functions based on the method developed by Firth8 were fitted to case-only data.

A Firth-corrected Cox proportional hazards model was fitted to all generated patients (cases and non-cases) 
using the hazard function

	 h(t; T, M) = h0(t) exp (βM M + βT T + βIMT )� (3)

with baseline hazard function h0 to evaluate the interaction term βI  and

	 h(t; T, M) = h0(t) exp
(
βM M + βT Mlow T Mlow + βT Mhigh T Mhigh

)
� (4)

to evaluate the treatment effect by marker level, i.e., βT Mlow  and βT Mhigh . exp (βT Mlow ) = HRT Mlow  and 
exp

(
βT Mhigh

)
= HRT Mhigh  were the hazard ratios for experimental vs. standard treatment in subgroups 

of low and high marker levels, respectively. T Mlow  and T Mhigh were binary variables defined as T Mlow = 1 
if M = 0 and T = 1, and T Mlow = 0 otherwise; T Mhigh = 1 if M = 1 and T = 1, and T Mhigh = 0 
otherwise, to indicate patients receiving experimental treatment in the two marker levels.

As shown by Dai et al.11, γT ≈ βT , γI ≈ βI , γT Mlow ≈ βT Mlow , γT Mhigh ≈ βT Mhigh , when treatment 
assignment is independent of marker level, censoring is independent of treatment conditionally on marker level 
and the event is rare for all event times te. Even though the γ parameters are estimated with logistic regressions, 
they are interpreted as hazard ratios.

As defined by Morris et al.24, we calculated several performance measures to summarize estimation of the 
interaction term across all scenarios, namely (i) bias: 1

Nc

∑Nc

j=1 β̂I,j − βI  or relative bias: 1
Nc

∑Nc

j=1
β̂I,j −βI

|βI |

, (ii) relative % error in model standard error (ModSE): 100
(

M̂odSE
ÊmpSE

− 1
)

 with the model standard 

error ModSE obtained as 
√

1
Nc

∑Nc

j=1 V̂ar
(
β̂I,j

)
 and the empirical standard error EmpSE obtained as √

1
Nc−1

∑Nc

j=1

(
β̂I,j − β̄I

)2
, (iii) coverage of the CI: 1

Nc

∑Nc

j=1 1
(
β̂l,j ≤ βI ≤ β̂u,j

)
 with β̂l,j  being 

the lower bound and β̂u,j  being the upper bound of the 95% CI around β̂I,j , and (iv) type I error or power: 
1

Nc

∑Nc

j=1 1(pj ≤ α), where pj  was the p-value obtained with the j-th dataset by testing the null hypothesis 
βI = 0 and α was the significance level fixed at 0.05. In all formulas, Nc indicated the number of converged 
models, βI  was the true value of the coefficient of the interaction term and β̂I,j  was the estimate of the interaction 
coefficient in the j-th dataset. The mean of all β̂I,j  was indicated as β̄I  and 1 was an indicator function. Since 
the calculations of coverage, type I error and power depended on the CI method, separate calculations were 
performed for the Wald and PL approach. Additionally, the estimation of treatment effect in the subgroups of 
low and high marker levels was summarized with the bias and relative percentage error in standard error. For 
calculations of all performance measures, only datasets with events in at least three combinations of marker 
and treatment and results from converged models were used. A model was considered converged if the actual 
number of iterations for a model fit was less than the prespecified maximum number of iterations. However, for 
summary statistics of the PL-based power and coverage, models with overall convergence and additionally with 
convergence of the confidence bound were used since the latter is required to determine whether or not the PL 
confidence interval included zero or the true parameter value.

All simulation scripts were written in R version 4.3.1. The logistf function of the logistf package version 
1.26.025 was used to fit a standard logistic and logistic-Firth model. The coxphf function of the coxphf package 
version 1.13.426 was used with maximally 1000 iterations (maxiter) and a maximum step size (maxstep) of 0.01 
to fit a Cox-Firth model. The scripts are available on request from the corresponding author.
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Simulation results
Under marker-treatment independence, i.e., ORMT = 1, the interaction and the treatment effect coefficients 
and their standard errors estimated with the Firth-corrected case-only method showed usually an acceptable 
bias when the marker was protective or null among patients treated with the standard treatment, i.e., HRM ≤ 1 
(Fig. 1, Table 1). The event rate in these scenarios was such that 10–20% of patients experienced an event over 
the 5-year follow-up period and the type I error for the interaction coefficient was around or slightly below 
5% for both the Wald and PL method (see Supplementary Table 3 for an example scenario). For harmful 
markers, however, the interaction coefficient was heavily positively biased with bias up to 50% (data not shown), 
irrespective of sample size. This bias came from a negative bias of the treatment effect among low marker 
level patients and a positive bias among high marker level patients (Fig. 2, Table 2). Even a small bias in the 
treatment coefficient for the two marker levels led to a large relative bias for the interaction coefficient because 
the estimated treatment coefficient in the low marker level was negative instead of 0 and in the high marker level 
was away from the true value and towards 0. That caused that the interaction effect was away from the truth and 
also towards 0. The event rate for harmful markers was always larger so that 20-55% of patients experienced an 
event over the 5-year follow-up period, and the stronger the marker effect the larger the event rate and the larger 
the bias. If treatment assignment depended on marker level, i.e., ORMT ̸= 1, the interaction coefficient and 
the treatment effect coefficient in the high marker level were severely biased with the direction of bias related 
to the direction of dependence (Supplementary Fig. 1–2, Supplementary Table 1–2) and the type I error was 
substantially above the nominal level of 5%.

Convergence of the Firth-corrected case-only model was very high for all scenarios. Coverage was often above 
the nominal level of 95% and approached 95% with increasing sample size when HRM ≤ 1 and ORMT = 1. 
It was usually closer to the nominal level when it was calculated with the PL in comparison to the Wald approach. 
However, coverage for both methods was below the nominal level and moved away from nominal level with 
larger sample size when HRM > 1 or ORMT ̸= 1, i.e., when the interaction coefficient but not its standard 
error was biased. This often led to 95% CIs for the interaction coefficient which did not include its true value (Fig. 
1–2, Supplementary Fig. 1–2, Tables 1–2, Supplementary Table 1–2). Moreover, statistical power also depended 
strongly on the marker-treatment association and it decreased with larger values of the ORMT . Under marker-
treatment independence, power was lower than 80% for sample sizes smaller than 600 with event rates over 5 
years below 20% when the marker was protective or null and was consistently slightly higher for PL-based vs. 
Wald-based CI (Tables 1–2, Supplementary Table 1–2).

As previously shown7, the full cohort analysis with the Firth-corrected Cox model was virtually unbiased for 
sample sizes down to 200 and overall event rates over 5 years above 20% when the marker was harmful among 
patients treated with the standard treatment, i.e., HRM > 1. Otherwise, the interaction coefficient and its 
standard error were substantially biased. The interaction coefficient was biased towards and away from the null 
and standard error was overestimated for small sample sizes, but bias decreased and monotonically approached 

Fig. 1.  Results of the simulation study for treatment assignment independent of the marker level, i.e., 
ORMT = 1, and a protective ( HRM = 0.8, left panel) and a null ( HRM = 1, right panel) marker 

effect among patients treated with the standard treatment. The treatment HRs were HRT Mlow = 1 and 
HRT Mhigh = 0.5, i.e., βT Mlow = 0 and βT Mhigh = −0.69, the interaction HR was HRI = 0.5, i.e., 

βI = −0.69, and the proportion of patients with high marker level was pM = 0.25. Case-only results were 
obtained with a Firth-corrected logistic regression, while full cohort results were obtained with a Firth-
corrected Cox proportional hazards model. Number of patients was the number of patients per dataset in full 
cohort HR, hazard ratio; M, marker; OR, odds ratio; PL, profile likelihood; Rel., relative; SE, standard error.
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zero as the sample size increased. These results did not depend on the marker-treatment association nor the 
censoring rate.

Under marker-treatment independence, coverage, power and estimation of the standard error of the 
interaction coefficient were similarly good for the case-only analysis with the logistic-Firth model and the full 
cohort Firth-corrected Cox model for protective or null markers, i.e., HRM ≤ 1. However, relative bias of the 
interaction coefficient persists at 5-10% with the case-only model regardless of sample size and is lower, often 
around or below 5% for the full cohort Firth-corrected Cox model. Power is generally low at 600 patients or less 
for either method (Fig. 1, Table 1).

It is noteworthy that the Firth-correction improved the performance of the case-only analysis in general. 
When HRM ≤ 1 and sample size was small, relative bias of all evaluated coefficients decreased when the 
correction was used in comparison to a standard case-only model without the correction (Supplementary 
Fig. 3). However, the standard Firth correction shrinks all parameters, including the intercept, and therefore 
produces estimates which are slightly biased at 5% or less even for large sample sizes.

Discussion
A modified case-only model can be used to analyze relatively small studies of predictive markers when the 
overall event rate is low, i.e., when the event is rare at baseline and the marker is protective, and when the 
treatment assignment is independent from the marker level, e.g., patients are randomized to treatment. In such 
studies, the model estimates the interaction and treatment coefficient and their standard errors with acceptable 
bias. Moreover, the coverage of the CI for the interaction coefficient is at or just slightly above the nominal 
level while type I error is at or slightly below the nominal level. The number of biomarker measurements and 
corresponding costs are reduced by 80% or more compared with a full cohort analysis.

However, the modified case-only model has to be used cautiously since our simulation results are based on a 
finite series of scenarios derived from previous clinical studies of breast cancer. Moreover, model performance 

Bias Coverage (%) Power (%)

n e β̂T Mlow SE(β̂T Mlow
) β̂T Mhigh SE(β̂T Mhigh

) β̂I SE(β̂I ) Wald (PL) Wald (PL) Nc

HRM = 0.6

  Case-only

200 31 0 −0.1 0.1 17.3 15.1 15.0 98.2 ( 96.7 ) 1.5 ( 5.9 ) 9849

400 62 0 −0.8 0 6.3 6.9 6.1 97.4 ( 96.1 ) 5.5 ( 11.2 ) 10000

600 94 0 −0.3 0 1.4 4.1 1.3 96.6 ( 95.2 ) 12.2 ( 16.9 ) 10000

    Full cohort

200 31 0 3.5 0.1 22 9.9 19.4 98.6 ( 96.7 ) 1.7 ( 6.3 ) 9830

400 62 0 0.8 0 8.4 1.7 8.0 97.9 ( 96.2 ) 6.2 ( 12.4 ) 9986

600 94 0 1.1 0 2.2 −0.8 2.2 97.2 ( 95.6 ) 13.7 ( 18.7 ) 10000

HRM = 0.8

  Case-only

200 34 0 0 0.1 12.0 12.6 10.0 97.9 ( 96.3 ) 2.7 ( 7.7 ) 9966

400 65 0 −0.8 0 3.8 7.2 3.7 97.0 ( 95.8 ) 9.3 ( 13.8 ) 10000

600 98 0 −0.3 0 0.1 5.2 0.5 96.4 ( 95.2 ) 17.0 ( 20.6 ) 10000

  Full cohort

200 34 0 3.3 0 16.3 6.1 14.2 98.2 ( 96.3 ) 2.9 ( 8.6 ) 9955

400 65 0 0.6 0 5.5 1.0 5.2 97.5 ( 95.9 ) 10.1 ( 15.6 ) 9997

600 98 0 1.1 0 0.8 −1.2 1.4 96.8 ( 95.5 ) 19.4 ( 23.5 ) 10000

HRM = 1

  Case-only

200 34 0 0.1 0.1 7.8 10.8 6.1 97.5 ( 95.9 ) 4.2 ( 9.3 ) 9990

400 68 0 −0.8 0 1.6 8.0 1.6 96.6 ( 95.5 ) 12.8 ( 16.1 ) 10000

600 102 0 −0.3 0 0.3 6.5 0.5 95.7 ( 95.0 ) 20.9 ( 23.8 ) 10000

  Full cohort

200 34 0 3.1 0 11.5 3.0 9.7 98.0 ( 96.0 ) 4.3 ( 10.3 ) 9983

400 68 0 0.6 0 3.4 0.4 3.4 97.3 ( 96.0 ) 14.0 ( 18.4 ) 9998

600 102 0 1.0 0 1.0 −1.4 1.4 96.3 ( 95.4 ) 23.8 ( 27.4 ) 10000

Table 1.  Results of the simulation study for treatment assignment independent of the marker level, i.e., 
ORMT = 1, and a protective ( HRM = 0.6 and HRM = 0.8) and a null ( HRM = 1) marker effect among 

patients treated with the standard treatment. The treatment HRs were HRT Mlow = 1 and HRT Mhigh = 0.5, 
i.e., βT Mlow = 0 and βT Mhigh = −0.69, the interaction HR was HRI = 0.5, i.e., βI = −0.69, and the 
proportion of patients with high marker level was pM = 0.25. Case-only results were obtained with a Firth-
corrected logistic regression, while full cohort results were obtained with a Firth-corrected Cox proportional 
hazards model. Bias for β̂T Mlow , β̂T Mhigh  and relative bias (%) for SE(β̂T Mlow ), SE(β̂T Mhigh ), β̂I , SE(β̂I) 

Other parameters: ORMT = 1, HRT Mlow = 1, HRT Mhigh = 0.5, HRI = 0.5, pM = 0.25 e, average 
number of events per dataset; HR, hazard ratio; n, number of patients per dataset in full cohort; Nc, number of 
converged models; OR, odds ratio; PL, profile likelihood; SE, standard error
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Bias Coverage (%) Power (%)

n e β̂T Mlow SE(β̂T Mlow
) β̂T Mhigh SE(β̂T Mhigh

) β̂I SE(β̂I ) Wald (PL) Wald (PL) Nc

HRM = 3

  Case-only

200 45 0 0.1 0.1 0.8 22.5 0.8 95.1 ( 94.6 ) 11.0 ( 12.8 ) 10000

400 89 0 −0.8 0.1 −0.4 21.6 −0.2 93.7 ( 93.6 ) 21.4 ( 22.6 ) 10000

600 133 0 −0.3 0.1 0.3 20.8 −0.3 93.2 ( 93.2 ) 31.8 ( 32.7 ) 10000

  Full cohort

200 45 0 2.3 0 2.6 1.1 2.8 96.2 ( 95.1 ) 15.6 ( 18.6 ) 10000

400 89 0 0.2 0 0.2 0 0.4 95.3 ( 94.7 ) 32.4 ( 34.2 ) 10000

600 133 0 0.8 0 1.8 −1.2 1.6 95.8 ( 95.4 ) 47.3 ( 48.8 ) 10000

HRM = 6

  Case-only

200 56 −0.1 0 0.2 0.1 39.5 0.2 92.4 ( 92.1 ) 10.8 ( 11.6 ) 10000

400 110 −0.1 −0.8 0.2 0.7 39.6 0.6 88.9 ( 89.0 ) 18.2 ( 18.7 ) 10000

600 165 −0.1 −0.2 0.2 0.9 39.2 −0.2 86.0 ( 86.2 ) 26.1 ( 26.5 ) 10000

  Full cohort

200 56 0 1.8 0 −0.1 −0.1 1.0 95.5 ( 94.8 ) 22.2 ( 24.0 ) 10000

400 110 0 −0.1 0 0 −0.2 0.4 95.4 ( 95.1 ) 42.1 ( 43.2 ) 10000

600 165 0 0.6 0 0.9 −1.1 0.7 95.5 ( 95.2 ) 59.6 ( 60.2 ) 10000

Table 2.  Results of the simulation study for treatment assignment independent of the marker level, i.e., 
ORMT = 1, and a harmful ( HRM = 3 and HRM = 6) marker effect among patients treated with the 

standard treatment. The treatment HRs were HRT Mlow = 1 and HRT Mhigh = 0.5, i.e., βT Mlow = 0 and 
βT Mhigh = −0.69, the interaction HR was HRI = 0.5, i.e., βI = −0.69, and the proportion of patients 
with high marker level was pM = 0.25. Case-only results were obtained with a Firth-corrected logistic 
regression, while full cohort results were obtained with a Firth-corrected Cox proportional hazards model. 
Bias for β̂T Mlow , β̂T Mhigh  and relative bias (%) for SE(β̂T Mlow ), SE(β̂T Mhigh ), β̂I , SE(β̂I ) Other parameters: 

ORMT = 1, HRT Mlow = 1, HRT Mhigh = 0.5, HRI = 0.5, pM = 0.25 e, average number of events per 
dataset; HR, hazard ratio; n, number of patients per dataset in full cohort; Nc, number of converged models; 
OR, odds ratio; PL, profile likelihood; SE, standard error

 

Fig. 2.  Results of the simulation study for treatment assignment independent of the marker level, i.e., 
ORMT = 1, and a harmful ( HRM = 3, left panel; HRM = 6, right panel) marker effect among patients 

treated with the standard treatment. The treatment HRs were HRT Mlow = 1 and HRT Mhigh = 0.5, 
i.e., βT Mlow = 0 and βT Mhigh = −0.69, the interaction HR was HRI = 0.5, i.e., βI = −0.69, and the 
proportion of patients with high marker level was pM = 0.25. Case-only results were obtained with a Firth-
corrected logistic regression, while full cohort results were obtained with a Firth-corrected Cox proportional 
hazards model. Number of patients was the number of patients per dataset in full cohort HR, hazard ratio; M, 
marker; OR, odds ratio; PL, profile likelihood; Rel., relative; SE, standard error.
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appears to be sensitive to the assumptions. The model should not be used when the event rate is not low, e.g., due 
to a harmful marker, or when treatment assignment depends on the marker level.

Most clinical studies on treatment heterogeneity with failure time endpoints are analyzed using data from a 
cohort and applying a Cox regression with a multiplicative interaction term between marker and treatment6. In 
studies with a small number of patients, unbiased results of a Cox regression are guaranteed when the marker 
is harmful among patients treated with the standard treatment. The model can yield biased results when the 
marker is protective or null in this subgroup of patients. In our earlier work7, we showed that the bias is reduced 
when the score function of a Cox model is modified using a Firth correction. In the current study, we show that 
bias reduction can also be obtained by analyzing only patients who experience the survival event of interest 
using a Firth corrected case-only model. The Firth-corrected model with the full cohort and with cases only, 
show acceptable performance only when there is no association between the marker level and the treatment 
assignment. When there is a dependence between the marker and the treatment or the marker is harmful among 
patients treated with the standard treatment (leading to a high event rate), a Firth-corrected case-only model 
is severely biased. Thus, our study confirms the importance of assumptions for valid results of the case-only 
approach discussed in the literature, namely, a low event rate and marker-treatment independence10,11,16.

The comparison between results obtained with a standard Cox model and a standard case-only model for 
survival outcomes has been previously conducted using randomized studies, where the independence between 
the two factors that interact with each other is established by design10,11. However, in epidemiological studies, 
it has been shown that a dependence causes bias16. Even in retrospective data from a randomized clinical trial, 
independence between marker and treatment is not guaranteed. For example, the availability of tissue for 
biomarker measurements may depend on marker or treatment. If the dependence, on the other hand, can be 
explained by a third factor, the bias can be reduced or eliminated by adjusting the case-only model for this third 
factor27. We did not evaluate this in the simulation study, since none of the patient and tumor characteristics in 
the BC example studies explained the dependence between the marker and the treatment.

Our simulation study does not address complex situations that may occur in some cancer studies. For 
example, risk of relapse or death can increase over time or the baseline hazard changes in other ways, i.e., hazards 
are not constant. Although some limited sensitivity analyses indicated that our results do hold in more complex 
situations, e.g., when a non-constant hazard at baseline was used instead of the exponential hazard, caution 
needs to be used when applying the case-only design to situations not evaluated here.

An important advantage of using a case-only approach in a retrospective study is the cost reduction since 
marker measurements are only performed for a subset of trial participants. With the resources for a full cohort 
study, one could pool patients with events from multiple trials, which would lead to increased power. However, 
the case-only approach estimates the marker-treatment interaction and the treatment effects by marker level 
but not the marker effect. If the latter is an objective, a full cohort or an augmented case-only design is needed. 
The augmented case-only design is a hybrid method which combines case-only and case-control designs by 
randomly sampling controls from both treatment arms or from the experimental treatment only11.

The assumptions under which the case-only design can be useful are not easy to verify prior to study onset. 
However, the expected event rate is generally known during the design phase of a study and the independence 
assumption is per definition fulfilled in randomized designs, making a large number of studies suitable for 
retrospective case-only analyses. The direction of the marker effect has to be known from previous studies. Since 
it cannot be estimated with a case-only model, it is not even known after the study. Many predictive marker 
candidates were, however, previously used as prognostic markers. Noteworthy, results with acceptable bias for 
a case-only model with a harmful marker cannot be obtained by simply recoding and estimating 1/HRM  for 
the standard treatment. Changing the reference category for the marker automatically recodes the interaction 
effect to 1/HRI . Although, the different combinations of marker and treatment are shuffled and the comparison 
groups are different, the event rate in the different subgroups which eventually influences the bias is not changed.

In conclusion, we show that small studies on predictive markers can be analyzed with a case-only model 
when the event rate is low, treatment assignment is independent from marker level and the marker is protective 
or null among patients who received the standard treatment. The design offers substantial cost savings.

Data availability
Computer scripts in the programming language R are available on request from the corresponding author.
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