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Automated foul detection in football represents a challenging task due to the dynamic nature of the 
game, the variability in player movements, and the ambiguity in differentiating fouls from regular 
physical contact. This study presents a comprehensive comparative evaluation of eight state-of-the-
art Deep Learning (DL) architectures — EfficientNetV2, ResNet50, VGG16, Xception, InceptionV3, 
MobileNetV2, InceptionResNetV2, and DenseNet121 — applied to the task of automated foul 
detection in football. The models were trained and evaluated using a curated dataset comprising 
7000 images, which was split into 70% for training (4,900 images), 20% for validation (1,400 images), 
and 10% for testing (700 images). To ensure fair evaluation, the test set was balanced to contain 
350 images depicting foul events and 350 images representing non-foul scenarios, although perfect 
balance was subject to class distribution constraints. Performance was assessed across multiple 
metrics, including test accuracy, precision, recall, F1-score, and Area Under the Receiver Operating 
Characteristic Curve (AUC). The results demonstrate that InceptionResNetV2 achieved the highest 
test accuracy of 87.57% and a strong F1-score of 0.8966, closely followed by DenseNet121, which 
attained the highest precision of 0.9786 and an AUC of 0.9641, indicating superior discriminatory 
power. Lightweight models such as MobileNetV2 also performed competitively, highlighting their 
potential for real-time deployment. The findings highlight the strengths and trade-offs between model 
complexity, accuracy, and generalizability, underscoring the viability of integrating DL architectures 
into existing football officiating systems, such as the Video Assistant Referee (VAR). Furthermore, 
the study emphasizes the importance of model explainability through techniques such as Gradient-
weighted Class Activation Mapping++ (GradCAM++), ensuring that automated decisions can be 
accompanied by interpretable visual evidence. This comparative evaluation serves as a foundation for 
future research aimed at enhancing real-time foul detection through multimodal data fusion, temporal 
modeling, and improved domain adaptation techniques.
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Among the most watched sports globally, football draws a lot of spectators and significantly affects both 
fan engagement and the local economy1–3. The dynamic architecture of the game, which is characterized by 
continuous action and complex player interactions, makes it difficult for officials to exactly spot and fix violations 
in real-time4. While the Video Assistant Referee (VAR) has been brought in to help with decision-making in 
football matches, human errors and oversight still exist and lead to divisive opinions that might influence game 
outcomes5. Consequently, more consistent and automated solutions to help officials in making accurate and 
quick decisions are becoming more and more needed6.

Advances in technology
Advances in Computer Vision (CV) and Deep Learning (DL) have opened chances for the construction of 
sophisticated automated systems to identify fouls7. These systems can quickly and consistently assess large 
amounts of visual data, identifying intricate trends and anomalies that could be undetectable to human view8. 
Modern DL architectures allow one to design systems that can not only detect fouls but also provide instantaneous 
feedback, hence enhancing the general fairness and efficiency of the game9.

Recent studies stress player detection as a forerunner of foul detection. Deep Convolutional Neural 
Networks (CNNs) were one method applied to identify players across many spatial resolutions, hence improving 
identification accuracy in films of different quality4. Finding questionable contact that results in fouls depends 
on consistent player tracking.

Combining multi-object tracking and spatiotemporal action detection, a noteworthy work offered a DL 
pipeline to detect players engaged in fouls. Even in congested game footage, the algorithm precisely noted which 
players fouled and which committed fouls10.

DL  techniques have made significant progress in image processing in various domains from business to 
healthcare. Based on finely described patterns in medical pictures, recent works have indicated that CNNs  and 
Vision Transformers (ViTs) are superior to conventional techniques when distinguishing complex illnesses 
such as cerebral vascular occlusions and skin cancer11–13. For early skin cancer diagnosis, hybrid CNN-ViT 
models have, for instance, enhanced generalizability and accuracy even on unbalanced datasets11. ViT-based 
models have also shown almost complete accuracy in cervical cancer screening, above traditional CNNs14. 
These developments show how well DL can handle jobs with fine-grained visual knowledge, including football’s 
automatic foul identification. Techniques include attention mechanisms, domain-specific augmentation, and 
explainability tools like Gradient-weighted Class Activation Mapping++ (GradCAM++) help foul detection 
models to become both accurate and interpretable, hence improving their utility in real-time officiating systems 
such as VAR technology.

Research focus
This research makes it possible to do a  quantitative research about the effectiveness and comparative 
performance of various state-of-the-art DL architectures for the task of automatically detecting fouls in football 
matches. Standard football foul detection methods depend significantly on human perception, comprising 
real-time referee selections during the match or through post-match inspection via video  technologies such as 
VAR systems. Although these approaches leverage  the expertise of human interpretation—they are subject to 
inconsistency, bias and error, especially in dynamic or uncertain situations.

This study investigates the use of DL-based  image analysis as a means of increasing the objectivity, consistency 
and efficiency of foul detection. It uses an annotated collection of football match images with bounding boxes 
representing foul incidents as a ground truth dataset to generate a binary classifier competent of discriminating 
whether a particular point in a match indicates a foul or not. It also seeks to explore how various architectures 
of Convolutional Neural Network (CNN) such  as EfficientNetV2, ResNet50, VGG16, Xception, InceptionV3, 
MobileNetV2, InceptionResNetV2, and DenseNet121 process the anomalies of the real-world foul detection 
problem including variation in player positions, angle of camera perspective, light conditions, partial occlusion, 
among others.

Along with classification performance, this  study also explores the explainability of these models through 
GradCAM++, which is an interpretability approach that allows us to visualize the regions of an image that were 
critical to its final output. Such dual emphasis  on interpretability and performance relates to the wider target 
of embedding automated foul detection into commercial VAR systems, where accurate and understandable 
decision support are essential. By conducting a detailed comparative analysis, this research seeks to offer a well-
rounded exposition of various DL strategies  for ideal deployments in football officiating technologies, and their 
respective strengths and limitations.

Research objectives
The focus of this research lies in designing  and analyzing a sophisticated automated approach for detecting 
if an event was a foul or not through the use of DL methods on football matches. The objective of  this study 
is to explore the comparison of performance of eight existing popular DL architectures like EfficientNetV2, 
ResNet50, VGG16, Xception, InceptionV3, MobileNetV2, InceptionResNetV2, and DenseNet121 to resolve the 
complex challenges posed by foul detection in dynamic conditions of a football match. This adds a level of 
complexity to accurately identifying foul events, considering the diverse scenarios in which such events occur, 
such as horizontal and vertical player positioning, different camera angles,  diverse lighting conditions and 
occlusions. Using an annotated dataset containing images from football matches, where fouls were annotated, 
the research aims to study the generalization capacity of each model on  training, validation, and balanced test 
sets. This study also includes explainability techniques such as GradCAM + + to produce visual heatmaps to  find 
the significant regions of the image affected each model decision apart from the evaluation of classification 
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performance through important metrics such as accuracy, precision, recall, F1-score, and Area Under the 
Receiver Operating Characteristic Curve (AUC). This attention to both predictive accuracy and interpretability 
is critical for achieving  these goals, and is a necessary step towards ensuring that any the functioning system will 
not only have the potential to successfully identify fouls, but also, if desired, provide referees and video analysts 
with transparent visual justifications behind the system’s outputs. Additionally, the study will assess each model’s 
computational efficiency, stability, and practical feasibility for real-time use  in current VAR systems. Finally, this 
study hopes to make a contribution towards developing a  fair and consistent foul detection system, providing 
improved accuracy and interpretability in officiating decisions during professional soccer games.

This research paper is organized into several sections to comprehensively present the development, 
implementation, and evaluation of deep learning architectures for automated foul detection in football. Following 
the "Introduction", which outlines the background, technological advances, research focus, and objectives, a 
thorough "Literature Review" is provided to contextualize this work within existing studies. The "Methodology" 
section details the dataset preparation, model selection, training process, and performance evaluation 
framework, including metrics and explainability techniques. The "Results" section presents the comparative 
performance analysis of eight deep learning models across multiple metrics, supported by visualizations and 
performance summaries. In the "Discussion", the findings are critically analyzed to highlight the strengths, 
limitations, and practical implications of the tested architectures. Finally, the "Conclusion" summarizes the key 
outcomes, contributions, and future research directions aimed at enhancing automated foul detection systems 
for professional football officiating.

Literature review
Table 1 offers a comparison of current research employing DL methods on sophisticated automatic foul detection 
and football video analysis. To enhance player tracking, foul recognition, and decision-making assistance in 
football matches, every research combines DL architectures, CV techniques, and data-driven methodologies in 
varying ways.

Methodology
Dataset presentation
Divided into two main classes—Foul and Not Foul—the 7000 images used in this study are from actual football 
match video. Each Foul scenario was kept in a different subfolder in each of the many folders the dataset was 
arranged into, while all Not Foul images were combined into one Not Foul folder. Preprocessing and class-wise 
parsing made possible by this hierarchical structure.

Three subsets—70% (4900 images) for training, 20% (1400 images) for validation, and 10% (700 images) 
for testing—were formed from the dataset. Aiming to contain 350 Foul and 350 Not Foul images, a balancing 
technique was used during test set construction; nevertheless, class distribution restrictions prevented always 
flawless achievement of this balance. Table 2 sums the last counts for every subgroup.

The class distribution overall showed that although 35.9% (2513 photos) were classed as Not Foul, 64.1% 
(4487 images) belonged to the Foul class. Figure 1 shows this distribution by pie chart of the class proportions.

References Year Technique Used Study Description Major Findings

15 2025
Hybrid DL Model (Object 
Tracking + Motion Analysis), Spatiotemporal 
Feature Extraction.

Suggests a CV and DL Artificial Intelligence (AI) 
system to instantly identify offside and fouls.

In actual match conditions, achieved 99.85% 
accuracy for offside identification and 98.56% for 
foul detection, therefore proving great dependability.

16 2025
VAR-YOLOv8s, MPDIoU, Residual Local 
Feature Network (RLFN), VARS Module, 
IoT.

Presents an IoT-enabled VAR-YOLOv8s model 
employing sensor and video data for real-time foul 
detection.

On SoccerNet, achieved IoU@0.5 of 80.5 and 
mAP@0.5 of 31.0, therefore indicating a smart 
referee system potential.

17 2024 YOLO, 3D-CNN, CNN, Faster R-CNN, 
LSTM, BLSTM, CV.

Tracks ball movement and team possessions using 
combination of object detection and DL.

Hybrid models improve tracking accuracy and offer 
deeper game insights.

18 2024
YOLOv8s, Global Attention Mechanism 
(GAM), P2 Detection Head, MPDIoU Loss 
Function.

Creates a better YOLOv8s model for football 
automated referee gesture detection.

Achieved 89.3% precision, outperforming standard 
YOLOv8s by up to 5.4% in key metrics.

19 2024 LAMP Network, Vue Framework, Canonical 
Correlation Analysis, SVM.

Creates a DL and data analysis intelligent system for 
football motion identification.

combines depth and skeleton elements to increase 
real-time feedback and motion recognition accuracy 
for training.

10 2024 DL, Multi-Object Tracking, Spatiotemporal 
Action Recognition.

Creates a system using broadcast footage to find 
players engaged in infractions, differentiate subjects 
(offers) from objects (victims).

Even with low-resolution footage, achieves great 
accuracy in spotting bad players and reasonable 
accuracy in separating offenders from victims.

20 2023 Deep Reinforcement Learning, Action 
Valuation, Event & Tracking Data Analysis.

Based on match statistics, uses deep reinforcement 
learning to find best actions for attacking and 
defensive players.

Defensive players should modify foul, clearing, and 
ball-out tactics depending on field position; offensive 
players should shoot more long-distance shots.

21 2023 Hybrid CNN + GCN, Data Augmentation, 
Multi-class Cross-Entropy Loss.

Creates a DL method combining CNN and GCN 
to categorize football player activity from images 
and video.

Achieved 97.4% accuracy, outperforming 
benchmarks in classifying 17 football activities using 
fused visual and pose data.

22 2021
Customized Detection Model, Spatial & 
Bounding Box Filters, Player Number 
Recognition.

Creates a DL system utilizing custom filters and 
t-shirt numbers to find, track, and recognize players.

achieves enhanced player recognition accuracy and 
high confidence player tracking with less identity 
swaps.

Table 1.  Comparative review of DL techniques for automated foul detection and football video analysis.
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The variations in annotation availability between the two classes define the dataset in one important way. foul 
images accompany dedicated (_annotations.csv) files with comprehensive object-level annotations for entities 
including the fouling player, the victim player, and the foul action zone itself. Every entry in these annotation 
files records the file name, image dimensions (width and height), class label, bounding box coordinates (xmin, 
ymin, xmax, ymax), so localizing the relevant areas for purposes of training and interpretability. On the other hand, 
Not Foul images are devoid of annotation files, since these images depict negative samples  where none of the 
actions of interest take place. Thus, instead of using any region defined  by a bounding box in training and 
evaluation for Not Foul images, the whole frame is used.

The region-based images associated with some performance annotations for Foul cases and full-frame 
images for Not Foul cases embody the real-world challenge in implementing automated foul-detection system 
in football, where specific fouling actions  should be discriminated from general play.

Methodological framework
In this study develops an automated foul detection system in football, based on a comparative evaluation of state-
of-the-art DL architectures including EfficientNetV2, ResNet50, VGG16, Xception, InceptionV3, MobileNetV2, 
InceptionResNetV2, and  DenseNet121. The methodology has a pipeline consisting of dataset preparation, 
model development,  training along with explainability integration, and comparative performance evaluation.

Fig. 1.  Class distribution in the dataset.

 

Dataset Split Foul Samples Not Foul Samples Total Samples

Training Set 3283 1617 4900

Validation Set 937 463 1400

Test Set 350 (Actually 251) 350 (Actually 449) 700

Total 4487 (Actually 4570) 2513 (Actually 2430) 7000

Table 2.  Dataset summary and distribution.
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Dataset collection and preprocessing
Images divided into two classes—Foul and Not Foul—were gathered for a complete soccer foul detection dataset. 
The dataset was split into several subfolders, each reflecting a different foul scenario (such as Foul_1, Foul_2), 
where each folder had images together with matching bounding box annotations found in (_annotations.csv) 
files. These annotations enabled the particular areas within images where fouls happened to be localized.

Custom Python scripts were created to handle the dataset by parsing the images files and related annotations. 
The bounding boxes were taken out and cropped and isolated the pertinent foul areas for images labeled as 
such. On non-foul images, on the other hand, the whole image was utilized without cropping. To guarantee 
consistency and compatibility throughout all DL architectures applied in this work, all photos were shrunk to a 
standard dimension of 224 × 224 pixels.

The dataset was then divided at random into three subsets: 70% of the images were used as training data, 
20% were used as validation data, and the remaining 10% are reserved for testing, all using stratified sampling 
to ensure even distribution of the classes in  each subset. Moreover, the test dataset was balanced to ensure 
equal numbers of foul and non-foul  images (with a target of 350 images per class, subjected to the availability 
of adequate data per class).

The second step is to visualize the dataset, for example, class-wise histograms, pie charts, and previewing 
few samples of images with bounding boxes for the foul ones, so that the study could get a better insight of the 
dataset and  check whether the dataset is good enough for training the model or not. These visualizations gave 
an overall idea about classes distribution and also allowed to  visualize any possible bias or inconsistency in the 
dataset before setting off to training.

Model architectures and setup
Images divided into two classes—Foul and Not Foul—were gathered for a complete soccer foul detection dataset. 
The dataset was split into several subfolders, each reflecting a different foul scenario (such as Foul_1, Foul_2), 
where each folder had images together with matching bounding box annotations generated in (_annotations.
csv). These annotations enabled the particular areas within images where fouls happened to be localized.

This research assesses and contrasts eight pre-trained DL architectures for the purpose of automatic foul 
identification in football. The chosen models—EfficientNetV2, ResNet50, VGG16, Xception, InceptionV3, 
MobileNetV2, InceptionResNetV2, and DenseNet121—are well-established CNNs. From scalable efficiency in 
EfficientNetV2 to lightweight deployment adaptability in MobileNetV2 and densely coupled feature propagation 
in DenseNet121, every architecture presents unique design concepts and characteristics. Table 3 summarizes 
these designs together with their primary differentiating characteristics and input sizes.

Their convolutional feature extraction layers were frozen in order to modify these pre-trained models for 
binary foul classification, thereby conserving the learnt representations from ImageNet. Comprising a Global 
Average Pooling layer, a fully connected dense layer with 1024 units and Rectified Linear Unit (ReLU) activation, 
and a last sigmoid output layer to forecast the chance of a foul on top of the frozen basis, a custom classification 
head was added. Using a binary crossentropy loss function, accuracy as the main evaluation parameter, and a 
0.0001 learning rate Adam optimizer, all models were constructed.

Training process
These  datasets were processed using (tf.data pipelines) to make data loading and  augmentation easier. Images 
were loaded and preprocessed on-the-fly during training, and foul images were optionally cropped to the 
annotated bounding boxes  (if available). The shuffling prevents any sort of ordering bias and batching with 
(batch_size = 32), and within the start of the  training, prefetching was also used to optimize so that data flow is 
also in the same pace as the training process – this makes sure that there is no latency during training.

Several callbacks were used to improve training resilience and efficiency. If the validation loss did not 
improve for ten straight epochs, early stopping was utilized to end training and hence avoid overfitting. 
Furthermore, included was a technique for model check pointing to store the architecture with lowest validation 
loss. A GradCAM + + visualization callback was also included into the explainability integration to create visual 
heatmaps following every epoch, so emphasizing the image areas impacting the decisions of the model. Though 
early stopping usually ended training between 50 and 120 epochs, depending on the model’s convergence 
behavior and stability across various topologies, each model was trained for a maximum of 300 epochs.

Model Input Size Key Strength

EfficientNetV2 224 × 224 Scalable & efficient

ResNet50 224 × 224 Residual learning

VGG16 224 × 224 Simplicity & baseline

Xception 224 × 224 Depthwise separable convolutions

InceptionV3 224 × 224 Multi-scale feature extraction

MobileNetV2 224 × 224 Lightweight for mobile and edge devices

InceptionResNetV2 224 × 224 Hybrid architecture (Inception + Residual)

DenseNet121 224 × 224 Dense connectivity between layers

Table 3.  Summary of pre-trained models used in foul detection.
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Comparative analysis of DL architectures
This section provides a comparative study  of the eight DL architectures used in this study for automated 
football foul detection. Key characteristics, approaches to handling features, strengths, and  limitations for 
each model are summarized in Table 4, which provides a holistic comparison of models in relation to this task. 
The architectures used ranges from traditional convolutional networks such as regular VGG16 to modern, 
efficiency focused designs like EfficientNetV2 and MobileNetV2, as well as advanced  hybrid architectures such 
as InceptionResNetV2.

Different models have differing complexities; for example, MobileNetV2 was created specifically 
with lightweight applications in mind, whereas other models like InceptionResNetV2 and ResNet50 use 
deeper  designs and advanced residual or inception modules which add to their complexity. Feature-wise, 
architectures like  InceptionV3 use parallel convolutional paths to capture multi-scale features, and DenseNet121 
reuses features by providing dense connectivity across layers. These design decisions influence performance,  but 
also the ability of the models to adapt behavior to new data, as well to remain robust to changes to the conditions.

As indicated in Table  4, MobileNetV2  achieves superior computational efficiency, rendering it 
particularly relevant in real-time applications like VAR systems. While approaches such as DenseNet121  and 
InceptionResNetV2 have better feature learning capacity and generalization potential, and can be regarded as 
potential approaches for high-performance systems for foul detection. But these advantages come at the cost 
of limitations, including longer training times, higher propensity for overfitting in the case of deeper models 
and loss in fine-grained detail  detection in some of the lightweight architectures. This comparison highlights 
the need for thoughtful model selection based on the desired trade-offs  between these performance domains, 
especially in light of potential deployments in existing officiating technologies like VAR.

Summary of the methodological workflow
Figure 2 shows the general methodological flow of this work, which shows a well-organized pipeline spanning 
all important phases, from data preparation to last comparative evaluation. Data collecting and preprocessing 
start the process; the soccer foul dataset is gathered, annotated, visualized, and separated into training, 
validation, and test sets. After that, the model preparation stage consists in the development of (tf.data pipelines) 
for effective data loading, the choice and integration of eight pre-trained DL models, and the inclusion of a 
custom classification head catered for binary foul classification. Each model is then compiled with a specified 
optimizer, loss function, and evaluation metric and  trained with many optimizations, including early stopping 
to reduce overfitting, model check pointing to save each architecture’s best-performing model, and usage of 
GradCAM + + to produce heatmaps indicating regions of the original image that contributed to the model’s 
predictions. This is done by generating visual explanations at the conclusion of each epoch, and provides a useful 
increase in the interpretability of  the system. Ultimately, during the evaluation and analysis phase, all models are 
evaluated on the balanced test set  with detailed performance metrics — including accuracy, precision, recall, F1 
score, and AUC — along with visual diagnostics (accuracy and loss curves, Receiver Operating Characteristic 
(ROC) curves, and confusion matrices). The process ends with a comparison of all eight architectures to get the 
best model for automatic foul detection. As shown in Fig. 2, this methodical and open structure guarantees that 
the suggested strategy is both interpretable and scientifically strong.

Parameters description
Training and evaluating the eight  DL architectures for automated foul detection in football required defining 
a list of key parameters that were used to control the data preprocessing, the model training, and evaluation 
processes. The adopters of these attributes were fixed across all models because they were determined based on 
the best practices available in deep  learning.

Across all models, the input image size was set at 224 × 224 pixels to match the pre-trained architectures’ 
input needs and preserve data pipeline homogeneity. Setting a batch size of thirty-two images for training and 

Algorithm Type Complexity Feature Handling Strengths Limitations

EfficientNetV223 CNN Moderate Compound scaling across depth, width, 
resolution Efficient with good accuracy Struggles with fine-grained 

fouls in fast scenes

ResNet5024 CNN High Residual connections enhance DL Strong feature extraction, good for 
transfer learning

Prone to overfitting, slower 
training

VGG1625 CNN High Sequential deep layers Simple design, strong feature 
extraction

Large, slower inference, 
overfits without augmentation

Xception26 Depthwise CNN High Separates spatial and channel-wise 
learning Efficient, reduced computation More complex training, 

struggles on small datasets

InceptionV327 Inception CNN High Parallel multi-scale feature extraction Captures multi-scale features well Complex architecture, 
moderate inference

MobileNetV228 Lightweight 
CNN Low Depthwise convolutions, inverted 

residuals Extremely lightweight, mobile-friendly Lower accuracy on complex 
fouls

InceptionResNetV229 Hybrid CNN Very High Residual + multi-scale feature extraction High accuracy, balanced feature 
learning

Very complex, slower training 
and inference

DenseNet12130 Dense CNN High Maximizes feature reuse across layers Strong feature propagation, efficient Slightly higher memory cost

Table 4.  Comparative analysis of DL algorithms for automated foul detection in football, highlighting 
architectural characteristics, feature handling approaches, strengths, and limitations.
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validation balanced memory efficiency with training stability. By scaling pixel values, every image was brought 
into line with pre-trained model expectations—a [0, 1] range.

All the models were compiled with Adam optimizer with a learning rate  of 0.0001, which offered a nice 
trade-off between speed of convergence and stability. For the binary classification (foul vs.  not foul), the binary 
cross-entropy loss function was used to train the models, and accuracy was the main performance metric used 
during training. To improve training speed, the study enabled early stopping with a patience value of 10 epochs, 
or stopping training if the validation  loss did not improve for 10 consecutive epochs.

Fig. 2.  Flowchart for advanced automated foul detection in football using DL architectures.
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Every architecture’s lowest validation loss model was automatically saved using a model check pointing system. 
At the end of every training session, a GradCAM + + callback was also included to create visual explanations for 
a subset of photos, therefore offering interpretable analysis of how each model found fouls. Table 5 shows a list 
of the main values applied in all models.

Evaluation metrics
In this research, the study  adopts a set of established evaluation metrics, which offer both overall and per-
class analysis, to rigorously assess the performance of the proposed automated foul detection system. These 
are important metrics for general accuracy as well as capturing  how well the models are discerning foul events 
from non-foul events. The metrics used are the Accuracy, Precision, Recall, F1 Score, and the Area  Under the 
Receiver Operating Characteristic Curve (AUC-ROC).

Accuracy gives a general picture of model performance by indicating the percentage of properly identified 
events over both classes. The study computes it with Eq. (1). But accuracy by itself might be deceptive in normal 
match video as foul occurrences are less common than non-foul events, particularly if the model leans towards 
the majority class.

Precision emphasizes the validity of the negative predictions, therefore reflecting the percentage of the cases 
categorized as fouls that were truly fouls. Maintaining the dependability of automated analysis depends on less 
false positive foul detection, so a better accuracy is necessary. Calculating precision with Eq. (2)

Recall, often known as sensitivity, gauges the accuracy of the model in spotting real fouls, therefore capturing 
the percentage of true fouls accurately found. Excellent recall guarantees that the system reduces missed foul 
observations. Recall has a formula shown in Eq. (3).

The F1 Score is utilized to get a fair evaluation of accuracy and recall as both of these measures usually show a 
trade-off. Emphasizing situations in which both metrics are equally essential, the F1 Score is the harmonic mean 
of accuracy and recall. The F1 Score is defined by Eq. (4).

Finally, the model’s ability  to discriminate between foul vs. non-foul events across a range of decision 
thresholds is evaluated using the AUC-ROC statistic. With TPR defined by Eq. (5) and FPR defined by Eq. (6) 
respectively, the ROC Curve plots the True Positive Rate (TPR) against  the False Positive Rate (FPR) at different 
classification thresholds. The AUC calculates the area under the curve; the higher  the better the model’s ability 
to distinguish between classes.

Taken together, these metrics allow for a holistic and balanced assessment of the efficacy of the model, 
allowing both a fair comparison between the eight architectures tested, and an unfortunate indication of 
the  system’s feasibility for uses for transcendental settings for physical foul detection.

	
Accuracy = T P + T N

T P + T N + F P + F N
� (1)

	
P recision = T P

T P + F P
� (2)

	
Recall = T P

T P + F N
� (3)

	
F 1 − Score = 2 × P recision × Recall

P recision + Recall
� (4)

Parameter Value / Description

Input Image Size 224 × 224 pixels

Batch Size 32

Image Normalization Rescaled to [0, 1]

Optimizer Adam

Learning Rate 0.0001

Loss Function Binary Crossentropy

Primary Metric Accuracy

Secondary Metrics Precision, Recall, F1 Score, AUC

Maximum Epochs 300

Early Stopping Patience 10 epochs

Model Checkpointing Save model with lowest validation loss

Explainability Technique GradCAM++

GradCAM + + Samples per Epoch 5 per training, validation, and test sets

Test set balance 350 Foul, 350 Not Foul (where feasible)

Train/Validation/Test Split 70% / 20% / 10%

Data Pipeline Framework TensorFlow tf.data

Table 5.  Summary of key parameters used in model training and evaluation.
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T P + F N
� (5)
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� (6)

Results
This section discusses the entire evaluation of the DL architectures aimed at automatically  detecting fouls in 
football. The performance of various deep  learning models, like EfficientNetV2, ResNet50, VGG16, Xception, 
InceptionV3, MobileNetV2, InceptionResNetV2, and DenseNet121, is evaluated on various assessment metrics. 
These include training and validation performance, test accuracy and loss, as well as precision, recall, F1-score, 
and AUC metrics. Additionally, visual representations of training and validation accuracy and loss, ROC 
curves, confusion matrices, and comparative performance metrics are provided to facilitate a more profound 
understanding of the strengths and limitations of each model.

Training and validation performance
Table 6 summarizes the training and validation performance of the assessed models, offering insights into their 
capacity to generalize to novel data. The findings demonstrate that DenseNet121 and MobileNetV2 attained a 
flawless training accuracy of 100%, underscoring their remarkable ability to assimilate information from the 
training data. Nevertheless, higher training accuracy does not inherently ensure robust generalization. Of all the 
models, DenseNet121 had the greatest validation accuracy at 0.9764, followed by MobileNetV2 at 0.9686 and 
VGG16 at 0.9600. This indicates that these designs excelled on the training dataset and preserved their prediction 
capability when evaluated on novel data. Regarding training loss, DenseNet121 achieved the lowest value (0.006), 
succeeded by MobileNetV2 (0.0086) and InceptionV3 (0.0236), indicating negligible prediction mistakes during 
training. The validation loss findings further substantiate the exceptional performance of DenseNet121, which 
attained the lowest validation loss (0.0621), signifying robust generalization ability. Conversely, ResNet50 
exhibited a validation loss of 0.2098, indicating a much greater extent of overfitting compared to the leading 
models. The results indicate that DenseNet121, MobileNetV2, and InceptionV3 demonstrate enhanced training 
and validation performance, positioning them as formidable contenders for automated foul identification in 
football.

Test performance evaluation
Table 7 presents the  models test performance on the important assessment metrics test loss, accuracy, precision, 
recall, F1-score, and AUC. In summary, the results show that  the best test accuracy of 0.8757 was achieved by 
InceptionResNetV2 which outran all others in this respect, whereas DenseNet121 and MobileNetV2 closely 
followed behind with an accuracy of 0.8686. This illustrates the capacity of these models to generalize well to 
previously unobserved test data. Precision, reflecting the ratio of accurate positive predictions, was best for 

Model Test Loss Test Accuracy Precision Recall F1-Score AUC

EfficientNetV2 0.5202 0.6900 0.7458 0.7840 0.7644 0.7668

ResNet50 0.457 0.8429 0.9335 0.8129 0.869 0.9153

VGG16 0.6222 0.8400 0.9616 0.7817 0.8624 0.9383

Xception 0.4668 0.8614 0.9536 0.8241 0.8841 0.9413

InceptionV3 0.417 0.8614 0.9467 0.8307 0.8849 0.9526

MobileNetV2 0.4392 0.8686 0.971 0.8196 0.8889 0.9601

InceptionResNetV2 0.3986 0.8757 0.9617 0.8396 0.8966 0.9622

DenseNet121 0.4772 0.8686 0.9786 0.8129 0.8881 0.9641

Table 7.  Performance comparison of DL models for automated foul detection in football.

 

Model Epoch Number Training Accuracy Training Loss Validation Accuracy Validation Loss

EfficientNetV2 44 0.6609 0.5826 0.6836 0.5414

ResNet50 134 0.953 0.1464 0.9171 0.2098

VGG16 78 0.9912 0.0348 0.9600 0.1056

Xception 16 0.9961 0.0264 0.9471 0.1206

InceptionV3 18 0.9961 0.0236 0.9536 0.1313

MobileNetV2 17 1.0000 0.0086 0.9686 0.0817

InceptionResNetV2 37 0.9961 0.0191 0.9629 0.0828

DenseNet121 30 1.0000 0.006 0.9764> 0.0621

Table 6.  Training and validation performance of DL models for automated foul detection in football.
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DenseNet121 (0.9786), demonstrating its efficacy in reducing false positives. In terms of recall, InceptionResNetV2 
achieved the highest score (0.8396), indicating its superior efficacy in detecting pertinent positive cases. 
InceptionResNetV2 (0.8966) led the F1-score, which balances accuracy and recall; followed by DenseNet121 
(0.8881) and MobileNetV2 (0.8889), hence underlining the durability of these designs. DenseNet121 (0.9641) has 
the highest area under the curve (AUC) score followed closely by InceptionResNetV2 (0.962) and MobileNetV2 
(0.961), which evaluates the general classification efficacy of the model. With InceptionResNetV2 excelling in 
recall and F1-score, DenseNet121 exceeded in accuracy and AUC, while MobileNetV2 displayed better test 
performance across multiple assessment criteria.

Visual performance analysis
Multiple visual representations were produced to fully examine the performance trends of the evaluated DL 
models. These figures offer deeper insights on how each model performed during training and validation, 
together with comparative evaluations based on important criteria including accuracy, loss, AUC, and 
classification performance.

Figure 3 depicts the training and validation accuracy throughout epochs for all models. Figure 3(a) illustrates 
EfficientNetV2, Fig. 3(b) depicts ResNet50, Fig. 3(c) showcases VGG16, Fig. 3(d) exhibits Xception, Fig. 3(e) 
represents InceptionV3, Fig. 3(f) displays MobileNetV2, Fig. 3(g) relates to InceptionResNetV2, and Fig. 3(h) 
provides DenseNet121. The graphs indicate that DenseNet121, MobileNetV2, and InceptionResNetV2 attained 
the maximum validation accuracy, but EfficientNetV2 displayed significant swings, suggesting unstable learning.

Figure 4 illustrates the training and validation loss throughout epochs for all models. Figure 4(a) represents 
EfficientNetV2, Fig. 4(b) denotes ResNet50, Fig. 4(c) illustrates VGG16, Fig. 4(d) depicts Xception, Fig. 4(e) 
showcases InceptionV3, Fig. 4(f) features MobileNetV2, Fig. 4(g) highlights InceptionResNetV2, and Fig. 4(h) 
presents DenseNet121. The findings indicate that DenseNet121 and MobileNetV2 had the lowest validation loss, 
reflecting enhanced generalization skills, but EfficientNetV2 experienced elevated and erratic validation loss, 
implying challenges in model convergence.

Figure 5 displays the ROC curves for each model, demonstrating the balance between the TPR and the FPR. 
Figure 5(a) illustrates EfficientNetV2, Fig. 5(b) depicts ResNet50, Fig. 5(c) showcases VGG16, Fig. 5(d) represents 
Xception, Fig. 5(e) features InceptionV3, Fig. 5(f) displays MobileNetV2, Fig. 5(g) highlights InceptionResNetV2, 
and Fig.  5(h) portrays DenseNet121. The findings demonstrate that DenseNet121, MobileNetV2, and 
InceptionResNetV2 attained the greatest AUC values, validating their exceptional classification efficacy.

Figure 6 presents the confusion matrices for all models, illustrating their classification distributions to 
provide a more in-depth analysis of model performance. Figure 6(a) depicts EfficientNetV2, Fig. 6(b) illustrates 
ResNet50, Fig. 6(c) showcases VGG16, Fig. 6(d) represents Xception, Fig. 6(e) features InceptionV3, Fig. 6(f) 
displays MobileNetV2, Fig.  6(g) highlights InceptionResNetV2, and Fig.  6(h) portrays DenseNet121. The 
confusion matrices indicate that DenseNet121 and InceptionResNetV2 had the lowest misclassification rates, 
demonstrating robust differentiation between foul and non-foul situations.

In addition to individual model marks, Figures from Figs. 7, 8, 9, 10, 11 and 12 provide relative analyses of  all 
models. While InceptionResNetV2 achieved the lowest test loss, Fig. 7 provides a methodological comparison of 
test loss across models, ordered by test  performance in prediction reducing error. With a ranked comparison of 
test accuracy, Fig. 8 shows that MobileNetV2, DenseNet121, and InceptionResNetV2 reached the highest degrees 
of accuracy. Figure 9 shows the ranked comparison of precision and names DenseNet121 as the model with the 
highest precision score. Figure 10 shows the methodical comparison of recall, where InceptionResNetV2 was 
very good at precisely identifying positive cases. InceptionResNetV2 exceeded all other models according to 
Fig. 11, a ranked comparison of the F1-score that strikes a mix between accuracy and recall. Figure 12 finally 
shows the methodical comparison of AUC values, thus verifying that DenseNet121 and InceptionResNetV2 
achieved the better classification performance.

The early stopping mechanism was employed  in all models (as covered in the training script), which was 
critical for optimized training and to avoid overfitting. Training was performed for a max of 300  epochs, 
with early stopping to halt training when validation performance no longer improved. In particular, the study 
applied an early stopping function to monitor validation loss and stop the training process whenever no further 
decrease was observed on validation loss in ten epochs — while restoring the model parameters based on the 
best-performing model on the validation  dataset for generalization.

As shown in Fig.  13, the models reached their best performance at different epoch numbers before the 
full 300-epoch limit. Xception reached optimal performance at epoch 16, MobileNetV2 at epoch 17, and 
InceptionV3 at epoch 18, demonstrating their ability to learn quickly and effectively. DenseNet121 attained peak 
validation performance at epoch 30, InceptionResNetV2 at epoch 37, and EfficientNetV2 at epoch 44, indicating 
a reasonable training length. VGG16 necessitated 78 epochs, but ResNet50 required the most time to converge at 
134 epochs, signifying a greater demand for computing resources and prolonged training duration.

Since researchers want to achieve lower validation  loss first and high validation accuracy second, based on 
this, epoch30 for DenseNet121 would be an ideal epoch to choose. This epoch yields the lowest validation  loss 
with strong classification performance. In an analogy, one could argue that epoch 37 for InceptionResNetV2 and 
epoch 17 for MobileNetV2 also had a good trade-off of low validation loss  and high generality. These  findings 
highlight the significance of early stopping, allowing models to avoid overfitting and to train as optimally as 
possible. In terms of fast convergence and suitability for real world implementations (real time with less training 
data), models like Xception and MobileNetV2 can be  noted as the most distinguished. In contrast, despite a 
successful performance, ResNet50 & VGG16 took considerably longer  time to train and thus, may not be the 
most efficient options if computational efficiency is primary.
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Fig. 3.  Training and validation accuracy of DL architectures for automated foul detection in football: 
(a) EfficientNetV2, (b) ResNet50, (c) VGG16, (d) Xception, (e) InceptionV3, (f) MobileNetV2, (g) 
InceptionResNetV2, (h) DenseNet121.
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Fig. 4.  Training and validation loss of DL architectures for automated foul detection in football: 
(a) EfficientNetV2, (b) ResNet50, (c) VGG16, (d) Xception, (e) InceptionV3, (f) MobileNetV2, (g) 
InceptionResNetV2,  (h) DenseNet121.
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Fig. 5.  ROC curves of DL architectures for automated foul detection in football: (a) EfficientNetV2, 
(b) ResNet50, (c) VGG16, (d) Xception, (e) InceptionV3, (f) MobileNetV2, (g) InceptionResNetV2, (h) 
DenseNet121.
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Fig. 6.  Confusion matrices of DL architectures for automated foul detection in football: (a) EfficientNetV2, 
(b) ResNet50, (c) VGG16, (d) Xception, (e) InceptionV3, (f) MobileNetV2, (g) InceptionResNetV2, (h) 
DenseNet121.
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The visual studies show that for automatic foul identification in football DenseNet121, InceptionResNetV2, 
and MobileNetV2 are the most efficient DL architectures overall. These models showed better classification, 
generalization, and computational efficiency as they routinely performed well over several evaluation criteria.

Discussion
Comparative performance analysis
This study assessed eight modern DL architectures for automated foul identification in football events. Table 7 
shows the relative performance over important evaluation criteria including Test Accuracy, Precision, Recall, 
F1-score, AUC. With a test accuracy of 87.57% and an AUC of 0.962, InceptionResNetV2 stood out among the 
evaluated models as the best one exhibiting great discriminating capacity between foul and non-foul events. The 
hybrid architecture gains from the combined strengths of the Inception and Residual Network designs, hence 
improving its capacity to capture local spatial features and deep hierarchical representations. Closely trailing 

Fig. 8.  Ordered comparison of test accuracy in DL models for automated football foul detection.

 

Fig. 7.  Ordered comparative analysis of test loss in DL models for automated football foul detection.
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with a test accuracy of 86.86% and the best precision (0.9786), DenseNet121 proved to be quite good at reducing 
false positives. DenseNet121 is especially helpful in cases where avoiding erroneous foul calls is vital since this 
implies that it is quite confident in its positive predictions.

With a test accuracy of 86.86% and an F1-score of 0.8889, MobileNetV2, a lightweight architecture, likewise 
shown remarkable performance stressing its capacity to properly balance precision and recall. This performance 
qualifies for use in real-time applications such VAR systems even with its reduced processing complexity. 
Conversely, with the lowest test accuracy (69.0%) and the lowest AUC (0.7656), EfficientNetV2 underperformed 
among other models. This suggests that EfficientNetV2, despite its state-of- the-art design in other fields, may 
suffer with the intricate and highly dynamic nature of football foul detection, maybe due to the limited spatial 
cues present in cropped foul detection images. Strong prospects for automatic foul detection systems, the top-
performing models (InceptionResNetV2, DenseNet121, and MobileNetV2) routinely showed better balance 
across all measures.

Fig. 10.  Ordered comparative analysis of recall in DL models for automated football foul detection.

 

Fig. 9.  Ordered comparative analysis of precision in DL models for automated football foul detection.
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Training and validation performance
The training and validation performance, shown in Table 6, provides some important insights on  the dynamics 
of model learning. Both DenseNet121 and MobileNetV2 achieved perfect training accuracy (1.0) and  very low 
training loss (0.006 and 0.0086, respectively) and transpired to quickly and completely converge. Moreover, these 
models also had  high validation accuracy (97.64% and 96.86%, respectively) and low validation loss, indicating 
their robustness to unseen validation data. This importance holds however for foul detection is where external 
factors of the environment like angles of viewing, lighting, occlusions adds  significantly to the complexity.

InceptionResNetV2 in addition showed very consistent training behavior, with a training accuracy of 
(99.61%), low training loss (0.0191), and very good validation accuracy of  (96.29%) which corresponded nicely 
with its strong test performance. On the other hand, EfficientNetV2 achieved a significantly lower training 
accuracy (66.09%) and validation accuracy (68.36%), suggesting that the model was unable to generalize well 
enough to learn useful  representations from the dataset it was given. This performance gap may be due to 

Fig. 12.  Ordered comparative analysis of AUC in DL models for automated football foul detection.

 

Fig. 11.  Ordered comparative analysis of F1-Score in DL models for automated football foul detection.
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its architecture, which was  designed for generic image classification purposes instead of fine-grained action 
recognition like that of football fouls. Notably, ResNet50 took the most epochs (134) to converge, which 
indicates some difficulty in optimizing deep residual  networks on this dataset. Nevertheless, ResNet50 reached 
a  commendable validation accuracy of (91.71%), showcasing its ability to learn intricate visual patterns with 
ample training time.

Robustness and generalization
The  robustness of the models was determined according to the differences in performance between 
training, validation and test sets. Strong generalization was also displayed by models like DenseNet121 and 
InceptionResNetV2 by  little performance drop between validation and test sets. This implies that these models 
can capture  not excessively data-dependent foul-related features, improving their robustness in practical 
applications.

MobileNetV2, however, besides  showing a quite high accuracy as well, proved to have an impressive robustness 
and consistent accuracy across all datasets, hinting at a potential usage in restricted resource situations or when 
being mobile. On the contrast, this study observes that EfficientNetV2 is not generalizing effectively here since 
its performance has dropped significantly from training sets to  validation and test sets. Such behavior could 
be a sign of difficulties adjusting to the dynamic nature of football fouling or overfitting to non-representative 
training routines. The precision-recall balance is especially important for foul detection systems because false 
positives might interfere with play and false negatives could lead to missed fouls. DenseNet121 is conservative, 
but it’s extremely great accuracy (0.9786) and strong recall (0.8129) demonstrate that it might be employed for 
high-confidence foul identification. In professional settings when precision rules above coverage, this should be 
better. InceptionResNetV2 is a balanced choice for applications requiring both high detection rates and minimal 
false alarms as it earned the highest F1 score (0.8966), therefore displaying the best trade-off between accuracy 
and recall.

Future work
This study’s findings highlight the promise of DL models for automatic foul detection in football, however 
several research directions might improve the robustness, interpretability, and practical use of these systems. 
A promising approach involves the integration of temporal modeling techniques, including Long Short-Term 
Memory (LSTM) networks, Gated Recurrent Units (GRUs), or Transformer architectures, which can capture the 
temporal dynamics of foul events by analyzing sequences of frames instead of isolated images. Also, multiple 

Fig. 13.  Ordered comparative analysis of optimal epoch selection in DL models for automated football foul 
detection.
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modalities with videos and audio commentary, references on player tracking matrices, and official comments 
from the referees could provide more  contextual information to improve the precision of foul classification. 
Another  important aspect to research in the future is the explainability and transparency of these models. 
Techniques such as GradCAM + + and other visualization tools might also provide referees and analysts with 
intuitive visuals explanations, thus increasing the confidence  of their decision based on machine outcomes. 
Due to the variability in environmental conditions between stadiums, highlights, and camera set up, future 
work should also focus on domain adaptation and data augmentation strategies,  for example simulating difficult 
lighting or synthetic crowd occlusion, to improve model generalization in different real-world circumstances. 
Moreover, to enable real-time implementation in VAR systems, it is essential to explore optimization strategies 
such as model quantization, pruning, and hardware acceleration to achieve low-latency inference while 
maintaining accuracy. Augmenting the training dataset to include footage from several leagues, distinct camera 
perspectives, and diverse player demographics will significantly improve the algorithms’ capacity to generalize 
across different match scenarios. Future endeavors should focus on the seamless incorporation of advanced foul 
detection systems into current VAR infrastructures, ensuring compatibility with live broadcast feeds, referee 
review interfaces, and instant replay mechanisms, thus facilitating efficient and transparent decision-making in 
professional football.

Conclusion
This study provided the comparative performance of eight DL  architectures in the attainment of automated 
foul detection in football, serving to provide information on the performance, robustness and potential use 
in a professional officiating system. It is concluded that InceptionResNetV2, DenseNet121  and MobileNetV2 
represent the best trade-offs between accuracy, precision, recall and generalization capability and are good 
candidates for future developments and integrations into football officiating workflows. DenseNet121’s 
exceptional accuracy is a prime example of the unique advantages that these models offer, as it is highly beneficial 
for the reduction of erroneous infraction calls. InceptionResNetV2 achieves an effective balance between 
generalizability and detection precision. These models can be incorporated into the VAR system, which enables 
match officials to anticipate potential infractions and identify unclear situations. GradCAM + + heatmaps can 
also be used to show where the model made its decision. It would further improve decision-making accuracy 
and the transparency of officiating decisions, in turn raising the trust of players,  coaches, and fans. To leverage 
these advantages, future work needs to make those models real-time deployable via techniques (for example 
on quantization and  result optimization) as well as to enlarging training-data in order to cover the variety of 
leagues, camera angles and environments. Detecting such events could be  further improved by incorporating 
temporal modeling to analyze player interactions across sequences of frames, as well as fusing visual data 
with complementary information like audio commentary and player tracking data. With these developments, 
automated foul  detection systems have the potential to be a viable and essential aspect of contemporary football 
officiating, assisting referees in their efforts to achieve fairness and precision in decision-making.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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