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In our modern societies, the wireless sensor network (WSN) is categorized as a smart motivated 
technology that can be utilized in many work environments and activities to enhance daily life. 
However, several challenging concerns have been assigned to WSN. The clustering process is a main 
complex concern and still an open problem in WSN. To support an efficient clustering process, two 
crucial requirements must be considered, energy management and network lifetime extension, 
especially in the development of large-scale WSN. The primary objective of this article is to introduce 
a new meta-heuristic algorithm, denoted as the hybrid gazelle optimization and reptile search 
algorithm (HGORSA), which optimizes cluster head selection in WSNs. In the proposed algorithm, 
the mathematical models for the exploration and exploitation phases of the traditional gazelle 
optimization algorithm (GOA) are enhanced by integrating the hunting operator, reduction function, 
and predator cumulative effect operators from the traditional RSA. These modifications improve the 
balance between diversification and intensification processes, effectively addressing two key clustering 
requirements mentioned above. At the same time, they also positively impact the overall performance 
evaluation of the WSN. Various simulation scenarios are designed to evaluate the performance of the 
proposed HGORSA in different network configurations. First, the main experiment was conducted 
with 300 sensor nodes (SNs). The experimental results then analyzed to assess the effectiveness 
of the proposed algorithm under different conditions against six state-of-the-art meta-heuristic 
algorithms. Based on simulation outputs, HGORSA demonstrated superior performance compared 
to particle swarm optimization, grey Wolf optimizer, sperm swarm optimization, chernobyl disaster 
optimizer, gazelle optimization algorithm and reptile search algorithm. Specifically, HGORSA achieved 
percentage improvements in terms of stability period (37.3%, 49.6%, 46.8%, 55.3%, 19.1%, and 
34.4%, respectively), energy consumption (10.8%, 10.5%, 9.6%, 8.6%, 8.3%, and 3.5%, respectively), 
network lifetime (44.5%, 40.8%, 23.8%, 16.8%, 9.3%, and 7.2%, respectively), reduction in number 
of dead nodes (30.3%, 29.7%, 28.9%, 24.3%, 18%, and 11.5%, respectively), and network throughput 
(36.4%, 43.9%, 34.2%, 25%, 20%, 14.4%, respectively). Moreover, a supplementary experiment 
was conducted to test the efficiency of the HGORSA algorithm in dense and sparse networks, where 
the number of SNs was set at 50 and 500. The algorithm was evaluated based on the five standard 
aforementioned performance metrics. Furthermore, the robustness of HGORSA was validated using 
statistical measures, including standard deviation (Std), average (Avg), worst and best values, and 
box plots of the fitness function across 20 independent runs. Based on statistical results, HGORSA 
outperformed the other comparative meta-heuristics.
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The world of telecommunications and intelligent engineering is currently experiencing a remarkable 
transformation, driven by several factors, among them the extensive use and achievements of wireless sensor 
technology. These wireless sensors basically are used to collect sensed data from their surrounding environment 
and have the benefit of being small in magnitude and easy to assemble, even in challenging conditions. 
Furthermore, they are fundamental elements in the WSN, 5G, and Internet of Things (IoT) domain1. However, 
optimal wireless sensors management (optimal clustering) in WSN is a main concern as it generally makes WSN 
performs better especially, considering energy consumption and network lifetime extension. From an industrial, 
commercial, and social point of view, WSN is considered intelligent technology driven by the aim of improving 
people’s lives. Due to its numerous uses in a range of industries, including traffic monitoring2,3, agriculture4, 
Internet of Drones5, Internet of Food6, Internet of Medical Things7, vehicle automation8, and Industrial IoT 
(IIoT)9. Furthermore, WSN and IoT technology can be effectively combined as a unified system, allowing 
widespread utilization10. From a research community point of view, although WSN is extensively investigated 
in many research works, it remains a leading topic of discussion in a wide variety of works In WSN, the long 
journey of data collected dissemination from the source (SNs) to the destination (detonated as the sink ) must 
be efficiently managed. One of the most important techniques for managing this journey with a high rate of 
optimizing the performance of WSN is the clustering mechanism. For WSN-based clustering, this journey 
begins with smart objects termed SNs, which are distributed within the same communication range and are 
connected to supervisor nodes termed CHs, or cluster heads. CHs are in charge of data aggregation, removing 
correlated and unwanted data, and finally sending data to the destination, which is a remote location denoted 
sink11–13. This technique is represented in Fig. 1. The clustering challenge in WSNs is an NP-hard problem 
(nondeterministic optimization problem ) in nature. Using meta-heuristic algorithms is the best solution to 
handle these categories of complex optimization14. In addition, meta-heuristic algorithms can be used to solve 
real-world problems, such as the traveling salesman problem (TSP)15, cardiac arrhythmia, and other important 
biomedical applications16. They are also applied in various engineering fields17,18, and in solving multi-objective 
optimization problems19,20, and21. Plethora of meta-heuristic algorithms utilized in clustering concern in the 
WSN. This article is based on GOA22 and RSA23 which are examples of efficient and recent meta-heuristic 
algorithms. To improve the performance of meta-heuristic algorithms, in this article the hybridization algorithm 
approach24 is utilized. The proposed algorithm derived from them is a better choice for such these challenging 
problem categories due to the ability to escape from the local optimum and quick convergence and high quality 
of solution for the clustering optimization problem in WSN while maintaining the desirable performance of the 
network.

However, Literature reveals that one of the main challenges of existing clustering protocols based on meta-
heuristic algorithms is their high energy consumption, which can lead to a shortage network lifetime. This article 
mainly introduces a new hybrid meta-heuristic algorithm of optimal clustering in WSN and maintaining low 
energy consumption and lengthening the lifetime of the network. The proposed algorithm integrates between 
gazelle optimizer and reptile search algorithm, denoted as the hybrid gazelle optimization and reptile search 
algorithm (HGORSA). Due to the efficiency of the two algorithms, they have been applied to solve many 
problems25–29. The integration of the two algorithms improves both the exploration and exploitation phases 
of the traditional GOA. Additionally, the proposed algorithm is competent since it achieves the optimal global 
solution while avoiding being stuck in local optima to be highly effective in clustering optimization problem 
in WSN. Numerical experiments have shown that HGORSA enables significant network performance by 
achieving energy conservation, maximizing WSN lifetime, a decrease in number of dead nodes, more network 
throughput, and an extended stability period compared to the performance of the other comparative meta-
heuristic algorithms.

The proposed HGORSA has practical implications across various fields. In the environment, it can be used 
to monitor conditions such as temperature, humidity, air quality, soil moisture, and water levels. In healthcare, 
it facilitates remote health monitoring and enables real-time data analysis for faster diagnosis and treatment, 
particularly in remote or undeserved areas. In agriculture, it helps to monitor soil conditions, weather patterns, 
crop health, and more. Despite all of the advances in the problem-solving abilities of the proposed algorithm, 

Fig. 1.  WSN based-clustering. The figure was prepared using Adobe Photoshop version CS6. ​h​t​t​​​​p​​s​:​/​​/​​w​​w​​w​.​a​d​​o​
b​e​.​c​​o​​m​/​​e​g​_​e​n​/​p​r​o​d​u​c​t​s​/​p​h​o​t​o​s​h​o​p​/​o​n​l​i​n​e​.​h​t​m​l​.​​​​
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Wolpert and Macready’s no-free-lunch theorems30 demonstrate that it is unrealistic to anticipate a general 
problem solver that can solve any optimization problem.

The key contributions of this article are as follows.

•	 To our knowledge, this is the first work in which the GOA is implemented to optimize the CH clustering 
problem in WSNs .

•	 Introducing a new hybrid meta-heuristic algorithm, denoted as HGORSA, which integrates the phases of 
GOA and RSA for an efficient clustering process in WSN.

•	 Interpreting statistical tests in terms of standard deviation (Std), average (Avg), worst, and best values to as-
sess the robustness of HGORSA by comparing it with six state-of-the-art meta-heuristic algorithms.

•	 Making a valuable contribution to the field, particularly in five different standard performance metrics, in-
cluding network lifetime, energy consumption, number of dead nodes, network throughput, and network 
stability period.

•	 Evaluating the efficiency of the HGORSA algorithm on both dense and sparse networks using the five men-
tioned performance metrics. Specifically, the algorithm is tested with 50 and 500 sensor nodes as a supple-
mentary experiment, along with the main experiment with 300 sensor nodes.

•	 Providing box plots of the fitness function across 20 independent runs, which considers an important meas-
urement of the performance of the meta-heuristic algorithms. The structure of the rest of this article is the 
following organization. Section "Literature review" briefly presents the background of the article for some 
of the meta-heuristic algorithms that are exploited in WSNs. The problem definition presented in Section 
"Problem definition", and the GOA and RSA algorithms are covered in Section "The Gazelle optimization and 
reptile search algorithms". The details of the proposed HGORSA are explained in Section 5. The simulation 
outputs are investigated and evaluated in Section "Numerical results and discussion". The conclusion of this 
article and possible future visions are presented in Section "Conclusion and future work".

Literature review
In general, meta-heuristic algorithms are presented as perfect and low-cost optimal solutions to solve complex 
problems. Among these problems, designing cluster-based algorithms for WSN has a strong influence on energy 
saving, network lifetime extension, and generally high network performance. This section will investigate WSN 
clustering and routing, concentrating on employing meta-heuristic algorithms to solve this challenge. In this 
section, the reviewed papers are compared to clarify the research gap.

In 2020, in31, a CH-based energy-aware optimized routing approach based on the sailfish optimizer (SFO) and 
multi-objective function was introduced for the WSNs. MCH-EOR effectively optimized power consumption 
and improved the overall performance of the network than other existing models.

In 2021, a meta-heuristic clustering algorithm is proposed based on particle swarm optimization (PSO) and 
genetic algorithm (GA) for WSns in32. In this algorithm, GA is used to choose the appropriate CHs, and PSO 
to identify the best possible route for the CHs to the sink. Outperformed state-of-the-art algorithms in five 
performance metrics.

In 2022, a novel framework for the selection of CHs in WSNs is proposed that considers energy consumption 
through hierarchical routing, employing sea lion optimization (SLnO) and PSO in33. The selection process has 
considered few elements, including distance, delay, quality of service (QoS), and energy.

Another hybrid approach in34 integrated the differential evolution algorithm (DE) and the sparrow search 
algorithm (SSA) to address the energy efficiency problem related to the selection of CHs in WSN. The performance 
of the proposed method is evaluated over that of other traditional methods in four standard metrics.

In addition, researchers in35 have suggested an approach called MPO-IPSO-OCR, which combines the pros 
of PSO and marine predator optimization (MPOA) to achieve efficient CH election and data transmission. This 
method is compared with the other schemes in terms of throughput, network lifetime, and energy consumption.

The work in36 combined the fruitfly optimization algorithm (FFOA) and the glowworm swarm optimization 
(GSO) to identify the most suitable CH in WSN. The evaluation of this algorithm is done with a comparison 
against many different existing algorithms in terms of active nodes, energy utilization, and a cost function.

In 2023, in37, a distributed protocol named DPFCP (distributed particle swarm optimization-based fuzzy 
clustering protocol) was developed for WSNs. The simulation results have shown a significant improvement in 
the longevity and power consumption of the network compared to the available techniques.

In 2024, in38, a hybrid algorithm called MMMRA (multi-objective optimized multi-path and multi-hop 
routing algorithm) is proposed for efficient routing in WSNs. It combined the chimp optimization algorithm 
(COA) with the ant colony optimization (ACO). Outperformed competitors in residual energy, HND and FND 
metrics.

The authors in39 modified the artificial fish swarm algorithm (MAFS) to optimally group nodes with the 
weighted k-means clustering algorithm. In this work, a great magnitude of efforts have been reported to acquire 
energy efficiency in WSN; these efforts range from conventional approaches to meta-heuristic approaches to 
enhance network performance.

In addition, in 2024, Elashry et al.40 proposed a novel nature-inspired technique that denoted the chaotic 
reptile search algorithm (CRSA). CRSA is a combination of chaotic map and reptile search optimizer. Simulation 
has shown that CRSA has achieved better performance than eight methods according to four standard evaluation 
metrics.

The authors in41 proposed a greywolf optimization algorithm that helps to achieve energy efficiency in the 
network. The results showed that the GWO-P beats the contender calculations for the length of stability and 
network lifetime.
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In order to extend the lifespan of a heterogeneous WSN, the author in42 suggested an algorithm that makes 
use of adaptive crossover and binary tournament selection techniques. The simulation results showed that the 
suggested algorithm significantly improves network stability and operating time compared to other current 
methods.

The author in43 suggested a technique throughout combining the PSO with the GA, to calculate the probability 
of selecting the best nodes as CH in the WSNs. This method performed better in energy consumption, network 
overhead, packet delivery ratio, throughput, and end-to-end delay than other existing methods.

For heterogeneous IoT networks, the author in44 introduced a novel clustering protocol based on GA for 
WSN. The simulation findings revealed that the proposed method achieved improvements over other approaches 
in terms of network lifetime, number of alive nodes, residual energy, and network stability.

In45, the author presented an approach to determine the likelihood of selecting the best nodes to lead the 
cluster, and the bat optimization algorithm (BAT) is used to find the shortest path. This method achieved 
improvements in terms of network stability of throughput, network longevity, and throughput over traditional 
methods.

The research gaps highlighted in Table 1 clarify the need for an efficient algorithm that ensures high network 
stability and high overall performance for the network, scaling with increasing network size, adapting to the 
three sink locations (corner, center and outside field deployment area ) in the simulation process, and showing 
high efficiency in both statistical and simulation findings.

The motivation for this article stems from the fact that WSN remains a prominent topic of discussion in 
many publications, despite being extensively studied in previous researches. Effective management of data 
transmission over long distances, from the SNs to the destination (the sink), is a critical requirement for WSNs. 
The clustering mechanism is one of the most important methods for optimizing this process, significantly 
enhancing the performance of WSN.

The related studies can be summarized in Table 1 as follows.

Problem definition
Designing a cluster-based algorithm which involves determining the best option for CHs and the formation 
of clusters is a challenging task for WSNs. This clustering process affects efficient energy consumption control, 
better network lifetime, and generally high network performance. Our algorithm clusters data in two stages: 
initially, CHs are selected, and secondly, clusters are formed. In the following subsections, an orientation for 
these two steps will be discussed.

To better understand the proposed cluster head selection process, the terms used will be clarified first as 
shown in Table 2.

Year
The applied 
algorithm Pros Cons

2020 SFO. This method optimized power consumption and improved the overall performance of the network. Different sink location is not taken 
into account.

2021 PSO and GA. This method outperformed the state-of-the-art algorithms in five performance metrics. High computational complexity.

2021 AFS. It enhanced the energy efficiency in WSN than other traditional approaches. Difficult to predict k-value.

2021 GWO. The performance metrics of this method compared over the existing algorithms in terms of network stability and 
network lifetime.

The efficiency does not test in large-
scale WSN.

2022 PSO and 
SLnO. This method the other models in terms of energy consumption and number of alive nodes. The performance is not efficient.

2022 SSA. The performance of the proposed method is evaluated over that of other traditional methods in four standard 
metrics.

The statistical analysis is not taken 
into account.

2022 PSO and 
MPOA.

This method is compared with the other schemes in terms of throughput, network lifetime, and energy 
consumption.

The scenario is be implemented on 
smaller network.

2022 FFOA and 
GSO.

The evaluation of this algorithm is done with a comparison against many different existing algorithms in terms of 
active nodes, energy utilization, and a cost function.

The sink is only positioned at one 
location.

2022 GA. The simulation results show that the suggested algorithm significantly improves network stability and operating 
time compared to current methods.

The sink mobility in the network 
need to taken into account.

2023 PSO. The simulation results have shown a significant improvement in the longevity and power consumption of the 
network compared to the available techniques.

CHs communicate with the sink in 
single-hop mode.

2023 GA. The proposed method achieved improvements over other approaches in terms of network lifetime, number of alive 
nodes, residual energy, and network stability. The statistical analysis not included.

2024 COA and 
ACO. This method outperformed the competitors in residual energy, HND and FND metrics. Scenario of the heterogeneous 

network needed to be considered.

2024 CRSA. Simulation has exhibited that CRSA has gained better performance than eight methods according to four standard 
evaluation metrics.

Network stability need to be 
enhanced.

2024 PSO and GA. This method performed better in energy consumption, network overhead, packet delivery ratio, throughput, and 
end-to-end delay than other existing methods.

The simulation results are compared 
with only three existing methods.

2024 BAT. This method achieved improvements in terms of network stability of throughput, network longevity, and 
throughput over traditional methods.

The efficient utilization of the 
energy harvesting enabled nodes 
needs to be considered.

Table 1.  Summary of related studies.
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The select of CHs
In the proposed algorithm, the CHs are selected by applying a distinct fitness function that is determined by 
several parameters, as follows:

•	 Mean range among SNs and CHs. It is the total distances between all SNs si and every CH j(CHj). Next, 
their mean is computed as indicated by Eq. (1). 

	

1
m

N∑
i=1

distance(si, CHj)� (1)

 Whereas N represents the count of sensor nodes and m indicates the count of CHs.

•	 Mean range between CHs and sink/ base station (BS). Eq. (2) states that it indicates the distance, divided by 
the count of CHs (m), between each CH j(CHj) and the BS (BS). 

	
1
m

distance(CHj , BS)� (2)

 Every CH aggregates information sensed directly from its SNs and begins to send it to the base station. Thus, 
choosing the CHs that are closest to the BS is preferable. To reduce the separation between nodes and cluster 
heads and the distance between the base station and each cluster head, the Eqs. (1), (2) in (3) (dubbed fdistance

) have been merged. 

	
Min fdistance =

m∑
j=1

1
m

( N∑
i=1

distance(si, CHj) + distance(CHj , BS)
)

� (3)

 item CHs’ total energy The total energy of the current for every chosen CH is indicated by this value. Our goal is 
to select the best CHs by maximizing this total. In other words, the inverse of this sum needed to be minimized, 
which is represented by fenergy  in Eq. (4). Since each node uses energy during data transmission, select of the 
CHs with more energy ownership than other nodes is vital. 

	
Min fenergy = 1∑m

j=1(ECHj ) � (4)

 Energy value for a cluster head j is E(CHj), where (1 ≤ j ≤ m).
Equation (5) illustrates how to combine the previous two functions, fdistance and fenergy , to generate the 
f﻿itness function, which is designated Ffitness.

	

Min Ffitness =α × fdistance + (1 − α) × fenergy

s.t.
distance(si, CHj) ≤ R ∀si ∈ SNs, CHj ∈ C

distance(CHj , BS) ≤ Rmax ∀CHj ∈ C

ECHj > T HE , 1 ≤ j ≤ m

0 < α < 1
0 < fdistance, fenergy < 1

� (5)

Notation Purpose

CH Cluster head.

C Set of the cluster heads.

m Count of CHs.

si Set of SNs.

N Count of SNs.

BS Base station or the sink.

Rmax CH maximum communication range.

R SN maximum communication range.

T HE Threshold energy for being a CH.

ECHj Energy value for a cluster head j.

α Control factor.

Table 2.  The notations in the CHs selection phase.
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For each SN, R represents its maximum communication range. For each CH, the values si, Rmax, N, C, and 
C = {CH1, CH2, . . . , CHm} indicate the greatest communication range. The threshold energy for a CH is 
denoted by T HE , and the control parameter is α.

The main goal is to minimize the value of the fitness function in Eq. (5) to select the optimal CHs. The best 
CH situation is when the level of fitness is reduced.

Creation of clusters
After the completion of the first stage, the clusters begin to form. The cluster creation process employs a weight 
function known as WeightF, which depends on subsequent parameters:

•	 The CH’s residual energy. A CH j(CHj) with the greater remaining energy compared to other CHs within 
its range of communication should result from the combination of an SN si. As a result, 

	 W eightF (si, CHj) ∝ Eresidual(CHj)� (6)

 The residual energy for a CH j is indicated by Eresidual(CHj).

•	 The CH’s distance from the SN. If the SN si is within the communication range of a CH j(CHj), it should 
combine with it. Doing so will help reduce the use of energy. As a result, 

	
W eightF (si, CHj) ∝ 1

distance(si, CHj) � (7)

•	 The CH’s distance from the BS. The data must be received by the CHs from the SNs and forwarded to the 
BS. Because of this, an SN si has to unite to form a cluster head that is closer to the base station than other 
cluster heads within reach. 

	
W eightF (si, CHj) ∝ 1

distance(CHj , BS) � (8)

•	 The CH node’s degree. It ought to come together to a CH j(CHj) that, among the nodes within its commu-
nication range, has the lowest degree for an SN si. Due to this, 

	
W eightF (si, CHj) ∝ 1

node_degree(CHj) � (9)

 Equation (10) may be created by combining Eqs. (7), (8), and (9). 

	
W eightF (si, CHj) ∝

Eresidual(CHj )

distance(si, CHj) × 1
distance(CHj , BS) × 1

node_degree(CHj)
� (10)

 As a result, the cluster formation final weight function is found in Eq. (11)

	
W eightF (si, CHj) = C ×

Eresidual(CHj )

distance(si, CHj) × 1
distance(CHj , BS) × 1

node_degree(CHj)
� (11)

 where a constant denoted by C has a value of 1. Every SN decides its WeightF using Eq. (11), and then combines 
to form a CH with the highest weighted value to build the clusters.

The Gazelle optimization and reptile search algorithms
Background for gazelle optimization algorithm (GOA)
The gazelle optimization algorithm (GOA) is a nature-inspired algorithm developed by Agushaka et al.22. GOA 
simulates the natural behavior of gazelle life and how they graze and avoid being hunted by predators such as 
hyenas, Asiatic, lions, and leopards. By following subsections, the GOA’s main phases and how it operates are 
represented.

Inspiration and the natural behaviors
Gazelles reside in drylands that cover most of Asia, comprising parts of the Arabian Peninsula, China, and 
the northern Sahara Desert in Africa. In addition, gazelles are widespread in the sub-Saharan Sahel, which 
extends from Tanzania to the African Horn and northeastern Africa. In general, gazelles are hunted by predators 
regularly, and they are fast-moving animals with acute senses of smell, sight, and hearing. To compensate for 
their apparent recurring vulnerabilities, these adaptive features allow them to escape from their predators. The 
unique characteristics of the gazelles’ behaviors can be seen. As herbivorous creatures, gazelles only consume 
plant materials like grasses, leaves, shoots, and other plant-based foods. They become accustomed to living in 
groups for safety and social reasons, like the majority of consumers. There can be as many as 700 members 
in one group, and they interact among themselves. A group of gazelles with many members can achieve herd 
security. With Thomson’s gazelles, it is typical for the social organization of the gazelle herd to be based on 
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gender, with the females living in a smaller group with their fawns. The sole males in the bachelor’s herd, on the 
other hand, aid in protecting and providing for the group. Humans, cheetahs, Asiatic and black-backed jackals, 
wild dogs, spotted hyenas, lions, and leopards are common predators of gazelles46. Gazelles warn each other of 
an impending danger by flicking their tails, stamping their feet, or leaping into the air. Stotting occurs when a 
person is agitated or excited, though it is exactly unclear what causes it. The gazelle can run at a top speed of 100 
km/hr, which is uncommon for lions and cheetahs, among other predators. Even though they are the fastest land 
predators, cheetahs cannot outrun or outmaneuver gazelles. Without an element of surprise, the gazelle would 
typically outrun and outmaneuver the predator at a rapid rate of speed, making the success of most predators 
dependent on how well they stalk the gazelle quietly. The strategies utilized by gazelles to survive are described 
in the following points, which would be used to simulate the suggested algorithm.

•	 The two most incredible activities are grazing and fleeing predators. In the absence of predators, the grazing 
feature can be exploited. Predators observe gazelles as they graze. The gazelle uses stotting to identify preda-
tors, among other things (2 m in height).

•	 Exploration can be used to outrun predators that have been spotted and reach a haven. Despite being slower 
than the quickest predator, it can outmaneuver it at 88 km/hr.

The modeling of the GOA
The GOA is modeled after the survival strategy of gazelles. The optimization process includes grazing in the 
absence of a predator and fleeing to a haven when seen. The main phases of GOA are illustrated in the following 
subsections.

The initial population
Gazelles X with randomly initialized solutions are used in the population-based optimization technique, known 
as GOA. According to Eq. (12), the solutions are described as an n × d matrix of potential solutions.

	

X =




x11 x12 · · · x1d

x21 x22 · · · x2d

...
... xij

...
xn1 xn2 · · · xnd


� (12)

Whereas n is the number of solutions in the population, the dimension of the problem is d, and xij  is a vector 
variable of a solution i in the dimension j.

The elite population
Each solution in the population is evaluated based on the objective function and the overall best solution is 
assigned and added to the elite matrix as follows.

	

E =




e11 e12 · · · e1d

e21 e22 · · · e2d

...
... eij

...
en1 en2 · · · end


� (13)

As a result, the superior gazelle for building a leader matrix E as shown in Eq. (13) is selected as the solution 
that has been obtained most successfully so far. The gazelles use this matrix to look for and determine their next 
move.

The exploitation (intensification) phase
It is believed at this point that there is no predator or the predator is merely observing the gazelles as they 
peacefully graze. Using consistent and controlled steps of Brownian motion47, the neighborhood portions of 
the domain were efficiently covered during this phase. Gazelles are believed to move in Brownian motion while 
grazing, as seen in Fig. 2. The mathematical model illustrating this behavior is given by (14).

	 Xt+1
i = Xt

i + s · R ∗ ·RB ∗ ·(Ei − RB ∗ ·Xt
i )� (14)

Where Xt+1
i  is a solution in the next iteration, RB  consists of a vector of random numbers that represent the 

Brownian motion, Ei is an elite solution in the elite matrix, s represents how quickly the gazelles are grazing., 
and the vector R contains uniform random numbers in [0,1].

The exploration (diversification) phase
This phase starts when a predator is spotted. Gazelles react to danger by flicking their tail, stomping their feet, 
or stotting up to 2m in the air with the four feet. The height 2m is simulated by scaling it to a number between 
0 and 1. The Le’vy flight, which consists of a sequence of little steps and irregular big jumps, is used in this 
algorithmic phase. The search ability of the optimization literature has improved with this strategy48. In Fig. 3, 
the exploration phase is shown.

The gazelle runs away as soon as it spots the predator and the predator follows. A rapid shift in direction, 
symbolized by the µ, characterizes both runs. The gazelle travels in one direction when the iteration number is 
odd and in the opposite direction when it is even. This paper assumes that the direction shift occurs per iteration. 
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Since the gazelle reacts first, it used Le’vy flight to flee. The study presumptively used the Brownian motion for 
the predator’s initial takeoff run before switching to the Le’vy flight afterwards. Equation (15) illustrates the 
mathematical model of the behavior of the gazelle after spotting the predator.

	 Xt+1
i = Xt

i + MS · µ · R ∗ ·RL ∗ ·(Ei − RL ∗ ·Xt
i )� (15)

Where MS is the maximum speed a gazelle can go, the Le’vy distribution-based random number vector 
is represented by RL, Ei is an elite solution in the elite matrix, and µ ∈ [−1, 1]. The Eq. (16) illustrates the 
mathematical model for the predator’s pursuit of the gazelle.

	 Xt+1
i = Xt

i + MS · µ · CF ∗ ·RB ∗ ·(Ei − RL ∗ ·Xt
i )� (16)

Fig. 3.  A gazelle runs from a predator (exploration phase).

 

Fig. 2.  The gazelles’ grazing patterns are signs of the exploitation phase.
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Where CF = (1 − t
mitr

)(2 t
mitr

) is the cumulative effect of the predator, t is the current iteration, and mitr  is 
the maximum number of iterations.

The predator success rates (PSRs)
In addition, the authors of a study on Mongolian gazelles stated that although the species is not endangered, its 
yearly survival rate is 0.66, meaning that there are only 0.34 successful predator encounters49. Predator success 
rates, or PSRs, affect the gazelle’s ability to escape; as a result, the algorithm stays out of a local minimum. Eq. 
(17) describes how the PSRs effect is modeled.

	
Xt+1

i =
{

Xt
i + CF [LB + R ∗ ·(UB − LB)] ∗ ·U if r ≤ P SRs

Xt
i + [P SRs(1 − r) + r](Xt

r1 − Xt
r2 ) otherwise � (17)

where Xt
r1 , Xt

r2  are randomly selected solutions, r is a random number generated in the range [0, 1] to create a 
binary vector U such that

	
U =

{ 0 if r ≤ 0.34
1 otherwise � (18)

The Pseudo-code of the GOA
The algorithm’s exploitation phase simulates gazelles quietly grazing while the predator is either absent or stalking 
them. When a predator is detected, GOA enters the exploration phase. The gazelle must outrun and outmaneuver 
the predator during this phase to reach a safe sanctuary. To identify the best answers to optimization problems, 
the two steps are repeated subject to termination conditions. The pseudo-code for the GOA shown below depicts 
the implementation flow of these stages determined by their respective mathematical models as reported in 
Algorithm 1.

Algorithm 1.  The GOA algorithm.
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Background on reptile search algorithm (RSA)
A population-based system called the Reptile Search Algorithm (RSA) simulates crocodile behavior throughout 
their regular hunting season using data from the natural world. Abualigah et al.23 introduced the RSA algorithm 
in 2022. The following sections explain the pseudo-code and key RSA steps.

The stage of initialization.
In RSA, the initial population begins with a set of candidate solutions (X) as indicated in Eq. (19), which is 
created stochastically and the best-obtained solution is considered to be roughly the optimum in each iteration.

	

X =




x11 x12 · · · x1d

x21 x22 · · · x2d

...
... xij

...
xn1 xn2 · · · xnd


� (19)

Where n is the number of solutions in the population, d is the problem dimension, and xij  is a vector variable 
of a solution i in dimension j.

The exploration phase (encircling process).
According to their circling tendency, crocodiles move in two different ways: high walking and belly walking. 
These movements allude to many reigns with a dedication to exploration. Contrary to another search phase (the 
hunting phase), crocodile movements (such as high- and belly- walking) do not allow them to quickly approach 
the desired prey. The RSA can switch between the encircling (exploration) and hunting (exploitation) search 
phases. This behavior change is based on four conditions that are divided into four groups based on the total 
number of iterations. The two primary search techniques (high walking strategy and belly walking strategy) are 
used by the RSA exploration process to explore the search regions and approach to discover a better solution. 
There are two phases in which to move on to this stage of the search. The belly walking movement phase is 
conditioned by t ≤ 2 mitr

4  and t > mitr
4 , while the high walking movement phase is conditioned by t ≤ mitr

4  
as shown in Eq. (20).

	
xt+1

ij =
{

x∗t
j × −χt

ij × ν − γt
ij × r t ≤ mitr

4
x∗t

j × xjr1 × ESt × r t ≤ 2 mitr
4 andt > mitr

4
� (20)

Where x∗t
j  is the position jth in the best solution, χ is the hunting operator, ν is a sensitive control and equals 

0.1, γt
ij  is a reduced function, ESt is the probability ratio known as evolutionary sense, and r is a random 

number, r ∈ [0, 1].
The operators for the hunting process can be computed as follows.

	 χt
ij = x∗t

j × δij � (21)

Where δij  is the percentage difference and it can be calculated as shown in Eq. (22).

	
δt

ij = θ + xij − avg(xi)
x∗t

j × (Uj − Lj) + ε
� (22)

Where δt
ij  is the proportional variance between the present solution’s jth place and the jth position of the best-

obtained solution, the solution’s average location is avg(xi). ε is a small integer, θ is a sensitive parameter, and 
it is equal to 0.1. i, U, L are the upper and lower bounds of the position of j. The reduction function γt

ij  can be 
computed as shown in Eq. (23).

	
γt

ij =
x∗t

j − xr2j

x∗t
j + ε

� (23)

Where r2 is a randomly selected solution in the population, and avg(xi) is the average location of the solution 
i and it can be computed as shown in Eq. (24).

	
avg(xi) = 1

n

n∑
j=1

xij � (24)

The probability ratio called the evolutionary sense (ESt) is obtained using Eq. (25). As the number of iterations 
increases, its value randomly drops from 2 to -2.

	
ESt = 2 × r3 × (1 − 1

mitr
)� (25)

Where r3 is a random number between -1, 1, mitr  is the maximum number of iterations.
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The exploitation process (hunting).
All of these strategies refer to different intensification techniques that support localized search exploitation. 
Due to their intensity, crocodile techniques, such as coordination and cooperation in hunting, allow them to 
approach the target prey more easily than the encircling processes. Thus, the exploitation search reveals the 
almost perfect solution after maybe a few tries. Furthermore, during this optimization step, an enhanced search 
near the optimal solution is conducted using the exploitation mechanisms, with a focus on communication 
between them.

Equation (26) models the two main search strategies used in the RSA exploitation phase, which are (1) 
hunting coordination and (2) hunting collaboration, to search the search space and find the optimal solution. 
The hunting coordination method is used to perform the search in this phase when t ≤ 3 mitr

4  and t > 2 T
4 ; 

when t ≤ mitr  and t > 3 T
4 , the hunting cooperation approach is used. Be aware that stochastic coefficients are 

taken into account to produce more dense solutions and to locally exploit the potential locations. The simplest 
rule possible, which can resemble crocodile hunting techniques, has been used. For the exploitation phase, the 
following position update equations are suggested as shown in Eq. (26):

	
xt+1

ij =
{

x∗t
j × δij × r t ≤ 3 mitr

4 andt > 2 mitr
4

x∗t
j × −χt

ij × ε − γt
ij × r t ≤ mitrandt > 3 mitr

4
� (26)

Figure 4 shows the exploration and exploitation procedures as well as when they are applied.

The RSA’s main components.
Algorithm 2 describes the key elements of the RSA.

Fig. 4.  Exploration and exploitation processes.
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Algorithm 2.  The pseudo-code RSA algorithm.

The proposed hybrid algorithm
This article combines the traditional gazelle optimization algorithm (GOA) with the traditional reptile search 
algorithm (RSA) to create a hybrid algorithm. The hybrid gazelle optimization reptile search algorithm 
(HGORSA) is the name of the suggested algorithm. In the proposed HGORSA, the mathematical models of the 
exploration and exploitation phases of the traditional GOA have been modified to be more powerful as follows.

The exploitation (intensification) phase
The exploitation phase in the proposed HGORSA is applied by invoking the hunting operator χt

i  and the 
reduction function γt

i  in Eq. (29) as follows.

	 χt
i = X∗t

i × δi � (27)

	
γt

i = X∗t
i − Xr2j

X∗t
i + ε

� (28)

Where X∗t
i  is the overall best solution.

	 Xt+1
i = Xt

i + s · R ∗ ·X∗t
i × −χt

i × ε − γt
i × r.� (29)

Where Xt+1
i  is a solution in the next iteration, s represents the speed with which the gazelles graze and the 

vector R contains uniform random numbers in [0,1].

The exploration (diversification) phase
The exploration phase in the proposed HGORSA can be defined as shown in Eqs. (30), (31) by modifying Eqs. 
(15), (16) as follows.

	 Xt+1
i = Xt

i + MS · µ · R ∗ ·X∗t
i × −χt

i × ν − γt
i × r.� (30)
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Where MS is the maximum speed a gazelle can go, µ is a change of direction, µ ∈ [−1, 1], ν is a sensitive 
operator, and r is a random number. Equation (16) illustrates the mathematical model for the predator’s pursuit 
of the gazelle and it can be modified as shown in Eq. (31).

	 Xt+1
i = Xt

i + MS · µ · CF ∗ ·x∗t
j × xjr1 × ESt × r.� (31)

Fig. 5.  Flowchart of the HGORSA.
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Where CF = (1 − itr
mitr

)(2 itr
mitr

) is the cumulative effect of predator, mitr  is the maximum number of 
iterations, r is a random number between 0,1.

The pseudo-code of the proposed HGORSA
The main steps of the proposed HGORSA are reported in Algorithm 3 and Fig. 5 as follows.

Algorithm 3.  The HGORSA algorithm.

The HGORSA steps can be summed up as follows.

•	 Initialization of the parameters. The initial setting of the parameters is assigned such as maximum speed 
(MS), population size (n), predator success rates (PSRs), the maximum number of iterations mitr , and the 
change of direction operator µ.

•	 Initialization of the Iteration counter. The initialization of the iteration counter is set to t := 0.
•	 The creation of the initial population. The population’s solutions are produced at random using X(t).
•	 The fitness function calculation. The fitness function f(X(t)

i ) is determined for each solution in the popu-
lation.

•	 The assignment of the best solution Overall the best solution X∗t
i  is assigned.

•	 Position update for the solutions. Depending on the value of r, the algorithm switches between the exploita-
tion and the exploration phases.

•	 The exploitation phase. The exploitation phase starts by updating all the solutions based on Eq. (29).
•	 The exploration phase. The exploration phase starts by updating all solutions based on Eqs. (30) and (31).
•	 The evaluation of new solutions. The fitness function f(X(t)

i ) is determined for each solution in the pop-
ulation.

•	 The update of the best solution An updated elite matrix is produced along with the assignment of the new 
global best solution.

•	 The predator success rates (PSRs) The predator success rates (PSRs) is applied based on Eq. (17).
•	 Increase in iteration Counter. The iteration number counter is raised to t = t + 1.
•	 Satisfaction of termination criteria. The procedures are repeated until the allotted number of times, mitr , 

has been reached.
•	 The global best solution. The optimal solution is generated.
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The computational complexity analysis of the proposed HGORSA
The computational complexity of the proposed HGORSA is determined by three operations: generating the 
initial population n, calculating the fitness function for all individuals, and updating the individuals, as described 
below.

•	 The generation of the initial population The time complexity of generating the initial population is 
O(n × D), where D is the dimension of individuals.

•	 The fitness function calculation of the population The time complexity of calculating the fitness function 
of all individuals in the population is O(mitr × n × D), where mitr  is the maximum number of iterations.

•	 The individual updating process The time complexity of updating all individuals in the population is 
O(mitr × n × D).

•	 The total time complexity of the proposed HGORSA The total time complexity of the proposed algorithm 
is O(n × D) + O(mitr × n × D) + O(mitr × n × D) = O(nD(1 + 2mitr)).

Numerical results and discussion
The simulation and performance measurement experiments for all algorithms are coded by MATLAB R2020a.
The simulation was carried out using a laptop with the following configurations which are an Intel Core i7-
6820HQ, 8 GB of RAM, and the Microsoft Windows operating system. A set of performance criteria is used to 
assess the suggested HGORSA’s performance, which are the worst, Avg, Std, and best values. In addition, five 
standard performance metrics are measured that include energy consumption, network throughput, number 
of dead nodes, network lifetime, and stability period. Moreover, to get stable statistical results that prove the 
robustness and precision of meta-heuristic algorithms, the trial was run 20 times along with the proposed 
algorithm and all comparative algorithms. To display and render the results, the average of these occurrence 
times is used after 5000 iterations each time.

Simulation setup
The network configuration is done through the setup phase. The WSN consisted of 300 homogeneous random 
SNs in a deployment area of (200m × 200m). The simulations are performed allowing the sink to be transferred 
to three different locations, which are the center of the field (100, 100), corner of the field (200, 200), and field 
outside (300, 300) as indicated in Figs. 6, 7, 8. More parameter values are listed in Table 3, which have been 
proposed by Heintzelman et al. in50. The parameters used for the proposed HGOARSA are reported in Table 
4. Since n refers to the number of the gazelle population. D indicates dimension of the problem equal to 30. 
The lower and upper values of the search domain were donated by LB and UB. mitr  is the iteration maximum 
number, and it is equal to 5000. Whereas α is a parameter that controls the parameters of energy and distance. 
PSRs is set to 0.34. Here, S is equal to 0.88. Both α1 and β1 are sensitive parameters to control exploration 

Fig. 6.  WSN topology of 300 SNs and the sink is at (100, 100).
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Fig. 8.  WSN topology of 300 SNs and the sink is at (300, 300).

 

Fig. 7.  WSN topology of 300 SNs and the sink is at (200, 200).
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accuracy and both to 0.1. Finally, by following subsections, the performance evaluation of all the algorithm 
results will be explored and analyzed.

The proposed HGORSA evaluations
To evaluate the robustness of the HGORSA algorithm, a multitude of experiments are conducted to compare the 
algorithm suggested by six state-of-the-art metahuirstic algorithms, exploiting five standard evaluation metrics, 
which are energy consumption, dead node number, network lifetime, network throughput, and stability period 
with different network size for SNs. The simulation process begins with the main experiment, in which the 
number of SNs is equal to 300. The HGORSA algorithm is tested when the number of SNs is equal to 50 and 500 
as an additional experiment. All simulation and statistical outputs are highlighted in the subsequent sections. 
The performance metrics used are defined as the following:

•	 Energy consumption : It is a metric widely used to evaluate the efficiency of the clustering algorithm. It is 
measured in joules (Js) and represents the total expected energy over the entire lifetime of the network. The 
algorithm’s efficiency can be estimated on the basis of the total amount of energy that is spent.

•	 Dead nodes number: This means several dead or inactive nodes at the end of the entire network lifetime.
•	 Network lifetime: To analyze the lifetime of the network, the HND metric is established. This metric indi-

cates the number of iterations in which the half nodes die.
•	 Network throughput:  This measurement verifies the total number of packets that the receiver(the sink) ac-

knowledges throughout the lifetime of the network. In networking, it is a valuable parameter to measure the 
efficiency of a routing algorithm.

•	 Stability period: To determine the stability period of the network, the first node death metric (FND) has been 
used. FND measures which iteration number the first node death occurs in the network. It is considered an 
important factor for network reliability. The longer stability period of the network guarantees superb network 
reliability.

Performance evaluation of proposed HGORSA and two its components in terms of energy 
consumption
The proposed HGORSA perfectly improves network energy consumption compared to both of its components, 
which are: GOA and RSA individually with three cases for the sink position. The first position is a central 
position within the sensing field at (100 × 100), the second is in the corner (200 × 200), and the third sink 
position is out of the sensing field (300 × 300) as shown in Figs. 9, 10, 11. The total energy consumption of 
HGORSA for the network is the lowest; hence, the network performance is higher when the sink is centrally 
located. When the sink is located outside the sensing field, the total energy consumption of the network is higher 
and the network performance is lower.

Parameter Explanation Value

n Population size 300

D Problem dimension. 30

LB Lower limit. 1

UB Upper limit. 200

PSRs The predator success rate. 0.34

S The speed of gazelles when grazing. 0.88

β1 Control parameter. 0.1

α1 Control parameter. 0.1

α Control parameter. 0.3

mitr No. of maximum iterations. 5000

Table 4.  HGORSA parameters.

 

Parameter Explanation Value

ET X Energy loss when transmitting data. 50nJ/bit

ERX Energy loss when receiving data. 50nJ/bit

εfs Amplification energy of free space module. 10PJ/bit/m²

εmp Amplification energy of multiple-path module. 0.003nJ/bit

EDA Energy for data aggregation. 5nJ/bit

Table 3.  Parameters used in the network implementation.
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Fig. 10.  Energy consumption of proposed HGORSA, GOA and RSA versus 5000 iterations and sink is at (200, 
200).

 

Fig. 9.  Energy consumption of proposed HGORSA, GOA and RSA versus 5000 iterations and sink is at (100, 
100).
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Fig. 12.  Dead nodes number for HGORSA, GOA, and RSA and the sink is in field centre.

 

Fig. 11.  Energy consumption of proposed HGORSA, GOA, and RSA versus 5000 iterations and sink is at (300, 
300).
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Performance evaluation of proposed HGORSA and two of its components in terms of dead 
nodes number
Plethora of indicators are used to measure the performance of WSNs, among them computing the number of 
dead nodes. If there are fewer dead nodes, the network has a long lifetime. Simulation experiments prove that 
the proposed HGORSA can also utilize the rate of live nodes. This means reducing the rate of dead nodes and 

Fig. 14.  Dead nodes number for HGORSA, GOA, and RSA and the sink is in the field outside.

 

Fig. 13.  Dead nodes number for HGORSA, GOA, and RSA and the sink is in field right corner.

 

Scientific Reports |        2025 15:14595 20| https://doi.org/10.1038/s41598-025-96966-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


maximizing the rate of alive nodes. The relationship between iterations and dead nodes is plotted in Figs. 12, 13, 
14 for HGORSA, GOA, and RSA.

Performance evaluation of proposed HGORSA and other meta-heuristic algorithms in terms 
of energy consumption
The simulation process begins with the main experiment, in which the number of SNs is equal to 300 and 
the proposed HGORSA and other existing algorithms are tested under similar conditions for performance 
comparisons. HGORSA is compared with six state-of-the-art meta-heuristic algorithms such as particle swarm 
optimization (PSO)51, greywolf optimizer (GWO)52, sperm swarm optimization (SSO)53, Chernobyl disaster 
optimizer (CDO)54, gazelle optimization algorithm (GOA) ,22 and reptile search algorithm (RSA)23 in three sink 
position scenarios. Here, the energy consumption of HGORSA and the aforementioned algorithms is compared 
by some statistical measures such as Std, Avg, the worst, and the best value reported in Tables 5, 6 and 7.

Figs. 15, 16, and 17 give the convergence graph of the proposed algorithm and the other meta-heuristic 
algorithms for the analysis of the consumed total energy for the different aforementioned algorithms with three 
different sink positions(100, 100), (200, 200) and (300, 300), respectively. Observe that the proposed HGORSA 
consumes less energy than other existing algorithms.

Performance evaluation of proposed HGORSA and other meta-heuristic algorithms in terms 
of dead nodes number
The number of dead nodes has been measured throughout the life of the network for the proposed and other 
existing algorithms. From simulation outputs, PSO has the highest number of dead nodes (232, 254, 291), while 
HGORSA has the smaller number of dead nodes (163, 187, 205) at sink positions of (100, 100), (200, 200) and 
(300, 300). More details of the results of the remaining algorithms are given in Table 8. The conclusion says that 
HGORSA achieves progress in fewer dead node numbers by 30. 3%, 29. 7%, 28. 9%, 24. 3%, 18% and 11. 5%, 
respectively. The simulation graphs for the analysis of the dead nodes are shown in Figs. 18, 19, 20

Algorithms Best Worst Avg Std

PSO 595.70 602.20 601.40 2.42

GWO 587.22 602.30 599.10 6.83

SSO 584.87 601.12 586.24 8.62

CDO 542.78 600.37 581.62 23.97

GOA 530.64 601.18 579.99 26.67

RSA 522.65 594.95 545.49 27.14

HGORSA 513.58 564.44 531.26 7.37

Table 7.  Best, worst, Avg, and Std values of energy consumption when the sink is at (300, 300).

 

Algorithms Best Worst Avg Std

PSO 566.40 596.40 577.26 13.89

GWO 547.30 590.60 574.86 16.00

SSO 561.78 601.12 566.61 16.41

CDO 531.45 596.96 561.13 26.07

GOA 533.90 598.20 551.42 32.48

RSA 518.30 586.83 542.09 26.42

HGORSA 501.55 566.12 521.19 11.45

Table 6.  Best, worst, Avg, and Std values of energy consumption when the sink is at (200, 200).

 

Algorithms Best Worst Avg Std

PSO 552.70 589.40 576.26 17.47

GWO 545.30 600.50 574.83 15.71

SSO 542.94 600.36 572.41 15.63

CDO 540.48 600.11 562.73 23.86

GOA 530.29 597.38 542.09 27.60

RSA 518.30 586.83 533.90 26.42

HGORSA 473.24 552.12 517.58 14.57

Table 5.  Best, worst, Avg, and Std values of energy consumption when the sink is at (100, 100).
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Fig. 16.  Energy consumption of proposed HGORSA and other meta-heuristic algorithms verses 5000 
iterations and sink is at (200, 200).

 

Fig. 15.  Energy consumption of proposed HGORSA and other meta-heuristic algorithms verses 5000 
iterations and sink is at (100, 100).
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Performance evaluation of proposed HGORSA and other meta-heuristic algorithms in terms 
of network lifetime (HND)
Simulation results show that HGORSA improves the lifetime of the network represented by the HND metric 
for 44.5%, 40.8%, 23.8%, 16.8%, 9.3%, and 7.2%, respectively than PSO, GWO, SSO, CDO, GOA, and RSA as 
demonstrated in Table 9. When the position of the sink is (100,100), for PSO, the HND metric takes place for 
about 2841 iterations, while the half-node death for HGORSA takes place for about 4107 iterations. This means 
that PSO has the shortest network lifetime (HND) and HGORSA has the longest network lifetime. Figure 21 
demonstrated that HGORSA makes improvements compared to meta-heuristic algorithms, and this indicates 
extended network lifetime for the HGORSA algorithm at three sink positions (100, 100),(200, 200) and (300, 
300).

Performance evaluation of proposed HGORSA and other meta-heuristic algorithms in terms 
of network throughput
The simulation outputs of HGORSA and other existing algorithms are reported in Table 10. It is clear from the 
values obtained that HGORSA obtains the maximum number of packets to the sink, indicating that it performs 
better on the network throughput of other algorithms. The simulation graphs for the throughput analysis are 
represented in Fig. 22.

Algorithms Field center Field right corner Field outside

PSO 232 254 291

GWO 224 252 285

SSO 234 249 285

CDO 212 234 262

GOA 209 216 252

RSA 186 200 226

HGORSA 163 177 205

Table 8.  Dead nodes number for proposed HGORSA and other meta-heuristic algorithms when the sink is at 
three different positions.

 

Fig. 17.  Energy consumption of proposed HGORSA and other meta-heuristic algorithms verses 5000 
iterations and sink is at (300, 300).
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Performance evaluation of proposed HGORSA and other meta-heuristic algorithms in terms 
of stability period
Simulation outputs from Table 11 indicate that the proposed HGORSA achieves the best results for the stability 
period of the network compared to other meta-heuristic algorithms. It improves the stability period by 37.3%, 

Fig. 19.  Dead nodes number of HGORSA and other meta-heuristic algorithms when the sink is at (200, 200).

 

Fig. 18.  Dead nodes number of HGORSA and other meta-heuristic algorithms when the sink is at (100, 100).
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49.6%, 46.8%, 55.3%, 19.1%, and 34.4%, respectively. Figure 23 plots simulation graphs of the stability period for 
other nature-inspired algorithms.

Performance evaluation of proposed HGORSA at a low and high dimension wireless sensor 
number
To verify the efficiency of the proposed HGORSA algorithm, an additional experiment is performed to test it 
on a low and high number of WSN sensors, which are specific to 50 and 500 sensors. The average results are 
reported after 5 runs in Table 12. The “-” sign indicates that when the proposed algorithm is applied with 50 
sensors, the number of dead nodes at the three specified sink positions ranges from 4 to 11. This means that the 
number of dead nodes does not exceed half the total number of sensors (25). As a result, the network lifetime via 
the HND metric cannot be measured in this case.

The results in Table 12 show that the proposed HGORSA can obtain promising results in a low and high 
number of sensors. And the results reveal that HGORSA has the ability to scale with increasing network size.

The statistical analysis of proposed HGORSA
To investigate the efficiency of the proposed algorithm, a statistical experiment was performed using the 
Wilcoxon test value p and a box plot chart.

Wilcoxon test p-value
A Wilcoxon test, also known as a Wilcoxon Signed-Rank Test, compares the means of two related groups55. For 
example, it compares the test results before and after an intervention. Since it is regarded as a nonparametric test, 
nonparametric data can be used with it.

Algorithms Field center Field right corner Field outside

PSO 2841 2449 795

GWO 2916 2805 1136

SSO 3317 2901 1815

CDO 3516 3012 2105

GOA 3757 3041 1815

RSA 3830 3636 2375

HGORSA 4107 3763 2814

Table 9.  HND for HGORSA and other meta-heuristic algorithms when the sink is at three different positions.

 

Fig. 20.  Dead nodes number of HGORSA and other meta-heuristic algorithms when the sink is at (300, 300).
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The HGORSA results were compared to the best results of other algorithms used in the statistical analysis, 
using a non-parametric test with a significance level of 5%. The p values for all algorithms are shown in Tables 
13, 14. Generally, it is accepted that the null hypothesis has sufficient evidence when the pvalue is less than 0.05.

The results in Tables 13 and 14 show the values of p for all algorithms in terms of energy consumption and the 
number of dead nodes. The results indicate that there is a significant difference between the proposed algorithm 
and the other algorithms in most cases.

Box plot chart
A box plot is a visual representation of a dataset distribution, developed by John Tukey in 1970 and discussed 
in his 1977 book Exploratory Data Analysis56. It presents important summary statistics, including median, 
quartiles, and possible outliers, in a clear graphical format. Box plots provide a concise and visual way to compare 
various datasets, identify patterns, and summarize the distribution. The box plots of the proposed algorithm and 
the other meta-heuristic algorithms are presented in Figs. 24, 25, and 26, demonstrating that the median of the 
proposed algorithm outperforms the other algorithms in terms of energy consumption. Similarly, the box plots 
in Figs. 27, 28, and 29 show that the median of the proposed algorithm is superior to the other meta-heuristic 
algorithms in terms of the number of dead nodes.

Conclusion and future work
This article introduces a hybrid and efficient meta-heuristic algorithm to address the challenge of clustering 
in WSNs, denoted HGORSA. The proposed algorithm combines the gazelle optimizer and the reptile search 

Algorithms Field center Field right corner Field outside

PSO 1.42E+06 1.14E+06 4.12E+05

GWO 1.20E+06 9.18E+05 3.96E+05

SSO 1.33E+06 1.21E+06 4.31E+05

CDO 1.31E+06 1.17E+06 4.43E+05

GOA 1.71E+06 1.41E+06 5.00E+05

RSA 1.83E+06 1.46E+06 6.92E+05

HGORSA 2.14E+06 1.53E+06 7.31E+05

Table 10.  Network throughput for HGORSA and other meta-heuristic algorithms when the sink is at three 
different positions.

 

Fig. 21.  Network lifetime (HND) for HGORSA and other meta-heuristic algorithms at different positions of 
the sink.
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algorithm (RSA), resulting in improved WSN performance. Based on simulation outputs, HGORSA has 
demonstrated its effectiveness over PSO, GWO, SSO, CDO, GOA, and RSA. HGORSA has demonstrated 
percentage improvements on various performance metrics. Specifically, it achieved improvements in the 
stability period by 37.3%, 49.6%, 46.8%, 55.3%, 19.1%, and 34.4%, respectively. In terms of energy consumption, 
the improvements were 10.8%, 10.5%, 9.6%, 8.6%, 8.3%, and 3.5%, respectively. For network lifetime, the 
enhancements measured using the HND metric were 44.5%, 40.8%, 23.8%, 16.8%, 9.3%, and 7.2%, respectively. 
The reduction in the number of dead nodes was observed as 30.3%, 29.7%, 28.9%, 24.3%, 18%, and 11.5%, 
respectively. Furthermore, network throughput improved by 36. 4%, 43. 9%, 34. 2%, 25%, 20%, and 14. 4%, 
respectively. In addition, a supplementary experiment was conducted to test the efficiency of the HGORSA 
algorithm when the number of SNs was set to 50 and 500, using the five mentioned standard performance 
metrics.

Finally, the robustness of HGORSA was validated through statistical measures such as standard deviation 
(Std), average (Avg), worst and best values, and by providing box plots for HGORSA and the compared meta-
heuristic algorithms. Based on statistical outputs, HGORSA further demonstrated its superiority over other 
meta-heuristics.

Although the proposed algorithm produced promising results, there is still room for improvement, such 
as the fact that the experiments were conducted in a simulation environment, not in real-time scenarios. 
Furthermore, this article does not address challenges, such as it does not consider large-scale sensor networks 

Algorithms Field center Field corner Field outside

PSO 848 104 25

GWO 681 72 25

SSO 681 104 22

CDO 549 122 21

GOA 1108 179 29

RSA 887 166 33

HGORSA 1353 221 47

Table 11.  Stability period for proposed HGORSA and other meta-heuristic algorithms when the sink is at 
three different positions.

 

Fig. 22.  Network throughput HGORSA and other meta-heuristic algorithms when the sink is at three different 
positions.
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HGORSA vs PSO GWO SSO CDO GOA RSA

(100,100) 0.00512 0.00512 0.00512 0.00512 0.12423 0.04136

(200,200) 0.00512 0.00512 0.00512 0.00694 0.00512 0.01641

(300,300) 0.00512 0.00512 0.00512 0.00512 0.00512 0.02202

Table 14.  p-values of the HGORSA and other algorithms in terms of dead nodes number.

 

HGORSA vs PSO GWO SSO CDO GOA RSA

(100,100) 0.00512 0.00512 0.00694 0.00694 0.01242 0.00512

(200,200) 0.00512 0.00512 0.00512 0.00512 0.00694 0.02852

(300,300) 0.00512 0.00512 0.00512 0.00512 0.00932 0.01242

Table 13.  p-values of the HGORSA and other algorithms in terms of energy consumption.

 

Nodes Network area Sink Locations Energy Consumption HND Dead Nodes FND Throughput

50 40X40

(20, 20) 52.77 - 4 1112 610000

(40, 40) 55.29 - 7 908 468000

(50, 50) 59.77 - 11 902 190000

500 400X400

(200, 200) 975.67 638 448 92 2.61E+06

(400, 400) 977.35 212 449 6 2.10E+06

(500, 500) 982.28 151 463 4 8.52E+05

Table 12.  Performance evaluation of proposed HGORSA at 50, and 500 nodes.

 

Fig. 23.  Stability period HGORSA and other meta-heuristics algorithms.
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Fig. 26.  Box plot of the proposed HGORSA and other meta-heuristic algorithms, with the sink located at (300, 
300), in terms of energy consumption.

 

Fig. 25.  Box plot of the proposed HGORSA and other meta-heuristic algorithms, with the sink located at (200, 
200), in terms of energy consumption.

 

Fig. 24.  Box plot of the proposed HGORSA and other meta-heuristic algorithms, with the sink located at (100, 
100), in terms of energy consumption.
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Fig. 29.  Box plot of the proposed HGORSA and other meta-heuristic algorithms, with the sink located at (300, 
300), in terms of dead nods number.

 

Fig. 28.  Box plot of the proposed HGORSA and other meta-heuristic algorithms, with the sink located at (200, 
200), in terms of dead nods number.

 

Fig. 27.  Box plot of the proposed HGORSA and other meta-heuristic algorithms, with the sink located at (100, 
100), in terms of dead nods number.
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with more than 500 nodes. Moreover, the study has focused on homogeneous sensor network configurations, 
while incorporating heterogeneous sensor nodes could yield additional benefits.

For future work, the proposed algorithm will be applied to manage larger networks with more than 500 
sensors and to real-time applications, allowing closer interaction with users in the physical world. Furthermore, 
experiments can be conducted using a large-scale real hardware architecture to handle big data.

Scientific Reports |        2025 15:14595 31| https://doi.org/10.1038/s41598-025-96966-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Data availability
The corresponding authors will provide the data supporting the findings of the article on reasonable request.

Received: 24 June 2024; Accepted: 1 April 2025

References
	 1.	 Kumar, R., Malik, A. & Ranga, V. An intellectual intrusion detection system using Hybrid Hunger Games Search and Remora 

Optimization Algorithm for IoT wireless networks, Knowledge-Based Systems, Volume 256. ISSN 109762, 0950–7051 (2022).
	 2.	 Bottero, M., Dalla Chiara, B. & Deflorio, F. P. Wireless sensor networks for traffic monitoring in a logistic centre. Transp. Res. Part 

C Emerg. Technol. 26, 99–124 (2013).
	 3.	 Ibrahim, A. S., Youssef, K. Y., Eldeeb, A. H., Abouelatta, M. & Kamel, H. Adaptive aggregation based IoT traffic patterns for 

optimizing smart city network performance. Alexandria Engineering Journal 61(12), 9553–9568 (2022).
	 4.	 Kiani, F. et al. A smart and mechanized agricultural application: From cultivation to harvest. Appl. Sci. 12(12), 6021 (2022).
	 5.	 Nayyar, A., Nguyen, B. L. & Nguyen, N. G. The internet of drone things (IoDT): future envision of smart drones. In First 

International Conference on Sustainable Technologies for Computational Intelligence: Proceedings of ICTSCI 2019 (pp. 563-580). 
Springer Singapore.

	 6.	 Bouzembrak, Y., Klüche, M., Gavai, A. & Marvin, H. J. Internet of Things in food safety: Literature review and a bibliometric 
analysis. Trends Food Sci. Technol. 94, 54–64 (2019).

	 7.	 Gatouillat, A., Badr, Y., Massot, B. & Sejdić, E. Internet of medical things: A review of recent contributions dealing with cyber-
physical systems in medicine. IEEE internet things j. 5(5), 3810–3822 (2018).

	 8.	 Kong, L., Khan, M. K., Wu, F., Chen, G. & Zeng, P. Millimeter-wave wireless communications for IoT-cloud supported autonomous 
vehicles: Overview, design, and challenges. IEEE Commun. Mag. 55(1), 62–68 (2017).

	 9.	 Sisinni, E., Saifullah, A., Han, S., Jennehag, U. & Gidlund, M. Industrial internet of things: Challenges, opportunities, and 
directions. IEEE trans. industr. inform. 14(11), 4724–4734 (2018).

	10.	 Seyyedabbasi, A. & Kiani, F. Decrease Electricity Consumption in Rooms with IoT Technology. International Journal of Information 
9(1), (2020).

	11.	 Ensworth, J. F. & Reynolds, M. S. BLE-backscatter: Ultralow-power IoT nodes compatible with Bluetooth 4.0 low energy (BLE) 
smartphones and tablets. IEEE Trans. Microw. Theory Tech. 65(9), 3360–3368 (2017).

	12.	 Jha, S. K. & Eyong, E. M. An energy optimization in wireless sensor networks by using genetic algorithm. Telecommun. Syst. 67, 
113–121 (2018).

	13.	 Jiang, N. et al. Toward biology-inspired solutions for routing problems of wireless sensor networks with mobile sink. Soft Comput. 
22, 7847–7855 (2018).

	14.	 Kaur, R. & Preeti, D. Singh. Dimension learning based chimp optimizer for energy efficient wireless sensor networks. Sci. Rep. 
12(1), 14968 (2022).

	15.	 Gharehchopogh, F. S., Abdollahzadeh, B. & Arasteh, B. An Improved Farmland Fertility Algorithm with Hyper-Heuristic Approach 
for Solving Travelling Salesman Problem. Comput. Model Eng. Sci. 135(3), (2023).

	16.	 Ayar, M., Isazadeh, A., Gharehchopogh, F. S. & Seyedi, MirHojjat. Chaotic-based divide-and-conquer feature selection method 
and its application in cardiac arrhythmia classification. J. Supercomput. 78, 5856–5882 (2021).

	17.	 Elsedimy, E. I., Rashad, M. Z. & Darwish, M. G. Multi-Objective Optimization Approach for Virtual Machine Placement Based on 
Particle Swarm Optimization in Cloud Data Centers. J. Comput. Theor. Nanosci. 14(6), 5145–5150 (2017).

	18.	 Shehadeh, H. A. A hybrid sperm swarm optimization and gravitational search algorithm (HSSOGSA) for global optimization. 
Neural. Comput. Appl. 33(18), 11739–11752 (2021).

	19.	 Shehadeh, H. A., Mustafa, H. M. & Tubishat, M. A hybrid genetic algorithm and sperm swarm optimization (HGASSO) for 
multimodal functions. International Journal of Appliedmeta-heuristic Computing (IJAMC) 13(1), 1–33 (2022).

	20.	 Sharma, S., Khodadadi, N., Saha, A. K. Gharehchopogh, F. S. & Mirjalili, S. Non-dominated sorting advanced butterfly optimization 
algorithm for multi-objective. J. Bionic. Eng. 20, 819–843 (2023).

	21.	 Asghari, K., Masdari, M., Gharehchopogh, F. S. & Saneifard, R. Multi-swarm and chaotic whale-particle swarm optimization 
algorithm with a selection method based on roulette wheel. Expert Systems. 38(8), e12779 (2021).

	22.	 Agushaka, J. O., Ezugwu, A. E. & Abualigah, L. Gazelle optimization algorithm: a novel nature-inspiredmeta-heuristic optimizer. 
Neural. Comput. Appl. 35(5), 4099–4131 (2023).

	23.	 Abualigah, L., Abd Elaziz, M., Sumari, P., Geem, Z. W. & Gandomi, A. H. Reptile Search Algorithm (RSA): A nature-inspired meta-
heuristic optimizer. Expert Syst. Appl. 191, 116158 (2022).

	24.	 Gharehchopogh, F. S. et al. Advances in Manta Ray Foraging Optimization: A Comprehensive Survey. J. Bionic. Eng. 21, 953–990 
(2024).

	25.	 Dogandzic, T. et al. Speeding Classification by a Deep Learning Audio Analysis System Optimized by the Reptile Search Algorithm. 
In International Joint Conference on Advances in Computational Intelligence (pp. 73-88). Singapore: Springer Nature Singapore. 
(2022, October).

	26.	 Nour, M. K. et al. Computer aided cervical cancer diagnosis using gazelle optimization algorithm with deep learning model. IEEE 
Access. (2024).

	27.	 Qin, S., Zeng, H., Sun, W., Wu, J. & Yang, J. Multi-Strategy Improved Particle Swarm Optimization Algorithm and Gazelle 
Optimization Algorithm and Application. Electronics. 13(8), 1580 (2024).

	28.	 Salb, M. et al. Enhancing internet of things network security using hybrid CNN and xgboost model tuned via modified reptile 
search algorithm. Appl. Sci. 13(23), 12687 (2023).

	29.	 Zivkovic, T., Nikolic, B., Simic, V., Pamucar, D. & Bacanin, N. Software defects prediction bymeta-heuristics tuned extreme 
gradient boosting and analysis based on shapley additive explanations. Applied Soft Computing. 146, 110659 (2023).

	30.	 Wolpert, D. H. & Macready, W. G. No free lunch theorems for optimization. IEEE. Trans. Evol. Comput. 1(1), 67–82 (1997).
	31.	 Mehta, D. & Saxena, S. MCH-EOR: Multi-objective cluster head based energy-aware optimized routing algorithm in wireless 

sensor networks. Sustain. Comput.: Syst. Inform. 28, 100406 (2020).
	32.	 Ramesh, P. S. et al. Contextual Cluster-Based Glow-Worm Swarm Optimization (GSO) Coupled Wireless Sensor Networks for 

Smart Cities. Sensors. 23(14), 6639 (2023).
	33.	 Yadav, R. K. & Mahapatra, R. P. Hybridmeta-heuristic algorithm for optimal cluster head selection in wireless sensor network. 

Pervasive Mob. Comput. 79, 101504 (2022).
	34.	 Kathiroli, P. & Selvadurai, K. Energy efficient cluster head selection using improved Sparrow Search Algorithm in Wireless Sensor 

Networks. J. King Saud. Univ. Comput. Inf. Sci. 34(10), 8564–8575 (2022).
	35.	 Balamurugan, A., Janakiraman, S., Priya, M. D. & Malar, A. C. J. Hybrid Marine predators optimization and improved particle 

swarm optimization-based optimal cluster routing in wireless sensor networks (WSNs). China Communications. 19(6), 219–247 
(2022).

	36.	 Dattatraya, K. N. & Rao, K. R. Hybrid based cluster head selection for maximizing network lifetime and energy efficiency in WSN. 
J. King Saud. Univ. Comput. Inf. Sci. 34(3), 716–726 (2022).

Scientific Reports |        2025 15:14595 32| https://doi.org/10.1038/s41598-025-96966-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	37.	 Wang, C. A. Distributed Particle-Swarm-Optimization-Based Fuzzy Clustering Protocol for Wireless Sensor Networks. Sensors. 
23, 6699. https://doi.org/10.3390/s23156699 (2023).

	38.	 Singh, M. & Shrivastava, L. Multi-objective optimized multi-path and multi-hop routing based on hybrid optimization algorithm 
in wireless sensor networks. Wireless Netw. 1–17 (2024).

	39.	 Sahoo, B. M., Sahoo, R. C., Paul, N., Tomar, A. & Rout, R. K. Modified Artificial Fish Swarm Optimization Based Clustering in 
Wireless Sensor Network. In Smart Sensor Networks Using AI for Industry 4.0 (pp. 77-88). CRC Press. (2021).

	40.	 Elashry, Soha S., Abohamama, A. S., Abdul-Kader, H. M., Rashad, M. Z. & Ali, A. F. A Chaotic Reptile Search Algorithm for Energy 
Consumption Optimization in Wireless Sensor Networks. In IEEE Access. 12, 38999–39015 (2024). IEEE.

	41.	 Sahoo, B. M., Amgoth, T. & Pandey H. M. (2021). Enhancing the network performance of wireless sensor networks on meta-
heuristic approach: Grey Wolf Optimization. In Applications of artificial intelligence and machine learning: Select proceedings of 
ICAAAIML 2020 (pp. 469-482). Springer Singapore.

	42.	 Sahoo, B. M., Pandey, H. M. & Amgoth, T. A genetic algorithm inspired optimized cluster head selection method in wireless sensor 
networks. Swarm Evol. Comput. 75, 101151 (2022).

	43.	 Prakash, V., Singh, D., Pandey, S., Singh, S. & Singh, P. K. Energy-Optimization Route and Cluster Head Selection Using M-PSO 
and GA in Wireless Sensor Networks.  Wirel. Pers. Commun. 1–26 (2024).

	44.	 Sheena, N., Joseph, S., Shailesh, S. & Bhushan, B. EMCP: evolutionary multi-objective clustering protocol for prolonged lifetime of 
heterogeneous IoT networks. J. Supercomput. 80(4), 5224–5254 (2024).

	45.	 Sahoo, B. M. & Sabyasachi, A. S. Ameta-heuristic Algorithm Based Clustering Protocol for Energy Harvesting in IoT-Enabled 
WSN.  Wirel. Pers. Commun. 1–26 (2024).

	46.	 FitzGibbon, C. D. & Lazarus, J. Antipredator behavior of Serengeti ungulates: individual differences and population consequences 
274–296 (Dynamics, management, and conservation of an ecosystem, Serengeti II, 1995).

	47.	 Einstein, A. Investigations on the Theory of the Brownian Movement (Courier Corporation, US, 1956).
	48.	 Yang, X. S., S, X. & Deb S. Cuckoo search via Le’vy flights. In 2009 World congress on nature and biologically inspired computing 

(NaBIC) (pp. 210-214). IEEE. (2009).
	49.	 Olson, K. A. et al. Survival probabilities of adult Mongolian gazelles. J. Wildl. Manag. 78(1), 35–41 (2014).
	50.	 Heinzelman, W., Chandrakasan, A. & Balakrishnan H. (2000). Energy-efficient communication protocol for wireless microsensor 

networks. In Proceedings of the 33rd annual Hawaii international conference on system sciences, pages 10-pp, IEEE.
	51.	 Kennedy, J. & Eberhart, R. Particle swarm optimization. Proceedings of ICNN’95-international conference on neural networks, 4, 

1942-1948, IEEE.
	52.	 Mirjalili, S., Mirjalili, S. & Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014).
	53.	 Shehadeh, H. A. Ahmedy, I. & Idris, M. Y. I. Sperm swarm optimization algorithm for optimizing wireless sensor network 

challenges. In Proceedings of the 6th international conference on communications and broadband networking (pp. 53-59). (2018, 
February).

	54.	 Shehadeh, H. A. Chernobyl disaster optimizer (CDO): A novel meta-heuristic method for global optimization. Neural. Comput. 
Appl. 35(15), 10733–10749 (2023).

	55.	 Conover, W. J. Practical Non-parametric Statistics 3rd edn, 578 (John Wiley and Sons, New York, 1999).
	56.	 Tukey J. W. Exploratory data analysis. Reading/Addison-Wesley. (1977).

Author contributions
Soha S. Elashry conducted the experiments, A. S. Abohamama, Hatem Mohamed Abdul-Kader, and M.Z. Ra-
shad reviewed the manuscript, and Ahmed F. Ali reviewed the manuscript and analyzed the results.

Funding
Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooper-
ation with The Egyptian Knowledge Bank (EKB).

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.F.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and 
indicate if changes were made. The images or other third party material in this article are included in the article’s 
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025 ​​​​​​​

Scientific Reports |        2025 15:14595 33| https://doi.org/10.1038/s41598-025-96966-9

www.nature.com/scientificreports/

https://doi.org/10.3390/s23156699
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/scientificreports

	﻿A hybrid gazelle optimization and reptile search algorithm for optimal clustering in wireless sensor networks
	﻿﻿Literature review
	﻿﻿Problem definition
	﻿The select of CHs
	﻿Creation of clusters

	﻿﻿The Gazelle optimization and reptile search algorithms
	﻿Background for gazelle optimization algorithm (GOA)
	﻿Inspiration and the natural behaviors
	﻿The modeling of the GOA
	﻿The initial population
	﻿The elite population
	﻿The exploitation (intensification) phase
	﻿The exploration (diversification) phase
	﻿The predator success rates (PSRs)
	﻿The Pseudo-code of the GOA


	﻿Background on reptile search algorithm (RSA)
	﻿The stage of initialization.
	﻿The exploration phase (encircling process).
	﻿The exploitation process (hunting).
	﻿The RSA’s main components.

	﻿﻿The proposed hybrid algorithm


