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Improved security for loT-based
remote healthcare systems using
deep learning with jellyfish search
optimization algorithm
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With an increased chronic disease and an ageing population, remote health monitoring is a substantial
method to enhance the care of patients and decrease healthcare expenses. The Internet of Things
(loT) presents a promising solution for remote health monitoring by collecting and analyzing vital
data like body temperature, ECG, and heart rate, giving real-time insights to medical professionals.
However, maintaining effectual monitoring in environments with bandwidth or energy constraints
presents crucial threats. While machine analysis and human insight performance must be content,
conveying extra data to gratify both would be evaded for efficient resource application. Therefore,
this article proposes an Enhanced Security Mechanism for Human-Centered Systems using Deep
Learning with Jellyfish Search Optimizer (ESHCS-DLJSO) approach for loT healthcare applications.
The projected ESHCS-DLJSO approach allows IoT devices in the healthcare field to securely convey
medical data and early recognition of health problems in the human-machine interface. To achieve
this, the ESHCS-DLJSO approach utilizes a min-max normalization technique to transform the input
data into a more suitable format. The bacterial foraging optimization algorithm (BFOA) method is
used for feature extraction. Moreover, a convolutional neural network with long short-term memory
(CNN-LSTM-Attention) technique is used for disease detection and classification. Finally, the ESHCS-
DLJSO technique employs the jellyfish search optimizer (JSO) technique for hyperparameter tuning.
The simulation of the ESHCS-DLJSO technique is examined on an loT healthcare security dataset. The
performance validation of the ESHCS-DLJSO technique portrayed a superior accuracy value of 99.43%
over existing approaches.

Keywords Internet of things, Deep learning, Jellyfish search optimizer, Human-centered systems,
Healthcare, Bacterial foraging optimization algorithm

Humans are still looking for more normal sensing and manual feature developments. Such developments can
be related to some cognition transformation generated by human intuition to be modified to novel variations
in living standards'. Owing to the differential progress in the difficulty of mechanical frameworks and the
resulting need for communication among the machine functionalities and human perceptions, human-machine
interfaces (HMIs) come into existence; HMI structures can significantly help humans using a large number
of physical abilities and ages to use and controlling machinery?. Figure 1 represents the structure of Human-
Centered systems. Using fast growth in the IoT in the last few years, HMIs have progressively been developed.
It is a beneficial technology for providing innovative remote healthcare, including IoT-authorised devices by
medical appliances®. Incorporating IoT and deep learning (DL) techniques has transformed healthcare processes
in domestic areas by supporting remote health supervision and initial identification of health-related problems.
The IoT technology application allows the collection of vast amounts of physiological information, namely body
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Fig. 1.

Structure of human-centered systems.

temperature, blood oxygen level, ECG signals, and heart rate, from appropriate sensors or devices*. IoT offers
instant admission to doctors and hospitals by calculating and treating a fundamental symptom of patients.
These help to reduce the mortality rate produced because of heart failures and strokes. IoT implementation
techniques continually change people’s day-to-day life approaches®. IoT technologies will additionally improve
human culture into an innovative period of human-machine combination, collaborative sharing and design, and
intelligence. DL methods and IoT technologies are broadly applied in many arenas to support the technological
foundations of the recent technological revolt. Many machine learning (ML) techniques have been used in
decision-making in healthcare appliances®.

Nevertheless, many traditional approaches like classic neural networks and k-nearest neighbours are only
suitable if the data scale rises in time and vast quantities of data as big data have been made. On the other
hand, DL models are hopeful substitutions in this connection, with tactics in deep architectures for learning
hierarchical depictions’. These approaches can handle significant quantities of data, but the precision increases
with the growth of training data sets. Convolutional neural networks (CNN) are the best model for DL
approaches that are effective for IoT-based medical observation. CNN is a deep NN class frequently applied
with 2D signs, namely images and videos. They might have been learning thousands of objects with millions
of images as input data sets. Attention layers allow the DL methods to concentrate on particular input data
features that are more related to the classification task®. These increase precision and reduce computational
efficiency, making it appropriate for placement in limited resource environments like home health care services.
The swift evolution of IoT technologies has significantly improved the potential for remote healthcare systems,
but confirming robust security remains a critical threat. With the growing dependence on connected devices
to monitor and manage human health, safeguarding sensitive data and ensuring the integrity of health data is
essential’. As healthcare systems become more intrinsic and data-driven, there is a growing requirement for
enhanced security mechanisms that can adapt to the dynamic nature of IoT environments. Employing DL and
optimization models presents a promising approach to improving the security and effectualness of these systems.
By incorporating intelligent models with IoT infrastructure, it is possible to build more resilient and responsive
healthcare solutions prioritizing privacy and functionality™.

This article proposes an Enhanced Security Mechanism on Human-Centered Systems using DL with Jellyfish
Search Optimizer (ESHCS-DLJSO) approach for IoT healthcare applications. The projected ESHCS-DLJSO
approach allows IoT devices in the healthcare field to securely convey medical data and early recognition of
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health problems in the human-machine interface. To achieve this, the ESHCS-DLJSO approach utilizes a min-
max normalization technique to transform the input data into a more suitable format. The bacterial foraging
optimization algorithm (BFOA) method is used for feature extraction. Moreover, a convolutional neural
network with long short-term memory (CNN-LSTM-Attention) technique is used for disease detection and
classification. Finally, the ESHCS-DLJSO technique employs the jellyfish search optimizer (JSO) technique
for hyperparameter tuning. The simulation of the ESHCS-DL]JSO technique is examined on an IoT healthcare
security dataset. The major contribution of the ESHCS-DLJSO technique is listed below.

« The ESHCS-DLJSO model utilizes Min-max normalization to scale and standardize the input data, confirm-
ing consistent value ranges. This pre-processing step improves the technique’s capability to learn and gener-
alize more effectively. Converting the data into an appropriate format enhances the overall effectiveness of
subsequent analyses and models.

o The BFOA approach detects and extracts the most relevant features from the data. This methodology opti-
mizes the feature selection process, enhancing the model’s accuracy and reducing computational complexity.
Concentrating on key features improves the efficiency of disease detection and classification.

o The CNN-LSTM-Attention model is employed for precise disease detection and classification, incorporating
the merits of convolutional and recurrent networks. This hybrid methodology captures spatial and temporal
patterns in the data, enhancing classification accuracy. The attention mechanism improves the method’s focus
on the most relevant features, confirming robust performance.

o The JSO method is implemented to fine-tune the model parameters, enhancing their accuracy and effective-
ness. This optimization methodology intelligently alters the parameters to attain optimal performance. By
improving the model’s adaptability, JSO confirms enhanced generalization and faster convergence during
training.

« Integrating advanced optimization approaches such as JSO with DL models—CNN-LSTM-Attention pre-
sents a novel solution for disease classification in IoT-based healthcare systems—and improves the classifica-
tion process’s accuracy and efficiency. The ability to fine-tune models dynamically while capturing complex
patterns in data represents a crucial enhancement in healthcare diagnostics.

The article is structured as follows: “Literature survey” presents the literature review, “Proposed method” outlines
the proposed method, “Result analysis” details the results evaluation, and “Conclusion” concludes the study.

Literature survey

Mohapatra et al.!! presented a time-frequency domain deep neural network (TFDDNN)-based method for
recognizing hand signals with MEMG footage. The MEMG footage has been segmented within frames, and the
average of each channel data (mean EMG signal) to all frames is estimated. The constant wavelet transformation
can be used in the mean EMG signal to obtain the combined time-frequency representation (TFR). The TFR-
based imageries of the mean EMG signal are employed as input into the deep representation learning network
(DRLN) method for recognizing hand signals. Wang et al.!? introduced an HMI-obtained image coding (HMI-
IC) outline depending on DL. In these models, machinery must offer initial supervising messages containing
study outcomes and sample images; humans can also request first-class imageries of key elements. Adaptive
coding transmission can be adequate for various needs in two phases based on a lack of resources. Islam et
al.!* developed an IoT-based method for isolated supervision and earlier identification of health difficulties in-
home medical backgrounds. The data collected will be transferred to the server using the MQTT protocol.
The pre-trained DL method depends on a CNN by an attention layer utilized by the server for classifying
possible illnesses. Rani et al.'* designed a 3-phase product-economy-ecology approach by considering additive
manufacturing techniques’ fundamental functional and characteristic development. Key supporting techniques
for product growth and process design have been conferred. Moreover, the usual implementations of human-
machine collaborative additive manufacturing within the product, economic, and ecological phases were
deliberated, containing modified product design, energy conservation, emission reduction, collaboration
design, communicating manufacturing, distributed manufacturing, and HMI technologies for the process
chain. In'®, an intense and intellectual IoMT process has been developed using the synergistic incorporation of
flexible wearable triboelectric sensors and DL-helped data analytics. This approach embedded four triboelectric
sensors within a wristband for detecting and analyzing limb movements in patients struggling with Parkinson’s
Disease (PD). Webber et al.!® introduced a method for identifying signals in handling intermittent light patterns
in a visible light communications (VLC) approach. This process achieves the current light communications
framework with cheaper and freely obtainable mechanisms. Various finger orders have been recognized with
probabilistic neural networks (PNNs) trained on light transitions among fingers. The unique pre-processing
from the tested light on a photodiode is defined to assist the usage of the PNN by deficient intricateness. Shoukat
et al.’” recommend implementing the DT method and summarising the study and application growth from the
view of the home devices’ DT modelling. The modelling technique was three-phase: regarding a virtual entity,
physical entity, and data communication connectivity. The presented approach uses communication methods
for the intellectual control of HD by incorporating DT and virtual simulation technology to establish a human
CPS, primarily directing tasks related to remote-control difficulties.

Nguyen et al.!¥ developed a wrist-worn prototype for capturing an RGB video for a hand signals stream.
This approach then estimates different CNN techniques for vision-based detection. Moreover, this approach
analyzes the method that provides the finest trade-off amongst memory requirement, cost of computation, and
accuracy. This approach demonstrates that when analyzing architecture, MoviNet gives the maximum precision.
At that time, a unique MoviNet-based 2-stream architecture was presented, which takes either RGB or optical
flow within the version. Vakili et al.!® present a service composition methodology using Grey Wolf Optimization
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(GWO) and MapReduce framework to compose services with optimized QoS. Heidari et al.? propose a

blockchain (BC)-based federated learning (FL) method to confirm data privacy, utilizing SegCaps, CNN, and
transfer learning (TL) for enhanced image feature extraction and model performance. Pavithra et al.2! introduce
an Optimized Deep Recurrent Neural Network (O-DRNN) method with a secure multitier architecture,
utilizing PSO for feature selection and Bayesian optimization for hyperparameter tuning, with edge computing
and cloud storage secured by ECKAS. Aminizadeh et al.?> comprehensively review ML, DL, and distributed
systems in healthcare to improve service quality and address key implementation threats. Amiri et al.?? review
and synthesize DL applications in IoT-based bio- and medical informatics, classifying them by technique to
address medical threats. Kumar et al.?* introduce a DL-based DL approach for secure data transmission
(BDSDT) in IoT healthcare by utilizing ZKP for integrity, IPFS for storage, and Ethereum smart contracts for
security, with DSAE-BiLSTM for intrusion detection. Heidari et al.?> propose an approach that constructs an
optimal spanning tree by incorporating artificial bee colony (ABC), genetic operators, and density correlation to
optimize device connectivity by depending on hop count, residual energy, and mobility. Heidari, Navimipour,
and Unal? present a DL-based RBFNN methodology to enhance data integrity and storage for smart decision-
making in IoDs. Heidari et al.”” analyze the availability and reliability of Wireless Sensor Networks (WSNs) by
examining failure scenarios utilizing fault trees and Markov chain analysis to enhance network stability. Singh
et al.?® introduce a continuous authentication system for IoT healthcare using LSTM, integrating biometric data
and security credentials to prevent unauthorized access, with data collected via Arduino Uno and smart devices.
Zanbouri et al.? propose a GSO-based optimization model for DL-based IIoT, enhancing scalability, resource
allocation, and decision-making to mitigate inefficiencies and bottlenecks. Amiri, Heidari, and Navimipour®
introduce a novel taxonomy for DL applications in climate change mitigation. It classifies ML methods into six
key areas and underscores advanced research.

Rajkumar et al’! employ the DL model for heart disease prediction, pre-processing data with Median
Studentized Residual, selecting features with Harris Hawk Optimization (HHO), and classifying with Modified
Deep LSTM, optimized by Improved Spotted Hyena Optimization (ISHO). Aldaej, Ahanger, and Ullah® present
a secure IoT healthcare diagnostic model by employing deep neural networks (DNNG), integrating encryption,
safe transactions, and techniques like orthogonal particle swarm optimization (PSO) for medical image sharing
and neighbourhood indexing for hash value encryption. Movassagh et al.* focus on improving perceptron
neural network precision by utilizing meta-heuristic algorithms for training and determining input coefficients.
Babar et al.>* develop a secure, intelligent, and efficient framework for smart H-CIoT networks using Software-
Defined Networking (SDN) and DL, addressing challenges like attack detection, data management, and fog
node selection. Kumar et al.® propose a virtual object management system utilizing Digital Twins (DT) for
optimal task scheduling and enhanced user experience. It employs Hybrid Energy Valley with Lévy Flight
Distribution Optimization (HEV-LFDO) for efficient task offloading to edge devices while securing data with
BC for effective resource management and minimizing local loss. Othmen et al.* optimize cluster head (CH)
selection and routing paths in IoT-enabled healthcare applications utilizing fuzzy logic (FL) and PSO to improve
communication efficiency, reduce delays, and enhance throughput and energy efficiency. Alzubi*” presents a BC-
based secure system for medical IoT devices using Lamport Merkle Digital Signature (LMDS). It authenticates
devices through a tree structure of patient data hashes, with a Centralized Healthcare Controller verifying
the root using LMDS Verification. Rani et al.*® developed an IoT-based healthcare system using SqueezeNet_
Fractional Dung Beetle Optimization (SqueezeNet_FDBO), optimizing routing and classification performance.
Alzubi et al.** introduce a technique incorporating DL and BC for electronic health record privacy. Using a
CNN classifies users as normal or abnormal, then removes abnormal users via BC and cryptography-based
FL, securing access to health records. Radhika et al.** developed a Binary Butterfly Optimization Algorithm
with Stacked Non-symmetric Deep Auto-Encoder (BBOA-SNDAE) methodology for predicting HD using
clinical data and Medical IoT technology. Naz et al.!! developed a medical diagnostic system using IoT and
CNN to precisely detect tumours, improving breast cancer diagnosis and early detection. While identifying
future research opportunities, Bai, Gu, and Tang?*? explore how DL and IoT technologies can improve patient
monitoring, clinical outcomes, and ICU processes. Table 1 summarizes the existing studies on remote healthcare.

The existing studies present various models for addressing key threats in IoT-based healthcare systems,
comprising secure data transmission, disease prediction, and system optimization. Some approaches employ DL
methods, such as LSTM, for continuous authentication and heart disease prediction, while others incorporate
DL for improved data integrity and privacy in decentralized systems. HHO, Bayesian optimization, and PSO
enhance feature selection and model performance. Several methodologies integrate IoT sensors for real-
time data collection, optimizing resource allocation, and addressing issues such as scalability, security, and
fault tolerance in healthcare networks. However, these methods mostly encounter limitations such as high
computational complexity, scalability threats in dynamic environments, and potential data privacy and accuracy
issues, which could affect their practical implementation and widespread adoption in real-world healthcare
settings. The research gap is in the limited exploration of scalable, real-time DL and DL-based solutions for safe,
effectual IoT healthcare systems, specifically in handling dynamic data and resource constraints. Furthermore,
more comprehensive studies need to be conducted to address the incorporation of diverse optimization models
and their real-world applicability in diverse healthcare environments.

Proposed method

This study presents an ESHCS-DLJSO technique for IoT healthcare applications. The technique’s main intention
is to permit IoT devices in the healthcare field to transform medical data and early recognize health issues
in HML It contains four distinct processes: data normalization, BFOA-based feature selection, CNN-LSTM-
Attention using the disease detection process, and JSO-based parameter selection. Figure 2 demonstrates the
entire process of the ESHCS-DLJSO model.
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Min-Max normalization

Primarily, the ESHCS-DLJSO method utilizes the min-max normalization model to measure the input data in
a beneficial format*>. Min-max normalization is a widely used pre-processing model due to its simplicity and
efficiency in scaling input data to a fixed range, typically [0, 1]. This makes it specifically useful for ML models
sensitive to the data’s scale, such as neural networks and distance-based methods like k-nearest neighbours. By
transforming all features to the same scale, min-max normalization assists in enhancing the convergence speed
of gradient-based algorithms. It confirms that no single feature dominates the learning process due to differences
in magnitude. Unlike standardization, which can result in a distribution with a mean of 0 and variance of 1, min-
max normalization preserves the original distribution and makes it easier to interpret the data. Additionally,
this model is computationally effective and works well when the data does not contain extreme outliers, offering
a straightforward solution for preparing data for model training. Min-max normalization ensures consistency
and accuracy and standardizes sensor data in patient monitoring. This method measures data to a specific range,
typically [0, 1], enabling the analysis and integration of dissimilar health metrics from wearable devices. The
normalization formulation is:

X =_—_-7" 1
Xmax _Xmin ( )

Here, X denotes a value of original data; X, and Xomae represent the minimum and maximum values in
the dataset, respectively; and X " means normalized value. This certifies that every sensor data is on a similar
measure, improving the consistency of health assessments over HMI interfaces.

Feature selection using BFOA

Next, BFOA selects features. The BFOA is a population-based stochastic optimizer model stimulated by the
foraging behaviour of Escherichia coli (E. coli) bacteria®*. The BFOA is a bio-inspired optimization technique
modelled after the foraging behaviour of bacteria, making it specifically effectual for feature extraction in
intrinsic, high-dimensional datasets. Unlike conventional methods, namely genetic algorithms (GA) or PSO,
BFOA utilizes a more robust search mechanism with local and global exploration capabilities, which helps
prevent premature convergence to suboptimal solutions. Its iterative search process allows for the extraction of
the most relevant features by balancing exploration and exploitation, thus confirming optimal feature selection
in massive datasets. Furthermore, the capability of the BFOA model to handle noisy data and its flexibility in
dealing with diverse feature types make it appropriate for healthcare and bioinformatics applications, where
data can be heterogeneous and uncertain. Compared to other methods, BFOA is computationally effectual and
presents enhanced accuracy in feature extraction, particularly in systems with multiple features and complex
relationships. Figure 3 illustrates the working flow of the BFOA model.

Let the population of bacteria contain S numbers, and the current chemotactic, reproductive, and
elimination-dispersal steps are signified by ¢, 7, and e, correspondingly. At the ¢th chemotactic step, rth
reproduction, and eth elimination dispersal, the nth bacterium’s position in the D-dimension search space is
denoted below:

0" (t,r, e) {0 tre+9 (t,rye)y e ... ,Gf(t,r,e)} (2)

The major procedures that take place in BFOA, including swarming, chemotaxis, elimination-dispersal, and
reproduction, are defined in short below:

Chemotaxis

It is a procedure by which bacteria direct their environment in response to chemical gradients. This behaviour
permits them to find favourable conditions like food sources. Bacteria attain chemotaxis over short runs (swims)
and tumbles. Flagellar rotation defines their drive: swimming in a definite way or tumbling to discover novel
regions. A unit-length arbitrary vector of direction defined in Eq. (3) demonstrates a tumble for the nth
bacterium at the tth chemotactic, rth reproductive, and eth elimination dispersal steps. This vector defines
the direction variation after a tumble.

; A (tre)
¢ )= \/A (t,re) As(t,r1) ®)
0" (t+1,7r,e)=0"(t,r, ) +C (i) ¢ (4) (4)

whereas 0 "(t + 1, r, e) signifies the nth bacterium at the ¢th chemotactic step, rth reproductive, and eth
elimination dispersal step. C () refers to the size of the step seized in the arbitrary direction definite by the
tumble (the run length unit), and A ,,(¢,, e) represents a randomly produced direction vector that defines the
movement of the nth bacterium.

Swarming

Group behaviour in bacteria helps them drive near regions with greater nutrient attention. This phenomenon
is demonstrated by presenting an extra cost function term (J) that affects every bacterium’s proficient cost
function (J). The swarming cost (.J) considers the local bacterial density and the distance among distinct
bacteria. The accurate representation of the swarming procedure is conveyed in Eq. (5):
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Fig. 3. Working flow of the BFOA method.
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JCC(Q 7P(t7re) = Z Z:lj?c (9 70 " (t7re))
- Z 15';,:1 |:_datt7‘a,ct exp (_w attract Z ;n:l [[(9 n - 0 n]])2)1| (5)
+ Z fz:l |:h7‘epellant exp <_w repellant Z :anl [[(9 n — 0 nﬂ)2)i|

The related coefficients (dattract; W atiract; Prepetiant ANd W repetiant) influence the relative significance of
swarming equal to the original cost function (J). These coefficients should be carefully preferred or adjusted to
attain optimum performance in the BFOA.

Reproduction

Reproduction stage occurs after tracking a predefined integer of chemotactic steps (Nc). This stage helps the
spread of “fitter” bacteria within the population. Bacteria with high health value, usually defined by a fitness
function (FF), have a more significant opportunity of reproducing. On the other hand, bacteria with low health
value will be removed. This mechanism certifies a constant size of the population while choosing individuals
with improved foraging skills. The bacterium health value attained is given as follows:

. Nc
J;Lealth = Z tZIJ(nv tv T, 6) (6)

Elimination-dispersal

It simulates the dynamic nature of the bacterial atmosphere, where local events can severely affect the population

of bacteria. This procedure can remove every bacteria in a regional area and separate them into novel positions,

possibly disturbing chemotaxis growth. It can also help search by assigning bacteria near latent food resources.
The FF reflects the classifier accuracy and the quantity of nominated features. It exploits the classifier

accuracy and reduces the set dimension of certain features. Consequently, the FF mentioned below is employed

to appraise distinct solutions, as exposed in Eq. (7).

#SF

Fitness = a * ErrorRate + (1 — a) * JAL T

7)

Here, ErrorRate indicates the classifier rate of error utilizing the nominated features. It is computed as the
percentage of improperly categorized to the number of classifications prepared, conveyed as a value between 0
and 1. ( ErrorRate is the complement of the classifier accuracy), #SF is the number of chosen features, and
#All _F denotes the total number of attributes in the original dataset. « is employed to switch the position of
classification excellence and sub-set length. In the experiments, « is set to 0.9.

Detection method using CNN-LSTM-Attention model

Furthermore, the CNN-LSTM-Attention method is used for disease detection and classification®. This
technique is an efficient choice for disease detection and classification due to its capability to utilize the merits
of both convolutional and recurrent networks, integrated with the power of attention mechanisms. CNNs
outperform at extracting spatial features from medical images or time-series data, capturing local patterns and
hierarchical structures. LSTMs, on the contrary, are appropriate for sequential data, such as time-series medical
signals, enabling the technique to capture long-term dependencies and temporal patterns. The incorporation
of attention mechanisms allows the model to concentrate on the most relevant features of the input, improving
interpretability and enhancing performance by accentuating significant data points while ignoring irrelevant
data. This integration is beneficial in healthcare, where medical data is often noisy, complex, and high-
dimensional. Compared to conventional techniques such as SVM or shallow neural networks, the CNN-LSTM-
Attention model gives superior accuracy, robustness, and the ability to handle diverse data types, making it
highly effective for disease detection and classification tasks. Figure 4 depicts the structure of the CNN-LSTM-
Attention technique.

A CNN has been broadly employed as a feed-forward neural network (FFNN), mainly collected of fully
connected layers (FCL), convolutional layers (CL), and pooling layers (PL). The layer counts are fine-tuned
based on the method requirements. The main concept for a CNN is convolutional actions for managing
information in Euclidean space, thus providing considerable benefits. In CNNs, the CL is mainly applied for
extracting features by benefits like spatial invariance, local perception, and weight sharing. The PL has been used
to reduce the data dimensionality once convolutional actions inhibit over-fitting. Regular approaches contain

average and max pooling. The FCL maps the removed features and permits them to be used as a classifier for
regression or classification. This work used a one-dimensional CNN using convolutional kernels. The objective
is to capture features and share parameters, decreasing the parameter counts required for model optimizer and
computational complexity. This method improves the model’s training scalability and efficiency.

LSTM networks are advanced depending on conventional RNNs, presenting gating methods to help moderate
the problems of exploding and vanishing gradients, which RNNs face after handling long-term dependency.
The network form of an LSTM technique contains 3 gate elements: the input gate, the output gate, and the
forget gate. The forget gate is critical in guiding the amount of data transmitted from earlier to the present state.
Simultaneously, the input gate moderates the effect of recently obtained data on the existing state, and the output
gate manages the dependence of the present output on the memory cell state. Also, the network filters maintain
ancient data state without inserting novel input data. On the other hand, when the input gate methods value one
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Fig. 4. Architecture of CNN-LSTM-attention model.

while the forget gate methods value 0, the LSTM network attains a memory upgrading function. This network
dismisses ancient data irrelevant to the present task and concentrates on the present input data.

The collaboration method amongst gates makes LSTM more adaptable in memory and learning. LSTM
frequently exceeds the conventional RNN. The LSTM unit structure, with Egs. (8)-(13) is described as follows:

it = 0 (Wixe + Uihs—1 + bi) (8)
fe=0 Wsxe +Ushi—1 + by) )
Ot =0 (Woxt + Uohtfl + bo) (10)
5t = tanh (Wewy + Uchi—1) (11)
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ct=[ftO c—1+1: O 5‘5—1 (12)
ht =0 ® tanh (Ct) (13)

whereas i, f;, and o; correspondingly relate toward switching states of the input, output, and forget gates;
C'y exists the cell state of a candidate; c; exists present cell state; h; exists the present unseen state; x; exists

input sequence value at the present time-step; W and U signify the three gates weight matrices; b denotes
the bias vector; and o characterizes the activation function of sigmoid, whereas tanh means the hyperbolic
activation function of tangent. The CNN-LSTM approach is broadly applied. Nevertheless, its performance can
be narrowed by optimizer methods. Methods can overwhelm this limitation by presenting attention methods
that imitator the human brain’s data handling and considerably increase neural networks’ capacity for managing
spatial and temporal information. These lead to improved optimization model performances and generalization.

Attention has been theorized as a weighted summation, whereas the weights relate to the correspondence
among the vectors of calculation. The first attention contains ), K, and V from input features. V signifies the
input feature vectors, and () and K are feature vectors applied to estimate the attention weights. If an attention
network is not presented, then a single set of V' is required to input it for training the network. Nevertheless,
once an attention network was given, those groups of V' needed to be multiplied by a group of weights F'(Q), K)
, allowing the network to concentrate on limited features of the input.

Initially, attention scores are gained by computing the correlation or similarity between a keyword (Key) and
query, with usual approaches such as additive attention, scaled dot product, and dot product. Next, the softmax
function controls the attention scores, transforming them into a probability distribution, which characterizes
each value’s importance. Lastly, the values are summed and weighted based on the normalized attention scores
with a weighted sum method. This results in a weighted average representation, highlighting data related to the
query Eqs. (14)-(16) are utilized to achieve this constraint:

si=F(Q, ki) (14

= soft 3= exp (s;)
« softmazx (s;) 72 ;.V:lexp o) (15)
Attention ((K, V), Q) = ZA: o405 (16)

Hyperparameter tuning process
Finally, the hyperparameter tuning method is performed using the JSO method. The JSO model simulates the
movement of jellyfish in the water®. This is an effectual global optimization algorithm inspired by the social
behaviour of jellyfish, making it specifically effectual for hyperparameter tuning in intrinsic ML techniques.
Unlike traditional approaches such as grid search or random search, JSO gives a more dynamic and adaptive
approach, exploring the search space more thoroughly while balancing exploration and exploitation.
The capability of the JSO model to escape local optima confirms that it can find improved hyperparameter
combinations, enhancing model performance and generalization. It has proven to be computationally efficient
and less prone to overfitting related to other optimization methods, namely GA or PSO. Additionally, JSO works
well in high-dimensional search spaces, making it ideal for tuning DL methods with various hyperparameters.
This makes JSO a robust choice for enhancing the accuracy and effectualness of models in fields like healthcare,
where hyperparameter optimization is significant for attaining high-quality predictions. Figure 5 demonstrates
the overall workflow of the JSO methodology.

The JSO model includes key modules like passive and active motions, ocean currents, a group of jellyfish, and
a time control device. These vital rubrics for the proposed optimization technique can be summarized as below:

Ocean current
The jellyfish are appealed to nutrients that are in the water present. The movement of the ocean current (trend)

is established by averaging every vector from every jellyfish in the sea to the finest jellyfish:
—
trend = 1 Z trend; = 1 Z (Xbpest — € Xs)

> X

X* — Eclh = Xbest - df

Tpop
df = ecp
ec = f *rand (0,1)
df =B *rand (0,1) * p (17)

whereas df signifies the difference between every jellyfish's mean position and the jellyfish’s present finest
position, while npop signifies the number of jellyfish in the ocean, Xpes: denotes the finest position; e
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Fig. 5. Workflow of the JSO technique.
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represents the factor which controls the attraction. p denotes the average location of every jellyfish. The novel
location of every jellyfish is numerically computed below:

Xi(t+1) = X; (t) + rand (0,1) x trend,

It is intended by

(18)
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Xi(t+1)=X;(t) + rand (0,1) * (Xpest — 8 *rand (0,1) ) (19)
—
whereas 8 > 0 means a distribution parameter accompanied by the distance of ¢rend.

Group of jellyfish
In the Jellyfish group, dual dissimilar kinds of motions can be detected. The 1st type is recognized as Type A,

which resembles passive motion, while the 2nd type, denoted as Type B, signifies active motion. As the group
was initially made, the jellyfish showed mainly Type A motion, slowly progressing into Type B. Type A motion
includes the jellyfish affecting around their particular positions, and the upgraded location of every jellyfish is
computed utilizing the below-mentioned formulation:

Xz(j + 1) =X; (j) + v % rand (0,1) * (Ub - Lb) (20)

Meanwhile, Uy and Ly denote the upper and lower limits. The coefficient of motion is v > 0, related to the
movement of jellyfish regarding their locations.

In the swarm of jellyfish, a set of jellyfish (j) and (¢) are randomly preferred. If the size of food at the
location of jellyfish (j) is larger than the food dimension at the position of the target jellyfish (z), then the
target jellyfish (i) will travel near the location of jellyfish (j) . On the other hand, if the size of the food set for the
preferred jellyfish (j) is lesser than the food size arranged for the target jellyfish (4) , then the target jellyfish (4)
will go straight away from it. This procedure certifies that every jellyfish in the group alters its location depending
upon the most effectual model of attaining food.

step = X;(t+1) — X, () (21)

where, @ = rand (0,1) % direction
aeaion ={ %G5 T2 1) 2

Meanwhile, f (X;) signifies a@l_)}jective function.

Henceforth, X;(¢t + 1) = step + X; (t).

The time control technique is used to portray the motion pattern over time, particularly with the drive of
jellyfish within an ocean current. It rules how the jellyfish cross across the current.

Time control mechanism

The time control mechanism is presented to normalize the jellyfishs movement within the group and their
navigation under the sea current. This method covers a constant C and a time control function C (t) . C (t) is
positioned at random among 0 and 1.

C(t) = ‘ (1 t ) « (2% rand (0,1) — 1) (23)

"~ Max_it

The JSO method originates an FF to achieve an enhanced classifier solution. It states a positive number to denote
the enhanced efficiency of the candidate solution. In this paper, the minimizer of the classifier error rate is
regarded as FF and formulation is expressed in Eq. (24).

fitness (z;) = Classifier Error Rate (z;)

__no.of misclassified samples

100 24
Total no. of samples X @4

Result analysis

The simulation validation of the ESHCS-DLJSO technique was verified on the IoT healthcare security dataset?’.
It has been made a use case of an IoT-based ICU with a volume of 2 beds, whereas all beds are set with nine
patient monitoring devices (i.e., sensors) and one control unit named Bedx-Control-Unit. Each of these devices
was generated using the IoT-Flock tool. The original dataset contains 50 features; the top 24 features are chosen,
namely frame.time_delta, frame.len, ip.src, ip. dst, tcp. dstport, tcp. flags, tep.len, tep.ack, tep.connection.fin,
tep. flags.ack, tcp. flags.push, tcp.flags.urg, tcp.checksum, mqtt.clientid, mqtt.conack.flags, mqtt.conack.val,
mgqtt.conflag.qos, mqtt.conflag.retain, mqtt.hdrflags, mqtt.kalive, mqtt.retain, mqtt.topic, mqtt.ver, ip.proto. The
dataset comprises 30,000 samples under three classes. Each class contains 10,000 samples, as represented in
Table 2.

Figure 6 shows a collection of confusion matrices made by the ESHCS-DLJSO approach on diverse epoch
counts. The confusion matrix provides a detailed breakdown of the classification performance at different
epochs (500, 1000, 1500, 2000, 2500, and 3000). It illustrates the true positive (TP), false positive (FP), false
negative (FN), and true negative (TN) rates for three classes: Class 0, Class 1, and Class 2. As the epochs increase,
the model consistently enhances its performance across all classes, with TP rates nearing 99% and FN rates
remaining low. For example, at Epoch 500, Class 0 has a TP of 98.06%, and at Epoch 3000, Class 2 has a TP of
99.16%. The FN and FP rates decrease with higher epochs, demonstrating the improved accuracy and efficiency
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Class 0 No attack-environment monitoring | 10,000
Class 1 No attack-patient monitoring 10,000
Class 2 Attack-Accur 10,000
Total no. of samples 30,000

Table 2. Details on dataset.

Confusion Matrix Confusion Matrix Confusion Matrix
Epoch - 500 Epoch - 1000 Epoch - 1500

Actual Predicted Actual Predicted

(a) (b) (c)
Confusion Matrix Confusion Matrix Confusion Matrix
Epoch - 2000 Epoch - 2500 Epoch - 3000
Actual Predicted Actual Predicted Actual Predicted

(d) (e) ()

Fig. 6. Confusion matrices of ESHCS-DLJSO technique (a-f) Epochs 500-3000.

of the model as training progresses. The results identify that the ESHCS-DLJSO method efliciently recognizes
samples under all three class labels.

Table 3 offers the recognition result of the ESHCS-DLJSO approach under different epoch counts.

Figure 7 displays the average result of the ESHCS-DLJSO method under 500-1500 epochs. The figure values
reported that the ESHCS-DLJSO process accurately recognized all three samples. On 500 epoch counts, the
ESHCS-DLJSO models present an average accu, of 99.09%, prec, of 98.64%, reca; of 98.63%, F'lscore of
98.63%, and M CC of 97.95%. Moreover, on 1000 epoch counts, the ESHCS-DLJSO approach provides an
average accuy of 98.88%, prec, of 98.32%, reca; of 98.32%, F'lscore of 98.32%, and M CC of 97.48%.

Figure 8 demonstrates the average outcome of the ESHCS-DLJSO method under 2000-3000 epochs. The
figure values reported that the ESHCS-DLJSO process accurately recognized all three samples. In the meantime,
on 2000 epoch counts, the ESHCS-DLJSO process attains an average accuy of 99.08%, prec, of 98.63%, reca
of 98.62%, F'lscore of 98.62%, and M CC of 97.94%. Additionally, on 3000 epoch counts, the ESHCS-DLJSO
techniques provide an average accuy of 99.00%, prec, of 98.50%, reca; of 98.50%, F'lscore of 98.50%, and
MCC of 97.75%.

In Fig. 9, the training and validation accuracy outcomes of the ESHCS-DLJSO methods under different
epoch counts are portrayed. The precision values are computed for 0-3000 epoch counts. This figure underlined
that the training and validation accuracy values show a growing trend that informed the capacity of the ESHCS-
DLJSO technique with better performance over numerous iterations. In addition, the training and validation
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Class labels ‘ Accuy ‘ Prec, ‘ Reca; ‘ Flgeore | MCC
Epoch—500

Class 0 99.02 98.06 99.03 98.54 97.81
Class 1 99.24 99.22 98.50 98.86 98.30
Class 2 99.00 98.63 98.37 98.50 97.75
Average 99.09 98.64 98.63 98.63 97.95
Epoch—1000

Class 0 98.74 97.69 98.56 98.12 97.18
Class 1 99.25 98.97 98.77 98.87 98.30
Class 2 98.65 98.31 97.63 97.97 96.96
Average 98.88 98.32 98.32 98.32 97.48
Epoch—1500

Class 0 98.92 98.08 98.68 98.38 97.57
Class 1 99.27 99.04 98.78 98.91 98.36
Class 2 98.82 98.40 98.06 98.23 97.35
Average 99.00 98.51 98.51 98.51 97.76
Epoch—2000

Class 0 99.01 98.07 98.98 98.52 97.78
Class 1 99.30 99.12 98.79 98.95 98.43
Class 2 98.93 98.69 98.10 98.40 97.60
Average 99.08 98.63 98.62 98.62 97.94
Epoch—2500

Class 0 99.34 98.93 99.09 99.01 98.52
Class 1 99.55 99.34 99.32 99.33 98.99
Class 2 99.39 99.16 99.02 99.09 98.63
Average 99.43 99.14 99.14 99.14 98.72
Epoch—3000

Class 0 98.93 97.97 98.85 98.41 97.61
Class 1 99.24 98.93 98.78 98.85 98.28
Class 2 98.83 98.61 97.87 98.24 97.36
Average 99.00 98.50 98.50 98.50 97.75

Table 3. Detection outcome of the ESHCS-DLJSO model under distinct epochs.

accuracy stay nearer over the epoch counts, which point out the least minimum overfitting and display improved
performance of the ESHCS-DLJSO technique, assuring consistent prediction on hidden samples.

Figure 10 presents the training and validation loss graph of the ESHCS-DLJSO approach under different
epoch counts. The loss values are computed throughout 0-3000 epoch counts. It is denoted that the training
and validation accuracy values imply a reducing trend, reporting the ability of the ESHCS-DLJSO technique to
balance a trade-off between generalization and data fitting. The constant decrease in loss values also promises the
improved performance of the ESHCS-DLJSO process and tunes the prediction outcomes in time.

In Fig. 11, the precision-recall (PR) curve examination of the ESHCS-DLJSO method under different epoch
counts interprets its performance by plotting Precision against Recall for each class label. This figure shows
that the ESHCS-DLJSO approach steadily obtained enhanced PR values over dissimilar classes, pointing out its
capability to handle an essential segment of TP predictions between every positive prediction (precision) and
capture many actual positives (recall). The constant growth in PR results between all class labels depicts the
efficiency of the ESHCS-DLJSO techniques in the classification process.

In Fig. 12, the ROC curve of the ESHCS-DLJSO method was examined. The outcomes infer that the
ESHCS-DLJSO approach, under different epoch counts, attains better ROC results across every class label,
representing a critical ability to differentiate the class labels. These growing tendencies of better ROC values
across numerous class labels denote the efficient performance of the ESHCS-DL]JSO approach in predicting class
labels, emphasizing the robust nature of the classification method.

Table 4; Fig. 13 compare ESHCS-DLJSO methods with existing studies**->0. The results identify that the
ESHCS-DLJSO approach accurately identified all three samples. Compared with accu,, the ESHCS-DLJSO
models show their supremacy with a better accuy of 99.43%. At the same time, the XG-ABC, XG-COLSHADE,
CNN-TSODE, RNN, CNN, FS-LSTM, and XSRU-IoMT processes gained lowered performance with accu, of
94.60%, 98.04%, 92.90%, 94.64%, 94.36%, 92.95%, and 98.39%, respectively. Moreover, equating with prec,, the
ESHCS-DLJSO techniques display its supremacy with a better prec, of 99.14%. In contrast, the XG-ABC, XG-
COLSHADE, CNN-TSODE, RNN, CNN, FS-LSTM, and XSRU-IoMT processes acquire minimum performance
with prec, of 94.22%, 91.87%, 91.63%, 97.15%, 93.79%, 93.78%, and 96.89%, respectively.
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Fig. 7. Average outcome of ESHCS-DLJSO model (a—c) Epochs 500-1500.

Table 5; Fig. 14 specify the computational time (CT) analysis of the ESHCS-DLJSO technique with existing
studies. The methods evaluated in terms of CT are as follows: XG-ABC took 5.98 s, XG-COLSHADE took 8.98 s,
CNN-TSODE took 11.21 s, RNN took 8.64 s, CNN Classifier took 13.33 s, FS-LSTM took 5.88 s, XSRU-IoMT
took 10.79 s, and ESHCS-DLJSO took 3.89 s.

Conclusion

In this study, an ESHCS-DLJSO technique for IoT healthcare applications is presented. This model comprises
four distinct processes involving data normalization, BFOA-based feature selection, CNN-LSTM-Attention
using disease detection process, and JSO-based parameter selection. Initially, the ESHCS-DLJSO model employs
a min-max normalization technique to measure the input data into a beneficial format. In addition, BFOA
accomplishes feature selection. Next, the ESHCS-DLJSO approach utilizes the CNN-LSTM-Attention model
for disease classification and detection. Eventually, the JSO method is employed for the hyperparameter tuning
process. The simulation of the ESHCS-DLJSO technique is examined on an IoT healthcare security dataset.
The performance validation of the ESHCS-DLJSO technique portrayed a superior accuracy value of 99.43%
over existing approaches. The limitations of the presented study comprise enhanced computational complexity
with larger datasets, reliance on high-quality input data, and limited applicability to other diseases without
additional adaptation. Furthermore, the models may need help with noisy or incomplete data and imbalanced
datasets, which are common in healthcare. For future work, efforts can be directed toward enhancing the
model’s scalability to handle large-scale, real-time healthcare data streams. Moreover, exploring more robust
data augmentation models to handle noisy, missing, or unbalanced data could improve the generalization and
reliability of the model. Future studies could also investigate incorporating multi-modal data sources, such as
integrating patient health records with wearable device data, to enhance diagnostic accuracy. Finally, exploring
TL techniques to adapt the models to new diseases or healthcare contexts with minimal labelled data would
improve the flexibility and usability of the model in diverse healthcare scenarios.
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Fig. 8. Average outcome of ESHCS-DLJSO model (a-c) Epochs 2000-3000.
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Fig. 12. ROC curve of ESHCS-DLJSO technique (a—f) Epochs 500-3000.
XG-ABC 94.60 94.22 94.74 95.87
XG-COLSHADE | 98.04 91.87 96.92 92.35
CNN-TSODE 92.90 91.63 93.58 97.53
RNN 94.64 97.15 93.49 98.25
CNN Classifier 94.36 93.79 93.93 94.96
FS-LSTM 92.95 93.78 94.10 98.14
XSRU-IoMT 98.39 96.89 91.75 96.88
ESHCS-DLJSO 99.43 99.14 99.14 99.14
Table 4. Comparative analysis of ESHCS-DLJSO technique with recent methods*®->C.
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Fig. 13. Comparative analysis of ESHCS-DL]JSO technique with recent methods.

XG-ABC 5.98
XG-COLSHADE | 8.98
CNN-TSODE 11.21

RNN 8.64
CNN Classifier 13.33
FS-LSTM 5.88
XSRU-IoMT 10.79

ESHCS-DLJSO | 3.89

Table 5. CT analysis of ESHCS-DL]JSO technique with recent methods.
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Fig. 14. CT analysis of ESHCS-DLJSO technique with recent methods.
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