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With an increased chronic disease and an ageing population, remote health monitoring is a substantial 
method to enhance the care of patients and decrease healthcare expenses. The Internet of Things 
(IoT) presents a promising solution for remote health monitoring by collecting and analyzing vital 
data like body temperature, ECG, and heart rate, giving real-time insights to medical professionals. 
However, maintaining effectual monitoring in environments with bandwidth or energy constraints 
presents crucial threats. While machine analysis and human insight performance must be content, 
conveying extra data to gratify both would be evaded for efficient resource application. Therefore, 
this article proposes an Enhanced Security Mechanism for Human-Centered Systems using Deep 
Learning with Jellyfish Search Optimizer (ESHCS-DLJSO) approach for IoT healthcare applications. 
The projected ESHCS-DLJSO approach allows IoT devices in the healthcare field to securely convey 
medical data and early recognition of health problems in the human-machine interface. To achieve 
this, the ESHCS-DLJSO approach utilizes a min-max normalization technique to transform the input 
data into a more suitable format. The bacterial foraging optimization algorithm (BFOA) method is 
used for feature extraction. Moreover, a convolutional neural network with long short-term memory 
(CNN-LSTM-Attention) technique is used for disease detection and classification. Finally, the ESHCS-
DLJSO technique employs the jellyfish search optimizer (JSO) technique for hyperparameter tuning. 
The simulation of the ESHCS-DLJSO technique is examined on an IoT healthcare security dataset. The 
performance validation of the ESHCS-DLJSO technique portrayed a superior accuracy value of 99.43% 
over existing approaches.

Keywords  Internet of things, Deep learning, Jellyfish search optimizer, Human-centered systems, 
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Humans are still looking for more normal sensing and manual feature developments. Such developments can 
be related to some cognition transformation generated by human intuition to be modified to novel variations 
in living standards1. Owing to the differential progress in the difficulty of mechanical frameworks and the 
resulting need for communication among the machine functionalities and human perceptions, human-machine 
interfaces (HMIs) come into existence; HMI structures can significantly help humans using a large number 
of physical abilities and ages to use and controlling machinery2. Figure 1 represents the structure of Human-
Centered systems. Using fast growth in the IoT in the last few years, HMIs have progressively been developed. 
It is a beneficial technology for providing innovative remote healthcare, including IoT-authorised devices by 
medical appliances3. Incorporating IoT and deep learning (DL) techniques has transformed healthcare processes 
in domestic areas by supporting remote health supervision and initial identification of health-related problems. 
The IoT technology application allows the collection of vast amounts of physiological information, namely body 
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temperature, blood oxygen level, ECG signals, and heart rate, from appropriate sensors or devices4. IoT offers 
instant admission to doctors and hospitals by calculating and treating a fundamental symptom of patients. 
These help to reduce the mortality rate produced because of heart failures and strokes. IoT implementation 
techniques continually change people’s day-to-day life approaches5. IoT technologies will additionally improve 
human culture into an innovative period of human-machine combination, collaborative sharing and design, and 
intelligence. DL methods and IoT technologies are broadly applied in many arenas to support the technological 
foundations of the recent technological revolt. Many machine learning (ML) techniques have been used in 
decision-making in healthcare appliances6.

Nevertheless, many traditional approaches like classic neural networks and k-nearest neighbours are only 
suitable if the data scale rises in time and vast quantities of data as big data have been made. On the other 
hand, DL models are hopeful substitutions in this connection, with tactics in deep architectures for learning 
hierarchical depictions7. These approaches can handle significant quantities of data, but the precision increases 
with the growth of training data sets. Convolutional neural networks (CNN) are the best model for DL 
approaches that are effective for IoT-based medical observation. CNN is a deep NN class frequently applied 
with 2D signs, namely images and videos. They might have been learning thousands of objects with millions 
of images as input data sets. Attention layers allow the DL methods to concentrate on particular input data 
features that are more related to the classification task8. These increase precision and reduce computational 
efficiency, making it appropriate for placement in limited resource environments like home health care services. 
The swift evolution of IoT technologies has significantly improved the potential for remote healthcare systems, 
but confirming robust security remains a critical threat. With the growing dependence on connected devices 
to monitor and manage human health, safeguarding sensitive data and ensuring the integrity of health data is 
essential9. As healthcare systems become more intrinsic and data-driven, there is a growing requirement for 
enhanced security mechanisms that can adapt to the dynamic nature of IoT environments. Employing DL and 
optimization models presents a promising approach to improving the security and effectualness of these systems. 
By incorporating intelligent models with IoT infrastructure, it is possible to build more resilient and responsive 
healthcare solutions prioritizing privacy and functionality10.

This article proposes an Enhanced Security Mechanism on Human-Centered Systems using DL with Jellyfish 
Search Optimizer (ESHCS-DLJSO) approach for IoT healthcare applications. The projected ESHCS-DLJSO 
approach allows IoT devices in the healthcare field to securely convey medical data and early recognition of 

Fig. 1.  Structure of human-centered systems.
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health problems in the human-machine interface. To achieve this, the ESHCS-DLJSO approach utilizes a min-
max normalization technique to transform the input data into a more suitable format. The bacterial foraging 
optimization algorithm (BFOA) method is used for feature extraction. Moreover, a convolutional neural 
network with long short-term memory (CNN-LSTM-Attention) technique is used for disease detection and 
classification. Finally, the ESHCS-DLJSO technique employs the jellyfish search optimizer (JSO) technique 
for hyperparameter tuning. The simulation of the ESHCS-DLJSO technique is examined on an IoT healthcare 
security dataset. The major contribution of the ESHCS-DLJSO technique is listed below.

•	 The ESHCS-DLJSO model utilizes Min-max normalization to scale and standardize the input data, confirm-
ing consistent value ranges. This pre-processing step improves the technique’s capability to learn and gener-
alize more effectively. Converting the data into an appropriate format enhances the overall effectiveness of 
subsequent analyses and models.

•	 The BFOA approach detects and extracts the most relevant features from the data. This methodology opti-
mizes the feature selection process, enhancing the model’s accuracy and reducing computational complexity. 
Concentrating on key features improves the efficiency of disease detection and classification.

•	 The CNN-LSTM-Attention model is employed for precise disease detection and classification, incorporating 
the merits of convolutional and recurrent networks. This hybrid methodology captures spatial and temporal 
patterns in the data, enhancing classification accuracy. The attention mechanism improves the method’s focus 
on the most relevant features, confirming robust performance.

•	 The JSO method is implemented to fine-tune the model parameters, enhancing their accuracy and effective-
ness. This optimization methodology intelligently alters the parameters to attain optimal performance. By 
improving the model’s adaptability, JSO confirms enhanced generalization and faster convergence during 
training.

•	 Integrating advanced optimization approaches such as JSO with DL models—CNN-LSTM-Attention pre-
sents a novel solution for disease classification in IoT-based healthcare systems—and improves the classifica-
tion process’s accuracy and efficiency. The ability to fine-tune models dynamically while capturing complex 
patterns in data represents a crucial enhancement in healthcare diagnostics.

The article is structured as follows: “Literature survey” presents the literature review, “Proposed method” outlines 
the proposed method, “Result analysis” details the results evaluation, and “Conclusion” concludes the study.

Literature survey
Mohapatra et al.11 presented a time-frequency domain deep neural network (TFDDNN)-based method for 
recognizing hand signals with MEMG footage. The MEMG footage has been segmented within frames, and the 
average of each channel data (mean EMG signal) to all frames is estimated. The constant wavelet transformation 
can be used in the mean EMG signal to obtain the combined time-frequency representation (TFR). The TFR-
based imageries of the mean EMG signal are employed as input into the deep representation learning network 
(DRLN) method for recognizing hand signals. Wang et al.12 introduced an HMI-obtained image coding (HMI-
IC) outline depending on DL. In these models, machinery must offer initial supervising messages containing 
study outcomes and sample images; humans can also request first-class imageries of key elements. Adaptive 
coding transmission can be adequate for various needs in two phases based on a lack of resources. Islam et 
al.13 developed an IoT-based method for isolated supervision and earlier identification of health difficulties in-
home medical backgrounds. The data collected will be transferred to the server using the MQTT protocol. 
The pre-trained DL method depends on a CNN by an attention layer utilized by the server for classifying 
possible illnesses. Rani et al.14 designed a 3-phase product-economy-ecology approach by considering additive 
manufacturing techniques’ fundamental functional and characteristic development. Key supporting techniques 
for product growth and process design have been conferred. Moreover, the usual implementations of human-
machine collaborative additive manufacturing within the product, economic, and ecological phases were 
deliberated, containing modified product design, energy conservation, emission reduction, collaboration 
design, communicating manufacturing, distributed manufacturing, and HMI technologies for the process 
chain. In15, an intense and intellectual IoMT process has been developed using the synergistic incorporation of 
flexible wearable triboelectric sensors and DL-helped data analytics. This approach embedded four triboelectric 
sensors within a wristband for detecting and analyzing limb movements in patients struggling with Parkinson’s 
Disease (PD). Webber et al.16 introduced a method for identifying signals in handling intermittent light patterns 
in a visible light communications (VLC) approach. This process achieves the current light communications 
framework with cheaper and freely obtainable mechanisms. Various finger orders have been recognized with 
probabilistic neural networks (PNNs) trained on light transitions among fingers. The unique pre-processing 
from the tested light on a photodiode is defined to assist the usage of the PNN by deficient intricateness. Shoukat 
et al.17 recommend implementing the DT method and summarising the study and application growth from the 
view of the home devices’ DT modelling. The modelling technique was three-phase: regarding a virtual entity, 
physical entity, and data communication connectivity. The presented approach uses communication methods 
for the intellectual control of HD by incorporating DT and virtual simulation technology to establish a human 
CPS, primarily directing tasks related to remote-control difficulties.

Nguyen et al.18 developed a wrist-worn prototype for capturing an RGB video for a hand signals stream. 
This approach then estimates different CNN techniques for vision-based detection. Moreover, this approach 
analyzes the method that provides the finest trade-off amongst memory requirement, cost of computation, and 
accuracy. This approach demonstrates that when analyzing architecture, MoviNet gives the maximum precision. 
At that time, a unique MoviNet-based 2-stream architecture was presented, which takes either RGB or optical 
flow within the version. Vakili et al.19 present a service composition methodology using Grey Wolf Optimization 
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(GWO) and MapReduce framework to compose services with optimized QoS. Heidari et al.20 propose a 
blockchain (BC)-based federated learning (FL) method to confirm data privacy, utilizing SegCaps, CNN, and 
transfer learning (TL) for enhanced image feature extraction and model performance. Pavithra et al.21 introduce 
an Optimized Deep Recurrent Neural Network (O-DRNN) method with a secure multitier architecture, 
utilizing PSO for feature selection and Bayesian optimization for hyperparameter tuning, with edge computing 
and cloud storage secured by ECKAS. Aminizadeh et al.22 comprehensively review ML, DL, and distributed 
systems in healthcare to improve service quality and address key implementation threats. Amiri et al.23 review 
and synthesize DL applications in IoT-based bio- and medical informatics, classifying them by technique to 
address medical threats. Kumar et al.24 introduce a DL-based DL approach for secure data transmission 
(BDSDT) in IoT healthcare by utilizing ZKP for integrity, IPFS for storage, and Ethereum smart contracts for 
security, with DSAE-BiLSTM for intrusion detection. Heidari et al.25 propose an approach that constructs an 
optimal spanning tree by incorporating artificial bee colony (ABC), genetic operators, and density correlation to 
optimize device connectivity by depending on hop count, residual energy, and mobility. Heidari, Navimipour, 
and Unal26 present a DL-based RBFNN methodology to enhance data integrity and storage for smart decision-
making in IoDs. Heidari et al.27 analyze the availability and reliability of Wireless Sensor Networks (WSNs) by 
examining failure scenarios utilizing fault trees and Markov chain analysis to enhance network stability. Singh 
et al.28 introduce a continuous authentication system for IoT healthcare using LSTM, integrating biometric data 
and security credentials to prevent unauthorized access, with data collected via Arduino Uno and smart devices. 
Zanbouri et al.29 propose a GSO-based optimization model for DL-based IIoT, enhancing scalability, resource 
allocation, and decision-making to mitigate inefficiencies and bottlenecks. Amiri, Heidari, and Navimipour30 
introduce a novel taxonomy for DL applications in climate change mitigation. It classifies ML methods into six 
key areas and underscores advanced research.

Rajkumar et al.31 employ the DL model for heart disease prediction, pre-processing data with Median 
Studentized Residual, selecting features with Harris Hawk Optimization (HHO), and classifying with Modified 
Deep LSTM, optimized by Improved Spotted Hyena Optimization (ISHO). Aldaej, Ahanger, and Ullah32 present 
a secure IoT healthcare diagnostic model by employing deep neural networks (DNNs), integrating encryption, 
safe transactions, and techniques like orthogonal particle swarm optimization (PSO) for medical image sharing 
and neighbourhood indexing for hash value encryption. Movassagh et al.33 focus on improving perceptron 
neural network precision by utilizing meta-heuristic algorithms for training and determining input coefficients. 
Babar et al.34 develop a secure, intelligent, and efficient framework for smart H-CIoT networks using Software-
Defined Networking (SDN) and DL, addressing challenges like attack detection, data management, and fog 
node selection. Kumar et al.35 propose a virtual object management system utilizing Digital Twins (DT) for 
optimal task scheduling and enhanced user experience. It employs Hybrid Energy Valley with Lévy Flight 
Distribution Optimization (HEV-LFDO) for efficient task offloading to edge devices while securing data with 
BC for effective resource management and minimizing local loss. Othmen et al.36 optimize cluster head (CH) 
selection and routing paths in IoT-enabled healthcare applications utilizing fuzzy logic (FL) and PSO to improve 
communication efficiency, reduce delays, and enhance throughput and energy efficiency. Alzubi37 presents a BC-
based secure system for medical IoT devices using Lamport Merkle Digital Signature (LMDS). It authenticates 
devices through a tree structure of patient data hashes, with a Centralized Healthcare Controller verifying 
the root using LMDS Verification. Rani et al.38 developed an IoT-based healthcare system using SqueezeNet_
Fractional Dung Beetle Optimization (SqueezeNet_FDBO), optimizing routing and classification performance. 
Alzubi et al.39 introduce a technique incorporating DL and BC for electronic health record privacy. Using a 
CNN classifies users as normal or abnormal, then removes abnormal users via BC and cryptography-based 
FL, securing access to health records. Radhika et al.40 developed a Binary Butterfly Optimization Algorithm 
with Stacked Non-symmetric Deep Auto-Encoder (BBOA-SNDAE) methodology for predicting HD using 
clinical data and Medical IoT technology. Naz et al.41 developed a medical diagnostic system using IoT and 
CNN to precisely detect tumours, improving breast cancer diagnosis and early detection. While identifying 
future research opportunities, Bai, Gu, and Tang42 explore how DL and IoT technologies can improve patient 
monitoring, clinical outcomes, and ICU processes. Table 1 summarizes the existing studies on remote healthcare.

The existing studies present various models for addressing key threats in IoT-based healthcare systems, 
comprising secure data transmission, disease prediction, and system optimization. Some approaches employ DL 
methods, such as LSTM, for continuous authentication and heart disease prediction, while others incorporate 
DL for improved data integrity and privacy in decentralized systems. HHO, Bayesian optimization, and PSO 
enhance feature selection and model performance. Several methodologies integrate IoT sensors for real-
time data collection, optimizing resource allocation, and addressing issues such as scalability, security, and 
fault tolerance in healthcare networks. However, these methods mostly encounter limitations such as high 
computational complexity, scalability threats in dynamic environments, and potential data privacy and accuracy 
issues, which could affect their practical implementation and widespread adoption in real-world healthcare 
settings. The research gap is in the limited exploration of scalable, real-time DL and DL-based solutions for safe, 
effectual IoT healthcare systems, specifically in handling dynamic data and resource constraints. Furthermore, 
more comprehensive studies need to be conducted to address the incorporation of diverse optimization models 
and their real-world applicability in diverse healthcare environments.

Proposed method
This study presents an ESHCS-DLJSO technique for IoT healthcare applications. The technique’s main intention 
is to permit IoT devices in the healthcare field to transform medical data and early recognize health issues 
in HMI. It contains four distinct processes: data normalization, BFOA-based feature selection, CNN-LSTM-
Attention using the disease detection process, and JSO-based parameter selection. Figure 2 demonstrates the 
entire process of the ESHCS-DLJSO model.
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References Techniques Metrics Findings

11
TFDDNN, Continuous Wavelet Transform, 
DRLN, Multichannel Electromyogram 
Sensor Data

Accuracy The TFDDNN-based method achieved accuracy rates of 92.73% and 80.33% for 
multiclass hand gesture recognition using MEMG data from two databases

12

Human-Machine Interaction-Oriented 
Image Coding, DL, Adaptive Coding 
Transmission, Layered Data Stream 
Compression, Two-Stage Adaptive 
Transmission

Accuracy, Inference Speed, 
Coding Efficiency

The proposed method enhances accuracy and inference speed for compressed 
images, with coding efficiency comparable to JPEG2000 in energy- and 
bandwidth-constrained visual monitoring scenarios

13

IoT-based System, MAX30100 Sensor, 
AD8232 ECG Sensor Module, MLX90614 
Non-Contact Infrared Sensor, MQTT 
Protocol, Pre-trained DL model

Precision, Recall, F1-Score The system efficiently detects heartbeats and classifies body temperature, giving 
real-time disease detection and automatic doctor alerts for critical abnormalities

14

Human-Cyber-Physical System, 
Human-Machine Collaborative Additive 
Manufacturing, IoTs, Artificial Intelligence, 
DT Technology, Extended Reality, Intelligent 
Materials

Product, Economy, Ecology 
model (3-level framework)

The framework adopts human-machine collaboration in Industry 5.0 additive 
manufacturing, enhancing product personalization and sustainability and 
integrating AI and IoT

15

Triboelectric sensors for flexible, wearable 
sensing, DL-assisted data analytics, 
Integration of sensor data with intelligent 
healthcare monitoring system

Location/trajectory tracking, 
Heart rate monitoring, Identity 
recognition, Motion and fine 
motor analysis

The system effectually captures subtle limb movements, giving precise health 
monitoring, cost-efficiency, and high sensitivity

16 PNN, VLC system, Light transitions
Accuracy, Impact of matrix size, 
and Gaussian spread function on 
accuracy

The system shows the potential for gesture recognition utilizing VLC technology, 
attaining 73% accuracy and exhibiting promise for incorporating with growing 
Li-Fi standards

17

DT, Human-Cyber-Physical System, Game 
theory, Virtual simulation technologies, 
Remote intelligent control and data 
communication

Equipment tracking test, 
Connectivity depth and range for 
home-device networks

The study highlights the feasibility of utilizing a DT model incorporated with 
HCPS for smart home devices, attaining effectual synchronization and positional 
accuracy in real-time remote-control applications

18 Wrist-worn prototype, CNNs, MoviNet-
based two-stream architecture

Top-1 accuracy improvement, 
Evaluation of models based on 
accuracy, memory requirement, 
and computational cost

The MoviNet-based architecture improves gesture recognition accuracy while 
optimizing memory and computational cost, giving valuable insights for wrist-
worn human-machine interaction

19 GWO, MapReduce framework, Service 
composition for IoT and cloud integration

Cost, Availability, Response time, 
Energy savings

The proposed model enhances energy savings by 40%, reduces response time by 
14%, increases availability by 11%, and lowers cost by 24% compared to baseline 
approaches

20
BC-based FL, SegCaps for image feature 
extraction, CNNs, Capsule Networks, Data 
normalization technique, TL

Accuracy, Area Under the Curve
The proposed method enhances detection accuracy by 6.6% and improves AUC 
by 5.1%, outperforming six benchmark models and showing its efficiency in 
deepfake detection

21

O-DRNN, Multitier secured architecture, 
Elliptic Curve Key Agreement Scheme, PSO, 
Bayesian Optimization, Edge computing and 
cloud computing integration

Accuracy, Encryption latency
The proposed system attains enhanced accuracy and reduced encryption latency, 
portraying an enhanced performance in real-time health data collection and 
analysis with improved security in edge computing environments

22 ML, DL, CNNs, Long Short-Term Memory, 
Distributed Systems, IoTs Quality of Service, Accuracy

The study underscores the impact of ML, DL, and dispersed systems in enhancing 
healthcare, specifically cardiovascular disease diagnosis and improving service 
accuracy

23
CNNs, RNNs, Generative Adversarial 
Networks, Multilayer Perceptron, Hybrid 
Methods

Accuracy, Precision, Recall, 
F1-Score, Latency, Adaptability, 
Scalability

The review underscores advanced DL models in medical informatics, focusing on 
their impact on diagnostics and treatment and addressing implementation threats

24 BC, Off-Chain Storage, Smart Contract, DL Accuracy, Precision, Recall, 
F1-Score

The BDSDT model gives secure data transmission and accurate intrusion 
detection in IoT healthcare systems, attaining nearly 99% accuracy

25 ABC, Genetic operators, Density correlation 
degree, Spanning tree construction

Hop count distance, Residual 
energy, Mobility probabilities, 
Reliability, Energy consumption, 
Displacement probability

The proposed model improves data collection reliability in IIoT by optimizing 
spanning tree construction, surpassing conventional techniques in reliability, 
energy efficiency, and mobility

26 BC, Radial Basis Function Neural Networks, 
DL, IoT

Specificity, F1-score, Recall, 
Precision, Accuracy

The BC-based RBFNN model improves intrusion detection and data integrity in 
IoD networks

27 Fault trees analysis, Markov chain analysis Network availability, Network 
reliability, Fault tolerance

The evaluation methods enhance WSN fault tolerance and reliability, enabling 
developers to make informed decisions to improve system performance

28

Long Short-Term Memory, Continuous 
authentication using biometric data, multi-
factor authentication, Arduino Uno and 
smart devices

Accuracy, Precision, Recall, 
Specificity, F1-score

The LSTM-based system boosts IoT healthcare security by precisely detecting 
users and enabling real-time threat detection

29 BC, Glowworm Swarm Optimization Throughput, Scalability, 
Efficiency, Performance, Security

The GSO-optimized BC approach significantly enhances IIoT system 
performance, scalability, and security related to traditional methods

30 ML, DL, CNNs
Accuracy, Scalability, 
Interpretability, Latency, 
Adaptability

CNNs dominate climate change mitigation studies, with Python as the main tool 
and classification tasks concentrating on accuracy, scalability, and interpretability

31
IoT, Median Studentized Residual Approach, 
HHO, Modified Deep Long Short-Term 
Memory, ISHO

Accuracy, Specificity, Sensitivity, 
F-Score, Kappa Value, Balanced 
Error Rate, Execution Time

The proposed approach attains 98.01% accuracy in heart disease prediction, 
outperforming existing models with reduced error rates

32
BC, DNNs, Orthogonal PSO, Neighborhood 
Indexing Sequence Method, Optimized 
DNN

F-Measure, Sensitivity, Specificity, 
Accuracy

The IoT healthcare model improves performance with an F-Measure of 96.25% 
and an accuracy of 93.26% while enhancing security using BC and optimized DL 
techniques

33 Integrated Algorithm Coefficient Convergence, 
Prediction Error

The proposed algorithm showed better convergence and reduced prediction error 
than existing algorithms

Continued
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Fig. 2.  Workflow of ESHCS-DLJSO technique.

 

References Techniques Metrics Findings

34 SDN, DL, BiLSTM, CNN Accuracy, F1-Score, Latency, 
Energy Consumption, Probability

The proposed framework outperforms existing methods with higher accuracy, 
F1-score, lower latency, energy consumption, and improved probability

35 Hybrid Energy Valley, HEV-LFDO, BC/
Distributed Ledger Technology

Task Offloading, Cost of 
Execution, Local Loss Function

HEV-LFDO optimizes task offloading and resource management while securing 
BC data, minimizing local loss

36 IoT, WSN, FL, PSO
Packet Delivery Ratio, Average 
Delay, Throughput, Energy 
Efficiency

The proposed approach exhibited enhanced outcomes compared to existing 
solutions

37 BC Technology, LMDS Computational Overhead and 
Time, Authentication Accuracy

The proposed LMDS technique effectively identifies malicious behaviour with 
minimal time

38 IoT, SqueezeNet, Squeeze_FDBO, DBO, FC, 
LadderNet

Accuracy, Sensitivity, Specificity, 
Negative Predictive Value, 
Positive Predictive Value, Routing 
Energy, Routing Distance, 
Routing Delay

The proposed Squeeze_FDBO method achieves high classification accuracy and 
better routing performance than existing methods

39 DL, BC, CNN, Cryptography-based FL Classification Accuracy, 
Performance Comparison

The presented model outperforms existing techniques in classification and 
performance

40 BBOA, SNDAE, Min-Max Normalization
Accuracy, Sensitivity, Precision, 
Specificity, Negative Predictive 
Value, F-measure

The BBOA-SNDAE model outperforms existing models with high accuracy, 
precision, sensitivity, and specificity in HD prediction

41 IoT, CNN, Hyperparameter Adjustment Classification Accuracy, Tumor 
Detection Rate

The proposed model attained 95% accuracy in tumour detection, enhancing 
breast cancer diagnosis and potentially reducing mortality through early detection

42 DL, IoT, Wearable Health Sensors, IoT 
Networking Systems

Patient Monitoring, Clinical 
Outcomes, Data Security

DL and IoT integration improve ICU patient care, enabling continuous 
monitoring, predictive analysis, and remote consultations while detecting 
opportunities for future research

Table 1.  Summary of existing studies on load-balancing model.
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Min-Max normalization
Primarily, the ESHCS-DLJSO method utilizes the min-max normalization model to measure the input data in 
a beneficial format43. Min-max normalization is a widely used pre-processing model due to its simplicity and 
efficiency in scaling input data to a fixed range, typically [0, 1]. This makes it specifically useful for ML models 
sensitive to the data’s scale, such as neural networks and distance-based methods like k-nearest neighbours. By 
transforming all features to the same scale, min-max normalization assists in enhancing the convergence speed 
of gradient-based algorithms. It confirms that no single feature dominates the learning process due to differences 
in magnitude. Unlike standardization, which can result in a distribution with a mean of 0 and variance of 1, min-
max normalization preserves the original distribution and makes it easier to interpret the data. Additionally, 
this model is computationally effective and works well when the data does not contain extreme outliers, offering 
a straightforward solution for preparing data for model training. Min-max normalization ensures consistency 
and accuracy and standardizes sensor data in patient monitoring. This method measures data to a specific range, 
typically [0, 1], enabling the analysis and integration of dissimilar health metrics from wearable devices. The 
normalization formulation is:

	
X ′ = X − Xmin

Xmax − Xmin
� (1)

Here, X  denotes a value of original data; Xmin​ and Xmax​ represent the minimum and maximum values in 
the dataset, respectively; and X ′  means normalized value. This certifies that every sensor data is on a similar 
measure, improving the consistency of health assessments over HMI interfaces.

Feature selection using BFOA
Next, BFOA selects features. The BFOA is a population-based stochastic optimizer model stimulated by the 
foraging behaviour of Escherichia coli (E. coli) bacteria44. The BFOA is a bio-inspired optimization technique 
modelled after the foraging behaviour of bacteria, making it specifically effectual for feature extraction in 
intrinsic, high-dimensional datasets. Unlike conventional methods, namely genetic algorithms (GA) or PSO, 
BFOA utilizes a more robust search mechanism with local and global exploration capabilities, which helps 
prevent premature convergence to suboptimal solutions. Its iterative search process allows for the extraction of 
the most relevant features by balancing exploration and exploitation, thus confirming optimal feature selection 
in massive datasets. Furthermore, the capability of the BFOA model to handle noisy data and its flexibility in 
dealing with diverse feature types make it appropriate for healthcare and bioinformatics applications, where 
data can be heterogeneous and uncertain. Compared to other methods, BFOA is computationally effectual and 
presents enhanced accuracy in feature extraction, particularly in systems with multiple features and complex 
relationships. Figure 3 illustrates the working flow of the BFOA model.

Let the population of bacteria contain S numbers, and the current chemotactic, reproductive, and 
elimination-dispersal steps are signified by t, r, and e, correspondingly. At the tth chemotactic step, rth 
reproduction, and eth elimination dispersal, the nth bacterium’s position in the D‐dimension search space is 
denoted below:

	 θ n(t, r, e) =
{

θ 1
n (t, r, e) + θ 2

n (t, r, e) , . . . . . . , θ D
n (t, r, e)

}
� (2)

The major procedures that take place in BFOA, including swarming, chemotaxis, elimination-dispersal, and 
reproduction, are defined in short below:

Chemotaxis
It is a procedure by which bacteria direct their environment in response to chemical gradients. This behaviour 
permits them to find favourable conditions like food sources. Bacteria attain chemotaxis over short runs (swims) 
and tumbles. Flagellar rotation defines their drive: swimming in a definite way or tumbling to discover novel 
regions. A unit-length arbitrary vector of direction defined in Eq.  (3) demonstrates a tumble for the nth 
bacterium at the tth chemotactic, rth reproductive, and eth elimination dispersal steps. This vector defines 
the direction variation after a tumble.

	
ϕ (i) = ∆ i (t, r, e)√

∆ T
i (t, r, e) ∆ i (t, r, l)

� (3)

	 θ n (t + 1, r, e) = θ n (t, r, e) + C (i) ϕ (i)� (4)

 whereas θ n(t + 1, r, e) signifies the nth bacterium at the tth chemotactic step, rth reproductive, and eth 
elimination dispersal step. C (i) refers to the size of the step seized in the arbitrary direction definite by the 
tumble (the run length unit), and ∆ n(t, r, e) represents a randomly produced direction vector that defines the 
movement of the nth bacterium.

Swarming
Group behaviour in bacteria helps them drive near regions with greater nutrient attention. This phenomenon 
is demonstrated by presenting an extra cost function term (J) that affects every bacterium’s proficient cost 
function (J). The swarming cost (J) considers the local bacterial density and the distance among distinct 
bacteria. The accurate representation of the swarming procedure is conveyed in Eq. (5):
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Fig. 3.  Working flow of the BFOA method.
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JCC(θ , P (t, re) =
∑

s
n=1jn

cc (θ , θ n (t, re))

=
∑

s
n=1

[
−dattract exp

(
−ω attract

∑
m
n=1 [[(θ n − θ n]])2

)]

+
∑

s
n=1

[
hrepellant exp

(
−ω repellant

∑
m
n=1 [[(θ n − θ n]])2

)]
� (5)

The related coefficients (dattract, ω attract, hrepellant and ω repellant) influence the relative significance of 
swarming equal to the original cost function (J). These coefficients should be carefully preferred or adjusted to 
attain optimum performance in the BFOA.

Reproduction
Reproduction stage occurs after tracking a predefined integer of chemotactic steps (Nc). This stage helps the 
spread of “fitter” bacteria within the population. Bacteria with high health value, usually defined by a fitness 
function (FF), have a more significant opportunity of reproducing. On the other hand, bacteria with low health 
value will be removed. This mechanism certifies a constant size of the population while choosing individuals 
with improved foraging skills. The bacterium health value attained is given as follows:

	
J i

health =
∑ Nc

t=1
J(n, t, r, e)� (6)

Elimination-dispersal
It simulates the dynamic nature of the bacterial atmosphere, where local events can severely affect the population 
of bacteria. This procedure can remove every bacteria in a regional area and separate them into novel positions, 
possibly disturbing chemotaxis growth. It can also help search by assigning bacteria near latent food resources.

The FF reflects the classifier accuracy and the quantity of nominated features. It exploits the classifier 
accuracy and reduces the set dimension of certain features. Consequently, the FF mentioned below is employed 
to appraise distinct solutions, as exposed in Eq. (7).

	
F itness = α ∗ ErrorRate + (1 − α ) ∗ #SF

#All_F
� (7)

Here, ErrorRate indicates the classifier rate of error utilizing the nominated features. It is computed as the 
percentage of improperly categorized to the number of classifications prepared, conveyed as a value between 0 
and 1. ( ErrorRate is the complement of the classifier accuracy), #SF  is the number of chosen features, and 
#All_F  denotes the total number of attributes in the original dataset. α  is employed to switch the position of 

classification excellence and sub-set length. In the experiments, α  is set to 0.9.

Detection method using CNN-LSTM-Attention model
Furthermore, the CNN-LSTM-Attention method is used for disease detection and classification45. This 
technique is an efficient choice for disease detection and classification due to its capability to utilize the merits 
of both convolutional and recurrent networks, integrated with the power of attention mechanisms. CNNs 
outperform at extracting spatial features from medical images or time-series data, capturing local patterns and 
hierarchical structures. LSTMs, on the contrary, are appropriate for sequential data, such as time-series medical 
signals, enabling the technique to capture long-term dependencies and temporal patterns. The incorporation 
of attention mechanisms allows the model to concentrate on the most relevant features of the input, improving 
interpretability and enhancing performance by accentuating significant data points while ignoring irrelevant 
data. This integration is beneficial in healthcare, where medical data is often noisy, complex, and high-
dimensional. Compared to conventional techniques such as SVM or shallow neural networks, the CNN-LSTM-
Attention model gives superior accuracy, robustness, and the ability to handle diverse data types, making it 
highly effective for disease detection and classification tasks. Figure 4 depicts the structure of the CNN-LSTM-
Attention technique.

A CNN has been broadly employed as a feed-forward neural network (FFNN), mainly collected of fully 
connected layers (FCL), convolutional layers (CL), and pooling layers (PL). The layer counts are fine-tuned 
based on the method requirements. The main concept for a CNN is convolutional actions for managing 
information in Euclidean space, thus providing considerable benefits. In CNNs, the CL is mainly applied for 
extracting features by benefits like spatial invariance, local perception, and weight sharing. The PL has been used 
to reduce the data dimensionality once convolutional actions inhibit over-fitting. Regular approaches contain 
average  and max  pooling. The FCL maps the removed features and permits them to be used as a classifier for 

regression or classification. This work used a one-dimensional CNN using convolutional kernels. The objective 
is to capture features and share parameters, decreasing the parameter counts required for model optimizer and 
computational complexity. This method improves the model’s training scalability and efficiency.

LSTM networks are advanced depending on conventional RNNs, presenting gating methods to help moderate 
the problems of exploding and vanishing gradients, which RNNs face after handling long-term dependency. 
The network form of an LSTM technique contains 3 gate elements: the input gate, the output gate, and the 
forget gate. The forget gate is critical in guiding the amount of data transmitted from earlier to the present state. 
Simultaneously, the input gate moderates the effect of recently obtained data on the existing state, and the output 
gate manages the dependence of the present output on the memory cell state. Also, the network filters maintain 
ancient data state without inserting novel input data. On the other hand, when the input gate methods value one 
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while the forget gate methods value 0, the LSTM network attains a memory upgrading function. This network 
dismisses ancient data irrelevant to the present task and concentrates on the present input data.

The collaboration method amongst gates makes LSTM more adaptable in memory and learning. LSTM 
frequently exceeds the conventional RNN. The LSTM unit structure, with Eqs. (8)–(13) is described as follows:

	 it = σ (Wixt + Uiht−1 + bi)� (8)

	 ft = σ (Wf xt + Uf ht−1 + bf )� (9)

	 ot = σ (Woxt + Uoht−1 + bo)� (10)

	
∼
Ct = tanh (Wcxt + Ucht−1)� (11)

Fig. 4.  Architecture of CNN-LSTM-attention model.
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	 ct = ft ⊙ ct−1 + it ⊙
∼
Ct−1� (12)

	 ht = ot ⊙ tanh (ct)� (13)

 whereas it, f t, and ot correspondingly relate toward switching states of the input, output, and forget gates; ∼
Ct exists the cell state of a candidate; ct exists present cell state; ht exists the present unseen state; xt exists 
input sequence value at the present time-step; W  and U  signify the three gates weight matrices; b denotes 
the bias vector; and σ  characterizes the activation function of sigmoid, whereas tanh means the hyperbolic 
activation function of tangent. The CNN-LSTM approach is broadly applied. Nevertheless, its performance can 
be narrowed by optimizer methods. Methods can overwhelm this limitation by presenting attention methods 
that imitator the human brain’s data handling and considerably increase neural networks’ capacity for managing 
spatial and temporal information. These lead to improved optimization model performances and generalization.

Attention has been theorized as a weighted summation, whereas the weights relate to the correspondence 
among the vectors of calculation. The first attention contains Q, K , and V  from input features. V  signifies the 
input feature vectors, and Q and K  are feature vectors applied to estimate the attention weights. If an attention 
network is not presented, then a single set of V  is required to input it for training the network. Nevertheless, 
once an attention network was given, those groups of V  needed to be multiplied by a group of weights F (Q, K)
, allowing the network to concentrate on limited features of the input.

Initially, attention scores are gained by computing the correlation or similarity between a keyword (Key) and 
query, with usual approaches such as additive attention, scaled dot product, and dot product. Next, the softmax 
function controls the attention scores, transforming them into a probability distribution, which characterizes 
each value’s importance. Lastly, the values are summed and weighted based on the normalized attention scores 
with a weighted sum method. This results in a weighted average representation, highlighting data related to the 
query Eqs. (14)–(16) are utilized to achieve this constraint:

	 si = F (Q, ki)� (14)

	
α i = softmax (si) = exp (si)∑ N

j=1exp (sj) � (15)

	
Attention (( K, V ), Q) =

∑ N

i=1
α ivi� (16)

Hyperparameter tuning process
Finally, the hyperparameter tuning method is performed using the JSO method. The JSO model simulates the 
movement of jellyfish in the water46. This is an effectual global optimization algorithm inspired by the social 
behaviour of jellyfish, making it specifically effectual for hyperparameter tuning in intrinsic ML techniques. 
Unlike traditional approaches such as grid search or random search, JSO gives a more dynamic and adaptive 
approach, exploring the search space more thoroughly while balancing exploration and exploitation. 
The capability of the JSO model to escape local optima confirms that it can find improved hyperparameter 
combinations, enhancing model performance and generalization. It has proven to be computationally efficient 
and less prone to overfitting related to other optimization methods, namely GA or PSO. Additionally, JSO works 
well in high-dimensional search spaces, making it ideal for tuning DL methods with various hyperparameters. 
This makes JSO a robust choice for enhancing the accuracy and effectualness of models in fields like healthcare, 
where hyperparameter optimization is significant for attaining high-quality predictions. Figure 5 demonstrates 
the overall workflow of the JSO methodology.

The JSO model includes key modules like passive and active motions, ocean currents, a group of jellyfish, and 
a time control device. These vital rubrics for the proposed optimization technique can be summarized as below:

Ocean current

The jellyfish are appealed to nutrients that are in the water present. The movement of the ocean current 
(−−−→

trend
)

 

is established by averaging every vector from every jellyfish in the sea to the finest jellyfish:

	

−−−→
trend = 1

npop

∑
trendi = 1

npop

∑
(Xbest − ecXi)

	
= Xbest − ec

∑
Xi

npop
X∗ − ecµ = Xbest − df

	 df = ecµ

	 ec = β ∗ rand (0,1)

	 df = β ∗ rand (0,1) ∗ µ� (17)

 whereas df  signifies the difference between every jellyfish’s mean position and the jellyfish’s present finest 
position, while npop signifies the number of jellyfish in the ocean, Xbest denotes the finest position; ec 
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represents the factor which controls the attraction. µ  denotes the average location of every jellyfish. The novel 
location of every jellyfish is numerically computed below:

	 Xi(t + 1) = Xi (t) + rand (0,1) ∗
−−−→
trend,� (18)

It is intended by

Fig. 5.  Workflow of the JSO technique.
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	 Xi (t + 1) = Xi (t) + rand (0,1) ∗ (Xbest − β ∗ rand (0,1) µ )� (19)

 whereas β > 0 means a distribution parameter accompanied by the distance of 
−−−→
trend.

Group of jellyfish
In the Jellyfish group, dual dissimilar kinds of motions can be detected. The 1st type is recognized as Type A, 
which resembles passive motion, while the 2nd type, denoted as Type B, signifies active motion. As the group 
was initially made, the jellyfish showed mainly Type A motion, slowly progressing into Type B. Type A motion 
includes the jellyfish affecting around their particular positions, and the upgraded location of every jellyfish is 
computed utilizing the below-mentioned formulation:

	 Xi(J + 1) = Xi (J ) + γ ∗ rand (0,1) ∗ (Ub − Lb)� (20)

Meanwhile, Ub and Lb denote the upper and lower limits. The coefficient of motion is γ > 0, related to the 
movement of jellyfish regarding their locations.

In the swarm of jellyfish, a set of jellyfish (j) and (i) are randomly preferred. If the size of food at the 
location of jellyfish (j) is larger than the food dimension at the position of the target jellyfish (i) , then the 
target jellyfish (i) will travel near the location of jellyfish (j) . On the other hand, if the size of the food set for the 
preferred jellyfish (j) is lesser than the food size arranged for the target jellyfish (i) , then the target jellyfish (i) 
will go straight away from it. This procedure certifies that every jellyfish in the group alters its location depending 
upon the most effectual model of attaining food.

	
−−→
step = Xi(t + 1) − Xi (t)� (21)

 where, −−→
step = rand (0,1) ∗

−−−−−−→
direction

	
−−−−−−→
direction =

{
Xj (t) − Xi (t) if f (Xi) ≥ f (Xj)
Xi (t) − Xj (t) if f (Xi) < f (Xj) � (22)

Meanwhile, f (Xi) signifies an objective function.
Henceforth, Xi(t + 1) = −−→

step + Xi (t).
The time control technique is used to portray the motion pattern over time, particularly with the drive of 

jellyfish within an ocean current. It rules how the jellyfish cross across the current.

Time control mechanism
The time control mechanism is presented to normalize the jellyfish’s movement within the group and their 
navigation under the sea current. This method covers a constant C0 and a time control function C (t) . C (t) is 
positioned at random among 0 and 1.

	
C (t) =

∣∣∣∣
(

1 − t

Max−it

)
∗ (2 ∗ rand (0,1) − 1)

∣∣∣∣� (23)

The JSO method originates an FF to achieve an enhanced classifier solution. It states a positive number to denote 
the enhanced efficiency of the candidate solution. In this paper, the minimizer of the classifier error rate is 
regarded as FF and formulation is expressed in Eq. (24).

	 fitness (xi) = ClassifierErrorRate (xi)

	
= no. of misclassified samples

T otal no. of samples
× 100� (24)

Result analysis
The simulation validation of the ESHCS-DLJSO technique was verified on the IoT healthcare security dataset47. 
It has been made a use case of an IoT-based ICU with a volume of 2 beds, whereas all beds are set with nine 
patient monitoring devices (i.e., sensors) and one control unit named Bedx-Control-Unit. Each of these devices 
was generated using the IoT-Flock tool. The original dataset contains 50 features; the top 24 features are chosen, 
namely frame.time_delta, frame.len, ip.src, ip. dst, tcp. dstport, tcp. flags, tcp.len, tcp.ack, tcp.connection.fin, 
tcp. flags.ack, tcp. flags.push, tcp.flags.urg, tcp.checksum, mqtt.clientid, mqtt.conack.flags, mqtt.conack.val, 
mqtt.conflag.qos, mqtt.conflag.retain, mqtt.hdrflags, mqtt.kalive, mqtt.retain, mqtt.topic, mqtt.ver, ip.proto. The 
dataset comprises 30,000 samples under three classes. Each class contains 10,000 samples, as represented in 
Table 2.

Figure 6 shows a collection of confusion matrices made by the ESHCS-DLJSO approach on diverse epoch 
counts. The confusion matrix provides a detailed breakdown of the classification performance at different 
epochs (500, 1000, 1500, 2000, 2500, and 3000). It illustrates the true positive (TP), false positive (FP), false 
negative (FN), and true negative (TN) rates for three classes: Class 0, Class 1, and Class 2. As the epochs increase, 
the model consistently enhances its performance across all classes, with TP rates nearing 99% and FN rates 
remaining low. For example, at Epoch 500, Class 0 has a TP of 98.06%, and at Epoch 3000, Class 2 has a TP of 
99.16%. The FN and FP rates decrease with higher epochs, demonstrating the improved accuracy and efficiency 
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of the model as training progresses. The results identify that the ESHCS-DLJSO method efficiently recognizes 
samples under all three class labels.

Table 3 offers the recognition result of the ESHCS-DLJSO approach under different epoch counts.
Figure 7 displays the average result of the ESHCS-DLJSO method under 500–1500 epochs. The figure values 

reported that the ESHCS-DLJSO process accurately recognized all three samples. On 500 epoch counts, the 
ESHCS-DLJSO models present an average accuy  of 99.09%, precn of 98.64%, recal of 98.63%, F 1score of 
98.63%, and MCC of 97.95%. Moreover, on 1000 epoch counts, the ESHCS-DLJSO approach provides an 
average accuy  of 98.88%, precn of 98.32%, recal of 98.32%, F 1score of 98.32%, and MCC  of 97.48%.

Figure 8 demonstrates the average outcome of the ESHCS-DLJSO method under 2000–3000 epochs. The 
figure values reported that the ESHCS-DLJSO process accurately recognized all three samples. In the meantime, 
on 2000 epoch counts, the ESHCS-DLJSO process attains an average accuy  of 99.08%, precn of 98.63%, recal 
of 98.62%, F 1score of 98.62%, and MCC  of 97.94%. Additionally, on 3000 epoch counts, the ESHCS-DLJSO 
techniques provide an average accuy  of 99.00%, precn of 98.50%, recal of 98.50%, F 1score of 98.50%, and 
MCC  of 97.75%.

In Fig.  9, the training and validation accuracy outcomes of the ESHCS-DLJSO methods under different 
epoch counts are portrayed. The precision values are computed for 0–3000 epoch counts. This figure underlined 
that the training and validation accuracy values show a growing trend that informed the capacity of the ESHCS-
DLJSO technique with better performance over numerous iterations. In addition, the training and validation 

Fig. 6.  Confusion matrices of ESHCS-DLJSO technique (a-f) Epochs 500–3000.

 

Class labels Class names Samples

Class 0 No attack-environment monitoring 10,000

Class 1 No attack-patient monitoring 10,000

Class 2 Attack-Accur 10,000

Total no. of samples 30,000

Table 2.  Details on dataset.
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accuracy stay nearer over the epoch counts, which point out the least minimum overfitting and display improved 
performance of the ESHCS-DLJSO technique, assuring consistent prediction on hidden samples.

Figure 10 presents the training and validation loss graph of the ESHCS-DLJSO approach under different 
epoch counts. The loss values are computed throughout 0–3000 epoch counts. It is denoted that the training 
and validation accuracy values imply a reducing trend, reporting the ability of the ESHCS-DLJSO technique to 
balance a trade-off between generalization and data fitting. The constant decrease in loss values also promises the 
improved performance of the ESHCS-DLJSO process and tunes the prediction outcomes in time.

In Fig. 11, the precision-recall (PR) curve examination of the ESHCS-DLJSO method under different epoch 
counts interprets its performance by plotting Precision against Recall for each class label. This figure shows 
that the ESHCS-DLJSO approach steadily obtained enhanced PR values over dissimilar classes, pointing out its 
capability to handle an essential segment of TP predictions between every positive prediction (precision) and 
capture many actual positives (recall). The constant growth in PR results between all class labels depicts the 
efficiency of the ESHCS-DLJSO techniques in the classification process.

In Fig.  12, the ROC curve of the ESHCS-DLJSO method was examined. The outcomes infer that the 
ESHCS-DLJSO approach, under different epoch counts, attains better ROC results across every class label, 
representing a critical ability to differentiate the class labels. These growing tendencies of better ROC values 
across numerous class labels denote the efficient performance of the ESHCS-DLJSO approach in predicting class 
labels, emphasizing the robust nature of the classification method.

Table  4; Fig.  13 compare ESHCS-DLJSO methods with existing studies48–50. The results identify that the 
ESHCS-DLJSO approach accurately identified all three samples. Compared with accuy , the ESHCS-DLJSO 
models show their supremacy with a better accuy  of 99.43%. At the same time, the XG-ABC, XG-COLSHADE, 
CNN-TSODE, RNN, CNN, FS-LSTM, and XSRU-IoMT processes gained lowered performance with accuy  of 
94.60%, 98.04%, 92.90%, 94.64%, 94.36%, 92.95%, and 98.39%, respectively. Moreover, equating with precn, the 
ESHCS-DLJSO techniques display its supremacy with a better precn of 99.14%. In contrast, the XG-ABC, XG-
COLSHADE, CNN-TSODE, RNN, CNN, FS-LSTM, and XSRU-IoMT processes acquire minimum performance 
with precn of 94.22%, 91.87%, 91.63%, 97.15%, 93.79%, 93.78%, and 96.89%, respectively.

Class labels Accuy P recn Recal F 1score MCC

Epoch—500

Class 0 99.02 98.06 99.03 98.54 97.81

Class 1 99.24 99.22 98.50 98.86 98.30

Class 2 99.00 98.63 98.37 98.50 97.75

Average 99.09 98.64 98.63 98.63 97.95

Epoch—1000

Class 0 98.74 97.69 98.56 98.12 97.18

Class 1 99.25 98.97 98.77 98.87 98.30

Class 2 98.65 98.31 97.63 97.97 96.96

Average 98.88 98.32 98.32 98.32 97.48

Epoch—1500

Class 0 98.92 98.08 98.68 98.38 97.57

Class 1 99.27 99.04 98.78 98.91 98.36

Class 2 98.82 98.40 98.06 98.23 97.35

Average 99.00 98.51 98.51 98.51 97.76

Epoch—2000

Class 0 99.01 98.07 98.98 98.52 97.78

Class 1 99.30 99.12 98.79 98.95 98.43

Class 2 98.93 98.69 98.10 98.40 97.60

Average 99.08 98.63 98.62 98.62 97.94

Epoch—2500

Class 0 99.34 98.93 99.09 99.01 98.52

Class 1 99.55 99.34 99.32 99.33 98.99

Class 2 99.39 99.16 99.02 99.09 98.63

Average 99.43 99.14 99.14 99.14 98.72

Epoch—3000

Class 0 98.93 97.97 98.85 98.41 97.61

Class 1 99.24 98.93 98.78 98.85 98.28

Class 2 98.83 98.61 97.87 98.24 97.36

Average 99.00 98.50 98.50 98.50 97.75

Table 3.  Detection outcome of the ESHCS-DLJSO model under distinct epochs.
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Table 5; Fig. 14 specify the computational time (CT) analysis of the ESHCS-DLJSO technique with existing 
studies. The methods evaluated in terms of CT are as follows: XG-ABC took 5.98 s, XG-COLSHADE took 8.98 s, 
CNN-TSODE took 11.21 s, RNN took 8.64 s, CNN Classifier took 13.33 s, FS-LSTM took 5.88 s, XSRU-IoMT 
took 10.79 s, and ESHCS-DLJSO took 3.89 s.

Conclusion
In this study, an ESHCS-DLJSO technique for IoT healthcare applications is presented. This model comprises 
four distinct processes involving data normalization, BFOA-based feature selection, CNN-LSTM-Attention 
using disease detection process, and JSO-based parameter selection. Initially, the ESHCS-DLJSO model employs 
a min-max normalization technique to measure the input data into a beneficial format. In addition, BFOA 
accomplishes feature selection. Next, the ESHCS-DLJSO approach utilizes the CNN-LSTM-Attention model 
for disease classification and detection. Eventually, the JSO method is employed for the hyperparameter tuning 
process. The simulation of the ESHCS-DLJSO technique is examined on an IoT healthcare security dataset. 
The performance validation of the ESHCS-DLJSO technique portrayed a superior accuracy value of 99.43% 
over existing approaches. The limitations of the presented study comprise enhanced computational complexity 
with larger datasets, reliance on high-quality input data, and limited applicability to other diseases without 
additional adaptation. Furthermore, the models may need help with noisy or incomplete data and imbalanced 
datasets, which are common in healthcare. For future work, efforts can be directed toward enhancing the 
model’s scalability to handle large-scale, real-time healthcare data streams. Moreover, exploring more robust 
data augmentation models to handle noisy, missing, or unbalanced data could improve the generalization and 
reliability of the model. Future studies could also investigate incorporating multi-modal data sources, such as 
integrating patient health records with wearable device data, to enhance diagnostic accuracy. Finally, exploring 
TL techniques to adapt the models to new diseases or healthcare contexts with minimal labelled data would 
improve the flexibility and usability of the model in diverse healthcare scenarios.

Fig. 7.  Average outcome of ESHCS-DLJSO model (a–c) Epochs 500–1500.
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Fig. 8.  Average outcome of ESHCS-DLJSO model (a–c) Epochs 2000–3000.

 

Scientific Reports |        (2025) 15:13223 17| https://doi.org/10.1038/s41598-025-97065-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 9.  Accuy  curve of ESHCS-DLJSO technique (a–f) Epochs 500–3000
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Fig. 10.  Loss curve of ESHCS-DLJSO technique (a–f) Epochs 500–3000.
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Fig. 11.  PR curve of ESHCS-DLJSO technique (a–f) Epochs 500–3000.
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Method Accuy P recn Recal F 1score

XG-ABC 94.60 94.22 94.74 95.87

XG-COLSHADE 98.04 91.87 96.92 92.35

CNN-TSODE 92.90 91.63 93.58 97.53

RNN 94.64 97.15 93.49 98.25

CNN Classifier 94.36 93.79 93.93 94.96

FS-LSTM 92.95 93.78 94.10 98.14

XSRU-IoMT 98.39 96.89 91.75 96.88

ESHCS-DLJSO 99.43 99.14 99.14 99.14

Table 4.  Comparative analysis of ESHCS-DLJSO technique with recent methods48–50.

 

Fig. 12.  ROC curve of ESHCS-DLJSO technique (a–f) Epochs 500–3000.

 

Scientific Reports |        (2025) 15:13223 21| https://doi.org/10.1038/s41598-025-97065-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Method CT (s)

XG-ABC 5.98

XG-COLSHADE 8.98

CNN-TSODE 11.21

RNN 8.64

CNN Classifier 13.33

FS-LSTM 5.88

XSRU-IoMT 10.79

ESHCS-DLJSO 3.89

Table 5.  CT analysis of ESHCS-DLJSO technique with recent methods.

 

Fig. 13.  Comparative analysis of ESHCS-DLJSO technique with recent methods.
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