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Many controllers have been developed to control the motors of electric vehicles, but in the case of 
hydrogen vehicles, more delicate control is required, because power is provided through hybridization 
with batteries. The use of deep learning techniques enables optimization across various ranges based 
on extensive data to be more feasible. This study investigates the performance of three control 
strategies—PI control, Model Reference Adaptive Control, and Deep Learning-based MRAC—when 
applied to the motor of a hydrogen vehicle. The system of a hydrogen vehicle, including fuel cell 
systems, batteries, DC–DC converters, 3-phase inverters, and electric motors, was constructed and 
integrated to form a complete vehicle system. The performance of MRAC and DL-MRAC was compared 
based on step inputs of vehicle speed references, and the performance of PI control, MRAC, and DL-
MRAC was evaluated under disturbances. Evaluations included considerations of the battery’s state of 
charge for fuel economy. Results indicate DL-MRAC exhibited the best fuel economy characteristics. 
While DL-MRAC’s current fuel economy advantage is slight, it is anticipated to improve with additional 
training.

Climate change evolves new vehicle trends such as the fuel cell electric vehicles (FCEVs) and battery electric 
vehicle (BEV). The FCEVs has hydrogen storage to generate electricity by electrochemical reaction in hydrogen 
fuel cell. Among various type of fuel cells, a proton exchange membrane fuel cell (PEMFC) is most suitable 
for vehicle application due to their low operating temperature with fast start-up, high efficiency and low noise 
with comfortability1–3. The FCEV also has small battery to cope with energy saving and sustainable durability 
under acceleration and deceleration. While those power sources drive the FCEV very clean without any harmful 
exhaust gases, the management strategies of power sources are different from single power source vehicle.

On the other hand, the conventional internal combustion engine vehicle can drive the car by mechanical 
power from fossil fuel combustion. But the FCEV uses the power generation system disconnected from traction 
of vehicles. That is, the hybrid power sources can provide electricity to the traction motor and the traction motor 
is finally driving the wheels. This disconnection of power sources from traction forces makes power management 
of FCEV more complicated than conventional internal combustion engine-based vehicles. Additionally, the 
power management of FCEV is more complicated than BEV due to hybrid power sources.

Even though power management strategy of FCEV is complicated, durable operation of the proton exchange 
membrane fuel cell is beneficiary. When the rapid acceleration of PEMFC is detrimental for durability, intelligent 
operational strategy of PEMFC with battery extends the lifetime of PEMFC.

The power management of electrically driven vehicle is to meet requested power for driving the wheel by 
traction motor. The FCEVs utilize two power sources to achieve this goal. Different from internal combustion 
engine, two different control algorithms should be refined such as control of fuel cell and battery power 
generation and control of traction motor with the delivered electrical energy. As the two control algorithms are 
carried out delicately, the requested driving pattern is obtained. On the other hand, the control of power sources 
and traction motor should be investigated together so that the electrically driven vehicle achieve excellent fuel 
economy. A common power source structure was investigated with reference to many studies of fuel cell hybrid 
vehicles4–7.

Empirical data regarding fuel economy is naturally scarce, underscoring the increasing significance and 
effectiveness of fuel economy evaluations through simulation. The FCEVs make the performance of the motor 
crucial for vehicle fuel economy8–12. Currently, most electrically driven vehicle adopts permanent magnet 
synchronous motor (PMSM), which provides excellent efficiency and power density characteristics, employing 
precise vector control as the controller.
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Vector control is a technique that transforms the three-phase motor currents into two-phase current 
components affecting flux and torque for interpretation and control purposes. Within vector control, Field-
oriented control (FOC) consists of torque current controller for speed regulation, torque voltage controller 
for torque current regulation, and flux voltage controller for flux current regulation13,14. The torque current 
controller, which influences speed regulation, has the most direct impact on vehicle fuel economy, as its output, 
the torque current, is influenced by the torque voltage controller, thereby making the performance results of both 
controllers important for fuel economy15–17.

There are many studies dealing with the topic of motor controllers in fuel cell electric vehicles available in the 
literature. Dong et al. proposes an improved second-order super twisting sliding mode control (STSMC) strategy 
integrating BAS and GWO algorithms for the speed control of 40,000 RPM PMSM, enhancing system stability 
and robustness, and demonstrates its superiority through comparative analysis with various controllers18. 
Lee et al. develops a loss-minimizing control law for a PMSM by modeling inductances as functions of q-axis 
current based on experimental flux data, and using experimental power loss data to create a lookup table of 
loss-minimizing current sets for various d-axis currents, which is then utilized in the torque control loop to 
ensure high efficiency at all torque-speed operating points19. Hames et al. presents optimal hydrogen fuel cell 
vehicle configurations and control strategies for safety, cost-effectiveness, and high efficiency by comparing 
existing control strategies in the literature for fuel economy, emphasizing the integration of fuel cells, batteries, 
supercapacitors, controllers, and smart control units that adjust parameters based on data from the traction 
motor and energy storage systems20. Williamson et al. models the efficiency maps of inverters and traction 
motors to analyze the drivetrain efficiency of hybrid electric vehicles (HEVs) and fuel cell vehicles (FCVs), 
using ADVISOR software to simulate large vehicles similar to the Chevy Lumina and commercially available 
HEVs like the Honda Insight and Toyota Prius across various driving cycles21. Yigit et al. integrates a fractional-
order PI (FOPI) controller structure to control a Brushless DC (BLDC) motor powered by hydrogen technology, 
incorporating a Proton Exchange Membrane (PEM) electrolyzer, PEMFC, storage tank, BLDC motor, and motor 
driver system within MATLAB Simulink environment22.

The papers mentioned above present achievements in achieving excellent motor performance through motor 
controllers in electric vehicles. However, most conventional controllers applied to motors have limitations 
compared to their respective advantages23–25. For instance, performance varies depending on the vehicle 
speed range, so optimization is achieved by tuning gains in each segment. This stems from the mathematical 
limitations inherent in logic-based controllers. Recently, leveraging deep learning techniques applied across 
various industries allows designing controllers based on data rather than logic26–28. By training on extensive 
data, controllers can perform optimized control tailored to each range29.

There are various research cases that apply machine learning or deep learning to FCEVs and BEVs. Kim 
et al. showed that an effective energy prediction algorithm through an energy management strategy (EMS) 
helps maintain the state of charge (SOC)30. Venkatasatish et al. analyzed hydrogen refueling station (HRS)-based 
production and storage systems, energy storage devices, energy management systems, and the applicability of 
reinforcement learning for fuel cell hybrid electric vehicles (FCHEVs), while discussing key technical challenges 
and potential solutions31. Karen et al. utilized fueling transaction data from internal combustion engine vehicles 
(ICEVs) to estimate the frequency of midday charging for U.S. federal fleet BEVs and applied machine learning 
models to analyze the BEV adoption potential for 112,902 federal fleet vehicles, integrating the results into the 
Zero-Emission Vehicle (ZEV) Planning and Charging (ZPAC) tool for infrastructure optimization32. Oladosu et 
al. analyzed AI-based algorithms, control systems, and energy management strategies for optimizing hydrogen 
fuel cell electric vehicle (HFCEV) performance, highlighting how multi-objective optimization, reinforcement 
learning algorithms, and hybrid techniques enhance HFCEV cost competitiveness33. The above studies have 
conducted research on FCEVs and BEVs and achieved results using AI techniques such as machine learning and 
deep learning. However, since they are not used for control or focus on some control elements such as power 
distribution, there are limitations as a method for controlling transient states.

In this study, the performance characteristics of three control strategies were investigated: PI control, Model 
Reference Adaptive Control (MRAC), and Deep Learning MRAC (DL-MRAC)—by applying to a hydrogen 
vehicle motor. This study involved constructing the component system model of the hydrogen vehicle, including 
the fuel cell system, battery, DC–DC converter, 3-phase inverter, and electric motor. These models were 
integrated to form a complete vehicle system, with specifications either referenced from existing commercial 
hydrogen vehicles or designed based on them. This research compared the performance characteristics of MRAC 
and DL-MRAC using step inputs of vehicle speed references. Both MRAC and DL-MRAC were found to track 
the reference model’s output values, and their convergence speeds were evaluated to analyze each controller’s 
superiority. Further analysis is provided by comparing the performance of PI control, MRAC, and DL-MRAC 
under disturbance insertion while maintaining a constant vehicle speed reference. Factors such as undershoot 
after the disturbance, convergence speed, and oscillation were evaluated as criteria to assess each controller’s 
superiority in dealing with disturbances. One of the critical findings of the study was related to the vehicle’s 
fuel economy, which was evaluated through multiple simulations considering the battery’s SOC. DL-MRAC 
exhibited the best fuel efficiency characteristics among the three controllers, with fuel economy values ranking 
(19.903 for DL-MRAC, 19.896 for MRAC, and 19.872 for PI control).

Modelling approach
Vehicle model
Figure 1 shows the schematic diagram and Simulink block of vehicle model designed in this study. In order to 
stably control the vehicle power system, the converter output voltage needs to follow the same as the battery 
voltage. The controller is designed so that the converter output voltage follows this value by sensing the battery 
voltage. When the amount of battery discharge current increases in the primary response to a step-shaped 
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demand current input, the battery SOC decreases, resulting in a voltage as well. The voltage at the downstream 
end of the converter is controlled to be the same as the battery voltage, and at the same time, the converter 
duty ratio is fixed, so the converter input voltage must also be reduced at the same rate as the battery voltage 
changes. Taking this into consideration, the controller was designed to increase the fuel cell current. As the fuel 
cell current increases, the converter current also increases and the battery discharge rate gradually decreases. 
In some cases, the battery SOC stops decreasing and maintains a steady state, or the voltage may increase by 
switching to charging mode. When the voltage is increased, the fuel cell current is controlled to decrease so that 
the fuel cell voltage can also be increased. Accordingly, the downstream current of the converter is reduced, and 
thus the battery charging current is reduced to maintain a steady state in the end. Table 1 represents the detailed 
specifications of the vehicle.

Power supply system
The power supply system is one of the main components of FCEVs and provides the electrical energy necessary 
for the vehicle’s operation and propulsion. This system comprises fuel cells and batteries, each playing crucial 

Components Specification

Fuel cell

 Number of cells 828

 Active area 380 cm2

 Operating temperature  70 °C

Battery

 Maximum voltage 750 V

 Capacity 6.5 Ah

Motor & Vehicle

 Motor PMSM

 Reduction ratio 4.875

 Vehicle mass 19,000 kg

Table 1.  Specification of hydrogen vehicle model.

 

Fig. 1.  Vehicle model structure.
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roles that significantly impact the performance and efficiency of FCEVs. The power supply system maintains 
stable power delivery for FCEVs through the harmonious operation of fuel cells and batteries, ensuring 
environmentally friendly driving and exceptional performance.

Fuel cells are key devices that generate electrical energy through the chemical reaction between hydrogen 
and oxygen. The electrical energy produced from the combination of hydrogen and oxygen powers the motor 
directly or is stored in the battery when the motor demands energy beyond what the fuel cells can provide. This 
process generates only water as a byproduct, contributing to an eco-friendly driving by emitting no harmful 
substances into the atmosphere.

On the other hand, batteries store energy generated during driving and supply power as needed to support 
the vehicle’s electrical systems. High-performance lithium-ion batteries are predominantly used in vehicles, 
offering high energy density and long-term stable performance. During instances where rapid response 
or additional power beyond the fuel cells’ capabilities is required, such as during acceleration or high-speed 
driving, the battery supplements the motor with extra power, enhancing driving performance while maintaining 
energy efficiency. This dual function is crucial for enabling long-distance driving and sustaining optimal vehicle 
performance in hydrogen vehicles.

Power conversion system
The power conversion system plays a critical role in managing and controlling the delivery of electrical energy 
from the power supply system to the motor in an appropriate manner within the vehicle. This unit is primarily 
divided into two parts: the DC–DC converter and the inverter. The power conversion system plays a pivotal role 
in enhancing the efficiency and stability of FCEVs.

The DC–DC converter is responsible for converting the DC power output from sources such as fuel cells or 
batteries to different voltage levels required by various systems or devices within the vehicle. Especially, crucial is 
its role in aligning the disparate voltage outputs of batteries and fuel cells to maintain the stability of the voltage 
bus. This ensures overall system stability and efficient power utilization.

On the other hand, the inverter converts DC power into AC power, primarily to operate the motor. Since 
the power supplied from fuel cells or batteries is in DC form while the motor requires AC power, the presence 
of an inverter is indispensable. The inverter also plays a role in regulating the motor’s speed and torque, thereby 
enhancing the vehicle’s driving performance. For instance, precise control over motor rotation via the inverter 
enables swift adjustments for acceleration and deceleration, thereby improving driving stability.

Permanent magnet synchronous motor
The drivetrain of FCEVs is responsible for the actual propulsion of the vehicle and encompasses mechanical 
technologies and control systems primarily related to the motor. The motor converts electrical energy from the 
powertrain into mechanical motion to propel the vehicle. Efficient motor design and control play a crucial role 
in simultaneously enhancing vehicle performance and energy efficiency. By appropriately adjusting parameters 
such as wheel size, rotational speed, torque output, etc., the driving characteristics of the vehicle can be optimized.

The type of the motors primarily used in electric vehicles is PMSM, which has several merits such as high 
efficiency, high torque density, precise control, brushless structure, and high dynamic responsiveness. It, also, 
has minimal internal circuit losses, leading to high power conversion efficiency, and its tendency to generate 
high torque even in small sizes enhances system performance. Additionally, their brushless structure reduces 
maintenance needs and ensures quick responses to various driving conditions.

PMSM is controlled through inverters, receiving electrical energy to generate rotational motion. To effectively 
control modern motors used in electric vehicles, a method known as dq transformation, also called Park Clarke 
transformation, is predominantly employed. This method involves controlling 3-phase AC power in a way 
similar to handling DC power, enabling ease of motor control and high-performance management to enhance 
driving efficiency and stability. The dq transformation converts the motor’s 3-phase AC voltage/current into 
d-axis and q-axis components, allowing independent control of the motor’s rotational speed, torque, magnetic 
field, etc.

Controller
MRAC
A PID controller combines proportional control, integral control, and derivative control to regulate the dynamic 
characteristics of a system. It is widely used in many fields due to its relatively simple implementation and high 
stability. However, it does have some limitations. PID controllers are primarily designed for linear systems and, 
thus, when dealing with nonlinear systems or systems with changing parameters, the controlled system may 
not yield the output as desired. Changes in the external environment or uncertainties can affect PID controller 
performance; for instance, variations in motor loads or external interference can impact control performance. 
PID controllers struggle to handle such uncertainties and external factors effectively since they only consider the 
current state to adjust control inputs, making it difficult to adapt to dynamic system changes or uncertainties. 
Additionally, PID control requires manual gain adjustments for optimal control, which needs considerable time 
and effort. There are several heuristic methods that can easily tune the gain, but they are not as robust as adaptive 
control as a steady-state solution to disturbances.

On the other hand, MRAC is a control technique that can overcome these limitations. MRAC is designed 
to maintain desired performance or achieve optimal control even in uncertain systems or environments. Its 
structure consists of a model-reference controller that generates control inputs based on a model describing 
expected system behavior and an adaptive controller that adjusts control inputs in real-time using estimated 
model parameters as shown in Fig. 2. This allows MRAC to estimate the dynamic state of the system in real-
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time, adaptively adjust model parameters, and generate optimal control inputs. MRAC compensates for system 
uncertainties, providing higher control performance.

The use of MRAC in motor systems offers several advantages. Motors are sensitive to changes in the external 
environment, have substantial uncertainties, and exhibit dynamic variations in operation characteristics due to 
load changes or speed variations. MRAC can estimate system states in real-time, adjust model parameters to 
compensate for uncertainties, and quickly respond to dynamic environmental changes, ensuring stable operation 
across various environments. Moreover, MRAC, based on model-reference control, generates control inputs to 
track desired system behavior, ensuring optimal operation such as precise speed or position maintenance and 
control efficiency. Since this model parameter control is automatic, it minimizes user intervention, allowing for 
automated control and resource savings while maintaining system stability and consistent performance.

Figure 3 shows the basic test results of the MRAC developed in this model. The output of the plant without 
MRAC applied deviates significantly from the reference input value, but when MRAC is applied, the output 
converges to the reference input value. The convergence pattern matches the model reference values designed 
in this model. The degree of convergence of the output to the reference value varies depending on the adaptive 
constant b. Results for b values of 10, 100, and 1000 show that higher b values lead to faster convergence. 
Comparing the error values shown in Fig. 3b further clarifies the response characteristics depending on the b 
value.

Deep learning MRAC
MRAC provides robustness against disturbances; however, as seen in Fig. 3, it exhibits varying adaptation levels 
depending on the adaptive constant. Consequently, significant variations in the range of values before and after 
disturbances can result in notable differences in the controller’s performance. This implies that the motor control 
performance can vary depending on the acceleration of a vehicle’s motor.

To address such drawbacks, this study aims to utilize a neural model reference controller incorporating deep 
learning. The neural model reference controller used in this study is composed of a plant neural network model 
with time delays, as shown in Fig. 4, and a controller neural network model. The plant model is first identified, 
after which the controller is trained to ensure that the plant’s output follows the reference model’s output. This 
architecture can be examined through the neural network plant model and controller implemented in the Deep 
Learning Toolbox™. Each neural network consists of two layers, and the number of neurons in the hidden layer 
can be selected. The controller has three sets of input values: delayed reference inputs, delayed controller outputs, 
and delayed plant outputs. The number of delay values for each input can be adjusted, and generally, as the plant’s 
order increases, the number of delay values also increases. The neural network plant model has two sets of input 
values: delayed controller outputs and delayed plant outputs. Similar to the controller, the number of delay values 
can be configured for the plant model as well.

The plant neural network model is designed to mimic the actual behavior of the plant, while the controller 
neural network is designed to make the reference input track the model reference output. This designed model 
reference neural controller is then integrated with the conventional MRAC, forming what is termed as DL-
MRAC.

Figure 5 represents the basic test results of the DL-MRAC designed in this study. The results show that when 
testing with a reference input ranging from 0 to 1, the output tracks the reference value well. However, when 
testing with a reference input ranging from 0 to 5, the output fails to track the reference input accurately. While 
there is a tendency for the output to increase as the reference input increases, beyond the range of 0–1, the output 
exhibits nonlinear behavior.

Therefore, in this study, it is aimed to use normalization as shown in Fig. 6. The model reference input r 
and plant output x were appropriately divided by their respective ranges to standardize them within the range 
of 0 and 1. The controller was then trained using these standardized values. After training, the output value u 
from the controller was reverse-standardized to be inputted into the plant. After applying normalization, It is 
confirmed that the output tracks the reference value well even after inputting references outside the range of 0–1.

Fig. 2.  MRAC block diagram.
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Results and discussion
PI control, MRAC, and DL-MRAC were applied to control the motor of a hydrogen vehicle model, and evaluated 
the performance of each controller by comparing responsiveness and fuel efficiency results. PI control is a 
classical control method where angular velocity is input to generate torque current, which in turn controls 
torque voltage to regulate the motor. In contrast, DL-MRAC controls the motor by receiving input of reference 
angular velocity and actual angular velocity to adjust torque voltage. Figure 7 represents the block diagram of the 
portion replaced by the PI controller for DL-MRAC.

Fig. 3.  MRAC basic test ((a)—Overall output, (b)—Error, (c)—Controller output).
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Speed response
In this study, reference speed profiles of 5, 10, 20, 30, and 40  km/h were applied to observe the response 
characteristics of each controller. The reference models for MRAC and DL-MRAC were designed to track the 
time-delayed values of speed input using transfer functions. Since PI control does not have a reference model, it 
was omitted from observing speed responsiveness.

Figure 8 shows the results of speed response observation tests for MRAC and DL-MRAC. Observing the 
relatively low-speed transition in Fig.  8a, MRAC yields a slow tracking result of the model reference value 
with relatively high overshoot. In contrast, DL-MRAC initially tracked the model reference value quickly 
but transitioned to slower tracking midway. This demonstrates DL-MRAC’s relatively faster response at the 
beginning of step inputs.

As the speed reference increased to 10, 20, and 30 km/h, the response characteristics showed better tracking 
of the model reference. Compared to the 5 km/h speed reference, MRAC exhibited more accurate tracking at 
intermediate speed references than DL-MRAC. However, in the relative high-speed transition shown in Fig. 8e, 

Fig. 4.  Structure of deep learning MRAC model ((a)—Block diagram, (b)—Neural network structure).

 

Scientific Reports |        (2025) 15:13085 7| https://doi.org/10.1038/s41598-025-97082-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


MRAC appeared highly unstable, highlighting its instability due to a single adaptive constant that does not carry 
over characteristics from low and intermediate speeds to high speeds. In contrast, DL-MRAC showed a relatively 
stable tracking of the model reference despite exhibiting significant overshoot due to its rapid initial response to 
step inputs, implying its stability in high-speed transitions.

Disturbance
Vehicles encounter various disturbances during operation, and effectively overcoming these disturbances is 
a crucial factor for vehicle performance. Different types of disturbances involve variations in motor torque, 
which manifests as changes in motor rotation speed. Vehicle dynamics are one of the direct influencing factors 
on the vehicle motor, with factors such as speed, weight, and terrain conditions predominantly influencing it. 
In the proposed truck model in this study, the vehicle’s weight and terrain material are not easily affected by 
operational disturbances, which is not a common occurrence. However, among the four resistance factors in 
vehicle dynamics, rolling resistance is a phenomenon easily encountered during vehicle operation, especially 
when the terrain gradient is introduced as a disturbance, allowing for the testing of disturbance effects during 
regular driving conditions. Therefore, in this study, it is aimed to assess the motor response performance when 
facing a 30-degree incline at a fixed speed.

Figure 9 illustrates the performance of each controller in response to disturbances encountered at speeds 
of 5, 10, 20, 30, and 40  km/h. In the case where PI control is used, it generally shows smaller undershoots 
in motor angular velocity compared to other controllers, but it suffers from abrupt oscillations and slower 
return to nominal speeds compared to other controllers. Among the three controllers, MRAC shows the most 
pronounced undershoot behavior, although the difference compared to DL-MRAC is not substantial. When 
comparing the disturbance performance of MRAC and DL-MRAC, they exhibit generally similar performance, 
but some differences are observed depending on the motor reference speed. At low speeds of 5 and 10 km/h, 
DL-MRAC converges to a steady state faster than MRAC. However, at 10 km/h, DL-MRAC’s convergence slows 

Fig. 5.  DL-MRAC basic test ((a)—Reference input of 0–1, (b)—Reference input of 0–5).
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down, leading to a reversal in convergence speed compared to MRAC at around 1.2 s. At speed references of 
20 and 30 km/h, both MRAC and DL-MRAC exhibit visible oscillations. The oscillations are more pronounced 
in DL-MRAC than in MRAC, and MRAC shows a faster convergence speed. At a speed reference of 40 km/h, 
DL-MRAC exhibits an undershoot of about 4, significantly reducing compared to other speed references, but 
the oscillations increase substantially. MRAC, on the other hand, shows a significant increase in oscillations, 
indicating a highly unstable behavior, especially at high speeds when facing disturbances.

Fuel economy
Hydrogen vehicle batteries have distinct characteristics, with different initial SOC and final SOC after a driving 
cycle. This makes it challenging to assess the fuel economy of hydrogen vehicles using a single drive cycle dataset. 
In order to enable such assessments, it’s necessary to convert the SOC difference between the initial and final 
SOC into hydrogen consumption or potential driving range. Developing protocols that define how the battery 
should be charged or discharged based on the difference of SOC is a highly complex task.

In this study, fuel economy simulation was conducted based on the SAE-J2572 protocol, a document that 
outlines the protocol for evaluating hydrogen vehicle fuel economy34. This document proposes a method for 

Fig. 7.  Deep learning MRAC for PMSM.

 

Fig. 6.  Normalization of deep learning MRAC.
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estimating fuel economy when the initial and final SOC are not same, based on multiple drive cycles. In this 
research, the SOC and hydrogen consumption data were collected during the simulation starting at the various 
initial SOC values ranging from 10 to 90% at 10% intervals. Figure 10 shows the WHVC mode driving profile 
used to acquire fuel economy data in this study.

Table 2; Fig. 11, respectively, present the data acquired in this fuel economy evaluation and the results. The 
points for fuel economy versus the difference between the initial and final SOC are depicted as scatter plots, and 
a first order polynomial curve fitting is performed on these data points. In this curve fitting, the point where 
the initial and final SOC difference is zero is assumed to represent the fuel economy under each condition. The 
measured fuel economies for PI, MRAC, and DL-MRAC are 19.872, 19.896, and 19.903 km/kg, respectively. The 
ranking of fuel economy is as follows: DL-MRAC, MRAC, and PI (highest to lowest).

Conclusion
In this study, the performance characteristics of PI control, MRAC, and Deep Learning MRAC is investigated 
when applied to a hydrogen vehicle motor.

Fig. 8.  Speed response of motor by reference speed ((a)—5 km/h, (b)—10 km/h, (c)—20 km/h, (d)—30 km/h, 
(e)—40 km/h).
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	1.	 The component systems of the hydrogen vehicle were constructed, which included the fuel cell system, bat-
tery, DC–DC converter, 3-phase inverter, and electric motor. All of these models were integrated into a 
complete vehicle system.

	2.	 The specifications of the vehicle system were either referenced from or designed based on existing commer-
cial hydrogen vehicles.

	3.	 The performance characteristics of MRAC and DL-MRAC were compared based on step inputs of vehicle 
speed references. It was confirmed that both MRAC and DL-MRAC output values track the reference model, 
and the convergence speed was evaluated as a criterion to analyze the superiority of each controller.

	4.	 The performance characteristics of PI control, MRAC, and DL-MRAC were compared by inserting distur-
bances while maintaining a constant vehicle speed reference. Under the conditions of disturbance insertion, 
factors such as undershoot immediately after the disturbance, convergence speed, and oscillation were eval-
uated as criteria to analyze the superiority of each controller.

	5.	 The vehicle’s fuel economy was evaluated through multiple simulations, with the fuel economy value cal-
culated while considering the battery’s SOC. The fuel economy of DL-MRAC, MRAC, and PI control was 
observed to be superior in the following order: 19.903 for DL-MRAC, 19.896 for MRAC, and 19.872 for PI 
control.

	6.	 DL-MRAC demonstrated superiority at certain speed references and showed the best fuel efficiency char-
acteristics. This was due to its basis in data training rather than mathematical or analytical logic, leading to 

Fig. 9.  Disturbance response of motor by reference speed ((a)—5 km/h, (b)—10 km/h, (c)—20 km/h, 
(d)—30 km/h, (e)—40 km/h).
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limitations in analytically inferring the causes of control phenomena. Nevertheless, despite these limitations, 
the potential to overcome the drawbacks of conventional MRAC through appropriate training based on the 
derived results was confirmed. Currently, the fuel efficiency characteristic of DL-MRAC is marginally supe-
rior, but it is believed that with appropriate training, its fuel efficiency superiority will further increase.

Case Initial SOC (%) Final SOC (%) Difference of SOC (%) Distance (km) Hydrogen (kg) Fuel economy (km/kg)

PI

10 55.0620 − 45.0620 20.0104 1.0677 18.7425

20 55.0612 − 35.0612 20.0104 1.0492 19.0720

30 55.0853 − 25.0853 20.0104 1.0333 19.3653

40 55.0865 − 15.0865 20.0104 1.0208 19.6021

50 55.0898 − 5.0898 20.0104 1.0079 19.8543

60 55.0855 4.9146 20.0104 0.9963 20.0849

70 55.0876 14.9124 20.0104 0.9859 20.2964

80 55.0872 24.9128 20.0104 0.9825 20.3668

90 55.0880 34.9120 20.0104 0.9778 20.4645

MRAC

10 55.1105 − 45.1105 19.9969 1.0656 18.7652

20 55.1193 − 35.1193 19.9969 1.0472 19.0954

30 55.1337 − 25.1337 19.9969 1.0314 19.3874

40 55.1370 − 15.1370 19.9969 1.0190 19.6239

50 55.1377 − 5.1377 19.9969 1.0061 19.8767

60 55.1352 4.8649 19.9969 0.9945 20.1081

70 55.1358 14.8642 19.9969 0.9841 20.3202

80 55.1363 24.8637 19.9969 0.9807 20.3909

90 55.1363 34.8637 19.9969 0.9760 20.4882

DL-MRAC

10 54.9636 − 44.9636 20.1162 1.0684 18.8280

20 54.9638 − 34.9638 20.1162 1.0498 19.1619

30 54.9964 − 24.9964 20.1162 1.0345 19.4451

40 54.9962 − 14.9962 20.1162 1.0219 19.6847

50 54.9822 − 4.9822 20.1162 1.0127 19.8631

60 55.2998 4.7002 20.1162 1.0013 20.0901

70 55.2999 14.7001 20.1162 0.9913 20.2921

80 55.2999 24.7001 20.1162 0.9879 20.3628

90 55.2996 34.7004 20.1162 0.9835 20.4547

Table 2.  Fuel economy evaluation data.

 

Fig. 10.  WHVC speed profile for vehicle model.
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