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Waterflooding is the most widely used improved oil recovery technique. Predicting the overall oil 
recovery resulting from waterflooding in oil reservoirs is crucial for effective reservoir management 
and appropriate decision-making. Machine learning (ML) techniques present resourceful and fast-track 
tools, aiding in predicting oil recovery, which is time-consuming and costly to accomplish by simulation 
studies. In this paper, four machine learning models: artificial neural network (ANN), Random Forest 
(RF), K-Nearest Neighbor (K-NN), and Support Vector Machine (SVM) are applied to estimate the 
overall oil recovery (R) of water flooding. Initially, statistical methods were employed to analyze the 
input data before applying machine learning techniques. These models take into consideration the 
mobility ratio (M), reservoir permeability variation (V), water-oil production ratio (WOR), and initial 
water saturation (SWi). 1054 datasets were utilized to develop machine-learning models. ANN-based 
correlation was developed to estimate the overall oil recovery of waterflooding. The ANN proposed 
model achieves a high coefficient of determination (R2) of 0.999 and a low root-mean-square error 
(RMSE) of 0.0063 on the validation dataset. On the other hand, the other machine learning models like 
RF, K-NN, and SVM achieve accurate estimation of overall oil recovery (R), where the coefficients of 
determination (R2) values are 0.97, 0.95, and 0.80 and the RMSE scores are 0.0282, 0.0405, and 0.0629 
on the validation dataset, respectively. The innovative application of such ML models demonstrates 
significant improvements in prediction accuracy and reliability, offering a robust solution for optimizing 
oil recovery processes. These machine learning models provide the industry and research with efficient 
and economical tools for accurately estimating oil recovery in waterflooding operations within 
heterogeneous reservoirs.
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Abbreviations
ANN	� Artificial neural network
ARE	� Absolute relative error
AARE	� Absolute average relative error
RF	� Random forest
K-NN	� K-nearest neighbor
SVM	� Support vector machine
R	� Overall oil recovery
M	� Mobility ratio
SWi	� Initial water saturation
WOR	� Water-oil production ratio
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V	� Reservoir permeability variation
R2	� Coefficient of determination
RMSE	� Root-mean-square error
SD	� Standard deviation
RE	� Relative error
Wi,j	� Weight of neurons i and inputs j
whoi	� Weight for hidden and output layer
bi	� Bias of neuron i
bho	� Bias for hidden and output layer

Background
Oil is typically produced from reservoirs through three recovery stages: primary, secondary, and tertiary1. 
Initially, the primary recovery normally involves the production of a reservoir assisted by the natural energy 
of the reservoir. Practically, the average recovery factor for the primary recovery is less than 30% of the initial 
oil in place2. Therefore, when natural energy is depleted (decline of reservoir pressure), additional energy must 
be applied to the reservoir to support the reservoir pressure and maintain oil production through secondary 
recovery. Such secondary recovery can be conducted by water or gas injection for pressure maintenance/
support. Waterflooding is the most widely used method for secondary oil recovery to enhance oil production 
and level up the reservoir pressure3. Practically, waterflooding is still one of the most potential recovery methods, 
recovering around one-third of the original oil in place in conventional oil fields4. Lastly, the tertiary recovery 
stage or enhanced oil recovery (EOR) is applied to increase the oil recovered beyond the range that primary and 
secondary recovery can reach5,6. Typically, EOR methods may be categorized into four classes: chemical7–10, 
thermal11, miscible gas12, and others13,14.

In the waterflooding process, water is injected into reservoirs, and the displaced oil is produced from nearby 
production wells. The efficiency of water to displace oil from permeable and porous reservoirs is known as 
overall oil recovery. The overall oil recovery of waterflooding is mainly affected by the mobility ratio as well as the 
geology of the reservoir15. The ideal displacement, also known as piston-like displacement, is the most desirable 
characteristic, in which the total amount of conventional crude oil recoverable from a reservoir is obtained by 
injecting the same volume of water16. While non-ideal displacement is, unfortunately, more prevalent in nature, 
it is caused by the difference in viscosity between water (displacing phase) and oil (displaced phase). In this case, 
the oil will be bypassed as the water pushes it through the reservoir since the water can move faster than the oil. 
The development of water fingering or coning results in an unfavorable displacement and may reduce the overall 
oil recovery17.

Various factors influence the process of displacing oil with water. These include the relative permeability 
of oil and water, the viscosities of the fluids, the heterogeneity of the reservoir, the distribution of pore sizes, 
capillary pressure, fluid saturations, and the distance between the injection and production wells18–20. All of 
these factors affect the overall oil recovery. The total oil recovery (R) for any secondary or tertiary recovery 
method is determined by the product of three distinct efficiency factors, as illustrated below21:

	 R = EDEAEV� (1)

Displacement sweep efficiency (ED) refers to the ratio of the volume of oil displaced by water from small pores 
in a reservoir to the volume of oil originally present in those small pores before the displacement process22. ED is 
affected by pore geometry, fluid distribution, wettability of the rock, and the saturation of the reservoir. Besides, 
the displacement efficiency is also affected by the viscosity of oil, which decreases with increasing oil viscosity23. 
Welge (1952)24 presented an analytical model for computing the displacement efficiency at water breakthrough 
by drawing a tangent line to the fractional flow curve starting from connate water saturation (Fw versus Sw). 
In addition, various authors have applied the fractional flow theory to waterflooding25, polymer flooding26, 
nanofluid flooding27, and alkaline-surfactant-polymer28.Areal sweep efficiency (EA) is defined as the proportion 
of the area swept by water to the total area21. EA is influenced by two primary factors: the well pattern and the 
mobility ratio of the fluids in the reservoir. Consequently, a lower mobility ratio leads to higher areal sweep 
efficiency29.Vertical sweep efficiency (EV) denotes the proportion of the vertical sections of the pay zone that are 
reached by the displacing fluid. The main factors influencing vertical sweep efficiency are fluid mobilities, the 
extent of gravity segregation, the water-oil production ratio, the vertical heterogeneity of the reservoir, and the 
total volume of injected fluid30.

Literature review
Prediction of water flooding performance was presented in the literature using analytical solutions. Stiles (1949)31 
introduced the first model to estimate waterflooding performance in stratified oil reservoirs. The key assumption 
of this model is that the velocities in different layers are proportional to their absolute permeabilities, with 
water breaking through first in the most permeable layers. Additionally, it assumes a piston-like displacement 
pattern between the displacing fluid (water) and the displaced fluid (oil). Dykstra and Parsons (1950) created an 
empirical model to evaluate the efficiency of waterflooding in stratified oil reservoirs with non-communicating 
layers32. This model assumes immiscible and piston-like displacement, disregarding the effects of gravity. It uses 
the water-oil production ratio (WOR), reservoir permeability variation (V), and water-oil mobility ratio (M) as 
correlation parameters. They also introduced vertical coverage correlation charts for log-normal permeability 
distributions based on the mobility ratio and the coefficient of reservoir permeability variation at different water-
oil production ratios. Building on their work, Johnson (1956) developed a set of correlation charts for overall oil 
recovery at various water-oil production ratios33.

Scientific Reports |        (2025) 15:14619 2| https://doi.org/10.1038/s41598-025-97235-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Yokoyama et al. (1981)34 investigated how capillary pressure affects waterflooding performance. They 
used a two-layer simulation model with water injected at one end and an oil-water mixture produced at the 
other, due to the complexity of the issue. In a homogeneous medium, longitudinal capillary pressure reduces 
waterflood oil recovery, a condition unlikely to occur in field-scale floods. Conversely, transverse capillary 
pressure increases waterflood oil recovery in stratified media, a condition likely to be achieved in field-scale 
floods. El-Khatib (1985)35 introduced a mathematical correlation to estimate waterflooding performance for 
both communicating and non-communicating layers. The study examined the effects of crossflow, mobility 
ratio, porosity, fluid saturation, and permeability distribution on waterflooding performance. The model 
predicts water cut, oil recovery, total injected fluid volume, and changes in the injection rate at breakthrough. 
El-Khatib (1999)36 developed an analytical solution to calculate waterflooding performance in communicating 
stratified systems with log-normal permeability distributions. By integrating various variables, he created a 
single chart that encompasses all water-oil production ratios, permeability variations, and water-oil mobility 
ratios, eliminating the need for separate charts for each ratio. Furthermore, El-Khatib (2001)37 used the Buckley-
Leverett frontal advance theory to formulate a mathematical model for estimating waterflooding performance in 
non-communicating stratified reservoirs. He presented an effective water-oil mobility ratio based on the average 
total mobility in the invaded zone to account for variable saturation behind the displacement front. El-Khatib 
(2003)38 developed a mathematical model to predict waterflooding performance in communicating stratified 
reservoirs, considering the vertical gravitational crossflow due to oil-water density differences. The findings 
showed that gravity crossflow delays water breakthrough in highly permeable layers, enhancing oil recovery 
and reducing water cuts. Following the Dykstra-Parsons approach, it is assumed that the reservoir layers are 
horizontal. El-Khatib (2012)39 established a correlation waterflooding performance in inclined reservoirs by 
modifying the Dykstra-Parsons equation. This modification introduced a dimensionless gravity number that 
accounts for the dip angle effect and the density differences between displacing fluids like water and displaced 
fluids like oil.

Craig et al. (1971)23 developed a graphical model to estimate the areal sweep efficiency at water breakthrough 
based on the mobility ratio for a five-spot flooding pattern. Willhite (1986)40 converted Craig’s graphical 
correlation into a mathematical model, which is as follows:

	
EABT = 0.54602036 + 0.03170817

M
+ 0.30222997

eM
− 0.00509693M � (2)

After the water breakthrough, the areal sweep efficiency improves due to the expansion of the total swept area as 
water injection continues. Dyes et al. (1954)19 developed the following relationship between the increase in the 
efficiency of areal sweep and the ratio of water volume injected at any time after the water breakthrough:

	
EA = EABT + 0.2749ln

(
W i

W iBT

)
� (3)

Furthermore, Dyes et al. (1954) provided graphical correlations that relate the areal sweep efficiency at and 
after water breakthrough with the reciprocal mobility ratio and the water cut for various injection well patterns, 
including five-spot, direct line, and staggered line patterns.

Fassihi (1986)41 extracted the data from the graphical correlations of Dyes et al. (1954) and established a 
mathematical model to calculate the efficiency of the areal sweep as a function of water cut and mobility ratio 
for five-spot, direct line, and staggered line patterns (Eq. (4)). The correlation coefficients from Fassihi (1986) 
are shown in Table 1.

	
EA = 1

1 + [aln(M + b) + c]fw + dln(M + e) + f � (4)

Recently, machine learning techniques were used to predict the performance of water flooding. In this regard, 
Kalam et al. (2021)42 presented a new empirical model based on ANN to estimate the five-spot waterflood 
performance in a heterogenous reservoir at and after water breakthrough. The developed ANN model can 
predict the overall oil recovery accurately in terms of the wettability of rock, mobility ratio, permeability 
variation coefficient, anisotropy ratio, and production water cut. Moreover, the ANN model could be a suitable 
tool for 5-spot waterflooding heterogeneous reservoirs and waterflooding assessment before building a reservoir 
simulation model.

Coefficients Direct line-drive Staggered line-drive Five-spot

a −0.3014 −0.2077 −0.2062

b −0.1568 −0.1059 −0.0712

c −0.9402 −0.3526 −0.511

d 0.3714 0.2608 0.3048

e −0.0865 0.2444 0.123

f 0.8805 0.3158 0.4394

Table 1.  The correlation coefficients of Fassihi (1986)41.
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Gomaa et al. (2022)43 developed new accurate correlations to predict the vertical sweep efficiency based on 
the water-oil production ratio, reservoir permeability variation, and mobility ratio using Nonlinear Multiple 
Regression (NLMR) and Artificial Neural Networks (ANN). The neural network model achieved a high 
coefficient of determination (R²) of 0.999 and a low mean square error of 0.0001.

In another study, Gomaa et al. (2022)44 established ANN models to calculate the efficiency of the areal sweep 
at and after water breakthrough for different injection well patterns such as five-spot, nine-spot, direct line, and 
staggered line patterns. The ANN models for calculating the efficiency of areal sweep for five-spot, direct line, 
and staggered line patterns are developed as a function of mobility ratio and water cut, while the ANN model for 
estimating the EA of the regular nine-spot pattern is developed as a function of mobility ratio, producing ratio, 
and water cut.

The gap and work objective
In contrast to much of the existing literature on analytical solutions and ML models, this study predicts the 
overall oil recovery of waterflooding using four distinct machine-learning techniques. Moreover, the previous 
studies were mostly focused on applications of artificial neural networks in the prediction of oil recovery42–44. 
To the author’s best knowledge, the developed machine learning techniques and the gathered database for 
prediction of overall oil recovery of waterflooding are so far the most comprehensive of its kind. These machine 
learning models provide the industry and researchers with an efficient and economical means to accurately 
estimate the overall oil recovery of waterflooding operations in heterogeneous reservoirs. The primary objective 
of this research is to utilize four distinct machine learning techniques: Artificial Neural Networks (ANN), 
Random Forests (RF), K-Nearest Neighbors (K-NN), and Support Vector Machines (SVM) to estimate the 
overall oil recovery from waterflood operations in heterogeneous reservoirs. This study introduces innovative 
and more efficient methods for predicting the overall oil recovery from waterflooding, surpassing traditional 
analytical based on 1054 datasets of mobility ratio, reservoir permeability variation, water-oil production ratio, 
and initial water saturation. The machine learning (ML) models developed in this research can be readily 
applied to new datasets, enabling accurate predictions of oil recovery. These established ML models also provide 
a robust foundation for further enhancements. As more data becomes available, the models’ accuracy and 
reliability are expected to improve. Machine learning techniques have been extensively utilized to predict the 
recovery performance in several recovery processes, such as waterflooding in heavy oil reservoirs45, low-salinity 
and hybrid low-salinity chemical flooding46,47, flooding in stratified reservoirs48, CO2 flooding in sandstone 
reservoirs49, immiscible flooding in heterogeneous reservoirs50, polymer and surfactant-polymer flooding51,52, 
and steam-assisted gravity drainage (SAGD)53.

Methodology
The research’s procedural approach is schematically shown in Fig. 1 and explained in the following points.

Fig. 1.  Research methodology for prediction of oil recovery of waterflooding using ML.
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Data acquisition
1054 datasets are extracted from literature specifically Johnson correlations33 (Fig. 2) to build machine learning 
models for estimating the overall oil recovery (R) in terms of mobility ratio (M), reservoir permeability variation 
(V), water-oil production ratio (WOR), and initial water saturation (SWi). These parameters were chosen because 
they collectively capture the essential physical and fluid dynamics that govern the water flooding process, thereby 
enabling the model to make accurate predictions of oil recovery. We adopted stringent criteria to ensure the 
quality of the data collected. The first step involved gathering relevant data and including essential features that 
influence the recovery factor of water flooding. Ensuring data quality was paramount, which involved considering 
factors such as accuracy, consistency, and distribution. Additionally, we collected a substantial volume of data 
(1041 datasets) to train a robust and reliable model. Finally, we included diverse datasets to capture a wide range 
of reservoir conditions, thereby enhancing the model’s generalizability and effectiveness in various scenarios.

As indicated in Table 2, the statistical analysis involves specifying the mean, median, mode, minimum, and 
maximum values and dispersion parameters such as standard error, standard deviation, kurtosis, and skewness. 
According to Table 2, the mobility ratio ranges from 0.098 to 100, the reservoir permeability variation ranges 
from 0.006 to 0.998, the water-oil production ratio ranges from 1 to 100, the initial water saturation ranges 
from 0.1 to 0.55, and the overall oil recovery ranges from 0.011 to 0.889. The dataset was graphically displayed, 
and the sampling distribution was explained using histograms. Figure 3 (a-d) shows the histograms of the data 
sets for mobility ratio (M), reservoir permeability variation (V), water-oil production ratio (WOR), and initial 
water saturation (SWi), respectively. The datasets encompass a variety of mobility ratios from 0.09 up to 100 
(unfavorable M). However, most of the data points range from 1 to 15. Furthermore, the data on reservoir 
permeability variation (V) showed a large range of values (0.006–0.998) that is mean from very homogeneity to 
very heterogeneity. Regarding the water-oil production ratio (WOR), the dataset comprises frequent values of 
1, 5, 25, and 100. Furthermore, the initial water saturation (SWi) data had an extensive range of values (0.1 to 
0.55). Figure 4 depicts the histogram of the overall oil recovery from water flooding. A variety of oil recovery 

Fig. 2.  Simplified Dykstra and Parsons curves. Reprinted with permission from Johnson Jr, C. E33. Copyright 
(1949) Society of Petroleum Engineers.
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are covered by the datasets, but most of the data points lie between 10% and 50% psi. Based on the datasets, the 
average oil recovery after water flooding (WF) was 27%.

As shown in Fig. 5, the correlation map shows the relation between the features with each other and with the 
target value (R). The SWi feature has a significant positive relationship with the target value (R) while the feature 
V has a significant negative relationship with the target value (R), which is thought to be the most impactful 
feature in the dataset.

Fig. 3.  Histogram plots of input variables based on the gathered data from the literature: (a) mobility ratio 
(M), (b) reservoir permeability variation (V), (c) water-oil production ratio (WOR), and (d) initial water 
saturation (SWi).

 

Parameters

M V WOR SWi R

Mean 16.431 0.538 25.602 0.32 0.271

Standard error 0.797 0.01 1.099 0.004 0.006

Median 3.64 0.556 5 0.32 0.25

Mode 100 0.988 5 0.11 0.313

SD 25.881 0.319 35.678 0.131 0.185

SV 669.818 0.101 1272.946 0.017 0.034

Kurtosis 2.695 -1.4 0.447 -1.193 -0.713

Skewness 1.915 -0.099 1.456 0.036 0.395

Range 100.214 0.992 99 0.45 0.878

Minimum 0.098 0.006 1 0.1 0.011

Maximum 100 0.998 100 0.55 0.889

Count 1054 1054 1054 1054 1054

Table 2.  Statistical analysis of the datasets.
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Fig. 5.  Relative importance of input parameters with overall oil recovery (R).

 

Fig. 4.  Histogram plots of output variable based on the gathered data from Jhonson correlation: Recovery 
factor.
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Data analysis using statistical approaches
Before ML models were developed, the gathered datasets were examined through statistical tools to authenticate 
the relations between the input parameters and output (oil recovery). A predictive machine learning (ML) model’s 
accuracy heavily depends on the quality of the input dataset54. It’s important to note that the prediction accuracy 
of ML models is validated by examining the significance of input features on the output data. Consequently, 
an analysis of variance (ANOVA) test was conducted using Minitab software to assess several variables of the 
generated model. The relationship between oil recovery from water flooding and the input variables was analyzed 
using P and F values. A p-value of less than 0.05 indicates the statistical significance of a factor. Furthermore, 
factorial design, contour plots, and main effects plots were created and discussed to emphasize the impact of 
input data on oil recovery from water flooding54.

Applied machine learning models
Numerous machine learning models are designed for regression tasks, including artificial neural networks, 
random forests, K-nearest neighbors, and support vector machines. All of these models can be implemented 
in a regression task, but each model performs differently from the other models due to the completely different 
mechanisms of each machine learning model. Each machine learning model possesses a unique set of parameters 
that can be adjusted to produce different iterations of the same model, and each iteration will perform differently, 
resulting in varied scores.

One widely used machine learning method is the artificial neural network (ANN), which mimics the way the 
human brain learns. An ANN consists of three layers: an input layer, one or more hidden layers, and an output 
layer. Each layer comprises numerous interconnected nodes (neurons) that connect the input layer to the output 
layer through the hidden layer(s). The output for each neuron is determined by a nonlinear function of the sum 
of its inputs55. The neural network’s edges and nodes contain weights that are adjusted during the learning phase. 
ANNs have been applied in various petroleum engineering contexts, such as reservoir engineering, where they 
are used to estimate water saturation and permeability in limestone and dolomite formations56,57 and estimate 
the dewpoint pressure for retrograde gas condensate reservoirs58. Besides, Applications of ANN In drilling 
engineering include estimating the pressures (pore and fracture pressures) while drilling for mixed lithologies59 
and predicting the yield point and plastic viscosity of the invert-emulsion mud60.

The K-Nearest Neighbour (K-NN) machine learning method is extensively employed for classification and 
regression tasks. This model aims to measure the distance between a new, unlabelled data point and existing 
training data points in the feature space, which is essential for class prediction. During this phase, the nearest 
data points are arranged based on the k-value of the new observation. The k-value, a hyperparameter in this 
context, is used to identify the k-nearest data points for the new observation. The K-NN classifier then votes 
and assigns the predicted class to the new unlabelled data sample based on the number of class labels among the 
k-neighbours61.

The support vector machine (SVM), also referred to as the kernelized support vector machine (KSVM), was 
introduced by Cortes and Vapnik62. SVMs have supervised machine learning algorithms that analyze a dataset’s 
many inputs to create a decision boundary (or hyperplane) between many classes. As a consequence, a single 
or multiple feature vector may be used to predict labels. Because of its arrangement, data points close to each 
class are kept at a safe distance. The term “support vector machine” pertains to the data points that are nearest, 
which are referred to as support vectors. The fundamental purpose of this approach is binary linear classification 
and prediction. This method has been employed effectively in several biological applications. SVMs are widely 
utilized in biomedical practice to characterize microarray gene expression patterns62.

A random forest (RF) is an ensemble model for classification and regression that includes several models and 
is compatible with a wide range of datasets. These models include Bootstrap aggregation and bagging. To avoid 
overfitting, Bagging can minimize the variance of the model and improve the generalization. Even without the 
use of decision trees, this approach can resolve significant conflicts. In a random forest model, multiple decision 
trees (DTs) are used, each with slight variations from one another. For each data point, the multiple results 
from the decision trees are combined. During the integration process, a majority vote is used for classification 
tasks, while an average value is calculated for regression tasks. In terms of predictions, combined decision trees 
outperform single decision trees since they are all trained individually on random samples from a training 
dataset. Because it employs randomness in tree building to ensure that all trees are unique from one another, this 
model is termed a random forest63.

Data splitting
Before the data were fitted into the models, some pre-processing steps took place. For building an ANN, K-NN, 
SVM, and random forest models to estimate the overall oil recovery. The dataset was divided into training 
and validation subsets, with 70% allocated for training and the remaining 30% for validation. Additionally, the 
dataset was standardized using the StandardScaler technique to achieve a uniform value ratio, which helps the 
models avoid confusion due to large variances in data values. Other scaling methods like Robust Scaler, which 
uses the median and the interquartile range, could also be considered for data with many outliers. In the current 
study, the data had minimal outliers, making Standard Scaler a suitable choice. The StandardScaler is a popular 
preprocessing tool in machine learning used to standardize features by removing the mean and scaling to unit 
variance. This ensures that each feature contributes equally to the model, which can improve the performance 
and convergence speed of many machine learning algorithms. StandardScaler transforms the data such that the 
distribution of each feature has a mean of 0 and a standard deviation of 1. This is particularly useful when the 
features have different units or scales. The transformation is given by the following equation:
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Z = x − µ

σ
� (5)

Where z is the standardized value, x is the original value, µ is the mean of the feature, σ is the standard deviation 
of the feature.

Models evaluation and error analysis
Various traditional statistical measures and graphical error analyses are employed to evaluate the precision of 
the model. These methods help in assessing the accuracy, validity, and reliability of the developed models, as 
well as in predicting the performance of the machine learning algorithms created54. Furthermore, relative error 
distribution graphs and Cross-plots were also employed. In the cross plots, the predicted and experimental data 
points are plotted against each other to evaluate the model’s accuracy in predicting the experimental results. The 
effectiveness of the diagram is assessed by examining how closely the data points cluster around the equality line 
and their deviation from the 45° line.

Statistical error analysis
In this study, the reliability of the developed paradigms was evaluated using several statistical measures, including 
ARE%, AARE%, RMSE, SD, and R²64,65. The following formulas are used to compute these statistical parameters. 
The following formulas are used to compute these statistical parameters.

	
ARE = 100

N

∑
N
i=1

yi actual − yi predicted

yi actual
� (6)

	
AARE = 100

N

∑
N
i=1

∣∣∣∣
yi actual − yi predicted

yi actual

∣∣∣∣ � (7)

	
MSE = 1

N

∑
N
i=1(yi actual − yi predicted )2 � (8)

	 RMSE =
√

MSE� (9)

	
R2 = 1 −

∑
N
i=1(yi actual − yi predicted )2

∑
N
i=1(yi average actual − yi predicted )2 � (10)

where N symbolizes several datasets; y i Actual, y i Predicted, and y i average Actual symbolizes actual RF, predicted RF, 
and an average of actual values of RF, respectively.

Results and discussion
Analysis of the impact of key factors on the recovery factor using statistical approaches
The analysis of variance (ANOVA)
ANOVA is a statistical tool widely employed to analyze various issues in the upstream oil industry54,66. In this 
study, ANOVA was utilized to obtain a quantitative interpretation of the investigated parameters. The results, 
displayed in Table 3, indicate that all input data significantly impact oil recovery through water flooding, with 
P-values less than 0.05. Reservoir permeability variation (V) shows the highest F-value (4055.99), signifying its 
stronger influence compared to other parameters. Additionally, the mobility ratio, water-oil production ratio, 
and initial water saturation had substantial effects on oil recovery, with F-values of 870.44, 377.7, and 237.2, 
respectively.

Factorial design
Factorial design was utilized to identify the most significant factors among the study parameters. Minitab 
software was employed to conduct these statistical assessments. Generally, factorial design is a crucial statistical 
tool for examining the influence of various controllable elements on the response of interest. The results of the 
factorial design are presented in the Pareto diagram, which displays the effects of the factors from the highest to 
the lowest impact using horizontal bars. Additionally, a reference line on the Pareto chart indicates which effects 
are statistically significant. In this study, the analysis was performed for mobility ratio (M), reservoir permeability 
variation (V), water-oil production ratio (WOR), and initial water saturation (SWi). Figure 6 shows the Pareto 

Source DF Adj SS Adj MS F-value P-value

Model 4 29.192 7.2981 1116.78 0

Linear 4 29.192 7.2981 1116.78 0

M 1 5.688 5.6883 870.44 0

V 1 26.506 26.5057 4055.99 0

WOR 1 2.468 2.4683 377.7 0

SW 1 1.55 1.5501 237.2 0

Table 3.  ANOVA for oil recovery by water flooding.
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chart for the water flooding recovery factor results. The overall effectiveness of these parameters, ranked from 
highest to lowest, was reservoir permeability variation (V) > mobility ratio (M) > water-oil production ratio 
(WOR) > initial water saturation (SWi). Furthermore, permeability variation (V) and mobility ratio (M) were 
the most dominant parameters affecting the recovery factor of water flooding. The statistical analysis using the 
Pareto chart is consistent with the previous analysis.

Contour plots
A contour plot was utilized to assess the impact of input variables on oil recovery. Figure  7a illustrates the 
contour plot for oil recovery via water flooding, analyzing the combined effects of the mobility ratio (M) and 
reservoir permeability variation (V). The plot indicates that the highest oil recovery values occur in regions 
with low mobility ratio and low permeability variation. Conversely, the lowest oil recovery values are observed 
in areas with high mobility ratio and high permeability variation. This figure is consistent and supportive from 

Fig. 7.  Contour map of recovery factor: (a) correlated with V and M, (b) correlated with Sw and WOR.

 

Fig. 6.  Pareto chart for results of oil recovery by water flooding.
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reservoir point of view. Figure 7b shows the contour plot for oil recovery by water flooding to analyze the mutual 
effects of water-oil production ratio, and initial water saturation. The valley in the lower left section of the graph 
indicates the lowest oil recovery values (< 0.1), corresponding to lower water-oil production ratios and initial 
water saturation. As the water-oil production ratio increases, oil recovery shifts to higher regions. Consequently, 
the upper right section of the graph signifies the highest oil recovery values, which align with the highest water-
oil production ratios.

Main effect plot
Figure  8 Presents the main effects plot for waterflooding oil recovery correlated by mobility ratio (M), reservoir 
permeability variation (V), water-oil production ratio (WOR), and initial water saturation (SWi). The horizontal 
line indicates the mean oil recovery value. At a low mobility ratio, oil recovery is above the mean value, but it 
decreases as the mobility ratio increases. Similarly, at a low permeability variation, oil recovery is above the mean 
value, but it declines with increasing permeability variation. Furthermore, at low water-oil production ratios, 
oil recovery is below the mean value; however, it improves as the water-oil production ratio increases, reaching 
its maximum at the highest water-oil production values. Additionally, the main effects plot suggests that initial 
water saturation has a relatively minor influence on oil recovery.

Development of the machine learning models
The machine learning techniques discussed in Sect. 2.3 were applied to the dataset. Additionally, the models 
were evaluated and compared using various methods, such as the RMSE score and R2 score, to determine which 
model is most suitable for this dataset.

ANN model
The initial experiments were conducted using the artificial neural network (ANN) model. This ANN model was 
designed to estimate the overall oil recovery (R) based on reservoir permeability variation (V), mobility ratio 
(M), water-oil production ratio (WOR), and initial water saturation (SWi). In this model, there are four layers.

The first layer of the network consists of input data, featuring four neurons corresponding to reservoir 
permeability variation, mobility ratio, water-oil production ratio, and initial water saturation. The subsequent 
layers include two hidden layers, each containing 10 neurons. The final layer represents the network’s output with 
a single neuron for overall oil recovery. Machine learning models, especially ANN, can suffer from overfitting, 
where the model learns the training data too well, including noise and outliers, leading to poor generalization 
of new data. Overfitting often occurs due to limited datasets or overly complex model architectures. To mitigate 
this, techniques like cross-validation and hyperparameter tuning are used. Cross-validation involves partitioning 
the data into subsets and training the model multiple times to ensure consistent performance. In addition, Early 
stopping monitors the model’s performance on a validation set and halts training when performance degrades. 
To determine the optimal architecture and learning functions for the ANN model, we initially investigated the 
effects of varying the number of neurons (8, 9, and 10) and different transfer functions, such as tan sigmoid and 
logistic sigmoid, on the coefficient of determination and root-mean-square error (RMSE) in a single hidden layer. 
According to Table 4, the logistic sigmoid with ten neurons was chosen as the optimal transfer function due to its 
highest coefficient of determination (R²) of 0.9922 and the lowest RMSE of 0.0163. Subsequently, we discovered 
that the best accuracy (R² = 0.9994 and RMSE = 0.0047) was achieved using two hidden layers, each with 10 
neurons, and the logistic sigmoid transfer function. Additionally, the pure linear function was selected for the 
output layer, and the Levenberg-Marquardt technique was utilized as the training algorithm. Table 4 summarizes 
the characteristics of the proposed model. The challenge of overfitting is notably mitigated, particularly when 
employing the optimized parameters for machine learning models, as detailed in Table 5. This suggests that fine-
tuning the model’s parameters can effectively mitigate over-fitting, ensuring better generalization to new data.

Fig. 8.   Main effect plot.
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The ANN model for overall oil recovery can be described as follows:
For i = 1 to the number of neurons and j = 1 to the number of inputs, the inputs of the first hidden layer are 

estimated from the expression below:

	
Si,j =

∑
N
j=1 (wi,jxj) + bi � (11)

Where xj represents the normalized M, V, WOR, and SWi, which can be expressed as:

	 Mn = 0.02002M − 1.00197� (12)

	 Vn = 2.016023V − 1.012445 � (13)

	 W ORn = 0.020202W OR − 1.020202 � (14)

	 SW in = 4.44444Swi − 1.44444 � (15)

The Logistic sigmoid function is used to calculate the outputs of the first hidden layer, as illustrated below:

	
Hi = 1

1 + exp(−Si)
� (16)

The inputs of the second hidden layer are estimated as follows:

	
SSi,j =

∑
N
j=1 (wi,jHj) + bi � (17)

The Logistic sigmoid function is used to calculate the outputs of the second hidden layer, as illustrated below:

	
HHi = 1

1 + exp(−SSi)
� (18)

The following function can be used to calculate the overall oil recovery:

	
R = 0.439138

[ ∑
n
i=1 (whoiHHi) + bho

]
+ 0.449751 � (19)

The proposed model’s coefficients required to complete the calculations of overall oil recovery are presented in 
Tables 6, 7, 8.

Figures 9 and 10 illustrate the regression plots for training, validation, and the entire dataset, comparing the 
network outputs with the target values for the overall oil recovery model. Ideally, the data points should align 
closely with the line of the unit slope, indicating that the network’s predictions match the target values. The 
results show a strong correlation between the experimental and predicted values for overall oil recovery (R), with 

Parameter Value

No. of layers 4

Neurons of the Input layer 4

No. of Hidden layers 2

Size of Hidden layers 10/10

Training algorithm Levenberg-Marquardt

The hidden layer’s activation function Logistic sigmoid

The output layer’s activation function Pure linear

Table 5.  Characteristics of the overall oil recovery ANN model.

 

No. of hidden layers

Tan sigmoid function Logistic sigmoid function Logistic sigmoid function

One One Two

No. of neurons 8 9 10 8 9 10 10/10

R2 0.979 0.9817 0.9901 0.9905 0.9825 0.9922 0.9994

SD 51.6522 50.2697 43.1407 35.1193 57.4868 40.8015 8.5593

RMSE 0.0267 0.0248 0.0183 0.018 0.0242 0.0163 0.0047

RE 5.6306 1.1112 3.6046 1.4276 4.6315 2.3441 -0.33

AE 21.9454 19.9949 16.9032 15.2333 23.0346 14.3462 3.504

Table 4.  Overall oil recovery model optimization.
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a high R² value of approximately 0.999 for both training and validation datasets. The evaluation summary of the 
proposed model is tabulated in Table 9.

Random forest model
A Random Forest (RF) is an ensemble of T-decision trees {ht (x)}T

t=1. For a given input x, each decision tree 
ht outputs a prediction. The final prediction of the RF is obtained by aggregating the individual tree predictions, 
often by majority voting in classification or by averaging in regression67.

Construction of each decision tree

	 I.	 Bootstrap sampling: For tree t, a bootstrap sample of size N (the number of training samples) is drawn from 
the original dataset {(xi, yi)}N

i=1​. Denote this sample as Dt​.
	 II.	 Random feature subset: At each node of tree t, instead of considering all d features, a random subset 

Ft ⊂ {1,2, . . . , d}of predefined size mmm m (m ≪ d) is selected to find the best split.

Neuron # whoi bho

1 -0.343 2.3095

2 -0.693

3 -1.65

4 -0.776

5 -7.071

6 -1.094

7 8.5998

8 -3.306

9 1.6415

10 12.507

Table 8.  Weights and biases connecting the second hidden layer to the output layer.

 

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 b

3.4266 -2.8763 0.63183 -2.1664 -1.7036 3.6072 5.3989 0.1399 3.2563 -1.1199 -4.887

-0.3042 1.5455 -1.2215 1.0358 -1.3291 -0.44493 -2.9818 1.0147 -3.9765 -3.9733 0.20448

-0.11897 -4.5513 6.0141 2.1184 -0.22865 -1.1772 -1.7491 2.7789 -2.623 -0.4364 5.2191

2.959 1.8912 2.4786 -3.6708 -1.3125 2.0565 5.522 6.7706 -14.5092 -3.8463 3.0869

-4.2268 6.3319 -0.30718 3.5636 -1.6678 5.2372 3.7586 -7.2814 -6.3568 -4.0944 2.6439

5.6314 -2.1409 6.5956 -2.7469 -5.5293 -0.25612 4.778 -0.3454 -5.2492 -3.6194 -0.57895

2.9027 9.9582 3.1199 0.26512 -11.7888 4.8972 1.9127 4.6122 -3.482 -1.7591 -1.5662

-3.7481 -2.2798 0.86981 2.0163 4.7501 2.0394 -2.3487 0.86524 3.4199 0.64739 -4.0523

3.654 -4.8861 4.0243 1.7782 -1.1766 -4.7283 -3.912 0.53242 1.3374 -0.70098 4.6162

-2.4159 -1.8223 4.4469 -2.6365 -2.6047 5.4375 12.3661 2.4237 -15.8767 -1.5808 0.44539

Table 7.  Weights and biases connecting the first hidden layer to the second hidden layer.

 

Neuron # wi,j=1 wi,j=2 wi,j=3 wi,j=4 bi

1 -0.7635 -2.842 0.5567 -0.073 2.385

2 0.4096 -3.084 0.4751 -0.166 -3.684

3 -0.9356 -1.663 -4.24 -0.103 1.2335

4 2.0451 8.1095 -2.821 0.8039 -8.009

5 0.0019 0.641 0.5156 -0.543 2.6381

6 -0.2534 -2.605 5.161 -0.136 -1.211

7 -2.631 -1.606 1.0273 -0.054 -0.377

8 0.2593 -0.698 -12.47 0.105 -11.66

9 7.7251 -1.289 0.7559 -0.111 9.92

10 1.1182 -7.183 0.2954 0.1569 8.2029

Table 6.  Weights and biases connecting the input layer to the first hidden layer.
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	III.	 Decision tree induction: A decision tree ht is grown by recursively splitting the training data (from the 
bootstrap sample Dt according to the feature and split point that best separates the data in terms of the 
impurity measure (e.g., Gini index, entropy, etc.) in classification tasks or variance reduction in regression 
tasks.

Prediction  For a regression problem, each tree in the Random Forest outputs a real-valued prediction. The 
overall Random Forest prediction is the average of these individual predictions, mathematically represented as:

	
HRF (x) = 1

T

∑
T
t=1ht (x)� (20)

where T is the total number of trees, and ht (x)is the prediction from the T-th tree.
The second series of experiments utilized the random forest model. These experiments aimed to identify 

the optimal parameters for the model on the given dataset. The primary parameter adjusted was the number 
of estimators (n_estimators). Initially, this parameter was set to 220, and ten experiments were conducted with 
n_estimators values ranging from 220 to 400. After the experiments were finished, the RMSE score for each 
experiment was plotted as shown in Fig. 11; Table 10 to see which value scored the best RMSE, and Fig. 11 showed 
that the best n_estimaors’ value was 380, which scored an RMSE score of 0.0265. One of the main characteristics 
of the random forest model is that it learns how impactful and important the given features are with respect 
to the goal value. This is a very useful function that can be used to see which feature is the most important in 
the dataset. This function was used to see which feature is the most impactful and the function showed a result 
that feature V is the most important feature in the dataset. The feature importance was determined using the 
permutation importance method. It involves randomly shuffling the values of each feature and measuring the 
impact on the model’s performance. In addition, this method is particularly useful because it is model agnostic, 
meaning it can be applied to any machine learning model, including linear models, decision trees, and neural 
networks. The feature importance allows for a comprehensive comparison of feature importance across different 
models, providing deeper insights into which features are most influential in predicting the target variable. 
Figure 12 shows the plot of the importance of input parameters retrieved from the random forest technique. 
From this plot, we can infer that V and M are the most critical features for estimating the overall recovery 
factor of water flooding. Water saturation also contributes, but water oil ratio has the least impact on the overall 
recovery factor of water flooding.

K-nearest neighbor model
K-Nearest Neighbors (K-NN) is a non-parametric algorithm used for classification and regression. It predicts 
the label of a query point x based on the labels of its K closest neighbors in the training set67.

Distance metric  A common choice for the distance metric in K-NN is the Euclidean distance, which is defined 
as:

Fig. 9.  Cross plots of the overall oil recovery (R) model for (a) Training datasets, (b) Validation datasets, and 
(c) All datasets.
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Figure 9.  (continued)

Type of data ARE AARE RMSE R2

Training -0.5451 3.9623 0.0047 0.999

Validation -0.4434 2.9912 0.0063 0.999

Table 9.  Evaluation summary of the proposed ANN model.

 

Fig. 10.  Relative error distribution for overall oil recovery (R) predicted by ANN model.
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Fig. 12.  Importance of input parameters as estimated by the random forest model.

 

n_estimators

RMSE

Validation Training

220 0.02696 0.011129

240 0.02686 0.011126

260 0.02682 0.011124

280 0.02675 0.011111

300 0.02659 0.011094

320 0.02661 0.011092

340 0.02652 0.011086

360 0.02648 0.011070

380 0.02645 0.011050

400 0.02654 0.011051

Table 10.  RMSE score for random forest across different parameter values.

 

Fig. 11.  Random Forest RMSE score across different parameter values.
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d (x, xi) = ∥x − xi2∥ =

√√√√
d∑

j=1

(zj − zij)2 � (21)

where x and xi are points in a d-dimensional space, and zj and zij are the j-th components of x and xi, respectively.

Neighborhood definition  Given a query point x, define its neighborhood NK(x) as the set of K training points 
closest to x under the chosen distance metric:

	
Nk (x) = argS⊂ {1,... N}, |S|=K ,

∑
i∈ Sd(x, xi) � (22)

Where N is the total number of training points; K is the number of nearest neighbors; d(x, xi) is the distance 
between the query point x and a training point xi.

Prediction  In regression, each neighbor has a real value yi ∈ R, and the prediction is typically the average of 
these values. The prediction function for K-Nearest Neighbors (KNN) regression is given by:

	
HKNN (x) = 1

K

∑
i∈ NK (x)yi� (23)

where NK (x) represents the set of the KK nearest neighbors of x.
The third series of experiments utilized the K-Nearest Neighbor model, focusing on varying the number of 

neighbors (n_neighbors). This parameter determines how many neighbors are considered when comparing new 
data. The experiments began with n_neighbors set to 2, incrementing by 1 in each subsequent experiment until 
reaching 9. After completing the experiments, a figure was created to visualize the differences in RMSE scores 
as the n_neighbors parameter changed. The figure showed that the best value for the n_neighbors parameter is 
2 due to the result given by that model, which was a 0.0372 RMSE score. Figure 13 shows the RMSE difference 
between each model in this set of experiments.

SVM model
Support Vector Machines (SVMs) aim to find a decision boundary that maximizes the margin between classes. 
For simplicity, the standard linear SVM for a binary classification (yi ∈ {−1, +1 }) is presented below.

Primal formulation  Given a training set {( x_i, y_i )}N
i=1where xi ∊ Rd and yi ∊ {-1, + 1}, the soft margin 

SVM optimization problem in its primal form is:

	

min
w,b,ξ

1
2

∥∥w2∥∥ + C

N∑
i=1

ξi� (24)

	 subject to yi

(
wtxi + b

)
≥ 1 − ξ i, ξ i ≥ 0, i = 1, . . . ., N � (25)

Where: w ∊ Rd is the normal vector to the hyperplane; b ∊ R is the bias term; ξ i ≥ 0 are the slack variables 
allowing for soft margin; and C > 0 is a regularization parameter that trades off margin size and classification 
error.

Fig. 13.  K-NN RMSE scores across different parameter values.
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Decision function  Once w and b are learned, the decision function for a test point x is:

	 f (x) = wtx + b� (26)

Where w is the weight vector; b is the bias term; x is the input feature vector; wtx represents the dot product of 
ww and xx.

The predicted label is given by:

	 HSV M (x) = sign (f (x))� (27)

Kernel extension  In many applications, a kernel function K(x, x′ ) is introduced to handle nonlinear de-
cision boundaries. The corresponding dual formulation leverages K (xi, xj) to work in a high-dimensional 
(possibly infinite-dimensional) feature space without explicitly computing coordinates in that space. The predic-
tion function in the kernelized case can be written as:

	
f (x) =

∑
N
i=1α iyi K (xi, x) + b � (28)

Where α i are Lagrange multipliers obtained by solving the dual optimization problem, and only a subset of the 
α i​ (the support vectors) are non-zero.

The final series of experiments aimed to identify the optimal SVM model. The main parameter that was 
changed in this experiment was the kernel parameter. The kernel parameter in the SVM model can take multiple 
values like the linear kernel, polynomial kernel, and RBF kernel. The experiments started with setting the kernel 
parameter to the linear kernel and starting the training. Then the polynomial and RBF kernels were set as the 
parameter values for the next two experiments. The results were plotted to see which kernel parameter value gave 
the best performance, and the result showed that the RBF kernel achieved the best performance of 0.0629 RMSE 
scores. Figure 14 shows the performance results based on the kernel parameter values.

Comparison between the applied machine learning models’ performances
Table 11 shows the tuned hyperparameters of Random Forest, K-nearest neighbors, and SVM in terms of the 
computational process of the developed model68. After obtaining the best parameter set from each model, the 
four techniques were compared to see which model was the best one overall. The learning curves for the four 
models were plotted to see the difference between the models in the learning process and which model scored 
the best RMSE score. The learning curves plot is a plot to show the learning behavior of the model during 
the training phase and the validation phase. It works by splitting the data into eight folds and testing out the 
performance of the model at each fold adding up to have the model performance on the whole data points at the 
end. Figure 15 demonstrates a comparison between the learning curves of all the implemented models. The left 
side of the figure shows the models’ performance during the training phase, while the right side illustrates their 
performance during the validation phase.

The learning curve plot shows that the behaviour of the SVM is the worst among the models in both phases 
while the ANN achieved one of the best behaviours in both phases along with the random forest. Furthermore, 
the R2 score was used as another evaluation metric to distinguish which model is the best. The comparison 
showed that the ANN model has a better performance in all the metrics, with a training RMSE score of 0.0047, 
a validation RMSE score of 0.0063, and an R2 score of 0.99. The results and comparison between the models’ 
performances and scores are shown in Table 12. The Comparison of the developed ANN correlation with existing 
literature models is stated in Table 13. It looks like our model has achieved a high R² value, indicating a strong 
correlation between the inputs and the overall recovery factor. The RMSE values are also quite low, suggesting 
good model accuracy. In the present study, the ANN model outperforms the other machine learning-based 

Fig. 14.  SVM RMSE scores across different kernel parameter values.
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models (RF, K-NN, and SVM) in terms of the coefficient of determination (R²) and root-mean-square error 
(RMSE) due to its ability to capture complex, non-linear relationships within the data. The ANN’s architecture, 
which includes multiple layers and neurons, allows it to learn and model intricate patterns and interactions 
among the input variables (mobility ratio, reservoir permeability variation, water-oil production ratio, and initial 
water saturation). This results in higher prediction accuracy and lower error rates compared to the other models. 

Applied model
Training
RMSE Validation RMSE

Validation
R2

Artificial neural network 0.004723 0.006340 0.998751

Random forest 0.010825 0.028160 0.973398

k-Nearest neighbor 0.026729 0.040473 0.947415

Support vector machine 0.059483 0.062933 0.802895

Table 12.  Comparison between the applied machine learning models’ performances.

 

Fig. 15.  Learning curves of the best models.

 

Techniques Hyperparameters Range Optimized values

Random forest (RF)

Number of trees 220–400 400

Maximum depth Default None

Samples split minimum Default 2

Samples leaf minimum Default 1

Number of Features Default 1.0

K-nearest neighbors (KNN)
Number of Neighbors 2–9 2

Distance metric Default “minkowski”

SVM

Regularization parameter; C Default 1.0

Kernel “linear”, “poly”, “rbf ”, “sigmoid” “rbf ”

Gamma Default “scale”

Table 11.  Optimized hyperparameters for machine learning models used in this study.
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Additionally, the ANN model’s flexibility in adjusting weights and biases during training enables it to achieve 
better generalization and robustness in predicting oil recovery under varying reservoir conditions.

Analysis from a reservoir engineering standpoint
From the Feature plot, we can infer that permeability variations and mobility ratio are the most critical features 
for estimating the overall recovery factor of water flooding. Water saturation also contributes, but the water-
oil ratio has the least impact on the overall recovery factor of water flooding. Mobility ratio (M) is defined 
as the ratio of the mobility of the displacing fluid (water) to the mobility of the displaced fluid (oil). When 
the mobility ratio is less than or equal to 1, the displacement is more stable, leading to a more efficient sweep 
of the oil. This condition promotes piston-like displacement, where water pushes oil uniformly, minimizing 
bypassing and fingering. When the mobility ratio is greater than 1, water moves faster than oil, causing instability 
in the displacement front. This results in water fingering and channeling through the oil, leading to early water 
breakthrough and reduced sweep efficiency.

Reservoir Permeability heterogeneity refers to the variations in permeability within the reservoir. These 
variations can significantly affect the flow of fluids during water flooding. In highly heterogeneous reservoirs, 
the presence of high-permeability streaks or layers can lead to uneven water distribution. Water tends to 
preferentially flow through high-permeability zones, bypassing oil in low-permeability zones, which reduces 
overall recovery efficiency. In contrast, in more homogeneous reservoirs, water flooding tends to be more 
uniform, leading to better sweep efficiency and higher oil recovery. Overall, Understanding and managing the 
oil-water mobility ratio and reservoir heterogeneity is crucial for optimizing water flooding performance and 
designing more effective water flooding strategies to maximize oil recovery.

The performance of water flooding in oil reservoirs is significantly influenced by water saturation and the 
water-oil ratio (WOR). If the reservoir has a high initial water saturation, the effectiveness of water flooding can 
be reduced because the water already occupies a significant portion of the pore space, leaving less room for oil 
displacement. A lower initial water saturation generally means more oil can be displaced by the injected water, 
leading to higher recovery efficiency. On the other hand, the water-oil ratio (WOR) is the ratio of the volume 
of water produced to the volume of oil produced. It is a key indicator of the performance of a water flood. In 
the early stages, the WOR is typically low, indicating that the injected water is effectively displacing oil, and the 
production is predominantly oil. As water flooding progresses, the WOR increases. A rising WOR indicates 
that more water is being produced relative to oil, which can signal water breakthroughs and the onset of water 
channeling. A high WOR can reduce the economic efficiency of the operation, as handling and treating large 
volumes of produced water can be costly. Monitoring the WOR over time helps in diagnosing the efficiency of 
the water flood. A sudden increase in WOR can indicate issues such as coning, channeling, or breakthrough. 
Practically, using tools like diagnostic WOR plots and saturation logs to continuously assess and adjust the water 
flooding strategy.

Conclusion
Four machine learning models based on ANN, RF, K-NN, and SVM showed their capability of accurately 
predicting the overall oil recovery based on 1054 datasets of mobility ratio (M), reservoir permeability variation 
(V), water-oil production ratio (WOR), and initial water saturation (SWi). In accordance with the results obtained, 
the following conclusions were drawn:

•	 The four proposed models of ANN, RF, K-NN, and SVM achieve low values of root-mean-square error of 
(0.004723, 0.010825, 0.026729, and 0.059483) and (0.006340, 0.028160, 0.040473, and 0.062933) in the case 
of the training and validating sets, respectively.

•	 The ANN model outperforms the other machine learning-based models in respect of coefficient of determi-
nation (R2) and root-mean-square error (RMSE).

•	 A new correlation has been established to estimate the overall oil recovery of water flooding using ANN.
•	 The coefficient of determination values between actual and estimated overall oil recovery (R) from the ANN 

model were found to be 0.999 compared to 0.97, 0.95, and 0.80 from the RF, K-NN, and SVM models in the 
case of validating sets, respectively.

•	 Lastly, the proposed models can be applied for estimating the performance of waterflooding operations in 
heterogeneous and complex reservoirs with the reservoir permeability variation (V) ranging from 0.006 to 

Correlation

ANN model Model evaluation

Inputs output RMSE
MAPE
(%) R2

Gomaa et al.2022 43
Permeability variation,
Mobility ratio, and
Water-oil ratio

vertical sweep efficiency 0.002 0.99

Kalam et al.2021 42

Permeability variation,
Mobility ratio,
Anisotropy ratio,
Wettability indicator, and
Production of water cut

Movable recovery factor 0.0003 7.08 0.997

This work mobility ratio, reservoir permeability variation, water-oil production ratio, and initial water saturation Overall recovery factor 0.0063 2.9 0.99

Table 13.  Comparison of the developed ANN correlation with existing literature models.
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0.998, water-oil production ratio (WOR) ranging from 1 to 100, initial water saturation ranging (SWi) from 0.1 
to 0.55, and mobility ratio (M) ranging from 0.098 to 100.

Overall, these ML models can provide accurate and efficient predictions by leveraging input parameters such 
as reservoir permeability variation, mobility ratio, water-oil production ratio, and initial water saturation. The 
insights gained from this study could enhance reservoir management and optimize waterflooding strategies, 
leading to improved oil recovery.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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