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This study examines the characteristics of seismic wave reflection and wave-induced fluid flow (WIFF)
in an unsaturated porous solid half-space confined beneath an impermeable plane surface. We first
present the field equations and constitutive relations for partially saturated porous media. Next,

we solve these equations in terms of the Christoffel equations, thereby addressing the propagation
of a four-plane harmonic wave. These waves propagate as inhomogeneous waves at stress-free,
impermeable boundary surfaces due to the medium’s dissipative properties. Furthermore, we
compute the reflection coefficients from stress-free impervious boundary surfaces at arbitrary angles.
The incidence of the P; / SV wave generates four reflected waves. The calculation of theoretical
formulations for reflection coefficients involves a set of four non-homogeneous linear equations
derived from boundary conditions. Subsequently, these reflection coefficients are utilized to calculate
the WIFF and the partitioning of incident energy at the impervious boundary of the porous solid. A
numerical example is considered to investigate the effects of wave frequency, incidence direction,
and elastic parameters such as porosity, inclusion radius, and liquid saturation on energy partitioning
and wave-induced fluid flow. The conservation of incident energy has been confirmed at every angle
of incidence. The numerical results demonstrate a significant dependence of energy shares of distinct
reflected waves on the incident direction, saturation, porosity, inclusion radius, wave frequency,

and WIFF. This theoretical study serves as a valuable tool for subsurface reservoir characterization,
with applications in hydrocarbon exploration, C O, sequestration monitoring, and other geological
engineering fields.
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List of symbols

Nfm Viscosity of mth(= 1, 2) fluid phase

K Intrinsic permeability of host medium

¢ Porosity of the porous material

b10 Partial porosity host medium

10 Partial porosity inclusion

bm Porosity occupied by mth(= 1, 2) fluid
p Mass coefhicients
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Prm Density of mth(= 1, 2) fluid phase
OEJ' g Components of the stress of jth(= 1, 2) fluid phase

o i;) Components of the stress of solid phase
A Capillary pressure amplitude coeflicient
Ko Bulk modulus of matrix

K, Bulk modulus of minerals

K¢m  Bulk modulus of mth(= 1, 2) fluid phase
kfm, Relative permeability of mth(= 1, 2) fluid phase

m Friction coefhicients

N Shear modulus of matrix

Ry Radius of inclusion

S, Saturation of jth(= 1, 2) fluid

Srm Residual saturation of mth(= 1, 2) fluid phase
Ui, . Displacement components of solid phase

Ui(J ) Displacement components of of jth(= 1, 2) fluid phase

The impact of reflection dispersion resulting from mesoscopic flow is significant and deserves attention, as
conventional quantitative seismic interpretations can be misleading. Local flow-induced phase variations may
introduce uncertainty in the seismic imaging of geological formations. The implications of reflection dispersion
for characterizing heterogeneous reservoir rocks are promising, suggesting the potential to utilize frequency-
dependent seismic attributes to uncover geological heterogeneity and fluid mobility characteristics. In various
geological contexts, multiple distinct fluids can partially saturate porous rocks. In the upper sections of gas-
capped reservoirs, gas, oil, and brine often coexist within the available pore space. Additionally, contaminants
can infiltrate subterranean aquifers. Groundwater levels may fluctuate due to earthquakes, and subsequent
aftershocks are associated with changes in pore fluid distribution. To effectively interpret seismic data for
hydrocarbon detection, monitor saltwater intrusion into groundwater aquifers, or analyze reported earthquake
waveforms, it is essential to understand how partial fluid saturation influences elastic wave propagation.

The comprehensive model for elastic wave propagation in porous, fluid-saturated media is described by
Biot's equations, as outlined in!=. These equations were formulated using the Lagrangian approach, which
defines generalized coordinates based on the average displacements of both solid and fluid components. A
dissipation function, dependent on the relative velocity between the solid and liquid phases, was integrated
into this framework. In the static or low-frequency limit, Biots equations reduce to Gassmann’s equation,
which determines the undrained static bulk modulus of porous materials by considering the properties of
the dry framework and the saturating fluid. Both sets of equations assume a single Newtonian fluid (liquid
or gas) saturating the porous medium. Subsequent studies have reproduced Biot’s equations using alternative
mathematical methods, including volume averaging techniques proposed by Pride et al.’ and homogenization
approaches for periodic structures®®. These methods yield similar macroscopic equations, thereby validating
Biot’s original formulation. Recently, numerous fluid flow problems have been addressed by researchers and
published in the open literature (see Babu et al.?, Zhao et al.!%, Kommaddi et al.!!, Kodi et al.!? -13).

Biot’s theory, however, is limited to fully saturated media containing a single fluid. Modeling wave propagation
in porous materials with multiple immiscible fluids presents significant challenges. Immiscibility refers to the
property of fluids that prevents them from mixing, resulting in distinct boundaries between different fluids'.
Porous rock formations, such as sandstone, limestone, and shale, can be saturated with various pore fluids,
including gas, water, and oil. Since the 1960s, researchers have increasingly focused on elastic wave propagation
in partially saturated media. Brutsaert!” pioneered the extension of Biot’s theory by employing mixture theory to
account for the effects of two immiscible pore fluids on elastic wave propagation. This mixture theory approach,
initially developed for two-fluid systems, has since been refined and expanded by numerous researchers (Brutsaert
and Luthin'®; Bedford and Drumheller'’; Garg and Nayfeh!®; Berryman et al.'% Santos et al.>*?!; Corapcioglu
and Tuncay?; Tuncay and Corapcioglu?®; Wei and Muraleethara®?%; Hanyga®®; Lu and Hanyga®’; Lo®%; Lo et
al.?%). In materials with voids occupied by two immiscible fluids, capillary forces become significant, leading to
the prediction of a third compressional wave, specifically a second slow wave. These slow waves are present and
attenuate the primary compressional wave through mode conversion. Multiphase poroelasticity theory reveals
the existence of four elastic wave modes: three longitudinal waves and one shear wave, which are solutions
to coupled differential equations of motion. The extensive analysis of wave propagation in porous materials
containing multiphase fluids is credited to Corapcioglu and Tuncay? as well as Tuncay and Corapcioglu®. Lo
et al.* formulated a complex set of interconnected partial differential equations to elucidate the propagation of
dilatational waves in an elastic porous medium containing two immiscible fluids. These equations illustrate the
behavior of acoustic waves in porous media with multiple fluid phases, enhanced by the fundamental principles
of poroelasticity. Lo et al.3! analyzed various types of dilatory motion by determining the normal coordinates for
the three longitudinal waves. They derived equations that describe the relationship between the modes of motion
and the saturation level. The hydrologic models of subsurface multiphase flow discussed earlier do not account
for the impact of viscous resistance caused by the relative velocity of two adjacent fluids on the behavior of elastic
waves in partially saturated porous media. Lo et al.>? introduced a mathematical model that utilizes continuous
mixture theory to address the viscous cross-coupling between two immiscible pore fluids. Consequently, all the
models mentioned above can be derived as specific instances of this framework. Furthermore, if only one fluid
is present in the medium, this model can be simplified to Biot’s theory'2. The mathematical model established
by Arora et al.* examined wave propagation in a porous medium composed of two solids saturated with two
immiscible fluids. The equations for complementary energy and the linear stress-strain relationships of the
medium were developed using the concept of virtual complementary work. The Lagrangian motion equation
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generates a network of interrelated partial differential equations. Xiong et al.** analytically demonstrated
that the model presented by Tuncay and Corapcioglu®, utilizing the volume averaging method, may exhibit
instability due to potential structural deficiencies in the wave equations. To address this issue, they established
an innovative mathematical framework for wave propagation in partially saturated porous media based on their
findings.Wang et al.®® provide a modeling framework designed to simulate wave propagation in heterogeneous,
partially saturated porothermoelastic materials. Sun et al.>® presented wave equations for the Biot-patchy-
squirt mechanism based on Lagrangian equations, mass conservation equations, and constitutive equations for
double-porosity media. For partially saturated porous media, Solazzi et al.*” developed an analytical model to
calculate frequency-dependent relative permeability functions that account for viscous coupling effects. Deng et
al.38 established a methodology for assessing compaction and monitoring liquefiable soils in mine dumps with
fluctuating saturation due to rising groundwater levels. The behavior of waves propagating in non-isothermal
poroelastic materials saturated with two-phase fluids was described by a model presented by Santos et al.>*. The
dynamic differential equations incorporate poroelasticity and heat equations, which integrate the solid, fluid,
and thermal fields through coupling terms. A plane wave analysis demonstrated that five distinct waves could
propagate.

As seismic waves propagate through rocks, they create pressure differentials at various depths, inducing fluid
motion. Wave-Induced Fluid Flow (WIFF) can be classified into three categories based on pressure gradient
length scales: mesoscopic, global, and squirt flows. The relationship between wave dispersion and attenuation
across a broad frequency spectrum is closely linked to the WIFF process. Developing theoretical models that
connect multiscale WIFF with wave propagation may enable the establishment of quantitative characteristics
and precise assessments of reservoirs. The WIFF induced by waves is a primary factor contributing to wave
dispersion and attenuation, which is significantly influenced by pore structure, fluid properties, and rock type
(Yao et al.%; Miiller et al.*!; Quintal et al.*>; Khalid and Ahmed*?). However, this critical mechanism is not
considered in all the multiphase fluid models mentioned in the previous paragraph. Recognizing the significance
of this mechanism, Shi et al.** introduced a rock seismic model that incorporates three wave-induced fluid
flow (WIFF) processes at varying scales, from the size of pores to the wavelength. The model examines a three-
phase porous medium that includes two immiscible fluids within its pores. Shi et al.** focused exclusively on
the dispersion and attenuation of seismic waves-specifically, velocity and attenuation-resulting from WIFF in
unsaturated porous media. Reflected seismic data is frequently employed in exploratory geophysics to evaluate
rock properties such as porosity, fluid saturation, and permeability. Therefore, we extend the study by Shi et
al.* to investigate wave-induced fluid dynamics and the characteristics of seismic wave reflection in partially
saturated porous media. First, we present a mathematical model for the propagation of a planar harmonic wave.
The solution to the Christoffel equation reveals the presence of four waves in the medium: three compressional
waves and one shear wave. Additionally, we calculate the poroelastic reflection coefficients from the boundary
surface of sealed holes in porous media at various angles. These poroelastic reflection coefficients are subsequently
utilized to compute wave-induced fluid flow and to separate energy contributions. We examine the behavior
of energy share curves and wave-induced fluid flow (WIFF) curves at different frequencies of incident waves
and angles of incidence, as well as elastic parameters such as porosity, inclusion radius, and liquid saturation.
The numerical results demonstrate a significant dependence of energy shares of distinct reflected waves on the
incident direction, saturation, porosity, inclusion radius, wave frequency, and WIFE. The findings of this study
fill a critical gap in understanding how these factors influence the propagation of seismic waves in unsaturated
porous media, which is essential for reservoir interpretation, physical property inversion, and sediment type
classification.

Field equations and constitutive relations
Following Shi et al.*, the equations of motion in the absence of body force for each particle in an unsaturated
porous solid are as follows:

G,E;‘)’)j =p11U; + pleim + p13Ui<2) — (m1 — m12)(Ui(1) — ;) — (m2 — m12)(Ui(2) — 1), (1)
J,(il) =p12i; + p22Ui(l> + p230¢<2) + m1(Ui(1) — ) — m12(Ui(2) — ), (2)
O',(iQ) =p13i; + p23Ui(1) + p3aU¢<2> - ml?(Ui(l) — ;) + mQ(Ui(2) — i), ©)

where the superscripts 0, 1, and 2 denote the porous solid’s three phases: solid matrix, liquid, and gas. The indices
are limited to the values 1, 2, and 3. Repeating an index signifies the involvement of a summation.The inclusion
of a dot in the middle of a variable indicates partial differentiation in respect to time, while the inclusion of a
comma in the head of an index signifies partial differentiation regarding space. The expressions of various elastic
constants are described as
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p11=p—2(ps151 + praS2)d + (gr12 + g13 + 2g23)d°,
p12 = ¢(pr1S1 — g12¢ — g239),
p13 = ¢(pr2S2 — g13d — g239),

p22 = g12¢°,
P23 = gazd,
p3s = g1sd’,

p=(1—=@¢)ps + dSips1 + ¢S2py2,
g1z = S1pp1Fs/ 9,
G13 = S2p52F5 /9,
g23 = 0.1\/g12013,
Fo=((1/¢) +1)/2,

fary

Jary

m1 = B1¢2,
mo = 52¢2,
miz = bia¢?,
o (S1 — R1)?
= 5,
(1—-PR)?
fo — (92— Ry)?
o = o,
(1- R2)?

ker1z = \/0.1k1 o,
b = Stnp/(kkr),
by = S3nsa/(rkyr2),
bio = S182kr12v/N51752/ D,
D = w(krikr2 — kiyg)
, 81+ 8o =1,0 = @1+ ¢p2 = $1051 + ¢2050.

The constitutive relations (Shi et al.**) incorporating global flow and mesoscopic flow in the distinct phases
of the porous medium are described in the following form:

UE?) = |:alluk,k + a12U,£71,2 + a13U,f,2} 0ij + N(ui; + uj), 4)
0’(1> — |:a12uk7k + G‘QQUIE,lIz + a23U]i?,ii| (51‘]‘, (5)

U(2> = |:a13uk,k -+ a23Uk(:?l]2 + a33U,i?,1] 6137 (6)

_ (1) (2) 7

¢ =7k, + 12Uy + 13U %, (7)

where ¢ specifies the multiscale WIFF in unsaturated porous solid. The coeflicients expressed in the
aforementioned equations are delineated as
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air =A+ /70,
a12 =Q1 + v172/70,
a13 =Q2 + v17v3/70,
az2 =R1 + y2v2/70,
a23 =R3 + v2773/70,
ass =Ra + v373/70,
A=\.—2B1¢ — 2Bag+ (M1 + My + 2M3)¢?,
Ae =K. — (2N /3),
Ry =M:¢?,
Ry =M>¢”,
Ry =M3¢”,
Q1 =¢(B1 — M1¢ — M39),
Q2 =¢(Bz2 — M2 — Ms¢),
By =((S1+B)y— B+ (v — Un)VK.,
By =(S2 + (1 — v)n)v K,
r=(S1 + B)/Ks + (qB2 + (S1 + B)(1 — (Kc/Ky))) /(Ke — Km),
My = — (B1/6Km + Ms),
Mz =(Bar +n)/q,
Mz =— (1/Kmé +r1/q)B2 —n/q,

1 1
PR, T R
$10 =20 = ¢,
¢1 =¢Sh,
P2 =052,

q =¢((1/ K1) + (1/PiaS152)),

vy=(1+ Pé,15'152/Kf2)/(1 + PéaS1SQ/Kf1),

o =1+ (y=1)(S1+B8),
K =a'((vS1/K 1) + (S2/Ky2)) 7",

G =(Km — Ks)Ky/(¢(Kf — Ks)),

Ko =(Km + G)Ks /(K5 + G),

0 =((1/Ks) = (1/Km) + ¢((1/Kn) — (1/Ke))) /(' (1/Ks) = (1/Km) + ¢((1/Kn) = (1/K§)))),
Pea =A[(S1+ Sr2 — 1) 72 = ((Sr1/51)*)(1 — Sr1 — Sp2) ™ ?),
pl, =

T

B =Pea/Plq;n = Pu/ P,
Y0 = — ((1/3)Rodi 2020 ((p1w? /d10) + (twnp1/K)) + R + Ragpi — 2R3 ha),
7 =(Q1¢2 — Q201),
72 =(Ri¢2 — R3¢1),
~v3 =(R3p2 — Ragh1).

Utilising constitutive relations inside the equations of motion, we formulate the equations of motion by means
of the displacement components. The equations are expressed as follows:

(a11 + N)ujij + ar2US 5 + a1sUSY, + Nuj iy =puviii + 12U + prsU>
—(ma = ma2) (U = i) (ms — ma2) (U — i),

a1zts,i5 + 022U} + a2sU37 =praii + pa U3 + pas U7 8)
+m1(U1(1) — Uz) — mlg(Ui@) — ul)’
a13uj,ij + azsUY) + azsU?) =p13ti + pzsUi(l) + Pssﬁz@

J>ij J,ij

—maa (U — i) + ma(UP — ;).

Plane harmonic wave propagation
To examine the propagation properties of planar harmonic waves in the specified medium, we postulate the
assumption
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{% U, UJ@)} = {8,,L;,G;} elwemn—0),

€)

where the slowness vector is denoted by the expression (p1,p2,p3) and the angular frequency is depicted
by the symbol w. When the phase velocity V is considered, the concept of slowness may be described as
(p1,p2,p3) = N/V. It is possible to use the row matrix N = (n1,7n2,n3) to represent the direction of
phase propagation. The vectors (S1,S2,S3), (L1, L2, L), and (G1,G2,G3), respectively, constitute the
representations of the polarisations of the solid and fluid particles that are present in the composite medium. By

inserting (9) into the equation (8), we have a set of equations, which are as follows:

[(an + N)nmj + (N — buVZ)éij] 5']' + [algninj — mezéij} l_/j + [a13ninj — b13V2§ij:| éj =0, (10)

[alzninj — b12V2(51'j] S'j + [azznmj — b22V25ij] Ej + [azgnmj — b23V25ij] G’j =0, (11)

[algninj — b13V2(51'j] S'j + [azgnmj — b23V25ij] Ej + [a33’l’Lin]' — b33V25i]‘] G’j =0, (12)

where

L L L
bi1 =p11 + ;(WH +mg — 2my2), bz = p12 — ;(ml —my2), biz=piz— a(mz —mi2),

L

L L
b22 =p22 + —ma, b23 = p23 — —Mi2, bSS = P33 + —ma.
w w w

In order to establish a connection between the three types of displacements, namely y;, UM, and U®, the Egs.

(10), (11) and (12) are solved as follows.

boV* +b1V? + by NTN

bO T
Li =T4;S;:: r=—=(I-N"N , 13
JSJ ao( )+aoV4+a1V2+a2 (13)
4 2
Gy :Aijgjy A= «© (I—NTN) + cV_+aV”+c N (14)

ao aoV4+a1V2 +as

In this context, the depiction N7 signifies the transpose of the row matrix N, whereas the description T is
a three-dimensional identity matrix. The aforementioned equations establish a number of constants, and the

different constants are provided by

2 2
ao =ba2bszz — bz, a1 = 2a23b23 — a22b33 — a3zbaz, a2 = az2a3z — ass,

bo =b23b13 — b12b33, b1 = a12b33 + azzbi2 — a13b23 — a23b13, b2 = a13a23 — ai12a33,

co =b12b23 — b13b22,c1 = a13ba2 + a22b13 — a12b23 — a23b12,c2 = a12a23 — aizass.

When we put equations (13) and (14) into equation (10), we get a set of three equations, which are as follows:

[asN"N + b3 (- N'N)|S =0,

(15)

which are the Christoffel equations that describe the propagation of harmonic plane waves in a porous material.
Following is a description of the coefficients that are utilised in a number of relations are as follows:

as = (an + 2N — 511V2) [a0V4 +aVi+ az} + (@12 — bl2V2)[bOV4 +b0i V24 ba]

+ (a13 — bisV)[eoV* + a1 V2 + ¢a),

b
b3 =N — [511 +bia—2 + b13C£} V2
ao ao

Itispossible to determine the determinant ofthe coefficientmatrix, whichis providedbyasN" N + b3 (I — N™N).
'This determinant may be expressed as (bsa3 ). It is essential that the determinant (b3a3) be equal to zero in order
to ensure that the Christoffel equations (15) need a solution that is not trivial. In the case whenever the value of

a3 is equal to zero, we are able to deduce the following mathematical relationship:
dsV° + doV* + diV? + do = 0,

where

dz =bi1ag + bi2bo + bizco,

d2 =bi1a1 + bi2by + bizcr — (a11 + 2N)ao — a12bo — ai3co,
d1 =b11a2 + bi2ba + bigce — (a11 + 2N)a1 — a12bi — aisen,

do = — (a11 + 2N)az — a12b2 — ai3ce.

(16)
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In this particular circumstance, the polarisations S align themselves in a manner that is complementary to
the phase direction N. This demonstrates that the equation presented before has accurately described the
propagation of dilatational waves. An unsaturated porous medium is characterised by the presence of three
dilatational waves, and the propagation of these waves is characterised by three roots of the cubic equation
(16) in terms of V2. Because of the existence of viscous pore fluids, a medium is believed to be dissipative.
In light of this, equation (16) has complex roots, which suggests that dilatational waves in the medium are
subject to attenuation. The four dilatational waves with velocity order (V1) > R(V2) > R(V3) are referred to
as P1, P», P3 waves, respectively, for the purpose of making the discussion more convenient.
Another equation, namely b3 = 0, produces

b
V—\/N/ [b11+b12*0+b136*0 . (17)
aop ao

n this scenario, the polarisation S is orientated perpendicular to the propagation direction N. This equation will
define the velocity of a transverse wave in a medium that sustains attenuation as a result of the viscosity of the
fluid contained beneath its pores. The solitary transverse wave is considered to be the SV wave.

Reflection at plane boundary

The purpose of the investigation is to explore the consequences of porosity, water saturation, wave frequency,
and inclusion radius on the fluid flow and energy distribution of reflected waves at the stress-free surface of a
unsaturated porous material.

Definition of the problem

Consider a rectangular coordinate system (x, y, z), where the region z > 0 consists of a porous medium saturated
with two immiscible viscous fluids that permeate farther in the z-direction. The plane described by the equation
z = 0 is regarded as the stress-free surface of this material (Fig. 1). The substantial attenuation of a seismic wave
may be more explicitly shown by its irregular propagation. Thus, the extensive propagation of an attenuated wave
in a dissipative medium is regarded as inhomogeneous. This is determined by the alignment of the propagation
vector and the divergence of the attenuation vector from the propagation vector. Consequently, two angles,
namely 6y and o, are necessary to describe an inhomogeneous incident wave (Fig. 1). As stated by Borcherdt*’,
horizontal slowness may be determined through 6y (angle of propagation), 7o (angle of attenuation), A (
attenuation vector), and P (propagation vector).

s = |P|sinfo — ¢|A|sin(6o — o). (18)

Consequently, for an incident wave with velocity 14, we have

PP =50+ (50 + (325 cost o) 19

Stress free surfacez = 0

Partially saturated
porous solid

z=0

A
he;

C,
2 n¢ (. AQ?
lons 3 &
W,
Y w < % >
A, % éga
&
v .
X-axis
Fig. 1. Schematic diagram of the problem.
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2 2 2

2 w w w
Al :5[_%(\/702) + \/(%(‘/2))2 + (%(VT)Q)P/COSQ Yol (20)
The dissipative characteristics of the porous medium need the specification of the incident wave at the
boundary z = 0 about its propagation direction (fg) and attenuation direction (7). The vector (s, 0, qo)
depicts the slowness vector of the incident wave, with go(= £+/1/VZ — s?) indicating the vertical slowness

of the incident wave. For the incident wave to propagate towards the boundary in the negative z-direction,
the real part of go must be negative. Snell’s law stipulates that the horizontal slowness (s) of both incident
and reflected waves is invariant. The vector (s, 0, gi) depicts the slowness vector for reflected waves, where
qr = £4/1/V2 — s2,(k =1,2,3,4). To ensure the dissipation of reflected waves travelling away from the

boundary in the positive z-direction, the imaginary part of g, must be greater than zero.

In the subsequent step, the aggregate displacement of material particles in the medium is equal to the
combination of the displacements corresponding to the wave that strikes the medium and the four waves that
reflect off of it. Consequently, the depiction of the overall displacement of material particles in the z—plane for
two dimensions motion may be represented as follows:

4

u; :[5‘;0> exp(—twqoz) + Z ekS'J(.k) exp {ww(sz + qrz — t)}],
k=1
4
U;l) :[L;O) exp(—twqoz) + Z ekL;k) exp {w(sz + quz — t)}], (21)
k=1
4
U =[G exp(—wqoz) + Y G exp {wo(sz + qez = 1)}, (7 =w,2),
k=1

The excitation factors for reflected waves are denoted by the ex symbol. These factors are related to the incident
wave. The index ‘0’ is used to signify the wave that is incident. In this context, the index ‘k’(= 1, 2, 3, 4) is used
to denote the reflected waves (P1, P, P3, SV') simultaneously. There is a possibility of defining the polarisation
of a longitudinal and transverse waves by using the unit vector n, which may be computed asn = (s, 0, gx) Vi.

Boundary conditions

The current geometry incorporates boundary constraints for particle motion at the stress-free planar surface
at ; — (. This study considers impermeable boundary conditions, namely sealed holes, at the plane defined by
z = 0. At an impermeable barrier consisting of sealed pores, there is no flow of interstitial fluid permitted at the
surface when waves pass through the plane at z = 0. Therefore, the appropriate boundary conditions that must
be fulfilled at the plane z = 0 are as follows:

i) ol =0,

i) ol =0,
0 (22)

iii) UM =0,

iv) U =0.

Reflection coefficients

To formulate an array of four contemporaneous non-homogeneous linear equations, we must first resolve
the four boundary conditions (22) using the displacement articulated in Eq. (21). The following expressions
represent the system of four equations:

4
Zflkek = —fo, (1=1,2,3,4). (23)
k=1

For (k = 1,2,3,4), we have
fire =a11[s5%) 4+ @S] + ara[sLY + g L] + ars[sGP + ¢ GF] + 2N g 5™,
for =N[qeSP + s8], far =LY, fu =GP,

The system of equations, represented by the variables €, (where k = 1, 2, 3, 4), is solved employing the Gauss
elimination technique. These unknown entities might be referred to as reflection coeflicients.

Wave-induced fluid flow
With the aid of the relations (13) and (14) in equation (7), the WIFF in pores can only be discovered as a result
of the dilation of solid particles, and it is described as follows:
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C = [Al + )\QF(V) + A3A(V)](uz,z + uz,z)~ (24)
By applying equation (21) to the equation that came before it, we could derive
C(Vi) = wer[M1 + XD (Vi) + AsA(Vi)|(sA% + quAF)e (7 F =70 (k= 1,2,3,4). (25)

We can verify that ((V4) = 0 by integrating the shear wave existence condition into the equation as mentioned
above. It suggests that three longitudinal waves regulate the movement of WIFF inside pores. Hence, the
functions ¢(V1), ((V2), (V3) represent the individual contribution of P1, P», Ps to the overall fluid flow. Since
Vi is a complex number, it follows that ¢(V}) is also a complex number. The fluid flow caused by longitudinal
waves, denoted as (r, is a physical quantity that may be determined as the real component of its complex form,
which is represented as {x = R({(V%)). The sum of (1, (2, and (3 represents the overall fluid flow that occurs in
a partly saturated porous solid when a P; (or SV) wave is placed to the stress-free surface of a partially saturated
porous solid comprising two viscous fluids (immiscible).

Energy partition

This article seeks to analyse the partitioning of energy from incident wave into distinct reflected waves. The
energy transferred per unit area in the plane z = 0 is determined by computing the scalar product of the
surface traction and particle velocity as outlined by Achenbach?®. The existence of a dissipative porous medium
results in energy dissipation, necessitating the consideration of interaction energy (Borcherdt*’; Krebes'”) or
interference energy (Ainslie and Burns*®) between two waves with distinct characteristics. Consequently, the
total energy flow comprises the energy flux transmitted by reflected waves and the interaction energy between
two distinct types of waves. The medium now enables the transmission of five waves: one incident and four
reflected. Consequently, an energy matrix is formulated to delineate the distribution of incoming energy at the
surface z = 0.

B = %(erle})/ﬂ?(]:’%), (l, k=1,2,3,4, 5); (26)

where e5 = 1. A bar above a complex number signifies its conjugate. The components P in Eq. (26) are defined
by

Py, = [au[sgél) + @SV + ara[sLY + g LP] + ar3[sGY + GV + 2quS£l)] Sk

_ = - - (27)
+G [sSLl) + qlSy)] S® 4+ x,LP +viagP,

where

X = alz[SS'g(ci) + ngil)] + a22[siil) + qkiﬁ”} + a23[Sé§cl) + qké.(zl)]
Y = a13[8§9(f) + %5’9] + a23[SE§;l) + Qkigl)] + a33[8é;(cl> + qké(zl)}-

When dealing with porous media, the energy matrix F;;, (i,7 =1, 2, 3, 4, 5) is used to ascertain the energy
proportions of four reflected waves, which are represented by the symbols P1, P>, P3, and SV accordingly. It
is possible to differentiate the energy proportions of the reflected waves Py, P>, P3, and SV by referring to the
diagonal entries F11, Fa2, E33, and Fa4. In order to determine the interaction energy that results from the
interference of the incident wave with each reflected wave, the equation Ejr = Z?Zl(Egn— + E;5) becomes

applicable. It is possible to determine the interaction energy between every pair of reflected waves by using the
expression Err = Z?zl(ijl E;; — Ey;). It is necessary for the aggregate bulk energies of the reflected

waves and the overall interaction energy to be equal to the bulk energy of the incident wave at the stress-free
surface to satisfy the law of energy conservation requirements.

4
Z Ei+Err+ Err = —Fs5 = 1. (28)

=1

During the whole process of reflection, it is essential that the energy balance law at the stress-free surface be
maintained at each and every angle of incidence. This law is known as the energy balance law. As a consequence,
relation (28) guarantees the preservation of energy at the surface that is free of stress.

Numerical example

We employ a numerical model of an unsaturated porous solid to examine the impact of wave frequency, incidence
direction, and elastic properties like porosity, inclusion radius, and liquid saturation on reflection characteristics
and WIFFE. A reservoir rock (sandstone) saturated with water and C'O2 is chosen for the numerical model of
porous medium. Table 1 contains information on the sandstone’s elastic and dynamic constants.

Scientific Reports |

(2025) 15:18840 | https://doi.org/10.1038/s41598-025-97275-x nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Parameter (unit) | Value | Parameter (unit) | Value
K, (GPa) 12 K, (GPa) 6.21
N,,, (GPa) 9.55 r (Darcy) 1

ps (kg/m?) 2650 | ¢ 0.33
ps1 (kg/m3) 1000 | pso (kg/m?) 100
ny1 (Pas) 0.001 | nyso (Pas) 0.00015
K1 (GPa) 2223 | Kfo (GPa) 0.022
Sr1 005 |5, 0.05

A 3000 | P, (MPa) 45

Table 1. The parameters of sandstone that has been saturated with gas and water.

Numerical discussion

Partitioning of incident energy among reflected waves

P;-wave incidence

Figure 2 illustrates how porosity affects the distribution of energy in reflected waves at the stress-free surface of
closed pores. It has been seen that the energy share of the P1 waves is increasing as the porosity (¢) increases.
The phenomenon is also seen in all other refracted waves, however these waves experience a decrease in energy
distribution as porosity increases. The energy partitions clearly indicate that the bulk of the energy is distributed
between the P; and SV waves. The P; wave energy decreases as the angle rises from normal incidence. Following
a minimum at around 40°, the energy progressively rises until it reaches grazing incidence. The reflected SV
wave exhibits contrasting behavior, indicating the conversion of energy at the surface. The graphs of bulk energy
shares for various reflected waves exhibit that at normal and grazing incidence, only the reflected P; wave
remains. In contrast, the SV wave does not survive at any angle [Yang and Sato*’]. The energy proportions of
reflected P» and P3 waves are minimal. This is attributable to the fact that the phase speeds of these waves are
much lower than those of all other wave modes. The energy shares of slower waves diminish as the angle of
incidence rises. The calculations have been validated against the principle of energy conservation. The graphs
of bulk energy shares for various reflected waves clearly indicate that energy conservation is observed at every
angle of incidence. This proves the validity of the energy balance law as articulated in Eq. (25). It confirms that
the numerical computations are analytically accurate.

Figure 3 illustrates the effect of wave frequency on the allocation of incident energy among four reflected
waves in a partly saturated porous medium. The image displays that the P, wave first intensifies with increasing
frequency. However, the influence of frequency becomes negligible upon attaining an angle of 8y = 45°. The
increasing w amplifies the energy contribution of the SV wave. The energy dispersion is more significant for
slower waves, substantially diminishing the P3 wave at low frequencies. Further, there is a substantial increase
in the energy distribution of the P> wave with rising frequency. The correlation between energy shares and
frequency may enhance fluid content prediction in seismic data interpretation and facilitate the development of
novel processing techniques for evaluating fluid characteristics from seismic data.

The effect of water saturation, denoted by the symbol S5, on the energy distributions of reflected waves is
seen in Figure 4. Figure 3 illustrates that the energy shares at the stress-free surface of an unsaturated poroelastic
material may go through considerable changes depending on its frequency. A change in the saturation of the
fluid may bring about a substantial change in the frequency-dependent behaviour of the fluid, which in turn
brings about a significant change in the energy shares associated with the fluctuations in water saturation. An
increase in So decreases the strength of the P1 wave. On the contrary, the rest of the waves showed a substantial
rise when Sz grew. The faster waves exhibit an opposing behavior compared to the incidence direction (6o). The
energy ratios of slower waves exhibit comparable fluctuations. The interference energy is notably enriched when
the value of S2 grows, mainly when the incidence is normal.

The radius of spherical inclusions embedded in a partially saturated porous media plays a significant role
in determining the heterogeneity scale of the rock. Consequently, it has a direct impact on the way seismic
waves propagate. Figure 5 demonstrates how altering the value of Ry impacts the energy distribution among
the four reflected plane waves. It is evident from this figure that the inclusion radius has a substantial impact
on the reflection coefficients. As Ry grows, the contrast in P; wave impedance increases, resulting from a more
significant magnitude of the reflected P; wave. Consequently, the energy distribution of the reflected waves is
altered correspondingly. The rise in Rg greatly intensified the P, wave. However, when the value of Ry grows,
the SV wave becomes less prominent. In proportion to the rise in Ro, the energy shares of slower waves are
decreasing.

The impacts of WIFF on the ways in which incident energy is distributed across four reflected waves are seen
in Fig. 6. In the presence of WIFE the P; wave is enhanced between the values of 0 and 25°, while it is diminished
between the values of 6 and 25°. For values of 0 to 90°, the existence of WIFF results in the enhancement of the
P> and SV waves. The existence of WIFE on the other hand, causes the P; wave to be weakened throughout the
whole spectrum of incidence directions.

Scientific Reports |

(2025) 15:18840 | https://doi.org/10.1038/s41598-025-97275-x nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

0.25
0.95 0.2
09 —
g —0.15
% 0.85 >
0.75 0.05
0.7
0.04
0.06
5 g 0.03
= 0.04 =
= = 0.02
c c
W 0.02 Y001
0
-1 ~-0.005
2 2
5 -2 = -0.01
= 3 = -0.015
2 5
S 4 g 0021.-
d W .0.025
-5
-0.03
20 40 60 80 20 40 60 80
0 (in degree) Y, (in degree)

Fig. 2. Energy shares as a function of the incidence direction (o) with different porosity (incident P; wave).

SV-wave incidence

To determine the incidence of a SV wave, we will analyze the distribution of incident energy among many
reflected waves. The differences in the energy distribution of the reflected waves are shown in Fig. 7, which plots
the variances as a function of frequency and incidence angles. On all of the waves, a reversal effect of porosity
is noticed, which is in contrast to the wave with the incidence P1 shown in Fig. 1. A critical angle is regularly
seen during the reflection of elastic waves. When the angle of incidence is exceeded, the energy flow vector of
the associated wave mode begins to propagate in a direction parallel to the contact. A critical angle of around
45° is found for the reflected P1 wave. In the vicinity of 45°, the energy ratio of the reflected P1 wave becomes
unimportant. The P; wave undergoes degeneration and transforms into an interface wave, which does not
convey vertical energy flow. Concerning other reflected waves outside the critical angle, the reflected SV wave is
given precedence. The contribution of the P, wave to the total energy is reduced as the value of ¢ increases. The
energy shares of slower waves show similar variations. The slower waves beyond the critical incidence become
more significant as o increases. The influence of interference energy from the interaction between incoming and
reflected waves on energy preservation is negligible at all angles of incidence. Nonetheless, energy conservation
is substantially affected by the interference energy between reflected waves.There is a strong indication from the
graphs of bulk energy shares for the different reflected waves that the only wave that survives at both normal and
grazing incidence is the reflected SV wave, while the Py wave does not survive at either angle (Yang and Sato®).
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Fig. 3. Energy shares as a function of the incidence direction (o) with different frequency (incident P; wave).

The influence of frequency on the distribution of incident energy among the four reflected waves is seen in
Fig. 8. According to the data shown in this figure, the energy proportions of the P; wave grow as the frequency of
the wave increases. In the same vein, the rising w increases the energy share of the SV wave. Nevertheless, when
0o is less than or equal to 25°, this increase loses its significance. The energy dispersion is more visible for slower
waves, which leads to an extensive weakening of the P53 wave at low frequencies. Furthermore, as the frequency
rises, there is a discernible reduction in the proportion of energy that goes into the P> wave. As the angle of
incidence, denoted by 6o, grows, the significance of the contribution made by slower waves going beyond the
critical incidence becomes more significant.

Figure 9 illustrates the effect of saturation on the energy distribution via incidence angles. Just as in the case
of incident wave P; shown in Fig. 4, changes in water saturation have a substantial impact on the distribution of
energy. The energy shares of longitudinal waves were significantly enhanced when Sz increased. Furthermore,
the slower P> wave experiences a significant rise in strength as water saturation increases, especially for S2 = 0.9
beyond the critical incidence. On the contrary, the SV wave is weakened as .S> increased.

Figure 10 illustrates the effect of changing the value of Ry on the energy distribution among the four reflected
plane waves. The graphic demonstrates that the inclusion radius significantly affects all the reflection coefficients.
As Ry increases, the proportion of energy attributed to longitudinal waves decreases. On the contrary, the SV
wave diminished as the value of Ry increased. Like the incident wave P in Fig. 5, slower waves became stronger
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Fig. 4. Energy shares as a function of the incidence direction (6o) with different water saturation (incident P
wave).

as Ry increased. However, the quicker waves are affected differently by the inclusion radius in comparison to
the incident P; wave.

In Fig. 11, we illustrate the impact that WIFF has on the distribution of incident energy among four reflected
waves. The P wave is strengthened in the presence of WIFF below their critical incidence. The SV wave is
weakened for 0 < 6 < 55° and strengthened for 6o > 35° in the presence of WIFE. Figure 6 depicts similar
behavior for P, and P53 waves, and thus, it may be deduced that a similar impact of WIFF on P> and P3 waves
appeared for both incident waves (i.e., P; and SV).

Longitudinal waves contribution to WIFF

P;-wave incidence

In this study, we investigate the function that longitudinal waves play in the flow of fluids at the stress-free surface
of a partly saturated porous material. The investigation takes into account three distinct measures of porosity,
denoted by (¢), water saturation, denoted by (S2), and inclusion radius, denoted by (Ro), as seen in Figs. 12,
13 and 14. From these figures, it is possible to conclude that waves P; and P, are the primary contributors to
fluid flow throughout the system. Since the porosity, water saturation, and inclusion radius are all increasing,
the fluid flow caused by these waves may decrease. On the other hand, the contribution of wave P> diminishes
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Fig. 5. Energy shares as a function of the incidence direction (6o) with different inclusion radius (incident P
wave).

as the angle of incidence rises. Wave P3 has minimal impact on the fluid flow induced. It is seen that the fluid
flow that is produced by waves P, and P3 diminishes when the incidence gets closer to the direction of grazing.
On the other hand, the fluid flow caused by the P; wave may be detected at both normal and grazing incidence
temperatures. Each factor considerably impacted the wave-induced fluid flow when taken together.

SV-wave incidence

Following this, we will analyze the occurrence of the SV wave. The WIFF is affected by porosity (¢), water
saturation (.S2), and inclusion radius (Rp), as can be seen in Figs. 15, 16 and 17. This is comparable to the
situation shown in Figures 12, 13 and 14, which depicts the incident wave P;. As can be observed in the case of
the incident wave P, these properties also influence WIFF, which is analogous. However, when compared to
the incident P; wave, the influence of the incident direction on WIFF is not comparable. When the waves strike
the surface at normal and grazing angles, the fluid flow created by these waves is no longer there. Waves P; and
P; are the key elements that influence fluid flow, and the scenario is quite similar to the one with the incident
wave. However, when the wave is incident at a grazing angle, it does not contribute to the WIFFE. Except for the
normal and grazing angles, the P> wave contributes to the WIFF over the whole spectrum of incidence angles.
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Conclusions

The purpose of this study is to evaluate the characteristics of wave-induced fluid flow (WIFF) in unsaturated
porous media, as well as the properties of the seismic waves that are reflected. An eigensystem is generated, and
the Christoffel equations clarify the existence of three longitudinal waves and one transverse wave within the
medium, along with their propagation characteristics. The porous media is considered dissipative due to the
viscosities present in the saturated fluids. The incident and reflected waves are classified as inhomogeneous waves
due to the dissipative nature of the medium. We calculate the poroelastic reflection coefficients for every angle of
incidence at the boundary surface of sealed pores in the porous media. Subsequently, these poroelastic reflection
coeflicients are used to compute the fluid flow induced by the longitudinal waves. Additionally, we calculate the
distribution of incident energy among the reflected waves at the boundary of the reflecting medium. From the
numerical example, several findings emerge that are insightful and relevant, as listed below.

i. No critical angle is observed when a faster dilatational wave strikes the surface. In contrast, a critical angle
is noted whenever a shear wave encounters a stress-free surface.

ii. 'The graphical representations of bulk energy shares associated with various reflected waves clearly demon-
strate that, for both normal and grazing incidences, only one type of reflected wave physically persists
among all the reflected waves. This type of reflected wave is identical to the incident wave.
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ii.

Vi.

The energy shares associated with distinct energy types are functions of incident direction, water satura-
tion, porosity, inclusion radius, WIFFE, and wave frequency.

For the incidence of the P; (SV') wave, an increase in porosity and inclusion radius strengthens (weakens)
the reflected P, wave but weakens (strengthens) the refracted SV wave. Other reflected waves may weaken
slightly with the increase in porosity and inclusion radius in both cases.

For the incidence of the Py (SV') wave, an increase in water saturation weakens (strengthens) the reflected
Py wave but strengthens (weakens) the refracted SV wave. Other reflected waves may strengthen slightly
with the increase in water saturation in both cases.

The increase in wave frequency weakens the reflected P> wave for both incident waves. In contrast, all
other refracted waves may strengthen with the increase in frequency.

The energy partition remains unchanged near grazing incidence for longitudinal waves despite variations
in porosity, inclusion radius, water saturation, and frequency for the incidence of the P, wave. In contrast,
the SV wave is unaffected at both normal and grazing incidences.

It has been demonstrated that the conservation law for incident energy is upheld at all angles of incidence
during the reflection process. To accurately account for the distribution of energy among the various re-
flected waves, it is essential to consider the energy dissipated during the interference process that occurs
between different pairs of waves in the dissipative medium. This further substantiates the correctness of the
numerical calculations from an analytical perspective.
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Fig. 8. Energy shares as a function of the incidence direction (6o) with different frequency (incident SV wave).

ix. For the incidence of the P1 (SV') wave, the reflected SV (Py) wave is amplified across the entire range of
incident directions in the presence of WIFE. A similar behavior is observed for the P> and P; waves in the
presence of WIFF for both incident waves (i.e., Py and SV).

x. The P1 and P> waves significantly contribute to WIFF for both types of incidence (i.e., P1 and SV inci-
dence). The faster wave, P, contributes to WIFF at both grazing and normal incidences when the P wave
is incident. In contrast, the slower waves do not contribute at grazing incidence. However, none of the
waves contribute to WIFF at either grazing or normal incidences in the case of an incident SV wave.

In practical applications, the petroleum industry commonly employs seismic reflection techniques to investigate
sedimentary basins for hydrocarbon-trapping structures. This method is utilized to explore water, oil, and gas
resources. Additionally, the location of high-saturation areas can be identified through the analysis of reflected
seismic waves. In today’s world, water, oil, and gas are essential to our daily lives; without them, our existence
would be significantly challenged. The seismic reflection technique provides valuable structural information
and has become the primary strategy for conducting comprehensive investigations of the deep crust. The model
under evaluation represents a realistic scenario that may arise during the search for water or hydrocarbons. The
search methodologies utilizing WIFF may yield significant insights into the reservoir’s productivity. Therefore,
the authors believe that researchers in structural engineering and exploration may be inclined to adopt the
proposed model in their simulation studies.
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Fig. 11. Energy shares as a function of the incidence direction (6p) in the presence and absence of WIFF
(incident P; wave).
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Fig. 12. WIFF as a function of the incidence direction (6p) with different porosity (incident P, wave).
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Fig. 13. WIFF as a function of the incidence direction (6o) with different inclusion radius (incident P; wave).
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Fig. 16. WIFF as a function of the incidence direction (6p) with different inclusion radius (incident SV wave).
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Fig. 17. WIFF as a function of the incidence direction (6p) with different water saturation (incident SV wave).
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