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This study examines the characteristics of seismic wave reflection and wave-induced fluid flow (WIFF) 
in an unsaturated porous solid half-space confined beneath an impermeable plane surface. We first 
present the field equations and constitutive relations for partially saturated porous media. Next, 
we solve these equations in terms of the Christoffel equations, thereby addressing the propagation 
of a four-plane harmonic wave. These waves propagate as inhomogeneous waves at stress-free, 
impermeable boundary surfaces due to the medium’s dissipative properties. Furthermore, we 
compute the reflection coefficients from stress-free impervious boundary surfaces at arbitrary angles. 
The incidence of the P1/SV  wave generates four reflected waves. The calculation of theoretical 
formulations for reflection coefficients involves a set of four non-homogeneous linear equations 
derived from boundary conditions. Subsequently, these reflection coefficients are utilized to calculate 
the WIFF and the partitioning of incident energy at the impervious boundary of the porous solid. A 
numerical example is considered to investigate the effects of wave frequency, incidence direction, 
and elastic parameters such as porosity, inclusion radius, and liquid saturation on energy partitioning 
and wave-induced fluid flow. The conservation of incident energy has been confirmed at every angle 
of incidence. The numerical results demonstrate a significant dependence of energy shares of distinct 
reflected waves on the incident direction, saturation, porosity, inclusion radius, wave frequency, 
and WIFF. This theoretical study serves as a valuable tool for subsurface reservoir characterization, 
with applications in hydrocarbon exploration, CO2 sequestration monitoring, and other geological 
engineering fields.
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List of symbols
ηfm	� Viscosity of mth(= 1, 2) fluid phase
κ	� Intrinsic permeability of host medium
ϕ	� Porosity of the porous material
ϕ10	� Partial porosity host medium
ϕ10	� Partial porosity inclusion
ϕm	� Porosity occupied by mth(= 1, 2) fluid
ρ	� Mass coefficients
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ρfm	� Density of mth(= 1, 2) fluid phase
σ(j)	� Components of the stress of jth(= 1, 2) fluid phase
σ

(0)
ij 	� Components of the stress of solid phase

A	� Capillary pressure amplitude coefficient
Km	� Bulk modulus of matrix
Ks	� Bulk modulus of minerals
Kfm	� Bulk modulus of mth(= 1, 2) fluid phase
kfm	� Relative permeability of mth(= 1, 2) fluid phase
m	� Friction coefficients
Nm	� Shear modulus of matrix
R0	� Radius of inclusion
Sj 	� Saturation of jth(= 1, 2) fluid
Srm	� Residual saturation of mth(= 1, 2) fluid phase
ui	� Displacement components of solid phase
U

(j)
i 	� Displacement components of of jth(= 1, 2) fluid phase

The impact of reflection dispersion resulting from mesoscopic flow is significant and deserves attention, as 
conventional quantitative seismic interpretations can be misleading. Local flow-induced phase variations may 
introduce uncertainty in the seismic imaging of geological formations. The implications of reflection dispersion 
for characterizing heterogeneous reservoir rocks are promising, suggesting the potential to utilize frequency-
dependent seismic attributes to uncover geological heterogeneity and fluid mobility characteristics. In various 
geological contexts, multiple distinct fluids can partially saturate porous rocks. In the upper sections of gas-
capped reservoirs, gas, oil, and brine often coexist within the available pore space. Additionally, contaminants 
can infiltrate subterranean aquifers. Groundwater levels may fluctuate due to earthquakes, and subsequent 
aftershocks are associated with changes in pore fluid distribution. To effectively interpret seismic data for 
hydrocarbon detection, monitor saltwater intrusion into groundwater aquifers, or analyze reported earthquake 
waveforms, it is essential to understand how partial fluid saturation influences elastic wave propagation.

The comprehensive model for elastic wave propagation in porous, fluid-saturated media is described by 
Biot’s equations, as outlined in1–3. These equations were formulated using the Lagrangian approach, which 
defines generalized coordinates based on the average displacements of both solid and fluid components. A 
dissipation function, dependent on the relative velocity between the solid and liquid phases, was integrated 
into this framework. In the static or low-frequency limit, Biot’s equations reduce to Gassmann’s equation4, 
which determines the undrained static bulk modulus of porous materials by considering the properties of 
the dry framework and the saturating fluid. Both sets of equations assume a single Newtonian fluid (liquid 
or gas) saturating the porous medium. Subsequent studies have reproduced Biot’s equations using alternative 
mathematical methods, including volume averaging techniques proposed by Pride et al.5 and homogenization 
approaches for periodic structures6–8. These methods yield similar macroscopic equations, thereby validating 
Biot’s original formulation. Recently, numerous fluid flow problems have been addressed by researchers and 
published in the open literature (see Babu et al.9, Zhao et al.10, Kommaddi et al.11, Kodi et al.12 -13).

Biot’s theory, however, is limited to fully saturated media containing a single fluid. Modeling wave propagation 
in porous materials with multiple immiscible fluids presents significant challenges. Immiscibility refers to the 
property of fluids that prevents them from mixing, resulting in distinct boundaries between different fluids14. 
Porous rock formations, such as sandstone, limestone, and shale, can be saturated with various pore fluids, 
including gas, water, and oil. Since the 1960s, researchers have increasingly focused on elastic wave propagation 
in partially saturated media. Brutsaert15 pioneered the extension of Biot’s theory by employing mixture theory to 
account for the effects of two immiscible pore fluids on elastic wave propagation. This mixture theory approach, 
initially developed for two-fluid systems, has since been refined and expanded by numerous researchers (Brutsaert 
and Luthin16; Bedford and Drumheller17; Garg and Nayfeh18; Berryman et al.19; Santos et al.20,21; Corapcioglu 
and Tuncay22; Tuncay and Corapcioglu23; Wei and Muraleethara24,25; Hanyga26; Lu and Hanyga27; Lo28; Lo et 
al.29). In materials with voids occupied by two immiscible fluids, capillary forces become significant, leading to 
the prediction of a third compressional wave, specifically a second slow wave. These slow waves are present and 
attenuate the primary compressional wave through mode conversion. Multiphase poroelasticity theory reveals 
the existence of four elastic wave modes: three longitudinal waves and one shear wave, which are solutions 
to coupled differential equations of motion. The extensive analysis of wave propagation in porous materials 
containing multiphase fluids is credited to Corapcioglu and Tuncay22 as well as Tuncay and Corapcioglu23. Lo 
et al.30 formulated a complex set of interconnected partial differential equations to elucidate the propagation of 
dilatational waves in an elastic porous medium containing two immiscible fluids. These equations illustrate the 
behavior of acoustic waves in porous media with multiple fluid phases, enhanced by the fundamental principles 
of poroelasticity. Lo et al.31 analyzed various types of dilatory motion by determining the normal coordinates for 
the three longitudinal waves. They derived equations that describe the relationship between the modes of motion 
and the saturation level. The hydrologic models of subsurface multiphase flow discussed earlier do not account 
for the impact of viscous resistance caused by the relative velocity of two adjacent fluids on the behavior of elastic 
waves in partially saturated porous media. Lo et al.32 introduced a mathematical model that utilizes continuous 
mixture theory to address the viscous cross-coupling between two immiscible pore fluids. Consequently, all the 
models mentioned above can be derived as specific instances of this framework. Furthermore, if only one fluid 
is present in the medium, this model can be simplified to Biot’s theory1,2. The mathematical model established 
by Arora et al.33 examined wave propagation in a porous medium composed of two solids saturated with two 
immiscible fluids. The equations for complementary energy and the linear stress-strain relationships of the 
medium were developed using the concept of virtual complementary work. The Lagrangian motion equation 
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generates a network of interrelated partial differential equations. Xiong et al.34 analytically demonstrated 
that the model presented by Tuncay and Corapcioglu23, utilizing the volume averaging method, may exhibit 
instability due to potential structural deficiencies in the wave equations. To address this issue, they established 
an innovative mathematical framework for wave propagation in partially saturated porous media based on their 
findings.Wang et al.35 provide a modeling framework designed to simulate wave propagation in heterogeneous, 
partially saturated porothermoelastic materials. Sun et al.36 presented wave equations for the Biot-patchy-
squirt mechanism based on Lagrangian equations, mass conservation equations, and constitutive equations for 
double-porosity media. For partially saturated porous media, Solazzi et al.37 developed an analytical model to 
calculate frequency-dependent relative permeability functions that account for viscous coupling effects. Deng et 
al.38 established a methodology for assessing compaction and monitoring liquefiable soils in mine dumps with 
fluctuating saturation due to rising groundwater levels. The behavior of waves propagating in non-isothermal 
poroelastic materials saturated with two-phase fluids was described by a model presented by Santos et al.39. The 
dynamic differential equations incorporate poroelasticity and heat equations, which integrate the solid, fluid, 
and thermal fields through coupling terms. A plane wave analysis demonstrated that five distinct waves could 
propagate.

As seismic waves propagate through rocks, they create pressure differentials at various depths, inducing fluid 
motion. Wave-Induced Fluid Flow (WIFF) can be classified into three categories based on pressure gradient 
length scales: mesoscopic, global, and squirt flows. The relationship between wave dispersion and attenuation 
across a broad frequency spectrum is closely linked to the WIFF process. Developing theoretical models that 
connect multiscale WIFF with wave propagation may enable the establishment of quantitative characteristics 
and precise assessments of reservoirs. The WIFF induced by waves is a primary factor contributing to wave 
dispersion and attenuation, which is significantly influenced by pore structure, fluid properties, and rock type 
(Yao et al.40; Müller et al.41; Quintal et al.42; Khalid and Ahmed43). However, this critical mechanism is not 
considered in all the multiphase fluid models mentioned in the previous paragraph. Recognizing the significance 
of this mechanism, Shi et al.44 introduced a rock seismic model that incorporates three wave-induced fluid 
flow (WIFF) processes at varying scales, from the size of pores to the wavelength. The model examines a three-
phase porous medium that includes two immiscible fluids within its pores. Shi et al.44 focused exclusively on 
the dispersion and attenuation of seismic waves-specifically, velocity and attenuation-resulting from WIFF in 
unsaturated porous media. Reflected seismic data is frequently employed in exploratory geophysics to evaluate 
rock properties such as porosity, fluid saturation, and permeability. Therefore, we extend the study by Shi et 
al.44 to investigate wave-induced fluid dynamics and the characteristics of seismic wave reflection in partially 
saturated porous media. First, we present a mathematical model for the propagation of a planar harmonic wave. 
The solution to the Christoffel equation reveals the presence of four waves in the medium: three compressional 
waves and one shear wave. Additionally, we calculate the poroelastic reflection coefficients from the boundary 
surface of sealed holes in porous media at various angles. These poroelastic reflection coefficients are subsequently 
utilized to compute wave-induced fluid flow and to separate energy contributions. We examine the behavior 
of energy share curves and wave-induced fluid flow (WIFF) curves at different frequencies of incident waves 
and angles of incidence, as well as elastic parameters such as porosity, inclusion radius, and liquid saturation. 
The numerical results demonstrate a significant dependence of energy shares of distinct reflected waves on the 
incident direction, saturation, porosity, inclusion radius, wave frequency, and WIFF.. The findings of this study 
fill a critical gap in understanding how these factors influence the propagation of seismic waves in unsaturated 
porous media, which is essential for reservoir interpretation, physical property inversion, and sediment type 
classification.

Field equations and constitutive relations
Following Shi et al.44, the equations of motion in the absence of body force for each particle in an unsaturated 
porous solid are as follows:

	 σ
(0)
ij,j =ρ11üi + ρ12Ü

(1)
i + ρ13Ü

(2)
i − (m1 − m12)(U̇ (1)

i − u̇i) − (m2 − m12)(U̇ (2)
i − u̇i), � (1)

	 σ
(1)
,i =ρ12üi + ρ22Ü

(1)
i + ρ23Ü

(2)
i + m1(U̇ (1)

i − u̇i) − m12(U̇ (2)
i − u̇i), � (2)

	 σ
(2)
,i =ρ13üi + ρ23Ü

(1)
i + ρ33Ü

(2)
i − m12(U̇ (1)

i − u̇i) + m2(U̇ (2)
i − u̇i), � (3)

where the superscripts 0, 1, and 2 denote the porous solid’s three phases: solid matrix, liquid, and gas. The indices 
are limited to the values 1, 2, and 3. Repeating an index signifies the involvement of a summation.The inclusion 
of a dot in the middle of a variable indicates partial differentiation in respect to time, while the inclusion of a 
comma in the head of an index signifies partial differentiation regarding space. The expressions of various elastic 
constants are described as
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ρ11 = ρ − 2(ρf1S1 + ρf2S2)ϕ + (g12 + g13 + 2g23)ϕ2,

ρ12 = ϕ(ρf1S1 − g12ϕ − g23ϕ),
ρ13 = ϕ(ρf2S2 − g13ϕ − g23ϕ),
ρ22 = g12ϕ2,

ρ23 = g23ϕ2,

ρ33 = g13ϕ2,

ρ = (1 − ϕ)ρs + ϕS1ρf1 + ϕS2ρf2,

g12 = S1ρf1Fs/ϕ,

g13 = S2ρf2Fs/ϕ,

g23 = 0.1√
g12g13,

Fs = ((1/ϕ) + 1)/2,

m1 = b̃1ϕ2,

m2 = b̃2ϕ2,

m12 = b̃12ϕ2,

kr1 = (S1 − R1)2

(1 − R1)2 ,

kr2 = (S2 − R2)2

(1 − R2)2 ,

kr12 =
√

0.1kr1kr2,

b̃1 = S2
1ηf1/(κkr1),

b̃2 = S2
2ηf2/(κkr2),

b̃12 = S1S2kr12
√

ηf1ηf2/D,

D = κ(kr1kr2 − k2
r12)

, S1 + S2 = 1, ϕ = ϕ1 + ϕ2 = ϕ10S1 + ϕ20S2.
The constitutive relations (Shi et al.44) incorporating global flow and mesoscopic flow in the distinct phases 

of the porous medium are described in the following form:

	
σ

(0)
ij =

[
a11uk,k + a12U

(1)
k,k + a13U

(2)
k,k

]
δij + N(ui,j + uj,i), � (4)

	
σ(1) =

[
a12uk,k + a22U

(1)
k,k + a23U

(2)
k,k

]
δij , � (5)

	
σ(2) =

[
a13uk,k + a23U

(1)
k,k + a33U

(2)
k,k

]
δij , � (6)

	 ζ =γ1uk,k + γ2U
(1)
k,k + γ3U

(2)
k,k, � (7)

where ζ  specifies the multiscale WIFF in unsaturated porous solid. The coefficients expressed in the 
aforementioned equations are delineated as
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a11 =A + γ1γ1/γ0,

a12 =Q1 + γ1γ2/γ0,

a13 =Q2 + γ1γ3/γ0,

a22 =R1 + γ2γ2/γ0,

a23 =R3 + γ2γ3/γ0,

a33 =R2 + γ3γ3/γ0,

A =λc − 2B1ϕ − 2B2ϕ + (M1 + M2 + 2M3)ϕ2,

λc =Kc − (2Nm/3),
R1 =M1ϕ2,

R2 =M2ϕ2,

R3 =M3ϕ2,

Q1 =ϕ(B1 − M1ϕ − M3ϕ),
Q2 =ϕ(B2 − M2ϕ − M3ϕ),
B1 =((S1 + β)γ − β + (γ − 1)η)ϑKc,

B2 =(S2 + (1 − γ)η)ϑKc,

r =(S1 + β)/Ks + (qB2 + (S1 + β)(1 − (Kc/Ks)))/(Kc − Km),
M1 = − (B1/δKm + M3) ,

M2 =(B2r + η)/q,

M3 = − (1/Kmδ + r/q)B2 − η/q,

δ = 1
Ks

− 1
Km

,

ϕ10 =ϕ20 = ϕ,

ϕ1 =ϕS1,

ϕ2 =ϕS2,

q =ϕ((1/Kf1) + (1/P ′
caS1S2)),

γ =(1 + P ′
caS1S2/Kf2)/(1 + P ′

caS1S2/Kf1),
α′ =1 + (γ − 1)(S1 + β),

Kf =α′((γS1/Kf1) + (S2/Kf2))−1,

G =(Km − Ks)Kf /(ϕ(Kf − Ks)),
Kc =(Km + G)Ks/(Ks + G),

ϑ =((1/Ks) − (1/Km) + ϕ((1/Km) − (1/Kc)))/(α′((1/Ks) − (1/Km) + ϕ((1/Km) − (1/Kf )))),
Pca =A[(S1 + Sr2 − 1)−2 − ((Sr1/S1)2)(1 − Sr1 − Sr2)−2),

P ′
ca =dPcp

dS1
,

β =Pca/P ′
ca, η = Pw/P ′

ca,

γ0 = − ((1/3)R2
0ϕ2

1ϕ2ϕ20((ρf1ω2/ϕ10) + (ιωηf1/κ)) + R1ϕ2
2 + R2ϕ2

1 − 2R3ϕ1ϕ2),
γ1 =(Q1ϕ2 − Q2ϕ1),
γ2 =(R1ϕ2 − R3ϕ1),
γ3 =(R3ϕ2 − R2ϕ1).

Utilising constitutive relations inside the equations of motion, we formulate the equations of motion by means 
of the displacement components. The equations are expressed as follows:

	

(a11 + N)uj,ij + a12U
(1)
j,ij + a13U

(2)
j,ij + Nuj,ij =ρ11üi + ρ12Ü

(1)
i + ρ13Ü

(2)
i

−(m1 − m12)(U̇ (1)
i − u̇i)(m2 − m12)(U̇ (2)

i − u̇i),

a12uj,ij + a22U
(1)
j,ij + a23U

(2)
j,ij =ρ12üi + ρ22Ü

(1)
i + ρ23Ü

(2)
i

+m1(U̇ (1)
i − u̇i) − m12(U̇ (2)

i − u̇i),

a13uj,ij + a23U
(1)
j,ij + a33U

(2)
j,ij =ρ13üi + ρ23Ü

(1)
i + ρ33Ü

(2)
i

−m12(U̇ (1)
i − u̇i) + m2(U̇ (2)

i − u̇i).

� (8)

Plane harmonic wave propagation
To examine the propagation properties of planar harmonic waves in the specified medium, we postulate the 
assumption
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{
uj , U

(1)
j , U

(2)
j

}
=

{
S̄j , L̄j , Ḡj

}
e{ιω(pkxk−t)},� (9)

where the slowness vector is denoted by the expression (p1, p2, p3) and the angular frequency is depicted 
by the symbol ω. When the phase velocity V is considered, the concept of slowness may be described as 
(p1, p2, p3) = N/V . It is possible to use the row matrix N = (n1, n2, n3) to represent the direction of 
phase propagation. The vectors (S̄1, S̄2, S̄3), (L̄1, L̄2, L̄3), and (Ḡ1, Ḡ2, Ḡ3), respectively, constitute the 
representations of the polarisations of the solid and fluid particles that are present in the composite medium. By 
inserting (9) into the equation (8), we have a set of equations, which are as follows:

	
[
(a11 + N)ninj + (N − b11V 2)δij

]
S̄j +

[
a12ninj − b12V 2δij

]
L̄j +

[
a13ninj − b13V 2δij

]
Ḡj = 0, � (10)

	
[
a12ninj − b12V 2δij

]
S̄j +

[
a22ninj − b22V 2δij

]
L̄j +

[
a23ninj − b23V 2δij

]
Ḡj = 0, � (11)

	
[
a13ninj − b13V 2δij

]
S̄j +

[
a23ninj − b23V 2δij

]
L̄j +

[
a33ninj − b33V 2δij

]
Ḡj = 0, � (12)

where

	

b11 =ρ11 + ι

ω
(m1 + m2 − 2m12), b12 = ρ12 − ι

ω
(m1 − m12), b13 = ρ13 − ι

ω
(m2 − m12),

b22 =ρ22 + ι

ω
m1, b23 = ρ23 − ι

ω
m12, b33 = ρ33 + ι

ω
m2.

In order to establish a connection between the three types of displacements, namely u, U(1), and U(2), the Eqs. 
(10), (11) and (12) are solved as follows.

	
L̄i = ΓijS̄j ; Γ = b0

a0

(
I − NT N

)
+ b0V 4 + b1V 2 + b2

a0V 4 + a1V 2 + a2
NT N,� (13)

	
Ḡi = ∆ijS̄j ; ∆ = c0

a0

(
I − NT N

)
+ c0V 4 + c1V 2 + c2

a0V 4 + a1V 2 + a2
NT N.� (14)

In this context, the depiction NT  signifies the transpose of the row matrix N, whereas the description I is 
a three-dimensional identity matrix. The aforementioned equations establish a number of constants, and the 
different constants are provided by

	

a0 =b22b33 − b2
23, a1 = 2a23b23 − a22b33 − a33b22, a2 = a22a33 − a2

23,

b0 =b23b13 − b12b33, b1 = a12b33 + a33b12 − a13b23 − a23b13, b2 = a13a23 − a12a33,

c0 =b12b23 − b13b22, c1 = a13b22 + a22b13 − a12b23 − a23b12, c2 = a12a23 − a13a22.

When we put equations (13) and (14) into equation (10), we get a set of three equations, which are as follows:

	
[
a3NT N + b3

(
I − NT N

)]
S̄ = 0,� (15)

which are the Christoffel equations that describe the propagation of harmonic plane waves in a porous material. 
Following is a description of the coefficients that are utilised in a number of relations are as follows:

	

a3 =
(
a11 + 2N − b11V 2) [

a0V 4 + a1V 2 + a2
]

+ (a12 − b12V 2)[b0V 4 + b1V 2 + b2]

+ (a13 − b13V 2)[c0V 4 + c1V 2 + c2],

b3 =N −
[
b11 + b12

b0

a0
+ b13

c0

a0

]
V 2.

It is possible to determine the determinant of the coefficient matrix, which is provided by a3NT N + b3(I − NT N). 
This determinant may be expressed as (b3a2

3). It is essential that the determinant (b3a2
3) be equal to zero in order 

to ensure that the Christoffel equations (15) need a solution that is not trivial. In the case whenever the value of 
a3 is equal to zero, we are able to deduce the following mathematical relationship:

	 d3V 6 + d2V 4 + d1V 2 + d0 = 0,� (16)

where

	

d3 =b11a0 + b12b0 + b13c0,

d2 =b11a1 + b12b1 + b13c1 − (a11 + 2N)a0 − a12b0 − a13c0,

d1 =b11a2 + b12b2 + b13c2 − (a11 + 2N)a1 − a12b1 − a13c1,

d0 = − (a11 + 2N)a2 − a12b2 − a13c2.
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In this particular circumstance, the polarisations S̄ align themselves in a manner that is complementary to 
the phase direction N. This demonstrates that the equation presented before has accurately described the 
propagation of dilatational waves. An unsaturated porous medium is characterised by the presence of three 
dilatational waves, and the propagation of these waves is characterised by three roots of the cubic equation 
(16) in terms of V 2. Because of the existence of viscous pore fluids, a medium is believed to be dissipative. 
In light of this, equation (16) has complex roots, which suggests that dilatational waves in the medium are 
subject to attenuation. The four dilatational waves with velocity order ℜ(V1) > ℜ(V2) > ℜ(V3) are referred to 
as P1, P2, P3 waves, respectively, for the purpose of making the discussion more convenient.

Another equation, namely b3 = 0, produces

	
V =

√
N/

[
b11 + b12

b0

a0
+ b13

c0

a0

]
.� (17)

n this scenario, the polarisation S̄ is orientated perpendicular to the propagation direction N. This equation will 
define the velocity of a transverse wave in a medium that sustains attenuation as a result of the viscosity of the 
fluid contained beneath its pores. The solitary transverse wave is considered to be the SV wave.

Reflection at plane boundary
The purpose of the investigation is to explore the consequences of porosity, water saturation, wave frequency, 
and inclusion radius on the fluid flow and energy distribution of reflected waves at the stress-free surface of a 
unsaturated porous material.

Definition of the problem
Consider a rectangular coordinate system (x, y, z), where the region z > 0 consists of a porous medium saturated 
with two immiscible viscous fluids that permeate farther in the z-direction. The plane described by the equation 
z = 0 is regarded as the stress-free surface of this material (Fig. 1). The substantial attenuation of a seismic wave 
may be more explicitly shown by its irregular propagation. Thus, the extensive propagation of an attenuated wave 
in a dissipative medium is regarded as inhomogeneous. This is determined by the alignment of the propagation 
vector and the divergence of the attenuation vector from the propagation vector. Consequently, two angles, 
namely θ0 and γ0, are necessary to describe an inhomogeneous incident wave (Fig. 1). As stated by Borcherdt45, 
horizontal slowness may be determined through θ0 (angle of propagation), γ0 (angle of attenuation), A (
attenuation vector), and P (propagation vector).

	 s = |P| sin θ0 − ι|A| sin(θ0 − γ0).� (18)

Consequently, for an incident wave with velocity V0, we have

	
|P|2 =1

2 [ℜ( ω2

V 2
0

) +
√

(ℜ( ω2

V 2
0

))2 + (ℑ( ω2

V 2
0

))2/ cos2 γ0], � (19)

Fig. 1.  Schematic diagram of the problem.
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|A|2 =1

2 [−ℜ( ω2

V 2
0

) +
√

(ℜ( ω2

V 2
0

))2 + (ℑ( ω2

V 2
0

))2/ cos2 γ0]. � (20)

The dissipative characteristics of the porous medium need the specification of the incident wave at the 
boundary z = 0 about its propagation direction (θ0) and attenuation direction (γ0). The vector (s, 0, q0) 
depicts the slowness vector of the incident wave, with q0(= ±

√
1/V 2

0 − s2) indicating the vertical slowness 
of the incident wave. For the incident wave to propagate towards the boundary in the negative z-direction, 
the real part of q0 must be negative. Snell’s law stipulates that the horizontal slowness (s) of both incident 
and reflected waves is invariant. The vector (s, 0, qk) depicts the slowness vector for reflected waves, where 
qk = ±

√
1/V 2

k − s2, (k = 1, 2, 3, 4). To ensure the dissipation of reflected waves travelling away from the 
boundary in the positive z-direction, the imaginary part of qk  must be greater than zero.

In the subsequent step, the aggregate displacement of material particles in the medium is equal to the 
combination of the displacements corresponding to the wave that strikes the medium and the four waves that 
reflect off of it. Consequently, the depiction of the overall displacement of material particles in the xz−plane for 
two dimensions motion may be represented as follows:

	

uj =[S̄(0)
j exp(−ιωq0z) +

4∑
k=1

ϵkS̄
(k)
j exp {ιω(sx + qkz − t)}],

U
(1)
j =[L̄(0)

j exp(−ιωq0z) +
4∑

k=1

ϵkL̄
(k)
j exp {ιω(sx + qkz − t)}],

U
(2)
j =[Ḡ(0)

j exp(−ιωq0z) +
4∑

k=1

ϵkḠ
(k)
j exp {ιω(sx + qkz − t)}], (j = x, z),

� (21)

The excitation factors for reflected waves are denoted by the ϵk  symbol. These factors are related to the incident 
wave. The index ‘0’ is used to signify the wave that is incident. In this context, the index ‘k’(= 1, 2, 3, 4) is used 
to denote the reflected waves (P1, P2, P3, SV ) simultaneously. There is a possibility of defining the polarisation 
of a longitudinal and transverse waves by using the unit vector n, which may be computed as n = (s, 0, qk)Vk .

Boundary conditions
The current geometry incorporates boundary constraints for particle motion at the stress-free planar surface 
at z = 0. This study considers impermeable boundary conditions, namely sealed holes, at the plane defined by 
z = 0. At an impermeable barrier consisting of sealed pores, there is no flow of interstitial fluid permitted at the 
surface when waves pass through the plane at z = 0. Therefore, the appropriate boundary conditions that must 
be fulfilled at the plane z = 0 are as follows:

	

i) σ(0)
zz =0,

ii) σ(0)
zx =0,

iii) U (1)
z =0,

iv) U (2)
z =0.

� (22)

Reflection coefficients
To formulate an array of four contemporaneous non-homogeneous linear equations, we must first resolve 
the four boundary conditions (22) using the displacement articulated in Eq. (21). The following expressions 
represent the system of four equations:

	

4∑
k=1

flkϵk = −fl0, (l = 1, 2, 3, 4).� (23)

For (k = 1, 2, 3, 4), we have

	

f1k =a11[sS̄(k)
x + qkS̄(k)

z ] + a12[sL̄(k)
x + qkL̄(k)

z ] + a13[sḠ(k)
x + qkḠ(k)

z ] + 2NqkS(k)
z ,

f2k =N [qkS̄(k)
x + sS̄(k)

z ], f3k = L̄(k)
z , f4k = Ḡ(k)

z .

The system of equations, represented by the variables ϵk (where k = 1, 2, 3, 4), is solved employing the Gauss 
elimination technique. These unknown entities might be referred to as reflection coefficients.

Wave-induced fluid flow
With the aid of the relations (13) and (14) in equation (7), the WIFF in pores can only be discovered as a result 
of the dilation of solid particles, and it is described as follows:
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	 ζ = [λ1 + λ2Γ(V ) + λ3∆(V )](ux,x + uz,z).� (24)

By applying equation (21) to the equation that came before it, we could derive

	 ζ(Vk) = ιωϵk[λ1 + λ2Γ(Vk) + λ3∆(Vk)](sAk
x + qkAk

z)eιω(sx+qkz−t), (k = 1, 2, 3, 4).� (25)

We can verify that ζ(V4) = 0 by integrating the shear wave existence condition into the equation as mentioned 
above. It suggests that three longitudinal waves regulate the movement of WIFF inside pores. Hence, the 
functions ς(V1), ζ(V2), ς(V3) represent the individual contribution of P1, P2, P3 to the overall fluid flow. Since 
Vk  is a complex number, it follows that ς(Vk) is also a complex number. The fluid flow caused by longitudinal 
waves, denoted as ζk , is a physical quantity that may be determined as the real component of its complex form, 
which is represented as ζk = ℜ(ζ(Vk)). The sum of ζ1, ζ2, and ζ3 represents the overall fluid flow that occurs in 
a partly saturated porous solid when a P1 (or SV) wave is placed to the stress-free surface of a partially saturated 
porous solid comprising two viscous fluids (immiscible).

Energy partition
This article seeks to analyse the partitioning of energy from incident wave into distinct reflected waves. The 
energy transferred per unit area in the plane z = 0 is determined by computing the scalar product of the 
surface traction and particle velocity as outlined by Achenbach46. The existence of a dissipative porous medium 
results in energy dissipation, necessitating the consideration of interaction energy (Borcherdt45; Krebes47) or 
interference energy (Ainslie and Burns48) between two waves with distinct characteristics. Consequently, the 
total energy flow comprises the energy flux transmitted by reflected waves and the interaction energy between 
two distinct types of waves. The medium now enables the transmission of five waves: one incident and four 
reflected. Consequently, an energy matrix is formulated to delineate the distribution of incoming energy at the 
surface z = 0.

	 Elk = ℜ(Plkϵlϵ̄k)/ℜ(P55), (l, k = 1, 2, 3, 4, 5);� (26)

where ϵ5 = 1. A bar above a complex number signifies its conjugate. The components Plk  in Eq. (26) are defined 
by

	

Plk =
[
a11[sS̄(l)

x + qlS̄
(l)
z ] + a12[sL̄(l)

x + qlL̄
(l)
z ] + a13[sḠ(l)

x + qlḠ
(l)
z ] + 2NqlS

(l)
z

]
S̄(k)

z

+G
[
sS̄(l)

z + qlS̄
(l)
x

] ¯̄S(k)
x + Xl

¯̄L(k)
z + Yl

¯̄G(k)
z ,

� (27)

where

	

Xl = a12[sS̄(i)
x + qkS̄(l)

z ] + a22[sL̄(l)
x + qkL̄(l)

z ] + a23[sḠ(l)
x + qkḠ(l)

z ]

Yl = a13[sS̄(i)
x + qkS̄(l)

z ] + a23[sL̄(l)
x + qkL̄(l)

z ] + a33[sḠ(l)
x + qkḠ(l)

z ].

When dealing with porous media, the energy matrix Eij , (i, j = 1, 2, 3, 4, 5) is used to ascertain the energy 
proportions of four reflected waves, which are represented by the symbols P1, P2, P3, and SV accordingly. It 
is possible to differentiate the energy proportions of the reflected waves P1, P2, P3, and SV by referring to the 
diagonal entries E11, E22, E33, and E44. In order to determine the interaction energy that results from the 
interference of the incident wave with each reflected wave, the equation EIR =

∑4
i=1(E5i + Ei5) becomes 

applicable. It is possible to determine the interaction energy between every pair of reflected waves by using the 
expression ERR =

∑4
i=1(

∑4
j=1 Eij − Eii). It is necessary for the aggregate bulk energies of the reflected 

waves and the overall interaction energy to be equal to the bulk energy of the incident wave at the stress-free 
surface to satisfy the law of energy conservation requirements.

	

4∑
i=1

Eii + ERR + EIR = −E55 = 1.� (28)

During the whole process of reflection, it is essential that the energy balance law at the stress-free surface be 
maintained at each and every angle of incidence. This law is known as the energy balance law. As a consequence, 
relation (28) guarantees the preservation of energy at the surface that is free of stress.

Numerical example
We employ a numerical model of an unsaturated porous solid to examine the impact of wave frequency, incidence 
direction, and elastic properties like porosity, inclusion radius, and liquid saturation on reflection characteristics 
and WIFF. A reservoir rock (sandstone) saturated with water and CO2 is chosen for the numerical model of 
porous medium. Table 1 contains information on the sandstone’s elastic and dynamic constants.
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Numerical discussion
Partitioning of incident energy among reflected waves
P1 -wave incidence
Figure 2 illustrates how porosity affects the distribution of energy in reflected waves at the stress-free surface of 
closed pores. It has been seen that the energy share of the P1 waves is increasing as the porosity (ϕ) increases. 
The phenomenon is also seen in all other refracted waves, however these waves experience a decrease in energy 
distribution as porosity increases. The energy partitions clearly indicate that the bulk of the energy is distributed 
between the P1 and SV waves. The P1 wave energy decreases as the angle rises from normal incidence. Following 
a minimum at around 400, the energy progressively rises until it reaches grazing incidence. The reflected SV 
wave exhibits contrasting behavior, indicating the conversion of energy at the surface. The graphs of bulk energy 
shares for various reflected waves exhibit that at normal and grazing incidence, only the reflected P1 wave 
remains. In contrast, the SV wave does not survive at any angle [Yang and Sato49]. The energy proportions of 
reflected P2 and P3 waves are minimal. This is attributable to the fact that the phase speeds of these waves are 
much lower than those of all other wave modes. The energy shares of slower waves diminish as the angle of 
incidence rises. The calculations have been validated against the principle of energy conservation. The graphs 
of bulk energy shares for various reflected waves clearly indicate that energy conservation is observed at every 
angle of incidence. This proves the validity of the energy balance law as articulated in Eq. (25). It confirms that 
the numerical computations are analytically accurate.

Figure 3 illustrates the effect of wave frequency on the allocation of incident energy among four reflected 
waves in a partly saturated porous medium. The image displays that the P1 wave first intensifies with increasing 
frequency. However, the influence of frequency becomes negligible upon attaining an angle of θ0 = 45◦. The 
increasing ω amplifies the energy contribution of the SV wave. The energy dispersion is more significant for 
slower waves, substantially diminishing the P3 wave at low frequencies. Further, there is a substantial increase 
in the energy distribution of the P2 wave with rising frequency. The correlation between energy shares and 
frequency may enhance fluid content prediction in seismic data interpretation and facilitate the development of 
novel processing techniques for evaluating fluid characteristics from seismic data.

The effect of water saturation, denoted by the symbol S2, on the energy distributions of reflected waves is 
seen in Figure 4. Figure 3 illustrates that the energy shares at the stress-free surface of an unsaturated poroelastic 
material may go through considerable changes depending on its frequency. A change in the saturation of the 
fluid may bring about a substantial change in the frequency-dependent behaviour of the fluid, which in turn 
brings about a significant change in the energy shares associated with the fluctuations in water saturation. An 
increase in S2 decreases the strength of the P1 wave. On the contrary, the rest of the waves showed a substantial 
rise when S2 grew. The faster waves exhibit an opposing behavior compared to the incidence direction (θ0). The 
energy ratios of slower waves exhibit comparable fluctuations. The interference energy is notably enriched when 
the value of S2 grows, mainly when the incidence is normal.

The radius of spherical inclusions embedded in a partially saturated porous media plays a significant role 
in determining the heterogeneity scale of the rock. Consequently, it has a direct impact on the way seismic 
waves propagate. Figure 5 demonstrates how altering the value of R0 impacts the energy distribution among 
the four reflected plane waves. It is evident from this figure that the inclusion radius has a substantial impact 
on the reflection coefficients. As R0 grows, the contrast in P1 wave impedance increases, resulting from a more 
significant magnitude of the reflected P1 wave. Consequently, the energy distribution of the reflected waves is 
altered correspondingly. The rise in R0 greatly intensified the P1 wave. However, when the value of R0 grows, 
the SV wave becomes less prominent. In proportion to the rise in R0, the energy shares of slower waves are 
decreasing.

The impacts of WIFF on the ways in which incident energy is distributed across four reflected waves are seen 
in Fig. 6. In the presence of WIFF, the P1 wave is enhanced between the values of 0 and 250, while it is diminished 
between the values of θ0 and 250. For values of 0 to 900, the existence of WIFF results in the enhancement of the 
P2 and SV waves. The existence of WIFF, on the other hand, causes the P3 wave to be weakened throughout the 
whole spectrum of incidence directions.

Parameter (unit) Value Parameter (unit) Value

Ks (GPa) 12 Km (GPa) 6.21

Nm (GPa) 9.55 κ (Darcy) 1

ρs (kg/m3) 2650 ϕ 0.33

ρf1 (kg/m3) 1000 ρf2 (kg/m3) 100

ηf1 (Pa.s) 0.001 ηf2 (Pa.s) 0.00015

Kf1 (GPa) 2.223 Kf2 (GPa) 0.022

Sr1 0.05 Sr2 0.05

A 3000 Pw (MPa) 45

Table 1.  The parameters of sandstone that has been saturated with gas and water.
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SV-wave incidence
To determine the incidence of a SV wave, we will analyze the distribution of incident energy among many 
reflected waves. The differences in the energy distribution of the reflected waves are shown in Fig. 7, which plots 
the variances as a function of frequency and incidence angles. On all of the waves, a reversal effect of porosity 
is noticed, which is in contrast to the wave with the incidence P1 shown in Fig. 1. A critical angle is regularly 
seen during the reflection of elastic waves. When the angle of incidence is exceeded, the energy flow vector of 
the associated wave mode begins to propagate in a direction parallel to the contact. A critical angle of around 
45◦ is found for the reflected P1 wave. In the vicinity of 45◦, the energy ratio of the reflected P1 wave becomes 
unimportant. The P1 wave undergoes degeneration and transforms into an interface wave, which does not 
convey vertical energy flow. Concerning other reflected waves outside the critical angle, the reflected SV wave is 
given precedence. The contribution of the P1 wave to the total energy is reduced as the value of ϕ increases. The 
energy shares of slower waves show similar variations. The slower waves beyond the critical incidence become 
more significant as θ0 increases. The influence of interference energy from the interaction between incoming and 
reflected waves on energy preservation is negligible at all angles of incidence. Nonetheless, energy conservation 
is substantially affected by the interference energy between reflected waves.There is a strong indication from the 
graphs of bulk energy shares for the different reflected waves that the only wave that survives at both normal and 
grazing incidence is the reflected SV wave, while the P1 wave does not survive at either angle (Yang and Sato49).

Fig. 2.  Energy shares as a function of the incidence direction (θ0) with different porosity (incident P1 wave).
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The influence of frequency on the distribution of incident energy among the four reflected waves is seen in 
Fig. 8. According to the data shown in this figure, the energy proportions of the P1 wave grow as the frequency of 
the wave increases. In the same vein, the rising ω increases the energy share of the SV wave. Nevertheless, when 
θ0 is less than or equal to 250, this increase loses its significance. The energy dispersion is more visible for slower 
waves, which leads to an extensive weakening of the P3 wave at low frequencies. Furthermore, as the frequency 
rises, there is a discernible reduction in the proportion of energy that goes into the P2 wave. As the angle of 
incidence, denoted by θ0, grows, the significance of the contribution made by slower waves going beyond the 
critical incidence becomes more significant.

Figure 9 illustrates the effect of saturation on the energy distribution via incidence angles. Just as in the case 
of incident wave P1 shown in Fig. 4, changes in water saturation have a substantial impact on the distribution of 
energy. The energy shares of longitudinal waves were significantly enhanced when S2 increased. Furthermore, 
the slower P2 wave experiences a significant rise in strength as water saturation increases, especially for S2 = 0.9 
beyond the critical incidence. On the contrary, the SV wave is weakened as S2 increased.

Figure 10 illustrates the effect of changing the value of R0 on the energy distribution among the four reflected 
plane waves. The graphic demonstrates that the inclusion radius significantly affects all the reflection coefficients. 
As R0 increases, the proportion of energy attributed to longitudinal waves decreases. On the contrary, the SV 
wave diminished as the value of R0 increased. Like the incident wave P1 in Fig. 5, slower waves became stronger 

Fig. 3.  Energy shares as a function of the incidence direction (θ0) with different frequency (incident P1 wave).
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as R0 increased. However, the quicker waves are affected differently by the inclusion radius in comparison to 
the incident P1 wave.

In Fig. 11, we illustrate the impact that WIFF has on the distribution of incident energy among four reflected 
waves. The P1 wave is strengthened in the presence of WIFF below their critical incidence. The SV wave is 
weakened for 0 ≤ θ0 ≤ 550 and strengthened for θ0 > 350 in the presence of WIFF. Figure 6 depicts similar 
behavior for P2 and P3 waves, and thus, it may be deduced that a similar impact of WIFF on P2 and P3 waves 
appeared for both incident waves (i.e., P1 and SV).

Longitudinal waves contribution to WIFF
P1 -wave incidence
In this study, we investigate the function that longitudinal waves play in the flow of fluids at the stress-free surface 
of a partly saturated porous material. The investigation takes into account three distinct measures of porosity, 
denoted by (ϕ), water saturation, denoted by (S2), and inclusion radius, denoted by (R0), as seen in Figs. 12, 
13 and 14. From these figures, it is possible to conclude that waves P1 and P2 are the primary contributors to 
fluid flow throughout the system. Since the porosity, water saturation, and inclusion radius are all increasing, 
the fluid flow caused by these waves may decrease. On the other hand, the contribution of wave P2 diminishes 

Fig. 4.  Energy shares as a function of the incidence direction (θ0) with different water saturation (incident P1 
wave).
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as the angle of incidence rises. Wave P3 has minimal impact on the fluid flow induced. It is seen that the fluid 
flow that is produced by waves P2 and P3 diminishes when the incidence gets closer to the direction of grazing. 
On the other hand, the fluid flow caused by the P1 wave may be detected at both normal and grazing incidence 
temperatures. Each factor considerably impacted the wave-induced fluid flow when taken together.

SV-wave incidence
Following this, we will analyze the occurrence of the SV wave. The WIFF is affected by porosity (ϕ), water 
saturation (S2), and inclusion radius (R0), as can be seen in Figs. 15, 16 and 17. This is comparable to the 
situation shown in Figures 12, 13 and 14, which depicts the incident wave P1. As can be observed in the case of 
the incident wave P1, these properties also influence WIFF, which is analogous. However, when compared to 
the incident P1 wave, the influence of the incident direction on WIFF is not comparable. When the waves strike 
the surface at normal and grazing angles, the fluid flow created by these waves is no longer there. Waves P1 and 
P2 are the key elements that influence fluid flow, and the scenario is quite similar to the one with the incident 
wave. However, when the wave is incident at a grazing angle, it does not contribute to the WIFF. Except for the 
normal and grazing angles, the P2 wave contributes to the WIFF over the whole spectrum of incidence angles.

Fig. 5.  Energy shares as a function of the incidence direction (θ0) with different inclusion radius (incident P1 
wave).
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Conclusions
The purpose of this study is to evaluate the characteristics of wave-induced fluid flow (WIFF) in unsaturated 
porous media, as well as the properties of the seismic waves that are reflected. An eigensystem is generated, and 
the Christoffel equations clarify the existence of three longitudinal waves and one transverse wave within the 
medium, along with their propagation characteristics. The porous media is considered dissipative due to the 
viscosities present in the saturated fluids. The incident and reflected waves are classified as inhomogeneous waves 
due to the dissipative nature of the medium. We calculate the poroelastic reflection coefficients for every angle of 
incidence at the boundary surface of sealed pores in the porous media. Subsequently, these poroelastic reflection 
coefficients are used to compute the fluid flow induced by the longitudinal waves. Additionally, we calculate the 
distribution of incident energy among the reflected waves at the boundary of the reflecting medium. From the 
numerical example, several findings emerge that are insightful and relevant, as listed below. 

	 i.	 No critical angle is observed when a faster dilatational wave strikes the surface. In contrast, a critical angle 
is noted whenever a shear wave encounters a stress-free surface.

	 ii.	 The graphical representations of bulk energy shares associated with various reflected waves clearly demon-
strate that, for both normal and grazing incidences, only one type of reflected wave physically persists 
among all the reflected waves. This type of reflected wave is identical to the incident wave.

Fig. 6.  Energy shares as a function of the incidence direction (θ0) in the presence and absence of WIFF 
(incident P1 wave).
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	 iii.	 The energy shares associated with distinct energy types are functions of incident direction, water satura-
tion, porosity, inclusion radius, WIFF, and wave frequency.

	 iv.	 For the incidence of the P1(SV ) wave, an increase in porosity and inclusion radius strengthens (weakens) 
the reflected P1 wave but weakens (strengthens) the refracted SV wave. Other reflected waves may weaken 
slightly with the increase in porosity and inclusion radius in both cases.

	 v.	 For the incidence of the P1(SV ) wave, an increase in water saturation weakens (strengthens) the reflected 
P1 wave but strengthens (weakens) the refracted SV wave. Other reflected waves may strengthen slightly 
with the increase in water saturation in both cases.

	 vi.	 The increase in wave frequency weakens the reflected P2 wave for both incident waves. In contrast, all 
other refracted waves may strengthen with the increase in frequency.

	vii.	 The energy partition remains unchanged near grazing incidence for longitudinal waves despite variations 
in porosity, inclusion radius, water saturation, and frequency for the incidence of the P1 wave. In contrast, 
the SV wave is unaffected at both normal and grazing incidences.

	viii.	 It has been demonstrated that the conservation law for incident energy is upheld at all angles of incidence 
during the reflection process. To accurately account for the distribution of energy among the various re-
flected waves, it is essential to consider the energy dissipated during the interference process that occurs 
between different pairs of waves in the dissipative medium. This further substantiates the correctness of the 
numerical calculations from an analytical perspective.

Fig. 7.  Energy shares as a function of the incidence direction (θ0) with different porosity (incident SV wave).
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	 ix.	 For the incidence of the P1 (SV ) wave, the reflected SV (P1) wave is amplified across the entire range of 
incident directions in the presence of WIFF. A similar behavior is observed for the P2 and P3 waves in the 
presence of WIFF for both incident waves (i.e., P1 and SV).

	 x.	 The P1 and P2 waves significantly contribute to WIFF for both types of incidence (i.e., P1 and SV inci-
dence). The faster wave, P1, contributes to WIFF at both grazing and normal incidences when the P1 wave 
is incident. In contrast, the slower waves do not contribute at grazing incidence. However, none of the 
waves contribute to WIFF at either grazing or normal incidences in the case of an incident SV wave.

In practical applications, the petroleum industry commonly employs seismic reflection techniques to investigate 
sedimentary basins for hydrocarbon-trapping structures. This method is utilized to explore water, oil, and gas 
resources. Additionally, the location of high-saturation areas can be identified through the analysis of reflected 
seismic waves. In today’s world, water, oil, and gas are essential to our daily lives; without them, our existence 
would be significantly challenged. The seismic reflection technique provides valuable structural information 
and has become the primary strategy for conducting comprehensive investigations of the deep crust. The model 
under evaluation represents a realistic scenario that may arise during the search for water or hydrocarbons. The 
search methodologies utilizing WIFF may yield significant insights into the reservoir’s productivity. Therefore, 
the authors believe that researchers in structural engineering and exploration may be inclined to adopt the 
proposed model in their simulation studies.

Fig. 8.  Energy shares as a function of the incidence direction (θ0) with different frequency (incident SV wave).
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Fig. 9.  Energy shares as a function of the incidence direction (θ0) with different water saturation (incident SV 
wave).
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Fig. 10.  Energy shares as a function of the incidence direction (θ0) with different inclusion radius (incident 
SV wave).
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Fig. 11.  Energy shares as a function of the incidence direction (θ0) in the presence and absence of WIFF 
(incident P1 wave).
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Fig. 12.  WIFF as a function of the incidence direction (θ0) with different porosity (incident P1 wave).
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Fig. 13.  WIFF as a function of the incidence direction (θ0) with different inclusion radius (incident P1 wave).
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Fig. 14.  WIFF as a function of the incidence direction (θ0) with different water saturation (incident P1 wave).
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Fig. 15.  WIFF as a function of the incidence direction (θ0) with different porosity (incident SV wave).
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Fig. 16.  WIFF as a function of the incidence direction (θ0) with different inclusion radius (incident SV wave).
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Fig. 17.  WIFF as a function of the incidence direction (θ0) with different water saturation (incident SV wave).
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Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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