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In engineering practice, analytical solutions for the bending problem of functionally graded plates 
are usually available only when the boundary conditions are simple. When using numerical methods 
like the variational method to solve the problem, trial functions can generally be constructed 
only for simple-shaped boundaries. In contrast, the R-function method can be effectively used 
to address problems with complex boundary shapes. This study integrates the R-function theory 
with the variational method to investigate the bending problem of functionally graded plates with 
complex boundaries. By employing the R-function theory, complex regions can be represented as 
implicit functions, which facilitates the construction of trial functions that satisfy complex boundary 
conditions. The paper elaborates on the variational principle and R-function theory, derives the 
variational equation for the bending problem of functionally graded plates, and validates the feasibility 
and accuracy of the method through numerical examples of rectangular, U-shaped, and L-shaped 
functionally graded plates. The results are compared with those from other literature and the finite 
element method (FEM) using ANSYS, showing good agreement.

Keywords  Complex shape, Trial function, Functionally graded plate, R-function theory, Variational method

Functionally Graded Materials (FGMs) achieve a smooth variation in properties through the spatial distribution 
control of their components. They can be classified into metal/ceramic and ceramic/ceramic types. By means 
of microstructure control, FGMs optimize mechanical, thermal and other properties. Due to the continuous 
variation of their properties, FGMs perform excellently in fields such as aerospace, biomedical engineering and 
nuclear industry. As a specific application, functionally graded plates are widely used in aerospace, civil and 
mechanical engineering. Functionally graded plates, as a special kind of linearly elastic plates, are special in that 
material parameters (such as Young’s modulus) change in a gradient manner in the thickness direction. In view 
of this, many solution theories applicable to linearly elastic plates can also be applied to functionally graded 
plates under the condition that certain adaptability adjustments are met1–6.

Functionally graded plates, when applied in engineering, typically need to withstand transverse loads, hence 
many scholars have conducted research on their static mechanical properties7,8.Currently, the methods for 
solving such problems mainly fall into two categories: numerical methods and analytical methods. These two 
types of methods are respectively based on specific shear deformation theories, the finite element method, and 
other specific theories. In various analytical methods, the deflection function needs to be selected in advance, 
and the selection of these functions has a certain degree of arbitrariness and there is no definite rule to follow. 
In relevant studies, Tan-Van Vu and other scholars proposed a simple meshfree method based on the first-
order shear deformation theory for the analysis of functionally graded plates 9. In another study, a new effective 
meshfree method based on the refined third-order shear deformation theory was demonstrated, which was 
used for the analysis of through-thickness functionally graded plates10. There were also studies that applied the 
enhanced meshfree method with the refined inverse sine shear deformation plate theory and new correlation 
functions to conduct in-depth investigations on functionally graded plates 11. The refined hyperbolic sine shear 
deformation theory for sandwich functionally graded plates was constructed through the enhanced meshfree 
method with new correlation functions 12. A meshfree analysis of functionally graded plates was carried out 
by utilizing a novel four-unknown arctangent exponential shear deformation theory 13. Based on the refined 
quasi-three-dimensional logarithmic shear deformation theory, an effective meshfree method for the analysis 
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of functionally graded plates resting on elastic foundations was developed14. The effective meshfree method 
based on the simple quasi-three-dimensional hyperbolic shear deformation theory was adopted to analyze 
the mechanical behaviors of functionally graded porous plates resting on elastic foundations15. The buckling 
of porous sandwich functionally graded plates resting on Pasternak foundations was explored by combining 
the new refined quasi-three-dimensional hyperbolic shear deformation theory with the Navier solution  16. 
Researchers analyzed the deflection and natural frequency of functionally graded porous plates embedded in 
elastic foundations by applying the four-variable hyperbolic quasi-three-dimensional theory17. Researchers 
studied the natural frequency of functionally graded porous plates supported by Kerr-type foundations by 
means of the innovative trigonometric shear deformation theory 18.Researchers analyzed the deflection, stress 
and buckling of porous functionally graded material plates on Kerr-type elastic foundations by adopting a new 
five-unknown trigonometric shear deformation theory19. The free vibration of functionally graded porous plates 
with auxetic honeycomb core laid on Kerr-type elastic foundations was analyzed20.

In relevant studies, Liew KM applied the element-free kp-Ritz method to conduct the thermoelastic analysis 
and free vibration analysis of functionally graded plates respectively. As a numerical method, this approach 
avoids the limitations of traditional finite element meshing by means of special algorithms and can effectively 
deal with the complex characteristics and mechanical behaviors of functionally graded plates21,22.Nguyen-Xuan 
and others adopted the edge smoothed finite element method and the node smoothed finite element method to 
study functionally graded plates. Both of these are improved forms of the finite element method. They improve 
the computational accuracy and efficiency by smoothing the strain so as to better cope with the changes in 
material properties23,24. Loc V. Tran, A.J.M. Ferreira and H. Nguyen-Xuan utilized the isogeometric analysis 
(IGA) based on the higher-order shear deformation theory to study functionally graded plates. It combines 
the advantages of computer-aided design and numerical analysis and provides a new approach for the analysis 
of functionally graded plates25. The bending analysis of FGM plates is a critical aspect of understanding their 
structural behavior under different loading conditions. A modified Radial Point Interpolation Method (RPIM) 
based on Higher-Order Shear Deformation Plate Theory was developed for accurately analyzing the nonlinear 
bending of FGM plates26. Nguyen, Niiranen and other researchers developed a nonlocal continuum damage 
model for functionally graded plates by applying third—order shear deformation theory and isogeometric 
analysis (IGA). This model regulates the softening behavior through a nonlocal equivalent strain field. Moreover, 
it utilizes NURBS basis functions for modeling and approximation, which enables it to effectively capture 
localized damage27. The Ritz method28, employed for obtaining an approximate solution for FGM beams, 
assumes a form for the displacements of the plate, specifically when dealing with symmetric problems that 
have simply supported edges. It also posits that temperature variations are uniform and change only in the 
direction of thickness.The improved Rayleigh–Ritz method29 is used to study the free vibration characteristics of 
functionally graded plates of arbitrary shape. It assumes that the material varies exponentially in the thickness 
direction and employs Mindlin plate theory combined with an improved Fourier series as the displacement 
admissible function.

J.Ying has provided exact solutions for FGM beams on elastic foundations, which account for exponential 
variations in material properties and are applicable to cases with arbitrary material property changes through 
thickness30. Sahraee.S used Levinson Plate Theory (LPT) for the bending analysis of functionally graded sectorial 
plates, taking into account transverse shear strains and providing closed-form solutions that have been verified 
with existing literature data31. Sinusoidal Shear Deformation Theory is a new high-order shear deformation 
model for static analysis of functionally graded plates. It accounts for quadratic transverse shear strain variation 
and satisfies zero traction boundary conditions without shear correction factors32.The Analytical Solution for 
Nonlinear Cylindrical Bending provides a closed-form solution for the nonlinear bending and free vibration of 
functionally graded microplates, including couple stress effects33. In the theory of Three-Dimensional Elasticity, 
the analytical solutions using 3D elasticity equations are generally confined to FGM plates with exponential 
or simple material gradients, providing insights into their mechanical behavior under combined loads34. 
Yang considers different shear deformation theories to investigate the bending, shear stress, and normal stress 
distribution in simply supported FGM beams under various shear deformation theories and compares the 
static bending behaviors of FGM and homogeneous material beams35. Bending analysis with shear deformation 
theories examines bending, shear stress, and normal stress in simply supported FGM beams using different 
shear deformation theories and compares their static behavior with homogeneous beams36. In a study conducted 
in 2006, a static response analysis based on the Generalized Shear Deformation Theory was proposed, which 
simplifies the enforcement of traction-free boundary conditions without the need for shear correction factors 
and whose material properties vary according to a simple power-law distribution graded based on the volume 
fraction.37. A study has provided a closed-form solution for the bending analysis of five-curvature functionally 
graded sandwich panels in a magnetic field, which involves complex laminated structures and interactions 
between different material layers38. Research on nonlinear mechanical behavior in the study of functionally 
graded plates39 has focused on their nonlinear vibration and dynamic response by taking into account the 
material’s nonlinear properties, offering crucial insights into their performance under extreme conditions. A 
comparison with radial basis function results demonstrates its efficacy40. Aribas U. N and colleagues studied 
the limitations of the first-order shear deformation theory for functionally graded plates when cross-sectional 
warping is significant41.

The existing research results on functionally graded plates present a multi-dimensional situation in terms of 
bending and shape description. On the one hand, the meshless method based on different shear deformation 
theories can accurately take into account the complex changes of materials. Improved numerical methods, such 
as the edge smoothed finite element method, can enhance the calculation accuracy to capture the relationship 
between geometry and mechanics. Some analytical solutions can deeply analyze the mechanical behaviors 
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under specific material gradients and have been verified to be reliable. On the other hand, the high-order shear 
deformation theory is complicated in calculation and consumes a large amount of resources.

In view of this, this study conducts an in-depth exploration on the bending problem of functionally graded 
plates. Given the characteristics of Young’s modulus of the functionally graded plates in this study, which allow 
the adoption of the analysis methods for traditional plates, the first-order shear deformation theory is selected. 
It has a low computational complexity and is easy to apply, and can effectively simplify the solution process. 
Meanwhile, the R-function theory is introduced. By constructing equations with its implicit function form, it 
can accurately formulate the boundary conditions of plates with complex shapes. It can conveniently describe 
general complex shapes with features such as missing corners, convexities and concavities, and asymmetries, 
and is superior in terms of the flexibility of shape description, providing a new approach for the analysis of 
functionally graded plates. Therefore, it is of great practical significance to study the bending behaviors of 
functionally graded plates with irregular or complex shapes42–46.

Reissner47 and Mindlin48 proposed the first-order shear deformation theory, which introduced the concept 
of transverse shear deformation into the analysis of plate structures. The theory assumes that although straight 
lines in the thickness direction of the plate remain straight after deformation, they are no longer perpendicular to 
the physical midsurface of the plate. Subsequently, Timoshenko49 further proposed a shear correction factor that 
takes into account the effect of Poisson’s ratio to improve the accuracy of the theory. Based on this, Huffington 
proposed to divide the transverse displacement into bending and shear components. Thai et al. applied this 
method to solve many plate problems 50,51, and further developed the Modified First-Order Shear Deformation 
Theory (MFSDT). They improved the original theory and described the deformation behavior of plates under 
load more accurately.

The Ritz method52–54 is a widely used energy method in mechanical research, favored for its simplicity in 
the solution process. The R-function theory can describe complex regions in the form of implicit functions, 
representing the problem boundaries through normalized equations ω=0 and defining the region itself through 
inequalities ω > 055–57. By introducing the R-function theory55,58–60, it is convenient to construct the deflection 
functions ω for functionally graded plates with irregular concave-convex shapes, ensuring that these functions 
meet the boundary conditions. Subsequently, the variational method is used to solve the deflection functions of 
these irregularly shaped functionally graded plates.

After elucidating the fundamental theories, this paper provides detailed numerical analysis cases for 
functionally graded plates with rectangular, L-shaped, and U-shaped sections. The variational formulas are 
solved using MATLAB software, and the results obtained are compared with the data from finite element analysis 
to verify the reliability of the methods presented in this paper.

Material properties
The research subject of this section is a functionally graded plate with a constant thickness of h. The functionally 
graded plate is composed of a composite of ceramic and steel, with the upper surface being ceramic and the 
lower surface being steel. Its elastic modulus E(z) conforms to a power law function. Therefore, the elastic 
modulus of the functionally graded plate is represented as the plate’s elastic parameters (including the elastic 
modulus and density) varying according to a law distribution with thickness, and its value is

	
E(z) = (Ec − Es)

(
z

h
+ 1

2

)k

+ Es� (1)

The graded index is represented by k(k ≥ 0), with the subscripts "c" and "s" denoting ceramic and steel, 
respectively.

The variational method for calculating the bending problem of functionally graded 
plates
The Modified First-Order Shear Deformation Theory (MFSDT) proposed by Thai and others is an extension of 
the classical first-order shear deformation theory. In the Modified First-Order Shear Deformation Theory, the 
transverse displacement w is divided into bending and shear components (denoted as w = wb + ws ), and it is 
assumed that φx = −wb,x,φx = −wb,x. (where ", x" and ", y" represent the partial derivatives with respect to 
the shear components x and y , respectively), leading to the following displacement field

	 u (x, y, z) = u0 (x, y) − z wb,x� (2)

	 v (x, y, z) = v0 (x, y) − z wb,y � (3)

	 w (x, y, z) = wb (x, y) + ws (x, y)� (4)

From the above equations, we obtain

	
εx = ∂u0 (x, y)

∂x
− z

∂wb

∂x
� (5)

	
εy = ∂v0 (x, y)

∂y
− z

∂wb

∂y
� (6)

	
γxy = ∂u0 (x, y)

∂y
+ ∂v0 (x, y)

∂x
− 2z

∂2wb

∂x∂y
� (7)
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γxz (x, y, z) = ∂ws

∂x
� (8)

	
γyz (x, y, z) = ∂ws

∂y
� (9)

When considering the first-order shear deformation theory, the linear constitutive equations for the functionally 
graded plate are

	





σx

σy

τyz

τxz

τxy




=




Q11
Q12

0
0
0

Q12
Q22

0
0
0

0
0

Q44
0
0

0
0
0

Q55

0

0
0
0
0

Q66








εx

εy

γyz

γxz

γxy





� (10)

Among σ = {σx, σy, τyz, τxz, τxy}T  and ε = {εx, εy, γyz, γxz, γxy}T  are the stress and strain vectors. The 
stiffness coefficient Qij  is expressed as

	
Q11 = Q22 = E(z)

1 − µ2 � (11)

	
Q12 = µE(z)

1 − µ2 � (12)

	
Q44 = Q55 = Q66 = E(z)

2(1 + µ) � (13)

When the research object is a thick plate, let Q44 = Q55 = K E(z)
2(1+µ) . Where K = 5

6 .
In the Cartesian coordinate system oxyz, the total potential energy of the elastic body is

	
Vε = 1

2

�

V

(σxεx + σyεy + σzεz + τxzγxz + τyzγyz + τxyγxy)dxdydz� (14)

Given that the first-order shear deformation theory is a two-dimensional shear deformation theory, when 
considering the two-dimensional shear deformation theory, εz=0, that is to say

	
Vε = 1

2

�

V

(σxεx + σyεy + τxzγxz + τyzγyz + τxyγxy)dxdydz� (15)

For the calculation of strain energy in functionally graded plates, the thickness direction needs to be discretized. 
First, the thickness range of the plate [−h/2, h/2] is discretized into multiple small thickness intervals. The 
thickness is discretized into n small intervals, with each interval’s thickness increment being ∆z = h/n
. Define the discrete points in thickness as zi = −h/2 + i × ∆z, where i = 0, 1, 2,…, n. Next, calculate the 
strain energy contribution of each thickness interval. For each thickness interval [zi, zi+1], calculate the 
E(z) value at the midpoint zmid = (zi + zi+1) /2 of that interval, using the formula for the elastic modulus 
E(z) = (Ec − Es) (z/h + 1/2)k + Es, which varies with thickness according to the given formula E(z).

At this thickness, calculate the strain energy contribution within the plate plane corresponding to this 
thickness interval

	
dVε = 1

2 (σxεx + σyεy + τxzγxz + τyzγyz + τxyγxy) dxdydz� (16)

Within this thickness interval, it can be approximated as, where dz is approximated as ∆z within this interval. 
T﻿he total strain energy is obtained by summation

	

dVε = 1
2




σx (zmid) εx (zmid) + σy (zmid) εy (zmid)
+τxz (zmid) γxz (zmid) + τyz (zmid) γyz (zmid)
+τxy (zmid) γxy (zmid)


 dxdydz� (17)

Summing up the strain energy contributions from all thickness intervals yields the approximate total strain 
energy

	

Vε =
n−1∑
i=0

dVε =
n−1∑
i=0

1
2

�

A




σx (zmid) εx (zmid) + σy (zmid) εy (zmid)
+τxz (zmid) γxz (zmid) + τyz (zmid) γyz (zmid)
+τxy (zmid) γxy (zmid)


dxdydz� (18)

Substituting Eq. (4) into Eq. (19) yields
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Vε =
n−1∑
i=0

1
2

�

A




E(zmid)
(

∂
∂y

u0 (x, y) + ∂
∂x

V0 (x, y) − 2zmid
∂

∂y
∂

∂x
wb (x, y)

)2

(µ + 1) 2

−




∂

∂y
v0 (x, y)

−zmid
∂2

∂y2 wb (x, y)







E(zmid)




∂

∂y
v0 (x, y)

−zmid
∂2

∂y2 wb (x, y)




v2 − 1

+

E(zmid)µ




∂

∂x
u0 (x, y)

−zmid
∂2

∂x2 wb (x, y)




µ2 − 1




−




∂

∂x
u0 (x, y)

−zmid
∂2

∂x2 wb (x, y)







E(zmid)




∂

∂x
u0 (x, y)

−zmid
∂2

∂x2 wb (x, y)




v2 − 1

+

E(zmid) µ




∂

∂y
v0 (x, y)

−zmid
∂2

∂y2 wb (x, y)




µ2 − 1




+
E(zmid)

(
∂

∂x
ws (x, y)

)2

2 (µ + 1) +
E(zmid)

(
∂

∂y
ws (x, y)

)2

2 (µ + 1)




dxdydz� (19)

Now set the expressions for u,v,w as

	 u = Σm Amum� (20)

	 v = Σm Bmvm� (21)

	 w = Σm Cmwm� (22)

Among them, wm = wbm + wsm.
When the subject of study is a functionally graded thin plate without considering the stretching effect of the 

thickness and only considering the bending term in the transverse displacement, it is assumed that wm = wbm.
The Cm are m independent undetermined coefficients; wm is the prescribed function that satisfies the plate 

displacement boundary conditions. In this way, regardless of the values taken by Cm, the deflection w  shown 
in the formula above can always meet the displacement boundary conditions. Note that the variation of the 
deflection w is achieved only by the variation of the coefficients Cm; as for the prescribed function wm, it varies 
only with the coordinates and is completely unrelated to the above variation.

To determine the coefficients Cm, the following formula must be applied

	

∂Vε

∂Cm
=

∫

V

fzwmdV +
∫

S

fzwmdS� (23)

In the bending problem of a thin plate, both body forces and surface forces are attributed to the load q.
Based on this, you can derive m linear equations for Cm to determine Cm, and thus obtain the deflection w 

from Eq. (23), which allows for the calculation of the plate’s internal forces.
According to the principle of minimum potential energy, the condition for the total potential energy to be 

at an extremum is

	

∂Vε
∂Am

= 0
∂Vε

∂Bm
= 0

∂Vε
∂Cm

= 0


� (24)

where m = 1,2,3,…
The equation can also be written as

	

− ∂
∂Am

�
V

vmdV +
�

V
FxumdV +

�
Sσ

fxumdS = 0
− ∂

∂Bm

�
V

vmdV +
�

V
FyvmdV +

�
Sσ

fyvmdS = 0
− ∂

∂Cm

�
V

vmdV +
�

V
FzwmdV +

�
Sσ

fzwmdS = 0



� (25)

where
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∂Vε

∂Cm
=

n−1∑
i=0

1
2

�

A




E(zmid)
(

∂
∂x

ws (x, y)
)2

2 (µ + 1) +
E(zmid)

(
∂

∂y
ws (x, y)

)2

2 (µ + 1)

−
E(zmid) (zmid)2

(
∂2

∂x2 wb (x, y)
)2

µ2 − 1

−
E(zmid) (zmid)2

(
∂2

∂y2 wb (x, y)
)2

µ2 − 1

+
2E(zmid) (zmid)2 (

∂
∂y

∂
∂x

wb (x, y)
)2

µ + 1

−
2E(zmid)µ (zmid)2 ∂2

∂y2 wb (x, y) ∂2

∂x2 wb (x, y)
µ2 − 1




dxdy� (26)

The theory of R-functions
Based on the R-function theory, describing a complex region ω0 involves using Boolean operations ∨α and ∧α 
to represent the union and intersection of its subdomains. If the function ωl that describes each subdomain 
satisfies a first-order normalization equation, then ω0 will also satisfy a first-order normalization equation.

The definition of a first-order normalization equation is.

	 ωl (x, y) = 0, |∇ωl| = 1, ∀ (x, y) ∈ Ω� (27)

	 ωl (x, y) > 0, ∀ (x, y) ∈ ∂Ω� (28)

Assuming that X and Y satisfy the definition of a first-order normalization equation, then the following Boolean 
operations X ∨α Y  and X ∧α Y  also constitute a first-order normalization equation

	
X ∨α Y = 1

1 + α

(
X + Y +

√
X2 + Y 2 − 2αXY

)
� (29)

	
X ∧α Y = 1

1 + α

(
X + Y −

√
X2 + Y 2 − 2αXY

)
� (30)

where −1 ≤ α ≤ 1.

Derivation of the variational equation
The expression for deflection is taken as

	 w = ω2
0 Σm Cmwm� (31)

In the bending problem, the R-function is incorporated into Eq. (23). In this paper, the case of a clamped edge 
is discussed. For a clamped edge, the deflection is zero and the rotation angle is also zero. By referring to the 
properties of the R-function, the obtained ω0 is squared to meet the boundary conditions of the fixed support 
edges. Thereby, the boundary conditions are represented within ω0.

In the bending problem, the R-function is incorporated into Eq. (23). This paper discusses the case of clamped 
edges, and by referring to the properties of the R-function, the obtained ω0 is squared to meet the boundary 
conditions of the clamped.

Substituting Eq. (32) into Eq. (23) yields

	

∂2wbm

∂x2 =
∑

m

Cm

((
2

(
∂ω0

∂x

)2
+2ω0

∂2ω0

∂x2

)
wbm + 4ω0

∂ω0

∂x

∂wbm

∂x
+ ω2

0
∂2wbm

∂x2

)
� (32)

	

∂2wbm

∂y2 =
∑

m

Cm

((
2

(
∂ω0

∂y

)2

+2ω0
∂2ω0

∂y2

)
wbm + 4ω0

∂ω0

∂y

∂wbm

∂y
+ ω2

0
∂2wbm

∂y2

)
� (33)

	

∂2wbm

∂x∂y
=

∑
m

Cm




2∂ω0

∂y

∂ω0

∂x
wbm + 2ω0

∂2ω0

∂x∂y
wbm + 2ω0

∂ω0

∂x

∂wbm

∂y

+2ω0
∂ω0

∂y

∂wbm

∂x
ω2

0
∂2wbm

∂x∂y


� (34)

	

∂ws (x, y)
∂x

=
∑

m

Cm

(
2ω0

∂ω0

∂x
wsm + ω2

0
∂wsm

∂x

)
� (35)
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∂ws (x, y)
∂y

=
∑

m

Cm

(
2ω0

∂ω0

∂y
wsm + ω2

0
∂wsm

∂y

)
� (36)

Further, taking the derivative with respect to Ci for i = 1,2,3,…,m-1,m, we obtain

	

∂

∂Ci

∂2wbm

∂x2 =
(

2
(

∂ω0

∂x

)2
+2ω0

∂2ω0

∂x2

)
wbi + 4ω0

∂ω0

∂x

∂wbi

∂x
+ ω2

0
∂2wbi

∂x2 � (37)

	

∂

∂Ci

∂2wbm

∂y2 =

(
2

(
∂ω0

∂y

)2

+2ω0
∂2ω0

∂y2

)
wbi + 4ω0

∂ω0

∂y

∂wbi

∂y
+ ω2

0
∂2wbi

∂y2 � (38)

	

∂

∂Ci

∂2wbm

∂x∂y
=




2∂ω0

∂y

∂ω0

∂x
wbi + 2ω0

∂2ω0

∂x∂y
wbi + 2ω0

∂ω0

∂x

∂wbi

∂y

+2ω0
∂ω0

∂y

∂wbi

∂x
ω2

0
∂2wbi

∂x∂y


� (39)

	
∂

∂Ci

∂ws

∂x
= 2ω0

∂ω0

∂x
wsi + ω2

0
∂wsi

∂x
� (40)

	
∂

∂Ci

∂ws

∂y
= 2ω0

∂ω0

∂y
wsi + ω2

0
∂wsi

∂y
� (41)

Substituting Eqs. (33)–(42) into Eq. (27) and simplifying, we get

	

∂Vε

∂Ci
=

n−1∑
i=0

∑
m

Cm




E(zmid)
(
w0

∂
∂x

wsi (x, y) + 2wsi (x, y) σ14
)2

σ11

2 (µ + 1)

+
E(zmid)

(
w0

∂
∂y

wsi (x, y) + 2wsi (x, y) σ13
)2

σ11

2 (µ + 1)

−
E(zmid)µz2

mid

(
σ7 (wbj (x, y) σ8 + σ11 σ4 + 4σ13 w0 σ2)
+ (wbj (x, y) σ10 + σ11 σ5 + 4σ14 w0 σ1) σ6

)

µ2 − 1

+

E(zmid)z2
mid




σ11
∂

∂y
σ12 + 2σ13 w0σ12 + 2σ14 w0σ9

+2σ13 wbi (x, y) σ14 + 2wbi (x, y) w0
∂

∂y
σ14







2σ11
∂

∂y
σ1 + 4σ13 w0σ1 + 4σ14 w0 σ2

+4σ13 wbj (x, y) σ14 + 4wbj (x, y) w0
∂

∂y
σ14




µ + 1

−E(zmid)z2
mid σ7 (wbj (x, y) σ10 2 + 2σ11 σ5 + 8σ14 w0 σ1)

σ3

−E(zmid)z2
mid σ6 (wbj (x, y) σ8 2 + 2σ11 σ4 + 8σ13 w0σ2)

σ3




dxdy� (42)

For details on σ1 ∼ σ14, please refer to Appendix 1.
After derivation, the coefficient equation set can be obtained.

	 A [ C1 C2 C3 · · · · · · Cm ]T = B� (43)

where A = (aij)m×m
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aij =
�




E(zmid)
(
w0

∂
∂x

wsi (x, y) + 2wsi (x, y) σ14
)2

σ11

2 (µ + 1)

+
E(zmid)

(
w0

∂
∂y

wsi (x, y) + 2wsi (x, y) σ13
)2

σ11

2 (µ + 1)

−
E(zmid)µz2

mid

(
σ7 (wbj (x, y) σ8 + σ11 σ4 + 4σ13 w0 σ2)
+ (wbj (x, y) σ10 + σ11 σ5 + 4σ14 w0 σ1) σ6

)

µ2 − 1

+

E(zmid)z2
mid




σ11
∂

∂y
σ12 + 2σ13 w0σ12 + 2σ14 w0σ9

+2σ13 wbi (x, y) σ14 + 2wbi (x, y) w0
∂

∂y
σ14







2σ11
∂

∂y
σ1 + 4σ13 w0σ1 + 4σ14 w0 σ2

+4σ13 wbj (x, y) σ14 + 4wbj (x, y) w0
∂

∂y
σ14




µ + 1

−E(zmid)z2
mid σ7 (wbj (x, y) σ10 2 + 2σ11 σ5 + 8σ14 w0 σ1)

σ3

−E(zmid)z2
mid σ6 (wbj (x, y) σ8 2 + 2σ11 σ4 + 8σ13 w0σ2)

σ3




dxdy� (44)

For details on σ1 ∼ σ14, please refer to Appendix 1.

	 B = (bij)m×1

	
bij =

∫

Ω
qω2

0widΩ� (45)

Among them, i = 1, 2,…, m; and j = 1, 2,…, n. Ω represents the region contained by the cross-section (x–y) in 
the Cartesian coordinate system, from which Cm can be obtained according to Eq. (17). Substituting into the 
deflection expression (32), the deflection expression is obtained.

Numerical Example.

Example 1 rectangular functionally graded plate
A rectangular functionally graded plate with side lengths of 2a and 2b, where a = b = 0.5, Poisson’s ratio is 0.3, the 
plate thickness h is 0.05 m, and the uniformly distributed load q of 106pa, as shown in Figs. 1 and 2. The upper 
surface of the rectangular functionally graded plate is ceramic, and the lower surface is steel. Its elastic modulus 

Fig. 1.  The x–y plane of a functionally graded rectangular plate.
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conforms to a power law function, so the elastic modulus E(z) of the functionally graded plate is expressed 
as the elastic parameters (including the elastic modulus and density) of the plate varying according to a law 
distribution with thickness, and its value is

	
E(z) = (Ec − Es)

(
z

h
+ 1

2

)k

+ Es

The elastic modulus of ceramic, denoted as Ec, is taken as 210 GPa, and that of steel, denoted as Es, is taken as 
390 GPa. Once the constituent materials of the functionally graded material are determined, the plate’s elastic 
modulus depends on the graded index. As the graded index increases, the proportion of ceramic in the material 
of the plate gradually decreases while the proportion of steel gradually increases. When the graded index 
increases to infinity, the material of the plate converges to a pure steel plate, and thus the maximum deflection 
also converges to the maximum deflection of the steel plate.

In this example, we take k = 0, k = 1, k = 10 and k =  + ∞ respectively.
For different values of k, substitute k into Eq. (13) to obtain E(z) = Ec. Let n = 20 and discretize the thickness 

range [−h/2, h/2] into many small thickness intervals.Discretize the thickness into n small intervals, with each 
interval’s thickness increment being ∆z = h/n. Define the discrete thickness points as zi = −h/2 + i × ∆z
,where i = 0, 1, 2, ..., n. Calculate the strain energy contribution of each thickness interval. For each thickness 
interval [zi, zi+1], calculate the value of E(z) at the midpoint zmid = (zi + zi+1) /2.

Substituting into Eq. (43) will yield the coefficient equation set for calculating the results.
According to the R-function theory, simply take

	 ω0 = ω1 ∧α ω2

where ω1 = a2−x2

2a
≥ 0 and ω2 = b2−y2

2b
≥ 0.

Substituting into Eq. (31) and taking α=0, we get

	 ω0 = ω1 ∧α ω2 = ω1 + ω2 −
√

ω2
1 + ω2

2

When the research object is a functionally graded thin plate, without considering the thickness stretching effect 
and only considering the bending term in the transverse displacement, it is assumed, so take wm = wbm, ws = 0
. The shape of the plate here is a symmetrical figure. The function of the deflection w should be set as an even 
function of x and y, therefore wm is taken as 1, x2, y2, x4, y4, x2y2, x6, y6, x2y4 and x4y2。

In finite element modeling, select the static structural analysis module. During meshing, set the side length 
of each element of the plate to be 0.028 m. The rectangular thin plate is divided into 1,225square meshes in total.
The combination of R-functions with trial functions in the variational method may lead to a situation where the 
denominator of the integrand becomes zero at the boundaries of the integral during the integration process. In 
such cases, it is impossible to calculate the integral of the integrand. Therefore, a mesh division method is used 
here, dividing the rectangular area into N × N  grids.

When k = 0, the number of trial functions m = 10, and the grid numbers are taken as 15 × 15,20 × 20
,25 × 25,30 × 30,35 × 35,40 × 40 respectively, the deflection results of the plate’s center point are listed in 
Table 1.When the grid size is set to 40 × 40 and m takes different values, the results are listed in Table 2. When 
k = +∞, with the number of trial functions m = 10, and the grid numbers are taken as 15 × 15,20 × 20,25 × 25
, 30 × 30,35 × 35,40 × 40 respectively, the deflection results of the plate’s center point are listed in Table 3.

When the grid size is set to 40 × 40 and m takes different values, the results are listed in Table 2. When 
k = +∞, with the number of trial functions m = 10, and the grid sizes are taken as 15 × 15,20 × 20,25 × 25
,30 × 30,35 × 35,40 × 40 respectively, the deflection results of the plate’s center point are listed in Table 3.
When the grid size is set to 40 × 40 and m takes different values, the results are listed in Table 4. From Tables 1, 2, 
3, and 4, it can be seen that the deflections of functionally graded plates calculated by the method in this paper 
are effective and are in good agreement with the analytical solutions61 and finite element solutions. This proves 
the feasibility and correctness of the method presented in this paper.When k = 0, with a grid size of 40 × 40 and 
m taking different values, the deflection curve of the functionally graded plate’s center point at y = 0 is shown 
in Fig. 3; when k = +∞, with the same grid size and m taking different values (Fig. 4), the deflection curve at 

Fig. 2.  Functionally graded rectangular plate.
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y = 0 is shown in Fig. 5. When k = 0 and m = 10, the comparison between ANSYS finite element results and the 
method presented in this paper is shown in Fig. 4; when k =  + ∞ and m = 10, the comparison between ANSYS 
finite element results and the method presented in this paper is shown in Fig. 6. The results when k takes values 
of 0, 1, 10, and +∞ with the number of trial functions m = 10 and a grid size of 40 × 40 are shown in Fig. 7.

Grid density Deflection of center point (m) Error (%)

The method of this paper

15 × 15 0.00052330 83.61

20 × 20 0.00033242 16.64

25 × 25 0.00029596 3.85

30 × 30 0.00028738 0.83

35 × 35 0.00028524 0.08

40 × 40 0.00028310 0.67

Analytical solution61 0.000284 ——

FEM solution 0.00029529 3.61

Table 4.  The deflection of the center point when k =  + ∞ and n varies.

 

m Deflection of center point (m) Error (%)

The method of this paper

1 0.00013511 42.06

3 0.00027023 5.18

5 0.00028738 0.83

6 0.00028524 0.08

8 0.00028359 0.49

10 0.00028310 0.67

Analytical solution61 0.000284 ——

FEM solution 0.00029529 3.61

Table 3.  The deflection of the center point when k =  + ∞ and m varies.

 

m Deflection of center point (m) Error (%)

The method of this paper

1 0.00024878 53.06

3 0.00049971 5.72

5 0.00053402 1.18

6 0.00052973 0.76

8 0.00052759 0.46

10 0.00052740 0.49

Analytical solution61 0.000530 –

FEM solution 0.00052781 0.41

Table 2.  The deflection of the center point when k = 0 and m varies.

 

Grid density Deflection of center point (m) Error (%)

The method of this paper

15 × 15 0.00097153 83.31

20 × 20 0.00061766 16.54

25 × 25 0.00054903 3.59

30 × 30 0.00053402 0.76

35 × 35 0.00052973 0.05

40 × 40 0.00052740 0.49

Analytical solution61 0.000530 –

FEM solution 0.00052781 0.41

Table 1.  The deflection of the center point when k = 0 and n varies.
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Example 2 L-shaped functionally graded plate
L-shaped functionally graded plate with Poisson’s ratio taken as 0.3, plate thickness h taken as 0.005 m, and 
uniform load size q as 5 × 102 pa, where a = b = 0.5,c = d = 0.125 as shown in Figs. 8 and 9. The upper 
surface is ceramic, and the lower surface is steel, with the elastic modulus conforming to a power law function. 
The elastic modulus of the functionally graded plate, denoted as E(z), represents the variation of the plate’s 
elastic parameters (including elastic modulus and density) according to a law distribution along the thickness, 
and its value is

	
E(z) = (Ec − Es)

(
z

h
+ 1

2

)k

+ Es

Fig. 5.  The variation of w with respect to x when k =  + ∞ at y = 0.

 

Fig. 4.  Compare the method presented in this document with ANSYS results when k = 0 and y = 0.

 

Fig. 3.  The variation of w with respect to x when k = 0 at y = 0.
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Fig. 8.  The x–y plane of the L-shaped functionally graded plate.

 

Fig. 7.  Compare the results with k = 0, k = 1, k = 10 and k =  + ∞, for a function count m = 10 and a grid size of 
40 × 40.

 

Fig. 6.  Compare the method presented in this document with ANSYS results when k =  + ∞ and y = 0.
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The elastic modulus of ceramic, denoted as Es, is taken as 210 GPa, and that of steel, denoted as Es, is taken as 
390 GPa. Once the constituent materials of the functionally graded material are determined, the plate’s elastic 
modulus depends on the graded index. As the graded index increases, the proportion of ceramic in the material 
of the plate gradually decreases while the proportion of steel gradually increases. When the graded index 
increases to infinity, the material of the plate converges to a pure steel plate, and thus the maximum deflection 
also converges to the maximum deflection of the steel plate.

In this example, we take k = 0, k = 1, k = 10 and k =  + ∞ respectively.
For different values of k, substitute k into Eq. (13) to obtain E(z) = Ec.Let n = 20 and discretize the thickness 

range [−h/2, h/2] into many small thickness intervals. Discretize the thickness into n small intervals, with each 
interval’s thickness increment being ∆z = h/n. Define the discrete thickness points as zi = −h/2 + i × ∆z
,where i = 0, 1, 2, ..., n. Calculate the strain energy contribution of each thickness interval. For each thickness 
interval [zi, zi+1], calculate the value of E(z) at the midpoint zmid = (zi + zi+1) /2.

Substituting into Eq. (43) will yield the coefficient equation set for calculating the results.
According to the R-function theory, the expression for ω0 of the L-shaped functionally graded plate is as 

follows

	 ω0 = (ω1 ∧α ω2) ∧α (ω3 ∨α ω4)

where ω1 = a2−x2

2a
≥ 0,ω2 = b2−y2

2b
≥ 0,ω3 = (c − x) ≥ 0 and ω4 = (d − y) ≥ 0.

When the research object is a functionally graded thin plate, without considering the thickness stretching effect 
and only considering the bending term in the transverse displacement, it is assumed, so take wm = wbm, ws = 0
.The shape of the plate here is an asymmetrical figure. The function of the deflection w should be set as both an 
even function and an odd function of x and y, therefore wm is taken as 1, x, y, x2, xy, y2, x3, x2y, xy2 and y3。

In finite element modeling, select the static structural analysis module. During meshing, set the side length 
of each element of the plate to be 0.028 m. The rectangular thin plate is divided into 1,205 square meshes in 
total.In MATLAB, the L-shaped plate is divided into two rectangles. The first rectangular plate is meshed with a 
grid of 7n × n, and the second rectangular plate is meshed with a grid of 8n × 7n. When k = 0, and m = 1, the 
results for different values of n are shown in Table 5; when n = 5, and m takes on different values, the results are 
shown in Table 6. The deflection curve of the plate center point when y = 0 is plotted in Fig. 10. When k = 0, n = 5 
and m = 10, a comparison with the finite element calculation results from ANSYS is made and shown in Fig. 11.

When k = +∞, and m = 10, the results for different values of n are shown in Table 7; when n = 5, and m 
takes different values, the results are shown in Table 8. The deflection curve of the plate center point when y = 0 is 
plotted in Fig. 12. When n = 5 and m = 10, a comparison with the finite element calculation results from ANSYS 
is made and shown in Fig. 13.The above results confirm that the method presented in this paper is convergent 
and correct. When taking k = 0, k = 1, k = 10, and k = +∞, with the number of test functions m = 10, and 
the grid number n = 5, the results are shown in Fig. 14. The trend indicates that, under the same conditions, the 
larger the value of k, the smaller the deflection at the center point. This phenomenon also verifies the correctness 
of the method presented in this paper.

Grid density Deflection of center point (m) Error (%)

The method of this paper

n = 1.875 0.00024030 6.43

n = 2.5 0.00024444 4.82

n = 3.125 0.00024441 4.83

n = 3.75 0.00024646 4.04

n = 4.375 0.00024539 4.45

n = 5 0.00024729 3.71

FEM solution 0.00025684 –

Table 5.  The deflection of the center point when k = 0 and n varies.

 

Fig. 9.  L-shaped functionally graded plate.
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Grid density Deflection of center point (m) Error (%)

The method of this paper

n = 1.875 0.00012968 6.23

n = 2.5 0.00013159 4.85

n = 3.125 0.00013160 4.84

n = 3.75 0.00013271 4.04

n = 4.345 0.00013213 4.46

n = 5 0.00013316 3.71

FEM solution 0.00013830 –

Table 7.  The deflection of the center point when k =  + ∞ and m varies.

 

Fig. 11.  Compare the method presented in this document with ANSYS results when k =  + ∞ and y = 0.

 

Fig. 10.  The variation of w with respect to x when k = 0 at y = 0.

 

m Deflection of center point (m) Error (%)

The method of this paper

1 0.00010977 57.26

3 0.00024472 4.71

5 0.00024473 4.71

6 0.00024562 4.36

8 0.00024589 4.26

10 0.00024729 3.71

FEM solution 0.00025684 –

Table 6.  The deflection of the center point when k = 0 and m varies.
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Fig. 14.  Comparing the results with k = 0, k = 1, k = 10, and k =  + ∞, for a function count m = 10 and a grid size 
of n = 5.

 

Fig. 13.  Compare the method presented in this document with ANSYS results when k =  + ∞ and y = 0.

 

Fig. 12.  The variation of w with respect to x when k =  + ∞ at y = 0.

 

m Deflection of center point (m) Error (%)

The method of this paper

1 0.00005910 57.27

3 0.00013177 4.72

5 0.00013178 4.71

6 0.00013202 4.54

8 0.00013240 4.27

10 0.00013316 3.71

FEM solution 0.00013830 –

Table 8.  The deflection of the center point when k =  + ∞, and n varies.
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Example 3 U-shaped functionally graded plate
The L-shaped functionally graded plate has a Poisson’s ratio of 0.3, a thickness h of 0.01 m, and a uniform load 
q of 5 × 102pa, where a = b = 0.5, c = d = 0.25 as shown in Figs. 15 and 16.The upper surface is ceramic, 
and the lower surface is steel, with the elastic modulus conforming to a power law function. The elastic modulus 
of the functionally graded plate, denoted as E(z), represents the variation of the plate’s elastic parameters 
(including elastic modulus and density) according to a law distribution along the thickness, and its value is

	
E(z) = (Ec − Es)

(
z

h
+ 1

2

)k

+ Es

The elastic modulus of ceramic, denoted as Ec, is taken as 210 GPa, and that of steel, denoted as Es, is taken as 
390 GPa. Once the constituent materials of the functionally graded material are determined, the plate’s elastic 
modulus depends on the graded index. As the graded index increases, the proportion of ceramic in the material 
of the plate gradually decreases while the proportion of steel gradually increases. When the graded index 
increases to infinity, the material of the plate converges to a pure steel plate, and thus the maximum deflection 
also converges to the maximum deflection of the steel plate.

In this example, we take k = 0, k = 1, k = 10, and k = +∞ respectively.
For different values of k, substitute k into Eq. (13) to obtain E(z) = Ec. Let n = 20 and discretize the thickness 

range [−h/2, h/2] into many small thickness intervals. Discretize the thickness into n small intervals, with each 
interval’s thickness increment being ∆z = h/n. Define the discrete thickness points as zi = −h/2 + i × ∆z
,where i = 0, 1, 2, ..., n. Calculate the strain energy contribution of each thickness interval. For each thickness 
interval [zi, zi+1], calculate the value of E(z) at the midpoint zmid = (zi + zi+1) /2.

Substituting into Eq. (43) will yield the coefficient equation set for calculating the results.

Fig. 16.  U-shaped functionally graded plate.

 

Fig. 15.  The x–y plane of the U-shaped functionally graded plate.
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According to the R-function theory, the expression for ω0 of the U-shaped functionally graded plate is as 
follows

	 ω0 = (ω1 ∧α ω2) ∧α (ω3 ∨α ω4)

where ω1 = a2−x2

2a
≥ 0,ω2 = b2−y2

2b
≥ 0,ω3 = (c − x) ≥ 0 and ω4 = y2−d2

2d
≥ 0.

When the research object is a functionally graded thin plate, without considering the thickness stretching 
effect and only considering the bending term in the transverse displacement, it is assumed, so take wm = wbm, 
ws = 0. The shape of the plate here is symmetrical about the y-axis. The function of the deflection w should be 
set as an odd function of x and an even function of y, therefore wm is taken as 1, x, y2, x3, y4, x5, y6, y8, xy4 
and x3y2。

In finite element modeling, select the static structural analysis module. During meshing, set the side length of 
each element of the plate to be 0.028 m. The rectangular thin plate is divided into 1,145 square meshes in total. In 
MATLAB, the U-shaped functionally graded plate is divided into three rectangles. The first rectangle is meshed 
with a grid of 4n × n, the second rectangle is meshed with 3n × 2n, and the third rectangle is meshed with a 
grid of 4n × n. When k = 0, and m = 10, the results for different values of n are shown in Table 9; when n = 12, and 
m takes different values, the results are shown in Table 10. When k = 0, the deflection curve of the functionally 
graded plate center point when y = 0 is plotted in Fig. 17.When k = 0, n = 5, and m = 10, a comparison with the 
finite element calculation results from ANSYS is made and shown in Fig. 18. When k = +∞, and m = 10, the 
results for different values of n are shown in Table 11; when n = 12, and m takes different values, the results are 
shown in Table 12. The deflection curve of the plate center point when y = 0 is plotted in Fig. 19. When n = 12 and 
m = 10, a comparison with the finite element calculation results from ANSYS is made and shown in Fig. 20. This 
proves that the method presented in this paper is convergent and correct. When taking k = 0, k = 1, k = 10 and 
k =  + ∞, with the number of test functions m = 10, and the grid number n = 12, the results are shown in Fig. 21. 

Fig. 17.  The variation of w with respect to x when k = 0 at y = 0.

 

m Deflection of center point (m) Error (%)

The method of this paper

3 0.000018780 40.92

5 0.000025453 19.92

6 0.000025388 20.13

8 0.000033727 6.11

10 0.000031912 0.40

FEM solution 0.000031786 –

Table 10.  The deflection of the center point when k = 0 and m varies.

 

Grid density Deflection of center point (m) Error (%)

The method of this paper
n = 4 0.000063615 100.14

n = 6 0.000037791 18.89

n = 8 0.000034207 7.62

n = 10 0.000033240 4.57

n = 12 0.000031912 0.40

FEM solution 0.000031786 –

Table 9.  The deflection of the center point when k = 0 and n varies.
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Fig. 19.  The variation of w with respect to x when k =  + ∞ at y = 0.

 

m Deflection of center point (m) Error (%)

The method of this paper

3 0.000010112 40.92

5 0.000013705 19.92

6 0.000013670 20.13

8 0.000017184 0.40

10 0.000017183 0.39

FEM solution 0.000017115 –

Table 12.  The deflection of the center point when k =  + ∞ and m varies.

 

Grid density Deflection of center point (m) Error (%)

The method of this paper
n = 4 0.000036611 113.91

n = 6 0.000023860 39.41

n = 8 0.000018542 8.34

n = 10 0.000017901 4.63

n = 12 0.000017183 0.39

FEM solution 0.000017115 –

Table 11.  The deflection of the center point when k =  + ∞ and n varies.

 

Fig. 18.  Compare the method presented in this document with ANSYS results when k = 0 and y = 0.
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The trend shows that, under the same conditions, the larger the value of k , the smaller the deflection at the center 
point. This phenomenon also verifies the correctness of the method presented in this paper.

Example 4 functionally graded thick plates with other shapes
A rectangular functionally graded plate with side lengths of 2a and 2b respectively has a small semi-circular arc 
with a radius of r removed from its right edge. And a = b = 0.5, c = 0.375, d = 0.0625, r = 0.0625. The Poisson’s ratio 
is taken as 0.3, the thickness of the plate is set to 0.16 m, and the magnitude of the uniformly distributed load q 
is 2 × 107pa, as shown in Fig. 22. The upper surface of the rectangular functionally graded plate is ceramic, and 
the lower surface is steel. Its elastic modulus conforms to a power law function, so the elastic modulus E(z) of 
the functionally graded plate is expressed as the elastic parameters (including the elastic modulus and density) 
of the plate varying according to a law distribution with thickness, and its value is

	
E(z) = (Ec − Es)

(
z

h
+ 1

2

)k

+ Es

The elastic modulus of ceramic, denoted as Ec, is taken as 210 GPa, and that of steel, denoted as Es, is taken as 
390 GPa. Once the constituent materials of the functionally graded material are determined, the plate’s elastic 
modulus depends on the graded index. As the graded index increases, the proportion of ceramic in the material 
of the plate gradually decreases while the proportion of steel gradually increases. When the graded index 
increases to infinity, the material of the plate converges to a pure steel plate, and thus the maximum deflection 
also converges to the maximum deflection of the steel plate.

In this example, we take k = 0, k = 1, k = 10 and k =  + ∞ respectively.
For different values of k, substitute k into Eq. (13) to obtain E(z) = Ec.Let.
n = 20 and discretize the thickness range [−h/2, h/2] into many small thickness intervals.Discretize the 

thickness into n small intervals, with each interval’s thickness increment being ∆z = h/n. Define the discrete 
thickness points as zi = −h/2 + i × ∆z,where i = 0, 1, 2, ..., n. Calculate the strain energy contribution 
of each thickness interval. For each thickness interval [zi, zi+1], calculate the value of E(z) at the midpoint 
zmid = (zi + zi+1) /2.

Substituting into Eq. (43) will yield the coefficient equation set for calculating the results.

Fig. 21.  Comparing the results with k = 0, k = 1, k = 10, and k =  + ∞, for a function count m = 10 and a grid size 
of n = 12.

 

Fig. 20.  Compare the method presented in this document with ANSYS results when k =  + ∞ and y = 0.
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According to the R-function theory, the expression for ω0 of the U-shaped functionally graded plate is as 
follows

	 ω0 = (ω1 ∧α ω2 ∧α ω3) ∧α (ω4 ∨α ω5)

where ω1 = a2−x2

2a
≥ 0ω2 = b2−y2

2b
≥ 0ω3 = ((x−a)2+y2−r2)

2r
≥ 0ω4 = y2−d2

2d
≥ 0 and  ω5 = c + x ≥ 0.

When the research object is a functionally graded thick plate, it is assumed that wm = wbm + wsm. The 
shape of the plate here is an asymmetric figure. The trial function for setting the deflection should be an even 
function and an odd function of x and y. Therefore wbm and wsm are taken as: 1, x2, y2, x, y4, x3, y6, xy2, x2y2 
and x2y4。

In finite element modeling, select the static structural analysis module. During meshing, set the side length of 
each element of the plate to be 0.028 m. The rectangular thin plate is divided into 1,196 square meshes in total. In 
MATLAB, the functionally graded plate is divided into n × n rectangles. After obtaining all the coordinates, the 
coordinates included by the small rectangles and semi-circular shapes are removed. When k = 0, and m = 10, the 
results for different values of n are shown in Table 13; when n = 35 × 35, and m takes different values, the results 
are shown in Table 14. When k = 0, the deflection curve of the functionally graded plate center point when y = 0 
is plotted in Fig. 23.When k = 0, n = 35 × 35, and m = 10, a comparison with the finite element calculation results 
from ANSYS is made and shown in Fig. 24. When , and m = 10, the results for different values of n are shown 
in Table 15; when n = 35 × 35, and m takes different values, the results are shown in Table 16. The deflection 
curve of the plate center point when y = 0 is plotted in Fig. 25. When n = 35 × 35 and m = 10, a comparison with 
the finite element calculation results from ANSYS is made and shown in Fig. 26. This proves that the method 

m Deflection of center point (m) Error (%)

The method of this paper

1 0.0002096407 44.40

3 0.0003228080 14.39

6 0.0003469033 8.00

10 0.0003644867 3.33

FEM solution 0.00037705 –

Table 14.  The deflection of the center point when k = 0 and m varies.

 

Grid density Deflection of center point (m) Error (%)

The method of this paper

15 × 15 0.0004033605 6.98

25 × 25 0.0003631268 3.80

35 × 35 0.0003644867 3.33

FEM solution 0.00037705 –

Table 13.  The deflection of the center point when k = 0 and n varies.

 

Fig. 22.  The x–y plane of functionally graded plate.
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presented in this paper is convergent and correct. When taking k = 0, k = 1, k = 10 and k =  + ∞, with the number 
of test functions m = 10, and the grid number n = 35 × 35 the results are shown in Fig. 27. The trend shows 
that, under the same conditions, the larger the value of k , the smaller the deflection at the center point. This 
phenomenon also verifies the correctness of the method presented in this paper.

By combining the R-function with the variational method, the R-function can accurately describe the 
boundaries of complex geometric shapes and transform irregular shapes into mathematical expressions, 
which greatly simplifies the numerical calculation process and ensures the accuracy of geometric information. 
Meanwhile, the variational method, based on the principle of energy minimization, converts the deflection 
problem into the problem of finding the minimum value of the energy functional. This combined approach 
can not only properly handle complex geometric boundaries but also ensure that the calculation results have 
high accuracy, demonstrating good effectiveness in dealing with the deflection calculations of functionally 
graded plates with different shapes such as rectangular, U-shaped, and L-shaped, as well as those with varying 

m Deflection of center point (m) Error (%)

The method of this paper

1 0.0001128834 44.40

3 0.0001694864 5.72

6 0.0001828172 0.76

10 0.0001962621 0.49

FEM solution 0.00020303 –

Table 16.  The deflection of the center point when k = 0 and m varies.

 

Grid density Deflection of center point (m) Error (%)

The method of this paper

15 × 15 0.0002171941 6.99

25 × 25 0.0001955298 3.70

35 × 35 0.0001962621 3.32

FEM solution 0.00020303 –

Table 15.  The deflection of the center point when k = 0 and n varies.

 

Fig. 24.  Compare the method presented in this document with ANSYS results when k = 0 and y = 0.

 

Fig. 23.  The variation of w with respect to x when k = 0 at y = 0.
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thicknesses. In terms of the number of trial functions and the fineness of mesh division, they have an important 
impact on the calculation results. As for the trial functions, they are used in this method to describe the possible 
deformation modes of functionally graded plates. When the number of trial functions increases, it can fit the 
actual deformation situation more precisely. For example, when considering the shear deformation of functionally 
graded plates, adding trial functions that contain terms related to shear deformation can describe the actual 
deformation of the plates under load more accurately. This is consistent with the plate theory physical model that 
takes shear deformation into account, thereby improving the accuracy of the calculation results. Similarly, the 
finer the mesh division is, the closer the calculation results will be to the finite element solutions. The consistency 
with the finite element results further confirms the value of this method in engineering applications.

However, in specific computational examples (such as Example 1, Example 2, Example 3, and Example 4), if 
discrepancies are observed compared to the results calculated by ANSYS software, these discrepancies may be 
caused by the following factors.

Fig. 27.  Comparing the results with k = 0, k = 1, k = 10, and k =  + ∞, for a function count m = 10 and a grid size 
of n = 12.

 

Fig. 26.  Compare the method presented in this document with ANSYS results when k =  + ∞ and y = 0.

 

Fig. 25.  The variation of w with respect to x when k =  + ∞ at y = 0.
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Firstly, the trial functions selected in this paper may inadvertently satisfy some boundary conditions that do 
not actually exist in the non-boundary areas, which could interfere with our computational results. Taking x2 
as an example, this function is always zero on the line x = 0, which is clearly contrary to the situation we are 
considering.

Secondly, in the discussion of this paper, there may be a limitation, which is that an insufficient number of 
trial functions may not have been included when selecting them. In the analysis of Example 2, it can be observed 
that when the value of m is low, meaning that the number of trial functions is small, there is a deviation between 
the final calculated results and those provided by ANSYS software. This finding points out that in order to obtain 
a more accurate solution through the variational method, we must increase the number of trial functions as 
much as possible to ensure the reliability and accuracy of the results.

Thirdly, when performing integral operations on R-functions, you may encounter the special case where 
the denominator is zero at the boundary. Therefore, it is necessary to adopt a method similar to finite element 
analysis, which involves dividing the area into a mesh and solving the integral of each mesh element one by one, 
then accumulating to obtain the overall solution. This process emphasizes the importance of the fineness of the 
mesh division for the accuracy of the final result. When applying a numerical solution strategy that combines 
R-functions with the variational principle, to improve the accuracy of the solution, a denser mesh division 
should be used in the calculation process.

Fourthly, in the discussion of this paper, the calculation of the deflection of thick plates relies highly on the 
shear correction factor. Specifically, for those plate components that are relatively thin in thickness but still 
classified as thick plates, using the same shear correction factor may introduce errors, because the mechanical 
behaviors of such plate components are different from those of thicker thick plates. To solve this problem, 
corresponding shear correction factors can be determined through experiments and simulation analyses for 
thick plates with different thicknesses, so as to improve the accuracy of deflection calculation. Therefore, one of 
the future research directions is to establish a shear correction factor model based on the thickness differences 
of thick plates, thereby predicting the deflection behaviors of thick plates of various thicknesses more accurately.

Conclusions
The variational method is widely applied to solve engineering and physical problems, especially in calculating the 
deformation and stress distribution of functionally graded materials. However, when dealing with functionally 
graded plates of complex shapes, the traditional variational method may encounter some challenges. At this 
point, introducing the concept of the R-function can serve as a supplementary method to handle the complexity 
of boundary conditions.

The R-function can describe complex geometric shapes through implicit functions without directly defining 
the boundaries. Combining the R-function with the variational method can effectively simplify the bending 
problem of functionally graded plates under complex boundary conditions. This paper combines the R-function 
and the variational principle through theoretical derivation, thereby providing a new method for solving 
deflection variations. This method not only improves the efficiency of the solution process but also enhances the 
applicability and flexibility of the model. The paper demonstrates the effectiveness of this combined method by 
combining specific engineering examples. Through comparative analysis, the consistency between the calculated 
results using the R-function and the variational method and the actual measured values is observed, verifying 
the accuracy and reliability of the method.

Furthermore, this paper also explores the relationship between the calculation results and factors such as the 
selection of test functions in the variational method and the division of integration grids. This analysis helps to 
optimize the calculation process, improve the accuracy of the results, and also provides theoretical support and 
practical guidance for the application of the R-function in the bending problem of functionally graded plates.

In summary, the combination of the R-function and the variational method provides a new perspective 
and method for solving the bending problem of functionally graded plates with complex boundaries. This 
combination can improve computational efficiency.
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