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R-function method and variational
method for the bending problem
of functionally graded plates with
fixed supports and complex shapes

Kexin Su & Shanqing Li**

In engineering practice, analytical solutions for the bending problem of functionally graded plates
are usually available only when the boundary conditions are simple. When using numerical methods
like the variational method to solve the problem, trial functions can generally be constructed

only for simple-shaped boundaries. In contrast, the R-function method can be effectively used

to address problems with complex boundary shapes. This study integrates the R-function theory
with the variational method to investigate the bending problem of functionally graded plates with
complex boundaries. By employing the R-function theory, complex regions can be represented as
implicit functions, which facilitates the construction of trial functions that satisfy complex boundary
conditions. The paper elaborates on the variational principle and R-function theory, derives the
variational equation for the bending problem of functionally graded plates, and validates the feasibility
and accuracy of the method through numerical examples of rectangular, U-shaped, and L-shaped
functionally graded plates. The results are compared with those from other literature and the finite
element method (FEM) using ANSYS, showing good agreement.
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Functionally Graded Materials (FGMs) achieve a smooth variation in properties through the spatial distribution
control of their components. They can be classified into metal/ceramic and ceramic/ceramic types. By means
of microstructure control, FGMs optimize mechanical, thermal and other properties. Due to the continuous
variation of their properties, FGMs perform excellently in fields such as aerospace, biomedical engineering and
nuclear industry. As a specific application, functionally graded plates are widely used in aerospace, civil and
mechanical engineering. Functionally graded plates, as a special kind of linearly elastic plates, are special in that
material parameters (such as Young’s modulus) change in a gradient manner in the thickness direction. In view
of this, many solution theories applicable to linearly elastic plates can also be applied to functionally graded
plates under the condition that certain adaptability adjustments are met!~°.

Functionally graded plates, when applied in engineering, typically need to withstand transverse loads, hence
many scholars have conducted research on their static mechanical properties”®.Currently, the methods for
solving such problems mainly fall into two categories: numerical methods and analytical methods. These two
types of methods are respectively based on specific shear deformation theories, the finite element method, and
other specific theories. In various analytical methods, the deflection function needs to be selected in advance,
and the selection of these functions has a certain degree of arbitrariness and there is no definite rule to follow.
In relevant studies, Tan-Van Vu and other scholars proposed a simple meshfree method based on the first-
order shear deformation theory for the analysis of functionally graded plates °. In another study, a new effective
meshfree method based on the refined third-order shear deformation theory was demonstrated, which was
used for the analysis of through-thickness functionally graded plates'®. There were also studies that applied the
enhanced meshfree method with the refined inverse sine shear deformation plate theory and new correlation
functions to conduct in-depth investigations on functionally graded plates !!. The refined hyperbolic sine shear
deformation theory for sandwich functionally graded plates was constructed through the enhanced meshfree
method with new correlation functions 2. A meshfree analysis of functionally graded plates was carried out
by utilizing a novel four-unknown arctangent exponential shear deformation theory . Based on the refined
quasi-three-dimensional logarithmic shear deformation theory, an effective meshfree method for the analysis
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of functionally graded plates resting on elastic foundations was developed!“. The effective meshfree method
based on the simple quasi-three-dimensional hyperbolic shear deformation theory was adopted to analyze
the mechanical behaviors of functionally graded porous plates resting on elastic foundations'>. The buckling
of porous sandwich functionally graded plates resting on Pasternak foundations was explored by combining
the new refined quasi-three-dimensional hyperbolic shear deformation theory with the Navier solution '°.
Researchers analyzed the deflection and natural frequency of functionally graded porous plates embedded in
elastic foundations by applying the four-variable hyperbolic quasi-three-dimensional theory!”. Researchers
studied the natural frequency of functionally graded porous plates supported by Kerr-type foundations by
means of the innovative trigonometric shear deformation theory '8 Researchers analyzed the deflection, stress
and buckling of porous functionally graded material plates on Kerr-type elastic foundations by adopting a new
five-unknown trigonometric shear deformation theory'®. The free vibration of functionally graded porous plates
with auxetic honeycomb core laid on Kerr-type elastic foundations was analyzed®.

In relevant studies, Liew KM applied the element-free kp-Ritz method to conduct the thermoelastic analysis
and free vibration analysis of functionally graded plates respectively. As a numerical method, this approach
avoids the limitations of traditional finite element meshing by means of special algorithms and can effectively
deal with the complex characteristics and mechanical behaviors of functionally graded plates?!?2.Nguyen-Xuan
and others adopted the edge smoothed finite element method and the node smoothed finite element method to
study functionally graded plates. Both of these are improved forms of the finite element method. They improve
the computational accuracy and efficiency by smoothing the strain so as to better cope with the changes in
material properties®*?*. Loc V. Tran, A.J.M. Ferreira and H. Nguyen-Xuan utilized the isogeometric analysis
(IGA) based on the higher-order shear deformation theory to study functionally graded plates. It combines
the advantages of computer-aided design and numerical analysis and provides a new approach for the analysis
of functionally graded plates®. The bending analysis of FGM plates is a critical aspect of understanding their
structural behavior under different loading conditions. A modified Radial Point Interpolation Method (RPIM)
based on Higher-Order Shear Deformation Plate Theory was developed for accurately analyzing the nonlinear
bending of FGM plates”. Nguyen, Niiranen and other researchers developed a nonlocal continuum damage
model for functionally graded plates by applying third—order shear deformation theory and isogeometric
analysis (IGA). This model regulates the softening behavior through a nonlocal equivalent strain field. Moreover,
it utilizes NURBS basis functions for modeling and approximation, which enables it to effectively capture
localized damage?. The Ritz method®, employed for obtaining an approximate solution for FGM beams,
assumes a form for the displacements of the plate, specifically when dealing with symmetric problems that
have simply supported edges. It also posits that temperature variations are uniform and change only in the
direction of thickness.The improved Rayleigh-Ritz method?’ is used to study the free vibration characteristics of
functionally graded plates of arbitrary shape. It assumes that the material varies exponentially in the thickness
direction and employs Mindlin plate theory combined with an improved Fourier series as the displacement
admissible function.

J.Ying has provided exact solutions for FGM beams on elastic foundations, which account for exponential
variations in material properties and are applicable to cases with arbitrary material property changes through
thickness™. Sahraee.S used Levinson Plate Theory (LPT) for the bending analysis of functionally graded sectorial
plates, taking into account transverse shear strains and providing closed-form solutions that have been verified
with existing literature data®'. Sinusoidal Shear Deformation Theory is a new high-order shear deformation
model for static analysis of functionally graded plates. It accounts for quadratic transverse shear strain variation
and satisfies zero traction boundary conditions without shear correction factors®>.The Analytical Solution for
Nonlinear Cylindrical Bending provides a closed-form solution for the nonlinear bending and free vibration of
functionally graded microplates, including couple stress effects®. In the theory of Three-Dimensional Elasticity,
the analytical solutions using 3D elasticity equations are generally confined to FGM plates with exponential
or simple material gradients, providing insights into their mechanical behavior under combined loads*.
Yang considers different shear deformation theories to investigate the bending, shear stress, and normal stress
distribution in simply supported FGM beams under various shear deformation theories and compares the
static bending behaviors of FGM and homogeneous material beams®®. Bending analysis with shear deformation
theories examines bending, shear stress, and normal stress in simply supported FGM beams using different
shear deformation theories and compares their static behavior with homogeneous beams*. In a study conducted
in 2006, a static response analysis based on the Generalized Shear Deformation Theory was proposed, which
simplifies the enforcement of traction-free boundary conditions without the need for shear correction factors
and whose material properties vary according to a simple power-law distribution graded based on the volume
fraction.”’”. A study has provided a closed-form solution for the bending analysis of five-curvature functionally
graded sandwich panels in a magnetic field, which involves complex laminated structures and interactions
between different material layers®. Research on nonlinear mechanical behavior in the study of functionally
graded plates® has focused on their nonlinear vibration and dynamic response by taking into account the
material’s nonlinear properties, offering crucial insights into their performance under extreme conditions. A
comparison with radial basis function results demonstrates its efficacy’’. Aribas U. N and colleagues studied
the limitations of the first-order shear deformation theory for functionally graded plates when cross-sectional
warping is significant*!.

The existing research results on functionally graded plates present a multi-dimensional situation in terms of
bending and shape description. On the one hand, the meshless method based on different shear deformation
theories can accurately take into account the complex changes of materials. Improved numerical methods, such
as the edge smoothed finite element method, can enhance the calculation accuracy to capture the relationship
between geometry and mechanics. Some analytical solutions can deeply analyze the mechanical behaviors
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under specific material gradients and have been verified to be reliable. On the other hand, the high-order shear
deformation theory is complicated in calculation and consumes a large amount of resources.

In view of this, this study conducts an in-depth exploration on the bending problem of functionally graded
plates. Given the characteristics of Young’s modulus of the functionally graded plates in this study, which allow
the adoption of the analysis methods for traditional plates, the first-order shear deformation theory is selected.
It has a low computational complexity and is easy to apply, and can effectively simplify the solution process.
Meanwhile, the R-function theory is introduced. By constructing equations with its implicit function form, it
can accurately formulate the boundary conditions of plates with complex shapes. It can conveniently describe
general complex shapes with features such as missing corners, convexities and concavities, and asymmetries,
and is superior in terms of the flexibility of shape description, providing a new approach for the analysis of
functionally graded plates. Therefore, it is of great practical significance to study the bending behaviors of
functionally graded plates with irregular or complex shapes*2-4.

Reissner?” and Mindlin*® proposed the first-order shear deformation theory, which introduced the concept
of transverse shear deformation into the analysis of plate structures. The theory assumes that although straight
lines in the thickness direction of the plate remain straight after deformation, they are no longer perpendicular to
the physical midsurface of the plate. Subsequently, Timoshenko*® further proposed a shear correction factor that
takes into account the effect of Poisson’s ratio to improve the accuracy of the theory. Based on this, Huffington
proposed to divide the transverse displacement into bending and shear components. Thai et al. applied this
method to solve many plate problems °*°!, and further developed the Modified First-Order Shear Deformation
Theory (MESDT). They improved the original theory and described the deformation behavior of plates under
load more accurately.

The Ritz method®>-> is a widely used energy method in mechanical research, favored for its simplicity in
the solution process. The R-function theory can describe complex regions in the form of implicit functions,
representing the problem boundaries through normalized equations w=0 and defining the region itself through
inequalities w > 0%-%7. By introducing the R-function theory>>®-%, it is convenient to construct the deflection
functions w for functionally graded plates with irregular concave-convex shapes, ensuring that these functions
meet the boundary conditions. Subsequently, the variational method is used to solve the deflection functions of
these irregularly shaped functionally graded plates.

After elucidating the fundamental theories, this paper provides detailed numerical analysis cases for
functionally graded plates with rectangular, L-shaped, and U-shaped sections. The variational formulas are
solved using MATLAB software, and the results obtained are compared with the data from finite element analysis
to verify the reliability of the methods presented in this paper.

Material properties

The research subject of this section is a functionally graded plate with a constant thickness of h. The functionally
graded plate is composed of a composite of ceramic and steel, with the upper surface being ceramic and the
lower surface being steel. Its elastic modulus E(z) conforms to a power law function. Therefore, the elastic
modulus of the functionally graded plate is represented as the plate’s elastic parameters (including the elastic
modulus and density) varying according to a law distribution with thickness, and its value is

k
E+l) LB, (1)

B() = (B E.) (£ +5

"o "

The graded index is represented by k(k > 0), with the subscripts "c" and "s" denoting ceramic and steel,
respectively.

The variational method for calculating the bending problem of functionally graded
plates

The Modified First-Order Shear Deformation Theory (MFSDT) proposed by Thai and others is an extension of
the classical first-order shear deformation theory. In the Modified First-Order Shear Deformation Theory, the
transverse displacement w is divided into bending and shear components (denoted as w = wsy + ws ), and it is
assumed that @, = —wp 2,0z = —Ws,z. (Where ", 2" and ", y" represent the partial derivatives with respect to
the shear components = and y , respectively), leading to the following displacement field

u(x7y7z):u0 ("Bay)izwbyif (2)
v(:p,y,z)zvo (I,y)_ZUJb,y (3)
’LU(I,y,Z) = Wsp (‘Tyy)+w9 ($7y) (4)
From the above equations, we obtain
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When considering the first-order shear deformation theory, the linear constitutive equations for the functionally
graded plate are

Og Q1 Q12 0 0 0 €a
Oy Q12 Q22 0 0 0 €y
Tyz = 0 0 Qaa 0 0 Vy= (10)
Txz O O O Q55 0 ’Y:vz
Ty 0 0 0 0 Qas Yy

T T .
Among 0 = {04, 0y, Tyz, Tez, Ty} and € = {€z,€y, Vyz, Yoz, Yoy} are the stress and strain vectors. The
stiffness coefficient Qs is expressed as

E(z
Q11 = Q22 = ( )2 (11)

1—p
Q12 = nE() (12)

— p?
O — . _E()
Qa1 = Qs5 = Qes = 201+ 1) (13)
When the research object is a thick plate, let Qa4 = Q55 = K f(z . Where K =
In the Cartesian coordinate system ozyz, the total potential energy of the elastic body is
1
Ve = 5 J:[ (Uzgm + OyEy + 0262 + TezVaz + TyzYyz + sz'}’my)dxdydz (]4)
4

Given that the first-order shear deformation theory is a two-dimensional shear deformation theory, when
considering the two-dimensional shear deformation theory, €.=0, that is to say

1
‘/5 = 5 J\J\J\ (O—zgz + OyEy + TezVzz + TyzVYyz + sz’Yzy)dxdde (15)
1%

For the calculation of strain energy in functionally graded plates, the thickness direction needs to be discretized.
First, the thickness range of the plate [—h/2, h/2] is discretized into multiple small thickness intervals. The
thickness is discretized into n small intervals, with each intervals thickness increment being Az = h/n
. Define the discrete points in thickness as z; = —h/2 + ¢ X Az, where i=0, 1, 2,..., n. Next, calculate the
strain energy contribution of each thickness interval. For each thickness interval [2;, zi+1], calculate the
E(z) value at the m1dp01nt Zmid = (#i + zi+1) /2 of that interval, using the formula for the elastic modulus
E(2) = (E. — Es) (z/h 4+ 1/2)* + E,, which varies with thickness according to the given formula E(z).

At this thlckness, calculate the strain energy contribution within the plate plane corresponding to this

thickness interval

av. =

3 (02€x + Oyey + TwzVYazr + TyzYyz + TaoyVay) drdydz (16)

Within this thickness interval, it can be approximated as, where dz is approximated as Az within this interval.
The total strain energy is obtained by summation

(o (Zmzd) Ex (Zmzd) + Ty (Z’mld) €y (Zmzd)
dVe. = 5 + Tz (Zmid) Yz (Zmid) + Ty (Zmid) Yyz (Zmzd) d{dedZ (17)
+sz (Zmzd) Yy (Zmld)

Summing up the strain energy contributions from all thickness intervals yields the approximate total strain
energy

_ n—1 Ox (Zmzd) Ex (Zmzd) + Oy (Zm7d) Ey ( d)
Ve = Z dVe = Z jf +Tzz (Zmzd) Yz (Zmzd) + Tyz (Zmzd) Yyz (Zmzd) d$dyd2’ (18)
1=0 =0 A +sz (Zmzd) Yy (zmzd)

Substituting Eq. (4) into Eq. (19) yields
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Now set the expressions for u,v,w as
U = Em Amum (20)
v =Y Bnum (21)

Among them, Wm = Wem + Wsm.

When the subject of study is a functionally graded thin plate without considering the stretching effect of the
thickness and only considering the bending term in the transverse displacement, it is assumed that wy,, = Wym.

The (', are m independent undetermined coefficients; w, is the prescribed function that satisfies the plate
displacement boundary conditions. In this way, regardless of the values taken by Cr,, the deflection w shown
in the formula above can always meet the displacement boundary conditions. Note that the variation of the
deflection w is achieved only by the variation of the coefficients C,; as for the prescribed function wy,, it varies
only with the coordinates and is completely unrelated to the above variation.

To determine the coefficients Cyy, the following formula must be applied

ov. _ -
aC,. —/szwde—i—/szwmdS (23)

In the bending problem of a thin plate, both body forces and surface forces are attributed to the load q.

Based on this, you can derive m linear equations for C,,, to determine C,, and thus obtain the deflection w
from Eq. (23), which allows for the calculation of the plate’s internal forces.

According to the principle of minimum potential energy, the condition for the total potential energy to be
at an extremum is

Ve _
A, —
oV
2B
ove _

(24)

I
o oo

where m=1,2,3,...
The equation can also be written as

=~ My vomdV + [[fy, FoumdV + [[g foumdS =0
— a5 Iy vmdV + [ff,, FyomdV + [[g JyvmdS =0 (25)
— 50— [ffy vmdV + [[f, FowmdV + [[ fowndS =0

where
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The theory of R-functions
Based on the R-function theory, describing a complex region wo involves using Boolean operations Vo, and Aq
to represent the union and intersection of its subdomains. If the function w; that describes each subdomain
satisfies a first-order normalization equation, then wg will also satisfy a first-order normalization equation.

The definition of a first-order normalization equation is.

wi(z,y) =0, |[Vw|=1, V(z,y)€Q (27)

Assuming that X and Y satisfy the definition of a first-order normalization equation, then the following Boolean
operations X Vo Y and X Aq Y also constitute a first-order normalization equation

X\/QY:%(XJrYJr\/XQJrY?anXY) (29)
«Q

1
X/\QY:m(X—i—Y—\/XQ-i—Y?—ZaXY) (30)

where —1 < a < 1.

Derivation of the variational equation
The expression for deflection is taken as

In the bending problem, the R-function is incorporated into Eq. (23). In this paper, the case of a clamped edge
is discussed. For a clamped edge, the deflection is zero and the rotation angle is also zero. By referring to the
properties of the R-function, the obtained wyq is squared to meet the boundary conditions of the fixed support
edges. Thereby, the boundary conditions are represented within wo.

In the bending problem, the R-function is incorporated into Eq. (23). This paper discusses the case of clamped
edges, and by referring to the properties of the R-function, the obtained wo is squared to meet the boundary
conditions of the clamped.

Substituting Eq. (32) into Eq. (23) yields

8% Wem Awo \ 2 8%wo Owo Owpm 2 0% Whm
0x? Z Cm (( (7) 2w gz ) m w5 or Oz + o o2 (32)
2
8 wbm &uo 82000 8w0 8wbm 2 82wbm
2 m + 4
Z Cm (( ( ) +2wo 2 Whm + dwo —— 3y oy + wp By (33)
2
2 % %wbm + 2WO 0w wbm + 2000 8w0 awbm
O Wym Jy Oz 0xdy dr Oy
-y 2 o
8I3y +2 8WO awb'm w2 0 Wom
oy Jdy Oz 0 Oxdy
aws ows (z,y) 2 QWsm
Z Cm (2wo Wsm + Wo B ) (35)
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(36)
Further, taking the derivative with respect to C; for i=1,2,3,...,m-1,m, we obtain
0 5‘2wbm_ 9 <8w0>2 2w 82000 whs 4 Aw Owo Owp; +w2 6‘2wb,- (37)
aC; 02 ox 922 ) T 02 o 0 922
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=2 —=— 2 i 38
aC;  Oy? ( ( 0y o oy )" o, dy Oy +wo Oy? (38)
Owo Owo (92 Owo Owy;
i+ 2 i+ 2
0 %wem |° 0y oz ”+w°aaw"+“’°am By
= (39)
0C; 0x0y 20 Owg Owp; 28 Whi
by ox " dxdy
0 aws auJ() Qawsi
= 2wy ——Ws; 40
0C; or 0 pg W T, (40)
0 Ows Owo 2 Ows;
= 2wo —Ws; 41
ac; dy wo 3yw + wo y (41)
Substituting Eqgs. (33)-(42) into Eq. (27) and simplifying, we get
_ ) _
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1o}
_— 011871U12+2013w0012+2014w009
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+4o13we; (T,y) 014 + dws; (2, y) woafy 014
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A1
_ E(2mia) 22,007 (wy; (2,9) 0102 + 2011 05 + 8014 w0 1)
g3
E(2mid) 22006 (Woj (2,y) 082 + 201104 + 8713 w0072)
L g3
For details on 01 ~ 014, please refer to Appendix 1.
After derivation, the coefficient equation set can be obtained.
A[Cy Cy C3 -+ - Cn |"=B (43)
where A = (i), «m
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For details on 01 ~ 014, please refer to Appendix 1.
B = (bij)mxl

bij:/qwgwidfl
Q

(44)

(45)

Among them, i=1, 2,..., m; and j=1, 2,..., n. { represents the region contained by the cross-section (x-y) in

the Cartesian coordinate system, from which Cy, can be obtained according to Eq. (17). Substituting into the

deflection expression (32), the deflection expression is obtained.
Numerical Example.

Example 1 rectangular functionally graded plate
A rectangular functionally graded plate with side lengths of 2a and 2b, where a=b =0.5, Poisson’s ratio is 0.3, the
plate thickness h is 0.05 m, and the uniformly distributed load g of 10%pa, as shown in Figs. 1 and 2. The upper
surface of the rectangular functionally graded plate is ceramic, and the lower surface is steel. Its elastic modulus

('anb)

{

(-a,-b)

!
|
|
|
|
|
|
|
| (ab)
|

Fig. 1. The x-y plane of a functionally graded rectangular plate.
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Fig. 2. Functionally graded rectangular plate.

= X

conforms to a power law function, so the elastic modulus F(z) of the functionally graded plate is expressed
as the elastic parameters (including the elastic modulus and density) of the plate varying according to a law
distribution with thickness, and its value is

z 1\*
Pty) B

B(z) = (B~ B) (
The elastic modulus of ceramic, denoted as ., is taken as 210 GPa, and that of steel, denoted as Fs, is taken as
390 GPa. Once the constituent materials of the functionally graded material are determined, the plate’s elastic
modulus depends on the graded index. As the graded index increases, the proportion of ceramic in the material
of the plate gradually decreases while the proportion of steel gradually increases. When the graded index
increases to infinity, the material of the plate converges to a pure steel plate, and thus the maximum deflection
also converges to the maximum deflection of the steel plate.

In this example, we take k=0, k=1, k=10 and k= + oo respectively.

For different values of k, substitute k into Eq. (13) to obtain F(z) = E.. Let n=20 and discretize the thickness
range [—h/2, h/2] into many small thickness intervals.Discretize the thickness into n small intervals, with each
interval’s thickness increment being Az = h/n. Define the discrete thickness points as z; = —h/2 + i X Az
,where ¢ = 0,1, 2, ..., n. Calculate the strain energy contribution of each thickness interval. For each thickness
interval [z;, zi41], calculate the value of E(z) at the midpoint zmia = (i + zi+1) /2.

Substituting into Eq. (43) will yield the coeflicient equation set for calculating the results.

According to the R-function theory, simply take

wo = w1 Na W2

2 2 b2 g2
where w; = “-* > 0and w2 = =% > 0.

Substituting into Eq. (31) and taking =0, we get
Wo = w1 Na w2 = w1 +wa — /w? + w3

When the research object is a functionally graded thin plate, without considering the thickness stretching effect
and only considering the bending term in the transverse displacement, it is assumed, so take Wy, = Wym, ws = 0
. The shape of the plate here is a symmetrical figure. The function of the deflection w should be set as an even
function of x and y, therefore w., is taken as 1, 2, v? ot oyt 22y?, 28, 48, 2%y and 2ty

In finite element modeling, select the static structural analysis module. During meshing, set the side length
of each element of the plate to be 0.028 m. The rectangular thin plate is divided into 1,225square meshes in total.
The combination of R-functions with trial functions in the variational method may lead to a situation where the
denominator of the integrand becomes zero at the boundaries of the integral during the integration process. In
such cases, it is impossible to calculate the integral of the integrand. Therefore, a mesh division method is used
here, dividing the rectangular area into N x IV grids.

When k = 0, the number of trial functions m=10, and the grid numbers are taken as 15 x 15,20 x 20
,25 % 25,30 x 30,35 x 35,40 x 40 respectively, the deflection results of the plate’s center point are listed in
Table 1.When the grid size is set to 40 x 40 and m takes different values, the results are listed in Table 2. When
k = +o00, with the number of trial functions m = 10, and the grid numbers are taken as 15 x 15,20 x 20,25 x 25
, 30 % 30,35 x 35,40 x 40 respectively, the deflection results of the plate’s center point are listed in Table 3.

When the grid size is set to 40 x 40 and m takes different values, the results are listed in Table 2. When
k = +o00, with the number of trial functions m =10, and the grid sizes are taken as 15 x 15,20 x 20,25 x 25
,30 x 30,35 x 35,40 x 40 respectively, the deflection results of the plate’s center point are listed in Table 3.
When the grid size is set to 40 x 40 and m takes different values, the results are listed in Table 4. From Tables 1, 2,
3, and 4, it can be seen that the deflections of functionally graded plates calculated by the method in this paper
are effective and are in good agreement with the analytical solutions®! and finite element solutions. This proves
the feasibility and correctness of the method presented in this paper.When k=0, with a grid size of 40 x40 and
m taking different values, the deflection curve of the functionally graded plate’s center point at y=0 is shown
in Fig. 3; when k = 400, with the same grid size and m taking different values (Fig. 4), the deflection curve at
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Grid density Deflection of center point (m) | Error (%)
15 x 15 0.00097153 83.31
20 x 20 0.00061766 16.54
25 x 25 0.00054903 3.59
The method of this paper 30 x 30 000053402 076
35 x 35 0.00052973 0.05
40 x 40 0.00052740 0.49
Analytical solution® | 0.000530 -
FEM solution 0.00052781 0.41
Table 1. The deflection of the center point when k=0 and n varies.
Deflection of center point (m) | Error (%)
1 0.00024878 53.06
3 0.00049971 5.72
5 0.00053402 1.18
The method of this paper 6 000052973 076
8 0.00052759 0.46
10 0.00052740 0.49
Analytical solution® | 0.000530 -
FEM solution 0.00052781 0.41

Table 2. The deflection of the center point when k=0 and m varies.

Deflection of center point (m) | Error (%)
1 0.00013511 42.06
3 0.00027023 5.18
5 0.00028738 0.83
The method of this paper 6 000028524 0.08
8 0.00028359 0.49
10 0.00028310 0.67
Analytical solution® | 0.000284 —_
FEM solution 0.00029529 3.61

Table 3. The deflection of the center point when k= + oo and m varies.

Grid density Deflection of center point (m) | Error (%)
15 x 15 0.00052330 83.61
20 x 20 0.00033242 16.64
25 x 25 0.00029596 3.85

The method of this paper 30 x 30 0-00028738 083
35 x 35 0.00028524 0.08
40 x 40 0.00028310 0.67
Analytical solution® | 0.000284 —_
FEM solution 0.00029529 3.61

Table 4. The deflection of the center point when k= + o and n varies.

y=0 is shown in Fig. 5. When k=0 and m =10, the comparison between ANSYS finite element results and the
method presented in this paper is shown in Fig. 4; when k= + oo and m =10, the comparison between ANSYS
finite element results and the method presented in this paper is shown in Fig. 6. The results when k takes values
of 0, 1, 10, and 400 with the number of trial functions m=10 and a grid size of 40 x 40 are shown in Fig. 7.
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Fig. 3. The variation of w with respect to x when k=0 at y=0.
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Fig. 4. Compare the method presented in this document with ANSYS results when k=0 and y=0.
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Fig. 5. The variation of w with respect to x when k= + e at y=0.

Example 2 L-shaped functionally graded plate

L-shaped functionally graded glate with Poisson’s ratio taken as 0.3, plate thickness h taken as 0.005 m, and
uniform load size q as 5 x 10“ pa, where a = b = 0.5,c = d = 0.125 as shown in Figs. 8 and 9. The upper
surface is ceramic, and the lower surface is steel, with the elastic modulus conforming to a power law function.
The elastic modulus of the functionally graded plate, denoted as E(z), represents the variation of the plate’s
elastic parameters (including elastic modulus and density) according to a law distribution along the thickness,
and its value is

I
E
I
5
—
+
&‘/
B
+
S
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Fig. 6. Compare the method presented in this document with ANSYS results when k= + o0 and y=0.
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Fig. 7. Compare the results with k=0, k=1, k=10 and k= + o, for a function count m= 10 and a grid size of
40 x 40.

(-a,b) (c,b)

(-a,-b) (a-b)

Fig. 8. The x-y plane of the L-shaped functionally graded plate.
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Fig. 9. L-shaped functionally graded plate.
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Grid density | Deflection of center point (m) | Error (%)
n=1.875 0.00024030 6.43

The method of this paper | n=2.5 0.00024444 4.82
n=3.125 0.00024441 4.83
n=3.75 0.00024646 4.04
n=4.375 0.00024539 4.45
n=>5 0.00024729 371
FEM solution | 0.00025684 -

Table 5. The deflection of the center point when k=0 and n varies.

The elastic modulus of ceramic, denoted as Es, is taken as 210 GPa, and that of steel, denoted as Fs, is taken as
390 GPa. Once the constituent materials of the functionally graded material are determined, the plate’s elastic
modulus depends on the graded index. As the graded index increases, the proportion of ceramic in the material
of the plate gradually decreases while the proportion of steel gradually increases. When the graded index
increases to infinity, the material of the plate converges to a pure steel plate, and thus the maximum deflection
also converges to the maximum deflection of the steel plate.

In this example, we take k=0, k=1, k=10 and k= + oo respectively.

For different values of k, substitute & into Eq. (13) to obtain E(z) = E..Let n=20 and discretize the thickness
range [—h/2, h/2] into many small thickness intervals. Discretize the thickness into n small intervals, with each
interval’s thickness increment being Az = h/n. Define the discrete thickness points as z; = —h/2 + i X Az
,where ¢ = 0,1, 2, ..., n. Calculate the strain energy contribution of each thickness interval. For each thickness
interval [2;, z;+1], calculate the value of E(z) at the midpoint zmiq = (2i + zi4+1) /2.

Substituting into Eq. (43) will yield the coefficient equation set for calculating the results.

According to the R-function theory, the expression for wo of the L-shaped functionally graded plate is as
follows

wo = (wl Na OJQ) Na (w3 Va w4)

where w; = a22;,~02 > 0wz = b227by2 > 0wz =(c—x)>0andws = (d—y) > 0.

When the research object is a functionally graded thin plate, without considering the thickness stretching effect
and only considering the bending term in the transverse displacement, it is assumed, so take Wy, = Wym, ws = 0
.The shape of the plate here is an asymmetrical figure. The function of the deflection w should be set as both an
even function and an odd function of x and y, therefore w, is taken as 1, z, y, 2, zy, y?, 2%, 2%y, zy? and .

In finite element modeling, select the static structural analysis module. During meshing, set the side length
of each element of the plate to be 0.028 m. The rectangular thin plate is divided into 1,205 square meshes in
total.In MATLAB, the L-shaped plate is divided into two rectangles. The first rectangular plate is meshed with a
grid of 7Tn x n, and the second rectangular plate is meshed with a grid of 8n x 7n. When k=0, and m=1, the
results for different values of n are shown in Table 5; when n =5, and m takes on different values, the results are
shown in Table 6. The deflection curve of the plate center point when y =0 is plotted in Fig. 10. When k=0, n=5
and m =10, a comparison with the finite element calculation results from ANSYS is made and shown in Fig. 11.

When k = 400, and m= 10, the results for different values of n are shown in Table 7; when n=5, and m
takes different values, the results are shown in Table 8. The deflection curve of the plate center point when y=01is
plotted in Fig. 12. When n=>5 and m =10, a comparison with the finite element calculation results from ANSYS
is made and shown in Fig. 13.The above results confirm that the method presented in this paper is convergent
and correct. When taking £ = 0, k = 1, k = 10, and k = +o00, with the number of test functions m =10, and
the grid number n=>5, the results are shown in Fig. 14. The trend indicates that, under the same conditions, the
larger the value of k, the smaller the deflection at the center point. This phenomenon also verifies the correctness
of the method presented in this paper.
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m Deflection of center point (m) | Error (%)
1 0.00010977 57.26
The method of this paper | 3 0.00024472 4.71
5 0.00024473 4.71
6 0.00024562 4.36
8 0.00024589 4.26
10 0.00024729 371
FEM solution | 0.00025684 -

Table 6. The deflection of the center point when k=0 and m varies.
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Fig. 10. The variation of w with respect to x when k=0 at y=0.
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Fig. 11. Compare the method presented in this document with ANSYS results when k= + o0 and y=0.

Grid density | Deflection of center point (m) | Error (%)
n=1.875 0.00012968 6.23

The method of this paper | n=2.5 0.00013159 4.85
n=3.125 0.00013160 4.84
n=3.75 0.00013271 4.04
n=4.345 0.00013213 4.46
n=>5 0.00013316 371
FEM solution | 0.00013830 -

Table 7. The deflection of the center point when k= + o and m varies.
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m Deflection of center point (m) | Error (%)

1 0.00005910 57.27
The method of this paper | 3 0.00013177 4.72

5 0.00013178 4.71

6 0.00013202 4.54

8 0.00013240 4.27

10 0.00013316 371

FEM solution | 0.00013830 -

Table 8. The deflection of the center point when k= + oo, and n varies.
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Fig. 12. The variation of w with respect to x when k= + o0 aty=0.
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Fig. 13. Compare the method presented in this document with ANSYS results when k= + o0 and y=0.
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Fig. 14. Comparing the results with k=0, k=1, k=10, and k= + oo, for a function count m =10 and a grid size
of n=>5.
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Fig. 16. U-shaped functionally graded plate.

Example 3 U-shaped functionally graded plate

The L-shaped functionally graded plate has a Poisson’s ratio of 0.3, a thickness h of 0.01 m, and a uniform load
q of 5 x 10%pa, where a = b = 0.5, ¢ = d = 0.25 as shown in Figs. 15 and 16.The upper surface is ceramic,
and the lower surface is steel, with the elastic modulus conforming to a power law function. The elastic modulus
of the functionally graded plate, denoted as F(z), represents the variation of the plate’s elastic parameters
(including elastic modulus and density) according to a law distribution along the thickness, and its value is

B = (B-B) (2+ 1) B

()= (B.~E) (2 +3) +E.

The elastic modulus of ceramic, denoted as E, is taken as 210 GPa, and that of steel, denoted as E, is taken as
390 GPa. Once the constituent materials of the functionally graded material are determined, the plate’s elastic
modulus depends on the graded index. As the graded index increases, the proportion of ceramic in the material
of the plate gradually decreases while the proportion of steel gradually increases. When the graded index
increases to infinity, the material of the plate converges to a pure steel plate, and thus the maximum deflection
also converges to the maximum deflection of the steel plate.

In this example, we take k = 0, k = 1, k = 10, and k = +o00 respectively.

For different values of k, substitute k into Eq. (13) to obtain F(z) = E..Let n=20and discretize the thickness
range [—h/2, h/2] into many small thickness intervals. Discretize the thickness into n small intervals, with each
interval’s thickness increment being Az = h/n. Define the discrete thickness points as z; = —h/2 + 17 X Az
,where i = 0, 1, 2, ..., n. Calculate the strain energy contribution of each thickness interval. For each thickness
interval [z;, zi+1], calculate the value of E(z) at the midpoint zmiq = (2i + zi+1) /2.

Substituting into Eq. (43) will yield the coefficient equation set for calculating the results.

Scientific Reports |

(2025) 15:13226 | https://doi.org/10.1038/s41598-025-97325-4 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Grid density | Deflection of center point (m) | Error (%)

n—4 0.000063615 100.14
The method of this paper | ,, — ¢ 0.000037791 18.89

n=8 0.000034207 7.62

n =10 0.000033240 4.57

" — 12 0.000031912 0.40

FEM solution | 0.000031786 -

Table 9. The deflection of the center point when k=0 and n varies.

m Deflection of center point (m) | Error (%)

3 0.000018780 40.92
The method of this paper | 5 0.000025453 19.92

6 0.000025388 20.13

8 0.000033727 6.11

10 0.000031912 0.40

FEM solution | 0.000031786 -

Table 10. The deflection of the center point when k=0 and m varies.
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Fig. 17. The variation of w with respect to x when k=0 at y=0.

According to the R-function theory, the expression for wo of the U-shaped functionally graded plate is as
follows

wo = (W1 Na wg) Na (W3 Va w4)

a2

_..2 2_.2 2 2
S > Owe = 5% > 0ws = (c— ) > 0andwy = L& > 0.

When the research object is a functionally graded thin plate, without considering the thickness stretching
effect and only considering the bending term in the transverse displacement, it is assumed, so take Wm = Wym,
ws = 0. The shape of the plate here is symmetrical about the y-axis. The function of the deflection w should be
set as §n20dd function of x and an even function of y, therefore w,, is taken as 1, x, y? a3yt 20, 8, o8, ayt
and 7y~

In finite element modeling, select the static structural analysis module. During meshing, set the side length of
each element of the plate to be 0.028 m. The rectangular thin plate is divided into 1,145 square meshes in total. In
MATLAB, the U-shaped functionally graded plate is divided into three rectangles. The first rectangle is meshed
with a grid of 4n X n, the second rectangle is meshed with 3n x 2n, and the third rectangle is meshed with a
grid of 4n X n. When k=0, and m = 10, the results for different values of n are shown in Table 9; when n=12, and
m takes different values, the results are shown in Table 10. When k=0, the deflection curve of the functionally
graded plate center point when y=0 is plotted in Fig. 17.When k=0, n=5, and m =10, a comparison with the
finite element calculation results from ANSYS is made and shown in Fig. 18. When k£ = 400, and m=10, the
results for different values of n are shown in Table 11; when n=12, and m takes different values, the results are
shown in Table 12. The deflection curve of the plate center point when y=0is plotted in Fig. 19. When n=12 and
m =10, a comparison with the finite element calculation results from ANSYS is made and shown in Fig. 20. This
proves that the method presented in this paper is convergent and correct. When taking k=0, k=1, k=10 and
k= + oo, with the number of test functions m= 10, and the grid number n= 12, the results are shown in Fig. 21.

where wi =
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Fig. 18. Compare the method presented in this document with ANSYS results when k=0 and y=0.

Grid density | Deflection of center point (m) | Error (%)
n=4 0.000036611 113.91

The method of this paper |, — g 0.000023860 39.41
n=8 0.000018542 8.34
n=10 0.000017901 4.63
n—=12 0.000017183 0.39
FEM solution | 0.000017115 -

Table 11. The deflection of the center point when k= + o and n varies.

m Deflection of center point (m) | Error (%)

3 0.000010112 40.92
The method of this paper | 5 0.000013705 19.92

6 0.000013670 20.13

8 0.000017184 0.40

10 0.000017183 0.39

FEM solution | 0.000017115 -

Table 12. The deflection of the center point when k= + e and m varies.
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Fig. 19. The variation of w with respect to x when k= + o0 at y=0.
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Fig. 20. Compare the method presented in this document with ANSYS results when k= + 0 and y=0.

” w— k=0

0.000036 eee k=1

0.00003 k=10
0.000024 - o i et
0.000018 G
0.000012+  fo3#* )
0.000006 - k.

0-+ T T T T P X

-0.5 -0.35 -0.2 -0.05 0.1 0.25

Fig. 21. Comparing the results with k=0, k=1, k=10, and k= + oo, for a function count m=10 and a grid size
of n=12.

The trend shows that, under the same conditions, the larger the value of k, the smaller the deflection at the center
point. This phenomenon also verifies the correctness of the method presented in this paper.

Example &4 functionally graded thick plates with other shapes

A rectangular functionally graded plate with side lengths of 2a and 2b respectively has a small semi-circular arc
with a radius of r removed from its right edge. Anda=b=0.5,c=0.375, d=0.0625, r =0.0625. The Poisson’s ratio
is taken as 0.3, the thickness of the plate is set to 0.16 m, and the magnitude of the uniformly distributed load g
is 2 x 10”pa, as shown in Fig. 22. The upper surface of the rectangular functionally graded plate is ceramic, and
the lower surface is steel. Its elastic modulus conforms to a power law function, so the elastic modulus E(z) of
the functionally graded plate is expressed as the elastic parameters (including the elastic modulus and density)
of the plate varying according to a law distribution with thickness, and its value is

2z 1\*
E(z) = (E. — E.) (f + 7> +E,
h 2
The elastic modulus of ceramic, denoted as E., is taken as 210 GPa, and that of steel, denoted as E, is taken as
390 GPa. Once the constituent materials of the functionally graded material are determined, the plate’s elastic
modulus depends on the graded index. As the graded index increases, the proportion of ceramic in the material
of the plate gradually decreases while the proportion of steel gradually increases. When the graded index
increases to infinity, the material of the plate converges to a pure steel plate, and thus the maximum deflection
also converges to the maximum deflection of the steel plate.
In this example, we take k=0, k=1, k=10 and k= + oo respectively.
For different values of k, substitute & into Eq. (13) to obtain E(z) = E..Let.
n=20 and discretize the thickness range [—h/2, h/2] into many small thickness intervals.Discretize the
thickness into n small intervals, with each interval’s thickness increment being Az = h/n. Define the discrete
thickness points as z; = —h/2 + i X Az,where ¢ =0, 1,2, ...,n. Calculate the strain energy contribution
of each thickness interval. For each thickness interval [z;, z;11], calculate the value of F(z) at the midpoint
Zmid = (zi + zi+1) /2.
Substituting into Eq. (43) will yield the coefficient equation set for calculating the results.
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Fig. 22. The x-y plane of functionally graded plate.

Grid density | Deflection of center point (m) | Error (%)

15 x 15 0.0004033605 6.98

25 x 25 0.0003631268 3.80
The method of this paper

35 x 35 0.0003644867 333

FEM solution | 0.00037705 -

Table 13. The deflection of the center point when k=0 and # varies.

m Deflection of center point (m) | Error (%)
1 0.0002096407 44.40
3 0.0003228080 14.39
The method of this paper | 6 0.0003469033 8.00
10 0.0003644867 333
FEM solution | 0.00037705 -

Table 14. The deflection of the center point when k=0 and m varies.

According to the R-function theory, the expression for wo of the U-shaped functionally graded plate is as
follows

wo = (L«J1 Na W2 Na wg) Na (W4 Va W5)

2 2 2

where w; = “22;12 > Ows = b2;’2 > Ows = w > Owy = y227dd2 >0and ws =c+x > 0.

When the research object is a functionally graded thick plate, it is assumed that wm = Wpm + Wsm. The
shape of the plate here is an asymmetric figure. The trial function for setting the deflection should be an even
functig)n4and an odd function of x and y. Therefore Wy, and wsm, are taken as: 1, 2, y2, z, y4, x3, y6, acyQ, x2y2
and 7y~

In finite element modeling, select the static structural analysis module. During meshing, set the side length of
each element of the plate to be 0.028 m. The rectangular thin plate is divided into 1,196 square meshes in total. In
MATLAB, the functionally graded plate is divided into n x n rectangles. After obtaining all the coordinates, the
coordinates included by the small rectangles and semi-circular shapes are removed. When k=0, and m =10, the
results for different values of n are shown in Table 13; when n=35 X 35, and m takes different values, the results
are shown in Table 14. When k=0, the deflection curve of the functionally graded plate center point when y=0
is plotted in Fig. 23.When k=0, n=35 X 35, and m =10, a comparison with the finite element calculation results
from ANSYS is made and shown in Fig. 24. When , and m =10, the results for different values of n are shown
in Table 15; when n=35 x 35, and m takes different values, the results are shown in Table 16. The deflection
curve of the plate center point when y =0 is plotted in Fig. 25. When n=35 x 35 and m =10, a comparison with
the finite element calculation results from ANSYS is made and shown in Fig. 26. This proves that the method
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Fig. 23. The variation of w with respect to x when k=0 at y=0.
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Fig. 24. Compare the method presented in this document with ANSYS results when k=0 and y=0.

Grid density | Deflection of center point (m) | Error (%)

15 x 15 0.0002171941 6.99

25 x 25 0.0001955298 3.70
The method of this paper

35 x 35 0.0001962621 3.32

FEM solution | 0.00020303 -

Table 15. The deflection of the center point when k=0 and n varies.

m Deflection of center point (m) | Error (%)
1 0.0001128834 44.40
3 0.0001694864 5.72
The method of this paper | 6 0.0001828172 0.76
10 0.0001962621 0.49
FEM solution | 0.00020303 -

Table 16. The deflection of the center point when k=0 and m varies.

presented in this paper is convergent and correct. When taking k=0, k=1, k=10 and k= + o, with the number
of test functions m =10, and the grid number #=35 x 35 the results are shown in Fig. 27. The trend shows
that, under the same conditions, the larger the value of k , the smaller the deflection at the center point. This
phenomenon also verifies the correctness of the method presented in this paper.

By combining the R-function with the variational method, the R-function can accurately describe the
boundaries of complex geometric shapes and transform irregular shapes into mathematical expressions,
which greatly simplifies the numerical calculation process and ensures the accuracy of geometric information.
Meanwhile, the variational method, based on the principle of energy minimization, converts the deflection
problem into the problem of finding the minimum value of the energy functional. This combined approach
can not only properly handle complex geometric boundaries but also ensure that the calculation results have
high accuracy, demonstrating good effectiveness in dealing with the deflection calculations of functionally
graded plates with different shapes such as rectangular, U-shaped, and L-shaped, as well as those with varying
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Fig. 25. The variation of w with respect to x when k= + o0 at y=0.
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Fig. 26. Compare the method presented in this document with ANSYS results when k= + 0 and y=0.
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Fig. 27. Comparing the results with k=0, k=1, k=10, and k= + oo, for a function count m=10 and a grid size
of n=12.

thicknesses. In terms of the number of trial functions and the fineness of mesh division, they have an important
impact on the calculation results. As for the trial functions, they are used in this method to describe the possible
deformation modes of functionally graded plates. When the number of trial functions increases, it can fit the
actual deformation situation more precisely. For example, when considering the shear deformation of functionally
graded plates, adding trial functions that contain terms related to shear deformation can describe the actual
deformation of the plates under load more accurately. This is consistent with the plate theory physical model that
takes shear deformation into account, thereby improving the accuracy of the calculation results. Similarly, the
finer the mesh division is, the closer the calculation results will be to the finite element solutions. The consistency
with the finite element results further confirms the value of this method in engineering applications.

However, in specific computational examples (such as Example 1, Example 2, Example 3, and Example 4), if
discrepancies are observed compared to the results calculated by ANSYS software, these discrepancies may be
caused by the following factors.
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Firstly, the trial functions selected in this paper may inadvertently satisfy some boundary conditions that do
not actually exist in the non-boundary areas, which could interfere with our computational results. Taking -
as an example, this function is always zero on the line x = 0, which is clearly contrary to the situation we are
considering.

Secondly, in the discussion of this paper, there may be a limitation, which is that an insufficient number of
trial functions may not have been included when selecting them. In the analysis of Example 2, it can be observed
that when the value of m is low, meaning that the number of trial functions is small, there is a deviation between
the final calculated results and those provided by ANSYS software. This finding points out that in order to obtain
a more accurate solution through the variational method, we must increase the number of trial functions as
much as possible to ensure the reliability and accuracy of the results.

Thirdly, when performing integral operations on R-functions, you may encounter the special case where
the denominator is zero at the boundary. Therefore, it is necessary to adopt a method similar to finite element
analysis, which involves dividing the area into a mesh and solving the integral of each mesh element one by one,
then accumulating to obtain the overall solution. This process emphasizes the importance of the fineness of the
mesh division for the accuracy of the final result. When applying a numerical solution strategy that combines
R-functions with the variational principle, to improve the accuracy of the solution, a denser mesh division
should be used in the calculation process.

Fourthly, in the discussion of this paper, the calculation of the deflection of thick plates relies highly on the
shear correction factor. Specifically, for those plate components that are relatively thin in thickness but still
classified as thick plates, using the same shear correction factor may introduce errors, because the mechanical
behaviors of such plate components are different from those of thicker thick plates. To solve this problem,
corresponding shear correction factors can be determined through experiments and simulation analyses for
thick plates with different thicknesses, so as to improve the accuracy of deflection calculation. Therefore, one of
the future research directions is to establish a shear correction factor model based on the thickness differences
of thick plates, thereby predicting the deflection behaviors of thick plates of various thicknesses more accurately.

Conclusions

The variational method is widely applied to solve engineering and physical problems, especially in calculating the
deformation and stress distribution of functionally graded materials. However, when dealing with functionally
graded plates of complex shapes, the traditional variational method may encounter some challenges. At this
point, introducing the concept of the R-function can serve as a supplementary method to handle the complexity
of boundary conditions.

The R-function can describe complex geometric shapes through implicit functions without directly defining
the boundaries. Combining the R-function with the variational method can effectively simplify the bending
problem of functionally graded plates under complex boundary conditions. This paper combines the R-function
and the variational principle through theoretical derivation, thereby providing a new method for solving
deflection variations. This method not only improves the efficiency of the solution process but also enhances the
applicability and flexibility of the model. The paper demonstrates the effectiveness of this combined method by
combining specific engineering examples. Through comparative analysis, the consistency between the calculated
results using the R-function and the variational method and the actual measured values is observed, verifying
the accuracy and reliability of the method.

Furthermore, this paper also explores the relationship between the calculation results and factors such as the
selection of test functions in the variational method and the division of integration grids. This analysis helps to
optimize the calculation process, improve the accuracy of the results, and also provides theoretical support and
practical guidance for the application of the R-function in the bending problem of functionally graded plates.

In summary, the combination of the R-function and the variational method provides a new perspective
and method for solving the bending problem of functionally graded plates with complex boundaries. This
combination can improve computational efficiency.
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