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Building efficient neural network architectures for a given dataset can be a time-consuming task 
requiring extensive expert knowledge. This task becomes particularly challenging for edge artificial 
intelligence (AI) because one has to consider additional parameters such as power consumption 
during inferencing, model size, and inferencing speed. In this article, we introduce a novel framework 
designed to automatically discover new neural network architectures based on user-defined 
parameters, an expert system, and an LLM trained on a large amount of open-domain knowledge. 
The proposed framework (LEMONADE) can be easily used by non-AI experts, does not require a 
predetermined neural architecture search space, and considers a large set of edge AI parameters. 
We implement and validate this proposed neural architecture discovery framework using CIFAR-10, 
CIFAR-100, ImageNet16-120, EuroSAT, Malaria Parasite, and IMDb datasets while primarily using 
ChatGPT-4o as the LLM component. We have also explored the possibilities of using Gemini-Pro as the 
LLM component. Neural networks generated using LEMONADE for CIFAR-10 (95.54% test accuracy) 
and CIFAR-100 (79.43% test accuracy) demonstrated state-of-the-art performance in terms of final 
model accuracy. We have also observed near state-of-the-art performance (in terms of accuracy) for 
the ImageNet16-120 dataset. Moreover LEMONADE was able to generate effective neural networks, 
satisfying different edge AI requirements across additional datasets such as EuroSAT.

Neural networks (NN) have found extensive application across various fields such as healthcare1–3, surveillance4,5, 
Industry 4.06–8, and Internet of Things (IoT)9–11. A neural network can be composed of a large number of layers 
of different types while sporting diverse hyperparameters. Hence, for a given dataset/application: (1) finding 
the right set of neural layers; (2) connecting them in the right topology; and (3) selecting the most optimal 
hyperparameters for each layer can be a daunting task requiring a large amount of computation resources, 
human expert involvement, and time. Requiring a given neural network to perform (during inferencing) under 
specific resource-constrained conditions (a case for many IoT/Edge devices) can add to the complexity of the 
neural architecture search process. For example, designing a neural network to have more than x% accuracy for 
a given task is a hard problem to solve but it becomes harder if we further constrain the problem with additional 
parameters such as frames-per-second (FPS) requirements during inferences and power consumption limits.

Traditional neural architecture search (NAS) frameworks are typically designed to identify the best 
architecture within a specified search space. This approach is constrained by its pre-defined search space, which 
limits its capacity for generating novel neural network architecture (outside the search space). Additionally, most 
NAS frameworks prioritizes final model accuracy leading to very high search-cost (time, energy consumption) 
and poor edge AI performance (low FPS and high inferencing energy).

To mitigate these concerns we propose a large language model guided neural architecture discovery 
(LEMONADE) framework that can allow the discovery of novel neural network architecture without relying 
on a pre-defined search space. This framework is designed to allow the network-builder to efficient trade-off 
between: (1) Final model accuracy; (2) Neural search/discovery speed and energy consumption; (3) Final model 
energy consumptions and inferencing frames per second. These objectives are enforced through an iterative 
approach utilizing a large language model (LLM) and an expert system for driving the LLM towards the target 
discovery. The expert system will use a set of configurable rules and several user-defined metrics to generate a set 
of instructions for the LLM leading to progressive refinement of the generated neural architecture.
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To validate the LEMONADE framework, we perform extensive experimentation using the CIFAR-10, 
CIFAR-100, ImageNet16-120, EuroSAT, Malaria Parasite, and IMDb datasets. We use the framework to generate 
different neural networks for diverse application requirements and priorities. Neural networks generated using 
LEMONADE for CIFAR-10 (95.54% test accuracy) and CIFAR-100 (79.43% test accuracy) demonstrated state-
of-the-art performance in terms of final mode accuracy. For ImageNet16-120 LEMONADE was also able to 
generate fairly competitive architectures (42.95% test accuracy). LEMONADE is also very efficient in terms 
of model generation and training, demonstrating notable reduction in network search/discovery time and 
associated energy consumption. While using GPT-4o12, as the backend LLM, LEMONADE was able to generate 
and train CIFAR-10 models in about 5.8 hours consuming only about 1.20 kWh-PUE energy. LEMONADE is 
also capable of prioritizing metrics beyond accuracy, which enables the creation of neural architectures that 
are optimal for different IoT/Edge requirements such as high speed inferencing at low power. This is achieved 
through efficiently trading-off model accuracy as demonstrated by our experimental results across several 
datasets/applications. LEMONADE has generated novel neural architectures from scratch, thereby, paving a new 
opportunity for search-space agnostic neural architecture search research. We have also validated the framework 
while using Gemini-Pro as the LLM component. To summarize, we: 

	1.	 Formalize and design a cost-effective and search-space agnostic neural architecture discovery framework 
(LEMONADE) leveraging LLMs.

	2.	 Formulate an expert system with associated rules and relevant metrics that is capable of driving a given LLM 
toward discovering different neural architectures.

	3.	 Implement LEMONADE as a highly configurable/efficient tool for immediate application and easy future 
extensions.

	4.	 Qualitatively and quantitatively evaluate LEMONADE using CIFAR-10, CIFAR-100, ImageNet16-120, Euro-
SAT, Malaria Parasite, and IMDb datasets for diverse settings and application requirements.

Background and motivation
Next, we will briefly describe relevant related works and discuss the motivations that drove the development of 
LEMONADE.

Neural architecture search
Methods of neural architecture search (NAS) are extensively used across various applications such as image 
processing13–16, signal processing17–19, object detection20,21, and natural language processing22,23. It involves 
identifying the best neural network for a given task through repeated trials, traditionally judged solely based on 
final model accuracy. The early NAS techniques worked mainly based on the evolutionary algorithms (EA)24 and 
reinforcement learning (RL)25. Although these methods showed promising results in building quality NN, they 
require substantial computing power and time. To solve this issue, weight-reusing26 approaches were proposed 
that avoid the necessity of training each design from the beginning, resulting in low computation costs. One-
shot approaches for NAS27 were also proposed which involves training a large network called SuperNet that 
incorporates every conceivable architecture within the search domain. Differentiable Neural architecture search 
(DNAS)28 is another weight re-using approach where all the SubNet parameters are optimized by gradient 
descent.

Most NAS methods utilize NAS-datasets that contains a large list of potential neural architectures from which 
we expect to find the most optimal architecture (for the target application) using the NAS method. One NAS 
dataset is the NAS-Bench-10129 which contains 5 million distinct neural architectures and was designed for the 
CIFAR-10 dataset. The NAS-Bench-20130 dataset has 15625 cell layouts and is derived from a cell-based search 
technique (for CIFAR-1031, CIFAR-10031 and ImageNet16-12032 datasets). In33, the authors proposed a NAS 
method named β-DARTS to solve the weak generalization ability found in the DARTS method. They used the 
NAS-Bench-201 to evaluate their framework. In another research work34, the authors suggested Λ-DARTS as a 
solution for the structural flaws caused by the weight-sharing approach in DARTS. In a recent work35, authors 
proposed GENIUS where they used an LLM to solve the NAS problem while utilizing a pre-defined search space 
and focusing solely on maximizing final model accuracy (no consideration given to model search efficiency or 
inferencing speed).

Shortcomings of NAS
Most traditional NAS techniques rely on having access to a pre-defined search space of potential neural 
architectures, making it difficult to scale across different applications and use cases. Additionally, most NAS 
frameworks do not have the capability to allow the search process to consider parameters such as: (1) Inferencing 
speed; (2) Inferencing energy consumption; (3) NAS search and training efficiency.

Why LLM and expert system for neural discovery?
We hypothesize that a large language model (LLM) trained on a large volume of open-domain data will also have 
the knowledge about different neural architectures. LLMs have demonstrated success in terms of searching for 
NN architectures given a search space35–38. However, we wanted to go one step further and find out if LLMs can 
generate novel NN architecture (discovery) without using a pre-defined search space. We also wanted to analyze 
if: (1) the open-domain knowledge has provided these LLMs with insights into different metrics associated with 
a neural architecture such as estimated training power consumption and inferencing speed; (2) these LLMs can 
follow automated instructions generated from an expert system for refining a NN. The abbreviations used in this 
study are listed in Table 1.
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Methodology
Neural discovery process
In Fig.  1 we show an overview of the LEMONADE framework where an expert system (ES) takes the task 
specification from the user (metrics) and generates commands (prompt) for the LLM using a set of rules for 
creating a neural architecture. The generated neural network (in the form of python code) from the LLM is then 
trained on the training dataset and subsequently evaluated on the validation set. The associated evaluation-based 
metrics are used by ES to generate the next LLM prompt that modifies the current neural network architecture 
for improving overall efficacy.

Algorithm 1 shows the overall procedure of LEMONADE. M is a set of user-defined metrics, TS contains the 
task specification (classification/regression, input/output shape, datasets, etc), TC is an user defined terminating 

Fig. 1.  LEMONADE framework: Expert system guided iterative and multi-parameter search for neural 
network discovery.

 

Abbreviation Meaning Location

LLM Large language model Absract

AI Artificial intelligence Absract

NN Neural network Introduction

FPS Frames per second Introduction

NAS Neural architecture search Introduction

LEMONADE Large language model guided neural architecture discovery Introduction

RL Reinforcement learning Neural architecture search

EA Evolutionary algorithms Neural architecture search

DNAS Differentiable neural architecture search Neural architecture search

GENIUS GPT-4 enhanced neural architecture search Neural architecture search

DARTS Differentiable architecture search Neural architecture search

ES Expert system Neural discovery process

TS Task specification Algorithm 1

TC Termination condition Algorithm 1

BCM Best combine metric Algorithm 1

cmd Command Algorithm 1

NNGES Neural network generation expert system Algorithm 1

AGI Artificial generative intelligence Algorithm 1

CM Combine metric Algorithm 1

NF Normalized FPS Equation 1

TNE Normalized training energy Equation 1

VNE Normalized validation energy Equation 1

Ins Instructions Algorithm 2

Table 1.  Abbreviation.
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condition (in our case a max number of iterations). From lines 2–5, all variables are initialized and the initial 
command is stored in the cmd variable. For example, the initial cmd might be something like - ‘Please suggest a 
pytorch image classification model with input shape of (3,32,32) and output of 100’.

Algorithm 1.  LEMONADE neural network discovery/search.

In line 7, LLM_AGI (GPT-4o12 for this study) returns a response based on the command and subsequently, 
a model is created from the response.

From lines 10–12, the generated model is trained and evaluated with the training and validation datasets 
respectively and a set of metrics such as training energy expenditure (TNE ), training accuracy (TAcc), 
validation energy expenditure (VNE ), validation accuracy (VAcc), and validation set inferencing frames-
per-second (NF) are calculated and stored in the Metrics dictionary. The Metrics dictionary is then passed 
to the NNGES (Fig. 2) to generate a set of instructions for the next round of LLM-based neural network 
generation.

Any conflicts between the generated instructions are removed using Algorithm 2. To identify the best 
network architecture, we utilize the following combined model effectiveness metric (CM):

	 CM = WA · (TAcc + VAcc) + (WF · NF ) − WE · (TNE + VNE)� (1)

Where, WA  is weight for accuracy; TAcc  is training accuracy; VAcc  is validation accuracy; WF  is weight 
for FPS; NF is normalized FPS; WE  is weight for energy; TNE  is normalized training energy; VNE  is 
normalized validation energy. All parameters (user defined and evaluation-based) are described in Table 2.
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Fig. 2.  Flowchart of the neural network generation expert system (NNGES).
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Algorithm 2.  LEMONADE conflict resolution.

Expert system for instruction set generation
We have developed an expert system for guiding the NAS process because: (1) The backend LLM can exhibit 
random behavior if proper bounds/rules are not set; (2) the backend LLM can start hallucinating during a 
lengthy neural search process and an expert system can keep it on track; (3) LLMs are not always aware of how to 
achieve a certain effect out of a neural network and requires additional input from an expert system to succeed.

The expert system utilizes a rulebook (Table 3) which is based on strategies that are commonly used by data 
scientists for constructing effective neural networks. In future, these rules can potentially be learned based on 
historical neural search data. The expert system drives the LLM towards constructing an optimal neural network 
for a given set of user-defined parameters by generating a series of instructions based on the Metrics calculated 
after each search iteration.

Figure 2 illustrates the flowchart of the Neural network generation expert system (NNGES) for instruction 
generation. The system takes M, a set of user-defined and evaluation metrics, as its input. It begins by initializing 
an empty dictionary for storing instructions. Next, the system compares the input metrics (M) with the user-
defined metrics (see Table 2) and assigns different weights to each rule (as defined in Table 3) to construct an 
instruction dictionary. For instance, if the training accuracy (M.TACC) falls below the user-defined threshold 
(M.T TACC), the instruction assigns priority weights (P TACC) to Ins[’ACL’], Ins[’AMK’], Ins[’ADL’], and 

Legends Description Type

TAcc, VAcc Current model’s training and validation accuracy respectively as predicted by LLM/AGI Evaluation based

P TAcc, P VAcc Priority of training and validation accuracy respectively User defined

T TAcc, T VAcc Threshold of the training and validation accuracy User defined

TE , VE Energy required for evaluating the training and validation set Evaluation based

P TE , P VE Priority of the energy required for evaluating the training and validation set User defined

T TE , T VE Threshold of energy required for evaluating the training and validation set User defined

F FPS of the current model predicted by LLM/AGI Evaluation based

NF Normalized FPS of the current model predicted by LLM/AGI Evaluation based

PF Priority of the FPS for the model User defined

TF Threshold ofthe FPS for the model User defined

P Parameters of the current model (CM) predicted by LLM/AGI Evaluation based

OT, UT Threshold value to check the overfitting and underfitting User defined

WA Weight for the accuracy values when computing the combined metric (CM) User defined

WE Weight for the energy values when computing the combined metric (CM) User defined

WF Weight for the FPS values when computing the combined metric (CM) User defined

Table 2.  User-defined and evaluation based parameters.
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Ins[’ASC’]. This implies that ACL, AMK, ADL, and ASC are expected to enhance training accuracy in the next 
iteration.

The system sequentially evaluates all conditions and stores the corresponding weights in the instruction 
dictionary, which will be further refined in the next section.

Conflict resolution
Instructions generation might have some conflicts (see Table 3) due to the nature of the instructions themselves. 
For example, instructions such as adding a dense layer (ADL) and removing a dense layer (RDL), may get 
assigned positive weights by the NNGES algorithm (e.g., 0.5 for ADL and 0.4 for RDL). However, since these 
instructions have opposite effects, both cannot be passed to the LLM simultaneously. To resolve this, Algorithm 
2 is used to prioritize and select the instructions with higher weights. Algorithm 2 shows the overall procedure of 
eliminating conflicts. In line 3, we organize the Ins in descending order according to their values. Through lines 
7–9, it identifies and stores the instructions that have values larger than 0 in Refined_Ins. In lines 10–15, the 
algorithm examines the current instruction and the remaining instructions to identify any conflicts. If a conflict 
is detected, the algorithm looks at the computed metric to decide which one is more appropriate (by setting less 
appropriate metric to zero) for optimizing the NAS.

Dataset description and preparation
In this study, we have considered five publicly available image datasets: CIFAR-1031, CIFAR-10031, 
ImageNet16-12032, EuroSAT39, and Malaria Parasite40 and a text dataset: IMDb41 to validate our LEMONADE. 
Both the CIFAR-10 and the CIFAR-100 datasets contain 60k images of dimensions 32 × 32 pixels where 50k 
and 10k samples are designated for training and testing purposes, respectively. The CIFAR-10 dataset has 10 
output classes whereas the CIFAR-100 datasets have 100 output classes. ImageNet16-120 has 151k training and 
6k testing samples with a resolution of 16 × 16 distributed across 120 classes. The Malaria parasite dataset has 
two classes: (i) parasitized cells and (ii) uninfected cells with 27558 data samples in total. For our experiments 
with the Malaria parasite dataset, we resized the data to 32 × 32 resolution. After that we split it into an 8:2 
ratio for the training and validation sets. The EuroSAT dataset contains 27000 data samples across 10 classes: (i) 
AnnualCrop (ii) Forest (iii) HerbaceousVegetation (iv) Highway (v) Industrial (vi) Pasture (vii) PermanentCrop 
(viii) Residential (ix) River, and (x) SeaLake. We also resized this dataset to 32 × 32 resolution and split it into 
8:2 ratios for training and validation sets. Finally, the IMDb dataset contains 50k samples of text data with 
corresponding sentiment labels (positive and negative). We first split the data set into 8:2 ratio for training 
and validation and then pre-processed the text by removing urls, special characters, hashtags and mentions. 
Subsequently, we tokenize the text and transform it into sequences of fixed length.

Experimental analysis and results
All experiments are run on a single NVIDIA A100 GPU to make a fair determination of metrics such 
as power consumption and runtime. We utilize a python library named PyJoules42 to measure the 
energy consumption of both CPU and GPU during network search/training. In this section, we will 
discuss the search strategy, the training process, and the experimental results. We use the following 
user defined metric for all experiments (unless something else is specifically mentioned):  {P TAcc = 0, 
P VAcc = 1, T TAcc = 0.99, T VAcc = 0.99, P F = 0, T F = 14000, P TE = 0, T TE = 1 × 10−3, P VE = 0, T VE = 1 × 10−5, OT = 0.10, UT = 0.05}.

Intermediate and final model training process
During the neural discovery process, LEMONADE was executed for 30 iterations (Terminating Condition for 
Algorithm 1). To ascertain the quality of the searched network after each iteration, the searched networks are 

Legend Description Conflict with

ACL Add convolutional layer RCL

ASC Add skip connection RSC

ADL Add dense layer RDL

RCL Reduce convolutional layer ACL

RSC Reduce skip connection ASC

RDL Reduce dense layer ADL

AD Add dropout layer RD

AMK Add more kernel RK

AWI Add weight initializer –

AR Add regularization RR

RK Reduce number of kernel AMK

RD Reduce dropout layer AD

AMN Add more neurons RN

RN Reduce neurons AMN

RR Reduce regularization AR

Table 3.  Rule book for the LEMONADE expert system.

 

Scientific Reports |        (2025) 15:16871 7| https://doi.org/10.1038/s41598-025-97378-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


trained for 50 epochs with a batch size of 128, utilizing the Stochastic Gradient Descent (SGD) optimizer along 
with an initial learning rate of 0.025 and a weight decay parameter set to 3 × 10−4. To enhance the convergence 
rate, a cosine annealing learning rate schedule was employed, which modulates the learning rate according to a 
cosine function. Furthermore, to mitigate overfitting, data augmentation techniques such as random rotation by 
10 degrees, random horizontal flipping, and random cropping of size 16 × 16 were integrated into the training 
regimen to facilitate diverse learning. Then the trained model is evaluated using the validation data (from the 
corresponding dataset) to obtain the combined metric (CM) as shown in Algorithm 1. For the NLP task (IMDb 
dataset), we used Adam optimizer along with a initial learning rate of 0.001 and batch size of 128.

Upon the completion of the NAS procedure by LEMONADE , the final model is trained on the entire dataset 
over 600 epochs (200 epochs for IMDb). A batch size of 256 is employed, utilizing the SGD optimizer (Adam for 
IMDB), with the initial learning rate set at 0.025 (0.001 for IMDb) accompanied by a weight_decay of 3 × 10−4. 
The learning rate is systematically adjusted according to the annealing learning rate schedule. It is important to 
clarify that the complexity inherent in this final training phase is not inherently associated with the NAS process. 
Notably, larger datasets generally demand an increased number of training epochs. This is a challenge faced by 
all NAS frameworks and is not distinct to our methodology. In this experimental setup, GPT-4o was configured 
with a temperature parameter of 0.5.

Comparing LEMONADE with state-of-the-art NAS frameworks
Table 4 provides a comparative analysis of several State-of-the-Art (SOTA) NAS methods alongside LEMONADE , 
for the CIFAR-10, CIFAR-100, and ImageNet16-120 datasets. For these experiments we set WA = 1, WE = 0, 
and WF = 0 because all the SOTA NAS we are comparing against only prioritize accuracy. For CIFAR-10, 
LEMONADE was able to generate a neural network with 95.54% test accuracy beating all SOTA frameworks. 
LEMONADE also beat state-of-the-art NAS frameworks for CIFAR-100 with a test accuracy of 79.43%. For 
ImageNet16-120, LEMONADE produced a neural network with almost SOTA performance. For the CIFAR-10 
dataset, the NAS method (beside LEMONADE) that was able to achieve the highest accuracy was NSGANet47. 
But takes 648 GPU Hours for performing the search process compared to 5.8 GPU Hours that LEMONADE 
takes (111x Faster). For CIFAR-100, EIGEN45 led the most efficient neural network (besides LEMONADE) but 
that search took 120 GPU Hour compared to 7.12 GPU Hours taken by LEMONADE. Hence, LEMONADE can 
not only discover highly accurate models, it can also perform search operations that are generally faster than 
many SOTA NAS frameworks. Figure 3 shows the training/validation accuracy and loss of five different datasets 
during the final model training process (over 600 epochs).

To better capture the efficacy of the NAS frameworks we report a joint metric that combines both cost (search 
time or energy consumed during search) and final model accuracy into one number that is weighted based on 
the user’s need. This Goodness metric (GM) is computed as shown in Eq. 2. Where, XA and XE  are the weights 
of accuracy and energy respectively. ENorm is the normalized energy obtained from the Eq. 3. Where, E, Emin 

Methods Cost (GPU Hours)

Test accuracy (%)

CIFAR-10 CIFAR-100 ImageNet16-120

DeepMaker43 75 93.1 75.13 N/A

CGP-CNN44 744 94.05 73.3 N/A

EIGEN45
24 94.6 N/A N/A

120 N/A 78.1 N/A

GeNet46 408 92.9 70.95 N/A

NSGANet47 648 95.33 74.83 N/A

NASHBOT48 40.8 91.31 N/A N/A

NASH-Net49 24 94.8 N/A N/A

GDAS50 8.7 93.61 70.3 41.71

DARTS-51 3.2 93.8 71.53 45.12

GENIUS35 N/A 93.79 ± 0.09 70.91 ± 0.81 44.96 ± 1.02
DrNAS52 1.2 94.36 73.51 46.34

SE-NAS53 2.93 93.47 ± 0.14 N/A 45.66 ± 1.05
FairNAS54 2.73 93.23 ± 0.18 N/A 42.19 ± 0.31
Shapley-NAS55 7.2 94.37 ± 0.00 N/A 46.85±0.12

Distribution Constrained56 3.9 94.29 ± 0.07 N/A 46.41 ± 0.14
FreeRea57 N/A 94.36 N/A 46.34

RMI58 0.34 94.28 ± 0.10 73.36 ± 0.19 46.34 ± 0.00

LEMONADE  (Proposed)

5.8 95.54 – –

7.12 – 79.43 –

12.83 – – 42.95

Table 4.  Performance metrics for various methods across datasets. All results are for WA = 1, WE = 0, and 
WF = 0. Significant values are in bold.
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and Emax are the energy consumed by a given NAS framework, maximum energy consumed for the same 
task across all NAS frameworks and minimum Energy consumed for the same task across all NAS frameworks 
(per Table 5). Kilowatt-hour power usage effectiveness (kWh-PUE) serves as a metric for evaluating the energy 
efficiency of an Edge AI system by comparing the overall energy consumed to that used specifically for AI 
inference/search/training59. We have calculated the energy (in kWh-PUE) with the help of Eq. 4 as described 
in59. In this equation, pc, pr , and pg  represent the power usages (in watt) of CPU, RAM and GPU respectively. 
Also, t is the total run time in hours and g is the number of GPUs. We obtain the run time for each NAS method 
from Table 4 and assume a maximum GPU power draw (in watt) for NVIDIA A100.

	 GM =XA × Accuracy + (1 − ENorm) × XE � (2)

	
ENorm = E − Emin

Emax − Emin
� (3)

Method
Search energy 
(kWh-PUE)

GM values

XA = 0.8, XE = 0.2 XA = 0.5, XE = 0.5 XA = 0.2, XE = 0.8

CIFAR-10 CIFAR-100
ImageNet 
16-120 CIFAR-10 CIFAR-100

ImageNet 
16-120 CIFAR-10 CIFAR-100

ImageNet 
16-120

DeepMaker43 35.55 0.925 0.781 – 0.915 0.825 – 0.906 0.870 –

CGP-CNN44 352.66 0.752 0.586 – 0.470 0.367 – 0.188 0.147 –

EIGEN45
9.48 0.952 – – 0.960 – – 0.968 – –

47.40 – 0.798 – – 0.823 – – 0.849 –

GeNet46 161.16 0.852 0.676 – 0.736 0.626 – 0.620 0.577 –

NSGANet47 307.15 0.788 0.624 – 0.541 0.439 – 0.294 0.253 –

NASHBOT48 19.34 0.920 – – 0.929 – – 0.939 – –

NASH-Net49 11.38 0.952 – – 0.958 – – 0.964 – –

GDAS50 4.12 0.947 0.760 0.531 0.962 0.846 0.703 0.978 0.932 0.874

DARTS-51 1.52 0.950 0.771 0.560 0.967 0.856 0.724 0.985 0.940 0.887

DrNAS52 0.57 0.955 0.788 0.570 0.971 0.867 0.731 0.988 0.946 0.892

SE-NAS53 1.39 0.947 – 0.565 0.966 – 0.727 0.984 – 0.889

FairNAS54 1.29 0.945 – 0.537 0.965 – 0.709 0.984 – 0.882

Shapley-NAS55 3.41 0.953 – 0.573 0.967 – 0.730 0.981 – 0.886

DC56 1.85 0.953 – 0.570 0.969 – 0.730 0.985 – 0.889

RMI58 0.16 0.954 0.787 0.571 0.971 0.867 0.732 0.989 0.947 0.893

LEMONADE  
(Proposed)

1.20 0.964 – – 0.976 – – 0.989 – –

2.34 – 0.834 – – 0.894 – 0.954 –

5.45 – – 0.541 – – 0.707 – – 0.874

Table 5.  Understanding the effectiveness of LEMONADE and other SOTA NAS frameworks utilizing the GM 
metric. Significant values are in bold.

 

Fig. 3.  Training process: loss and accuracy graph.
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pt =1.58t (pc + pr + gpg)

1000
� (4)

We observe a similar trend in Table 5 when comparing LEMONADE with other NAS frameworks. LEMONADE 
beats state-of-the-art NAS frameworks in terms of overall performance (GM) for CIFAR-10 and CIFAR-100 
across different weight values. LEMONADE performs almost at the SOTA level for ImageNet16-120 as well.

Utilizing LEMONADE to construct neural networks for diverse datasets and application 
needs
It is evident that LEMONADE can very efficiently (cost and accuracy) generate neural networks with good 
accuracy for standard datasets with priority only given to final model accuracy. However, LEMONADE was 
designed to serve a more practical goal - Automating the AI integration process for addressing diverse applications 
with varying needs. LEMONADE is designed to help non-AI-experts build solutions for their respective tasks 
with varying needs such as high frame-per-second (FPS) and low energy energy inferencing for battery-operated 
edge devices. In Table 6, we demonstrate how LEMONADE can generate different neural networks for serving 
different application priorities (settings). For example, when we ask the LEMONADE system to give 100% 
priority (WA = 1) to the final model accuracy (Malaria dataset), we obtain a neural network with an accuracy 
of 97.12% that consumes about 2.5 × 10−9 Kwh-PUE of energy for inferencing one image with an FPS of 157. 
For the same dataset (Malaria), if we make the LEMONADE system design a neural network with equal priority 
given to inferencing energy and accuracy (WA = 0.5, WE = 0.5) then we obtain a model that is 450x more 
energy efficient with about 1% lower accuracy.

To assess the generalizability of LEMONADE, we reported results across three different settings, similar to 
prior text classification, using the IMDb dataset in Table 6. When prioritizing accuracy at 100%,  LEMONADE 
generates a model achieving 90.51% accuracy, 57 FPS, and an energy consumption of 8.42 × 10−9 kWh-PUE 
for per image inference. In contrast, with a priority distribution of 70% for accuracy, 10% for energy efficiency, 
and 20% for FPS, the generated model attains 89.03% accuracy, 473 FPS, and consumes only 6.19 × 10−12 
kWh-PUE.

Table 7 shows the comparative analysis of different SOTA NAS with LEMONADE (using both chatGPT-4o 
and Gemini-Pro as backend). For comparison points, we consider different edge AI metrics i.e., test accuracy, 
required training time in hours, inference speed in milliseconds (ms), inference power in milliwatts (mW), and 
model size in MB. In the Table 7 setting represents the priority, where 1 refers to full priority on accuracy, 2 
refers to 50% priority on accuracy and 50% priority on energy, and 3 refers to 70% priority on accuracy, 10% on 
energy, and 20% on FPS. For the malaria dataset, DARTS shows 96.61% accuracy with 26.1 ms inference speed 
and takes 799.58 mW power for inference. Where NasNet and AmoebaNet shows 96.88% and 97.09% accuracy 
with 25.07 ms and 22.29 ms inference speed, and 744.65 mW and 745.66 mW inference power respectively. 
LEMONADE with chatGPT-4o outperforming the three different NAS based on the accuracy, training time, and 
inference speed. The model size of LEMONADE is 37.53 MB which is larger than the SOTA NAS, this is because 
of the full priority given to accuracy. For setting-2 (50% priority to both accuracy and energy consumption), we 
notice that LEMONADE generates a light weight model with decent accuracy and faster inference speed. This is 

Datasets Settings Frames per second Inference energy per image (kWh-PUE) Test accuracy (%)

CIFAR-1031

WA = 1 814 2.83 × 10−10 95.54

WA = 0.5, WE = 0.5 524 7.23 × 10−10 92.72

WA = 0.7, WE = 0.1, WF = 0.2 1606 3.10 × 10−11 94.9

CIFAR-10031

WA = 1 82 4.80 × 10−9 79.43

WA = 0.5, WE = 0.5 701 5.44 × 10−10 68.6

WA = 0.7, WE = 0.1, WF = 0.2 950 3.56 × 10−10 75.03

ImageNet16-12032

WA = 1 1046 5.35 × 10−10 42.95

WA = 0.5, WE = 0.5 1147 5.11 × 10−11 37.93

WA = 0.7, WE = 0.1, WF = 0.2 985 5.18 × 10−11 38.2

Malaria40

WA = 1 157 2.5 × 10−9 97.12

WA = 0.5, WE = 0.5 1517 5.56 × 10−12 96.44

WA = 0.7, WE = 0.1, WF = 0.2 2506 7.70 × 10−12 96.48

Euro-SAT39

WA = 1 1468 1.23 × 10−10 98.04

WA = 0.5, WE = 0.5 1815 2.25 × 10−11 95.7

WA = 0.7, WE = 0.1, WF = 0.2 1722 5.75 × 10−11 97.48

IMDb41

WA = 1 57 8.42 × 10−9 90.51

WA = 0.5, WE = 0.5 279 6.19 × 10−12 89.03

WA = 0.7, WE = 0.1, WF = 0.2 473 2.03 × 10−9 90.07

Table 6.  Utilizing LEMONADE for building neural networks for diverse applications with different priorities 
and requirements..
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also noticeable for LEMONADE with the Gemini-Pro backend. For the EuroSAT dataset, the NasNet generated 
model shows almost equal accuracy with respect to LEMONADE (chatGPT-4o) but we see that LEMONADE is 
more efficient in terms of training time, inference time, and inference power.

In-depth analysis and limitations of LLM
The LEMONADE framework is also equipped with a post-processing module that ensures that the models 
received from the LLM is indeed valid. If an invalid model is received, LEMONADE invokes an LLM command 
to fix the identified issue. We illustrate such an example in Fig. 4.

Fig. 4.  Qualitative analysis of the effectiveness of LEMONADE with chatGPT-4o backend.

 

Dataset Method Settings
Test accuracy 
(%)

Training time 
(hrs)

Training energy 
(kWh-PUE)

Inference 
speed 
(ms)

Inference 
power (mW)

Model 
size 
(MB)

Malaria40

DARTS28 – 96.61 6.11 2.14 26.1 799.58 13.64

NasNet60 – 96.88 6.24 2.18 25.07 744.65 14.59

AmoebaNet24 – 97.09 5.31 1.87 22.29 745.66 11.98

LEMONADE(chatGPT-4o)

1 97.12  2.57 0.9 6.44 905.6 37.53

2 96.48 2.82 0.33 0.66 19.21 0.05

3 96.44 2.99 0.36 0.40 43.85 4.36

LEMONADE(Gemini-Pro)

1 96.77 2.60 0.58 1.28 1192 43.66

2 96.08 2.69 0.33  0.37 6.69 0.11

3 96.50 2.62 0.44 0.56 760.08 6.18

EuroSAT39

DARTS28 – 96.76 5.28 1.83 23.88 780.48 12.93

NasNet60 – 98.03 5.94 2.19 25.10 751.31 14.61

AmoebaNet24 – 97.67 5.05 1.74 21.87 744.1 12.00

LEMONADE(chat GPT-4o)

1  98.04 1.69 0.28 0.68 410.94  0.95

2 95.70 1.62 0.22 0.55 93.02 15.95

3 97.48 1.50 0.25 0.58 225.79 37.97

LEMONADE(Gemini-Pro)

1 97.48 1.61 0.24 0.68 133.93 4.39

2 95.56 1.72 0.23 0.41 61.54 3.42

3 97.44 1.62 0.89 0.86 209.54 56.99

Table 7.  In-depth analysis of LEMONADE with three different NAS with various priority settings: 
{1 → (WA = 1); 2 → (WA = 0.5, WE = 0.5); 3 → (WA = 0.7, WE = 0.1, WF = 0.2)} with 
consideration of edge AI metrics.. Significant values are in bold.
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We also showcase, with a few examples, how the the feedback mechanism of the LEMONADE’s Expert 
System guides the LLM towards changing the generated neural network.

•	 Case 1: We can see that the initially generated model was a simple CNN model with two convolutional layers 
having ReLU activations and Batch Normalization (BN), Maxpooling, and a single Dense layer. After getting 
the feedback (ACL,ASC,ADL) chatGPT-4o generated a model with four blocks of convolutional layers with 
ReLU activation and Batch Normalization (BN), and two Dense layers. It also added two skip connections 
based on the feedback.

•	 Case 2: Shows another behavior of chatGPT-4o where it adds more skip connections by adding some convo-
lutional layers.

•	 Case 3: In some situations, skip connections make the network architecture more energy intensive to train/
run. In this case, chatGPT-4o reduces the skip connections based on the feedback from ES.

•	 Case 4: chatGPT-4o not always showed outstanding performance. We carefully checked the responses from 
chatGPT-4o and saw that in approximately 10% of the cases it fails to follow the provided instructions. In one 
case chatGPT-4o generated an invalid model that failed complication due to layer shape mismatch.

Limitations of using the GPT-4o/Gemini-Pro for NAS
ChatGPT-4o and Gemini-Pro can generate neural networks based on a prompt but they have several limitations 
that necessities the use of an additional automated guidance system (such as LEMONADE). We discuss some of 
these limitations below:

•	 Prompt dependency The effectiveness of a network architecture is significantly influenced by the quality of the 
prompt. A well-defined prompt enables GPT-4o or Gemini-Pro to produce network architectures that align 
with the specified requirements. Conversely, an ambiguous prompt may lead to outcomes that do not fulfill 
the objectives.

•	 Inadequate validation capacity Although the LLMs can propose a network structure, they lack the capability 
to independently train and validate the proposed architecture on a dataset.

•	 Deficiency in numerical optimization Current LLMs can not directly calculate the ideal hyperparameters of an 
architecture for the given task specifications.

Fine tuning GPT-4o/Gemini-Pro for the NAS
The following techniques have been used to improve the performance of the LLMs to generate good quality 
neural network architecture:

•	 Prompt engineering: Fine-tuning the prompt by specifying the constraints and validation outcomes helped us 
generate good-quality architecture.

•	 Integrate expert system: We have proposed an expert system that helps generate high quality architectures by 
providing structured feedback to the LLM backend (GPT-4o or Gemini-Pro).

•	 Integrate external validation: Since the LLMs lack the capability to train the proposed architectures, we have 
integrated a system for assessing various performance metrics such as accuracy, power, inference speed, and 
model size. These metrics were subsequently utilized in the next iteration’s prompt, emulating a reinforcement 
approach.

Conclusion
In this article, we have formalized, implemented, and evaluated a multi-parameter neural discovery framework, 
LEMONADE that can efficiently generate novel neural networks for diverse requirements without leveraging 
any pre-defined search space. LEMONADE can effectively trade-off final model accuracy for other edge AI 
parameters such as FPS and inferencing energy cap. The proposed framework operates with the help of a set of 
customizable metrics and a rules-driven expert system. The proposed expert system generates instructions for a 
backend large language model (LLM) such as ChatGPT-4o and Gemini-Pro to iteratively produce novel neural 
networks. LEMONADE was able to successfully create state-of-the-art neural networks that are optimized for 
accuracy, FPS, and power consumption across different applications/requirements and datasets (CIFAR-10, 
CIFAR-100, ImageNet16-120, Malaria, Euro-SAT, IMDb). This work paves the way toward a new paradigm of 
AI-guided AI designing. Future works will investigate efficient model pruning and quantization using AI. Future 
works will also explore the use of a customized LLM that is specifically trained to generate AI models for a wider 
range of user-defined applications.

Data availability
 The datasets analyzed in this study are publicly available in the following repository: The CIFAR-10 and CI-
FAR-100 datasets are available at https://www.cs.toronto.edu/~kriz/cifar.html. The ImageNet16-120 dataset is 
available at https://github.com/hafizuriu/ImageNet16. Malaria parasite data is available at ​h​t​t​p​s​:​​/​/​w​w​w​.​​k​a​g​g​l​e​​.​
c​o​m​/​d​​a​t​a​s​e​​t​s​/​i​a​r​​u​n​a​v​a​/​​c​e​l​l​-​i​​m​a​g​e​s​-​f​o​r​-​d​e​t​e​c​t​i​n​g​-​m​a​l​a​r​i​a Euro-SAT data is available at ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​p​h​e​l​
b​e​r​/​e​u​r​o​s​a​t​​​​​. IMDb data is available at ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​k​a​g​g​l​​e​.​c​​o​m​​/​d​a​t​a​s​​e​​t​s​/​l​​a​k​s​h​m​i​​2​5​n​p​a​​​t​h​i​/​i​​​m​d​b​-​d​a​​t​​a​s​e​​t​​-​o​​f​-​5​​0​k​
-​​m​o​v​i​e​-​r​​e​v​i​e​w​s​/​d​a​t​a.
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