
An automated multi parameter
neural architecture discovery
framework using ChatGPT in the
backend
Md Hafizur Rahman, Zafaryab Haider & Prabuddha Chakraborty

Building efficient neural network architectures for a given dataset can be a time-consuming task
requiring extensive expert knowledge. This task becomes particularly challenging for edge artificial
intelligence (AI) because one has to consider additional parameters such as power consumption
during inferencing, model size, and inferencing speed. In this article, we introduce a novel framework
designed to automatically discover new neural network architectures based on user-defined
parameters, an expert system, and an LLM trained on a large amount of open-domain knowledge.
The proposed framework (LEMONADE) can be easily used by non-AI experts, does not require a
predetermined neural architecture search space, and considers a large set of edge AI parameters.
We implement and validate this proposed neural architecture discovery framework using CIFAR-10,
CIFAR-100, ImageNet16-120, EuroSAT, Malaria Parasite, and IMDb datasets while primarily using
ChatGPT-4o as the LLM component. We have also explored the possibilities of using Gemini-Pro as the
LLM component. Neural networks generated using LEMONADE for CIFAR-10 (95.54% test accuracy)
and CIFAR-100 (79.43% test accuracy) demonstrated state-of-the-art performance in terms of final
model accuracy. We have also observed near state-of-the-art performance (in terms of accuracy) for
the ImageNet16-120 dataset. Moreover LEMONADE was able to generate effective neural networks,
satisfying different edge AI requirements across additional datasets such as EuroSAT.

Neural networks (NN) have found extensive application across various fields such as healthcare1–3, surveillance4,5,
Industry 4.06–8, and Internet of Things (IoT)9–11. A neural network can be composed of a large number of layers
of different types while sporting diverse hyperparameters. Hence, for a given dataset/application: (1) finding
the right set of neural layers; (2) connecting them in the right topology; and (3) selecting the most optimal
hyperparameters for each layer can be a daunting task requiring a large amount of computation resources,
human expert involvement, and time. Requiring a given neural network to perform (during inferencing) under
specific resource-constrained conditions (a case for many IoT/Edge devices) can add to the complexity of the
neural architecture search process. For example, designing a neural network to have more than x% accuracy for
a given task is a hard problem to solve but it becomes harder if we further constrain the problem with additional
parameters such as frames-per-second (FPS) requirements during inferences and power consumption limits.

Traditional neural architecture search (NAS) frameworks are typically designed to identify the best
architecture within a specified search space. This approach is constrained by its pre-defined search space, which
limits its capacity for generating novel neural network architecture (outside the search space). Additionally, most
NAS frameworks prioritizes final model accuracy leading to very high search-cost (time, energy consumption)
and poor edge AI performance (low FPS and high inferencing energy).

To mitigate these concerns we propose a large language model guided neural architecture discovery
(LEMONADE) framework that can allow the discovery of novel neural network architecture without relying
on a pre-defined search space. This framework is designed to allow the network-builder to efficient trade-off
between: (1) Final model accuracy; (2) Neural search/discovery speed and energy consumption; (3) Final model
energy consumptions and inferencing frames per second. These objectives are enforced through an iterative
approach utilizing a large language model (LLM) and an expert system for driving the LLM towards the target
discovery. The expert system will use a set of configurable rules and several user-defined metrics to generate a set
of instructions for the LLM leading to progressive refinement of the generated neural architecture.

Department of Electrical and Computer Engineering, University of Maine, Orono, ME 04469, USA. email:
md.hafizur.rahman@maine.edu

OPEN

Scientific Reports | (2025) 15:16871 1| https://doi.org/10.1038/s41598-025-97378-5

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-97378-5&domain=pdf&date_stamp=2025-5-15

To validate the LEMONADE framework, we perform extensive experimentation using the CIFAR-10,
CIFAR-100, ImageNet16-120, EuroSAT, Malaria Parasite, and IMDb datasets. We use the framework to generate
different neural networks for diverse application requirements and priorities. Neural networks generated using
LEMONADE for CIFAR-10 (95.54% test accuracy) and CIFAR-100 (79.43% test accuracy) demonstrated state-
of-the-art performance in terms of final mode accuracy. For ImageNet16-120 LEMONADE was also able to
generate fairly competitive architectures (42.95% test accuracy). LEMONADE is also very efficient in terms
of model generation and training, demonstrating notable reduction in network search/discovery time and
associated energy consumption. While using GPT-4o12, as the backend LLM, LEMONADE was able to generate
and train CIFAR-10 models in about 5.8 hours consuming only about 1.20 kWh-PUE energy. LEMONADE is
also capable of prioritizing metrics beyond accuracy, which enables the creation of neural architectures that
are optimal for different IoT/Edge requirements such as high speed inferencing at low power. This is achieved
through efficiently trading-off model accuracy as demonstrated by our experimental results across several
datasets/applications. LEMONADE has generated novel neural architectures from scratch, thereby, paving a new
opportunity for search-space agnostic neural architecture search research. We have also validated the framework
while using Gemini-Pro as the LLM component. To summarize, we:

	1.	 Formalize and design a cost-effective and search-space agnostic neural architecture discovery framework
(LEMONADE) leveraging LLMs.

	2.	 Formulate an expert system with associated rules and relevant metrics that is capable of driving a given LLM
toward discovering different neural architectures.

	3.	 Implement LEMONADE as a highly configurable/efficient tool for immediate application and easy future
extensions.

	4.	 Qualitatively and quantitatively evaluate LEMONADE using CIFAR-10, CIFAR-100, ImageNet16-120, Euro-
SAT, Malaria Parasite, and IMDb datasets for diverse settings and application requirements.

Background and motivation
Next, we will briefly describe relevant related works and discuss the motivations that drove the development of
LEMONADE.

Neural architecture search
Methods of neural architecture search (NAS) are extensively used across various applications such as image
processing13–16, signal processing17–19, object detection20,21, and natural language processing22,23. It involves
identifying the best neural network for a given task through repeated trials, traditionally judged solely based on
final model accuracy. The early NAS techniques worked mainly based on the evolutionary algorithms (EA)24 and
reinforcement learning (RL)25. Although these methods showed promising results in building quality NN, they
require substantial computing power and time. To solve this issue, weight-reusing26 approaches were proposed
that avoid the necessity of training each design from the beginning, resulting in low computation costs. One-
shot approaches for NAS27 were also proposed which involves training a large network called SuperNet that
incorporates every conceivable architecture within the search domain. Differentiable Neural architecture search
(DNAS)28 is another weight re-using approach where all the SubNet parameters are optimized by gradient
descent.

Most NAS methods utilize NAS-datasets that contains a large list of potential neural architectures from which
we expect to find the most optimal architecture (for the target application) using the NAS method. One NAS
dataset is the NAS-Bench-10129 which contains 5 million distinct neural architectures and was designed for the
CIFAR-10 dataset. The NAS-Bench-20130 dataset has 15625 cell layouts and is derived from a cell-based search
technique (for CIFAR-1031, CIFAR-10031 and ImageNet16-12032 datasets). In33, the authors proposed a NAS
method named β-DARTS to solve the weak generalization ability found in the DARTS method. They used the
NAS-Bench-201 to evaluate their framework. In another research work34, the authors suggested Λ-DARTS as a
solution for the structural flaws caused by the weight-sharing approach in DARTS. In a recent work35, authors
proposed GENIUS where they used an LLM to solve the NAS problem while utilizing a pre-defined search space
and focusing solely on maximizing final model accuracy (no consideration given to model search efficiency or
inferencing speed).

Shortcomings of NAS
Most traditional NAS techniques rely on having access to a pre-defined search space of potential neural
architectures, making it difficult to scale across different applications and use cases. Additionally, most NAS
frameworks do not have the capability to allow the search process to consider parameters such as: (1) Inferencing
speed; (2) Inferencing energy consumption; (3) NAS search and training efficiency.

Why LLM and expert system for neural discovery?
We hypothesize that a large language model (LLM) trained on a large volume of open-domain data will also have
the knowledge about different neural architectures. LLMs have demonstrated success in terms of searching for
NN architectures given a search space35–38. However, we wanted to go one step further and find out if LLMs can
generate novel NN architecture (discovery) without using a pre-defined search space. We also wanted to analyze
if: (1) the open-domain knowledge has provided these LLMs with insights into different metrics associated with
a neural architecture such as estimated training power consumption and inferencing speed; (2) these LLMs can
follow automated instructions generated from an expert system for refining a NN. The abbreviations used in this
study are listed in Table 1.

Scientific Reports | (2025) 15:16871 2| https://doi.org/10.1038/s41598-025-97378-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Methodology
Neural discovery process
In Fig. 1 we show an overview of the LEMONADE framework where an expert system (ES) takes the task
specification from the user (metrics) and generates commands (prompt) for the LLM using a set of rules for
creating a neural architecture. The generated neural network (in the form of python code) from the LLM is then
trained on the training dataset and subsequently evaluated on the validation set. The associated evaluation-based
metrics are used by ES to generate the next LLM prompt that modifies the current neural network architecture
for improving overall efficacy.

Algorithm 1 shows the overall procedure of LEMONADE. M is a set of user-defined metrics, TS contains the
task specification (classification/regression, input/output shape, datasets, etc), TC is an user defined terminating

Fig. 1.  LEMONADE framework: Expert system guided iterative and multi-parameter search for neural
network discovery.

Abbreviation Meaning Location

LLM Large language model Absract

AI Artificial intelligence Absract

NN Neural network Introduction

FPS Frames per second Introduction

NAS Neural architecture search Introduction

LEMONADE Large language model guided neural architecture discovery Introduction

RL Reinforcement learning Neural architecture search

EA Evolutionary algorithms Neural architecture search

DNAS Differentiable neural architecture search Neural architecture search

GENIUS GPT-4 enhanced neural architecture search Neural architecture search

DARTS Differentiable architecture search Neural architecture search

ES Expert system Neural discovery process

TS Task specification Algorithm 1

TC Termination condition Algorithm 1

BCM Best combine metric Algorithm 1

cmd Command Algorithm 1

NNGES Neural network generation expert system Algorithm 1

AGI Artificial generative intelligence Algorithm 1

CM Combine metric Algorithm 1

NF Normalized FPS Equation 1

TNE Normalized training energy Equation 1

VNE Normalized validation energy Equation 1

Ins Instructions Algorithm 2

Table 1.  Abbreviation.

Scientific Reports | (2025) 15:16871 3| https://doi.org/10.1038/s41598-025-97378-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

condition (in our case a max number of iterations). From lines 2–5, all variables are initialized and the initial
command is stored in the cmd variable. For example, the initial cmd might be something like - ‘Please suggest a
pytorch image classification model with input shape of (3,32,32) and output of 100’.

Algorithm 1.  LEMONADE neural network discovery/search.

In line 7, LLM_AGI (GPT-4o12 for this study) returns a response based on the command and subsequently,
a model is created from the response.

From lines 10–12, the generated model is trained and evaluated with the training and validation datasets
respectively and a set of metrics such as training energy expenditure (TNE), training accuracy (TAcc),
validation energy expenditure (VNE), validation accuracy (VAcc), and validation set inferencing frames-
per-second (NF) are calculated and stored in the Metrics dictionary. The Metrics dictionary is then passed
to the NNGES (Fig. 2) to generate a set of instructions for the next round of LLM-based neural network
generation.

Any conflicts between the generated instructions are removed using Algorithm 2. To identify the best
network architecture, we utilize the following combined model effectiveness metric (CM):

	 CM = WA · (TAcc + VAcc) + (WF · NF) − WE · (TNE + VNE)� (1)

Where, WA is weight for accuracy; TAcc is training accuracy; VAcc is validation accuracy; WF is weight
for FPS; NF is normalized FPS; WE is weight for energy; TNE is normalized training energy; VNE is
normalized validation energy. All parameters (user defined and evaluation-based) are described in Table 2.

Scientific Reports | (2025) 15:16871 4| https://doi.org/10.1038/s41598-025-97378-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Fig. 2.  Flowchart of the neural network generation expert system (NNGES).

Scientific Reports | (2025) 15:16871 5| https://doi.org/10.1038/s41598-025-97378-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Algorithm 2.  LEMONADE conflict resolution.

Expert system for instruction set generation
We have developed an expert system for guiding the NAS process because: (1) The backend LLM can exhibit
random behavior if proper bounds/rules are not set; (2) the backend LLM can start hallucinating during a
lengthy neural search process and an expert system can keep it on track; (3) LLMs are not always aware of how to
achieve a certain effect out of a neural network and requires additional input from an expert system to succeed.

The expert system utilizes a rulebook (Table 3) which is based on strategies that are commonly used by data
scientists for constructing effective neural networks. In future, these rules can potentially be learned based on
historical neural search data. The expert system drives the LLM towards constructing an optimal neural network
for a given set of user-defined parameters by generating a series of instructions based on the Metrics calculated
after each search iteration.

Figure 2 illustrates the flowchart of the Neural network generation expert system (NNGES) for instruction
generation. The system takes M, a set of user-defined and evaluation metrics, as its input. It begins by initializing
an empty dictionary for storing instructions. Next, the system compares the input metrics (M) with the user-
defined metrics (see Table 2) and assigns different weights to each rule (as defined in Table 3) to construct an
instruction dictionary. For instance, if the training accuracy (M.TACC) falls below the user-defined threshold
(M.T TACC), the instruction assigns priority weights (P TACC) to Ins[’ACL’], Ins[’AMK’], Ins[’ADL’], and

Legends Description Type

TAcc, VAcc Current model’s training and validation accuracy respectively as predicted by LLM/AGI Evaluation based

P TAcc, P VAcc Priority of training and validation accuracy respectively User defined

T TAcc, T VAcc Threshold of the training and validation accuracy User defined

TE , VE Energy required for evaluating the training and validation set Evaluation based

P TE , P VE Priority of the energy required for evaluating the training and validation set User defined

T TE , T VE Threshold of energy required for evaluating the training and validation set User defined

F FPS of the current model predicted by LLM/AGI Evaluation based

NF Normalized FPS of the current model predicted by LLM/AGI Evaluation based

PF Priority of the FPS for the model User defined

TF Threshold ofthe FPS for the model User defined

P Parameters of the current model (CM) predicted by LLM/AGI Evaluation based

OT, UT Threshold value to check the overfitting and underfitting User defined

WA Weight for the accuracy values when computing the combined metric (CM) User defined

WE Weight for the energy values when computing the combined metric (CM) User defined

WF Weight for the FPS values when computing the combined metric (CM) User defined

Table 2.  User-defined and evaluation based parameters.

Scientific Reports | (2025) 15:16871 6| https://doi.org/10.1038/s41598-025-97378-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Ins[’ASC’]. This implies that ACL, AMK, ADL, and ASC are expected to enhance training accuracy in the next
iteration.

The system sequentially evaluates all conditions and stores the corresponding weights in the instruction
dictionary, which will be further refined in the next section.

Conflict resolution
Instructions generation might have some conflicts (see Table 3) due to the nature of the instructions themselves.
For example, instructions such as adding a dense layer (ADL) and removing a dense layer (RDL), may get
assigned positive weights by the NNGES algorithm (e.g., 0.5 for ADL and 0.4 for RDL). However, since these
instructions have opposite effects, both cannot be passed to the LLM simultaneously. To resolve this, Algorithm
2 is used to prioritize and select the instructions with higher weights. Algorithm 2 shows the overall procedure of
eliminating conflicts. In line 3, we organize the Ins in descending order according to their values. Through lines
7–9, it identifies and stores the instructions that have values larger than 0 in Refined_Ins. In lines 10–15, the
algorithm examines the current instruction and the remaining instructions to identify any conflicts. If a conflict
is detected, the algorithm looks at the computed metric to decide which one is more appropriate (by setting less
appropriate metric to zero) for optimizing the NAS.

Dataset description and preparation
In this study, we have considered five publicly available image datasets: CIFAR-1031, CIFAR-10031,
ImageNet16-12032, EuroSAT39, and Malaria Parasite40 and a text dataset: IMDb41 to validate our LEMONADE.
Both the CIFAR-10 and the CIFAR-100 datasets contain 60k images of dimensions 32 × 32 pixels where 50k
and 10k samples are designated for training and testing purposes, respectively. The CIFAR-10 dataset has 10
output classes whereas the CIFAR-100 datasets have 100 output classes. ImageNet16-120 has 151k training and
6k testing samples with a resolution of 16 × 16 distributed across 120 classes. The Malaria parasite dataset has
two classes: (i) parasitized cells and (ii) uninfected cells with 27558 data samples in total. For our experiments
with the Malaria parasite dataset, we resized the data to 32 × 32 resolution. After that we split it into an 8:2
ratio for the training and validation sets. The EuroSAT dataset contains 27000 data samples across 10 classes: (i)
AnnualCrop (ii) Forest (iii) HerbaceousVegetation (iv) Highway (v) Industrial (vi) Pasture (vii) PermanentCrop
(viii) Residential (ix) River, and (x) SeaLake. We also resized this dataset to 32 × 32 resolution and split it into
8:2 ratios for training and validation sets. Finally, the IMDb dataset contains 50k samples of text data with
corresponding sentiment labels (positive and negative). We first split the data set into 8:2 ratio for training
and validation and then pre-processed the text by removing urls, special characters, hashtags and mentions.
Subsequently, we tokenize the text and transform it into sequences of fixed length.

Experimental analysis and results
All experiments are run on a single NVIDIA A100 GPU to make a fair determination of metrics such
as power consumption and runtime. We utilize a python library named PyJoules42 to measure the
energy consumption of both CPU and GPU during network search/training. In this section, we will
discuss the search strategy, the training process, and the experimental results. We use the following
user defined metric for all experiments (unless something else is specifically mentioned): {P TAcc = 0,
P VAcc = 1, T TAcc = 0.99, T VAcc = 0.99, P F = 0, T F = 14000, P TE = 0, T TE = 1 × 10−3, P VE = 0, T VE = 1 × 10−5, OT = 0.10, UT = 0.05}.

Intermediate and final model training process
During the neural discovery process, LEMONADE was executed for 30 iterations (Terminating Condition for
Algorithm 1). To ascertain the quality of the searched network after each iteration, the searched networks are

Legend Description Conflict with

ACL Add convolutional layer RCL

ASC Add skip connection RSC

ADL Add dense layer RDL

RCL Reduce convolutional layer ACL

RSC Reduce skip connection ASC

RDL Reduce dense layer ADL

AD Add dropout layer RD

AMK Add more kernel RK

AWI Add weight initializer –

AR Add regularization RR

RK Reduce number of kernel AMK

RD Reduce dropout layer AD

AMN Add more neurons RN

RN Reduce neurons AMN

RR Reduce regularization AR

Table 3.  Rule book for the LEMONADE expert system.

Scientific Reports | (2025) 15:16871 7| https://doi.org/10.1038/s41598-025-97378-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

trained for 50 epochs with a batch size of 128, utilizing the Stochastic Gradient Descent (SGD) optimizer along
with an initial learning rate of 0.025 and a weight decay parameter set to 3 × 10−4. To enhance the convergence
rate, a cosine annealing learning rate schedule was employed, which modulates the learning rate according to a
cosine function. Furthermore, to mitigate overfitting, data augmentation techniques such as random rotation by
10 degrees, random horizontal flipping, and random cropping of size 16 × 16 were integrated into the training
regimen to facilitate diverse learning. Then the trained model is evaluated using the validation data (from the
corresponding dataset) to obtain the combined metric (CM) as shown in Algorithm 1. For the NLP task (IMDb
dataset), we used Adam optimizer along with a initial learning rate of 0.001 and batch size of 128.

Upon the completion of the NAS procedure by LEMONADE , the final model is trained on the entire dataset
over 600 epochs (200 epochs for IMDb). A batch size of 256 is employed, utilizing the SGD optimizer (Adam for
IMDB), with the initial learning rate set at 0.025 (0.001 for IMDb) accompanied by a weight_decay of 3 × 10−4.
The learning rate is systematically adjusted according to the annealing learning rate schedule. It is important to
clarify that the complexity inherent in this final training phase is not inherently associated with the NAS process.
Notably, larger datasets generally demand an increased number of training epochs. This is a challenge faced by
all NAS frameworks and is not distinct to our methodology. In this experimental setup, GPT-4o was configured
with a temperature parameter of 0.5.

Comparing LEMONADE with state-of-the-art NAS frameworks
Table 4 provides a comparative analysis of several State-of-the-Art (SOTA) NAS methods alongside LEMONADE ,
for the CIFAR-10, CIFAR-100, and ImageNet16-120 datasets. For these experiments we set WA = 1, WE = 0,
and WF = 0 because all the SOTA NAS we are comparing against only prioritize accuracy. For CIFAR-10,
LEMONADE was able to generate a neural network with 95.54% test accuracy beating all SOTA frameworks.
LEMONADE also beat state-of-the-art NAS frameworks for CIFAR-100 with a test accuracy of 79.43%. For
ImageNet16-120, LEMONADE produced a neural network with almost SOTA performance. For the CIFAR-10
dataset, the NAS method (beside LEMONADE) that was able to achieve the highest accuracy was NSGANet47.
But takes 648 GPU Hours for performing the search process compared to 5.8 GPU Hours that LEMONADE
takes (111x Faster). For CIFAR-100, EIGEN45 led the most efficient neural network (besides LEMONADE) but
that search took 120 GPU Hour compared to 7.12 GPU Hours taken by LEMONADE. Hence, LEMONADE can
not only discover highly accurate models, it can also perform search operations that are generally faster than
many SOTA NAS frameworks. Figure 3 shows the training/validation accuracy and loss of five different datasets
during the final model training process (over 600 epochs).

To better capture the efficacy of the NAS frameworks we report a joint metric that combines both cost (search
time or energy consumed during search) and final model accuracy into one number that is weighted based on
the user’s need. This Goodness metric (GM) is computed as shown in Eq. 2. Where, XA and XE are the weights
of accuracy and energy respectively. ENorm is the normalized energy obtained from the Eq. 3. Where, E, Emin

Methods Cost (GPU Hours)

Test accuracy (%)

CIFAR-10 CIFAR-100 ImageNet16-120

DeepMaker43 75 93.1 75.13 N/A

CGP-CNN44 744 94.05 73.3 N/A

EIGEN45
24 94.6 N/A N/A

120 N/A 78.1 N/A

GeNet46 408 92.9 70.95 N/A

NSGANet47 648 95.33 74.83 N/A

NASHBOT48 40.8 91.31 N/A N/A

NASH-Net49 24 94.8 N/A N/A

GDAS50 8.7 93.61 70.3 41.71

DARTS-51 3.2 93.8 71.53 45.12

GENIUS35 N/A 93.79 ± 0.09 70.91 ± 0.81 44.96 ± 1.02
DrNAS52 1.2 94.36 73.51 46.34

SE-NAS53 2.93 93.47 ± 0.14 N/A 45.66 ± 1.05
FairNAS54 2.73 93.23 ± 0.18 N/A 42.19 ± 0.31
Shapley-NAS55 7.2 94.37 ± 0.00 N/A 46.85±0.12

Distribution Constrained56 3.9 94.29 ± 0.07 N/A 46.41 ± 0.14
FreeRea57 N/A 94.36 N/A 46.34

RMI58 0.34 94.28 ± 0.10 73.36 ± 0.19 46.34 ± 0.00

LEMONADE (Proposed)

5.8 95.54 – –

7.12 – 79.43 –

12.83 – – 42.95

Table 4.  Performance metrics for various methods across datasets. All results are for WA = 1, WE = 0, and
WF = 0. Significant values are in bold.

Scientific Reports | (2025) 15:16871 8| https://doi.org/10.1038/s41598-025-97378-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

and Emax are the energy consumed by a given NAS framework, maximum energy consumed for the same
task across all NAS frameworks and minimum Energy consumed for the same task across all NAS frameworks
(per Table 5). Kilowatt-hour power usage effectiveness (kWh-PUE) serves as a metric for evaluating the energy
efficiency of an Edge AI system by comparing the overall energy consumed to that used specifically for AI
inference/search/training59. We have calculated the energy (in kWh-PUE) with the help of Eq. 4 as described
in59. In this equation, pc, pr , and pg represent the power usages (in watt) of CPU, RAM and GPU respectively.
Also, t is the total run time in hours and g is the number of GPUs. We obtain the run time for each NAS method
from Table 4 and assume a maximum GPU power draw (in watt) for NVIDIA A100.

	 GM =XA × Accuracy + (1 − ENorm) × XE � (2)

	
ENorm = E − Emin

Emax − Emin
� (3)

Method
Search energy
(kWh-PUE)

GM values

XA = 0.8, XE = 0.2 XA = 0.5, XE = 0.5 XA = 0.2, XE = 0.8

CIFAR-10 CIFAR-100
ImageNet
16-120 CIFAR-10 CIFAR-100

ImageNet
16-120 CIFAR-10 CIFAR-100

ImageNet
16-120

DeepMaker43 35.55 0.925 0.781 – 0.915 0.825 – 0.906 0.870 –

CGP-CNN44 352.66 0.752 0.586 – 0.470 0.367 – 0.188 0.147 –

EIGEN45
9.48 0.952 – – 0.960 – – 0.968 – –

47.40 – 0.798 – – 0.823 – – 0.849 –

GeNet46 161.16 0.852 0.676 – 0.736 0.626 – 0.620 0.577 –

NSGANet47 307.15 0.788 0.624 – 0.541 0.439 – 0.294 0.253 –

NASHBOT48 19.34 0.920 – – 0.929 – – 0.939 – –

NASH-Net49 11.38 0.952 – – 0.958 – – 0.964 – –

GDAS50 4.12 0.947 0.760 0.531 0.962 0.846 0.703 0.978 0.932 0.874

DARTS-51 1.52 0.950 0.771 0.560 0.967 0.856 0.724 0.985 0.940 0.887

DrNAS52 0.57 0.955 0.788 0.570 0.971 0.867 0.731 0.988 0.946 0.892

SE-NAS53 1.39 0.947 – 0.565 0.966 – 0.727 0.984 – 0.889

FairNAS54 1.29 0.945 – 0.537 0.965 – 0.709 0.984 – 0.882

Shapley-NAS55 3.41 0.953 – 0.573 0.967 – 0.730 0.981 – 0.886

DC56 1.85 0.953 – 0.570 0.969 – 0.730 0.985 – 0.889

RMI58 0.16 0.954 0.787 0.571 0.971 0.867 0.732 0.989 0.947 0.893

LEMONADE
(Proposed)

1.20 0.964 – – 0.976 – – 0.989 – –

2.34 – 0.834 – – 0.894 – 0.954 –

5.45 – – 0.541 – – 0.707 – – 0.874

Table 5.  Understanding the effectiveness of LEMONADE and other SOTA NAS frameworks utilizing the GM
metric. Significant values are in bold.

Fig. 3.  Training process: loss and accuracy graph.

Scientific Reports | (2025) 15:16871 9| https://doi.org/10.1038/s41598-025-97378-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

	
pt =1.58t (pc + pr + gpg)

1000
� (4)

We observe a similar trend in Table 5 when comparing LEMONADE with other NAS frameworks. LEMONADE
beats state-of-the-art NAS frameworks in terms of overall performance (GM) for CIFAR-10 and CIFAR-100
across different weight values. LEMONADE performs almost at the SOTA level for ImageNet16-120 as well.

Utilizing LEMONADE to construct neural networks for diverse datasets and application
needs
It is evident that LEMONADE can very efficiently (cost and accuracy) generate neural networks with good
accuracy for standard datasets with priority only given to final model accuracy. However, LEMONADE was
designed to serve a more practical goal - Automating the AI integration process for addressing diverse applications
with varying needs. LEMONADE is designed to help non-AI-experts build solutions for their respective tasks
with varying needs such as high frame-per-second (FPS) and low energy energy inferencing for battery-operated
edge devices. In Table 6, we demonstrate how LEMONADE can generate different neural networks for serving
different application priorities (settings). For example, when we ask the LEMONADE system to give 100%
priority (WA = 1) to the final model accuracy (Malaria dataset), we obtain a neural network with an accuracy
of 97.12% that consumes about 2.5 × 10−9 Kwh-PUE of energy for inferencing one image with an FPS of 157.
For the same dataset (Malaria), if we make the LEMONADE system design a neural network with equal priority
given to inferencing energy and accuracy (WA = 0.5, WE = 0.5) then we obtain a model that is 450x more
energy efficient with about 1% lower accuracy.

To assess the generalizability of LEMONADE, we reported results across three different settings, similar to
prior text classification, using the IMDb dataset in Table 6. When prioritizing accuracy at 100%, LEMONADE
generates a model achieving 90.51% accuracy, 57 FPS, and an energy consumption of 8.42 × 10−9 kWh-PUE
for per image inference. In contrast, with a priority distribution of 70% for accuracy, 10% for energy efficiency,
and 20% for FPS, the generated model attains 89.03% accuracy, 473 FPS, and consumes only 6.19 × 10−12
kWh-PUE.

Table 7 shows the comparative analysis of different SOTA NAS with LEMONADE (using both chatGPT-4o
and Gemini-Pro as backend). For comparison points, we consider different edge AI metrics i.e., test accuracy,
required training time in hours, inference speed in milliseconds (ms), inference power in milliwatts (mW), and
model size in MB. In the Table 7 setting represents the priority, where 1 refers to full priority on accuracy, 2
refers to 50% priority on accuracy and 50% priority on energy, and 3 refers to 70% priority on accuracy, 10% on
energy, and 20% on FPS. For the malaria dataset, DARTS shows 96.61% accuracy with 26.1 ms inference speed
and takes 799.58 mW power for inference. Where NasNet and AmoebaNet shows 96.88% and 97.09% accuracy
with 25.07 ms and 22.29 ms inference speed, and 744.65 mW and 745.66 mW inference power respectively.
LEMONADE with chatGPT-4o outperforming the three different NAS based on the accuracy, training time, and
inference speed. The model size of LEMONADE is 37.53 MB which is larger than the SOTA NAS, this is because
of the full priority given to accuracy. For setting-2 (50% priority to both accuracy and energy consumption), we
notice that LEMONADE generates a light weight model with decent accuracy and faster inference speed. This is

Datasets Settings Frames per second Inference energy per image (kWh-PUE) Test accuracy (%)

CIFAR-1031

WA = 1 814 2.83 × 10−10 95.54

WA = 0.5, WE = 0.5 524 7.23 × 10−10 92.72

WA = 0.7, WE = 0.1, WF = 0.2 1606 3.10 × 10−11 94.9

CIFAR-10031

WA = 1 82 4.80 × 10−9 79.43

WA = 0.5, WE = 0.5 701 5.44 × 10−10 68.6

WA = 0.7, WE = 0.1, WF = 0.2 950 3.56 × 10−10 75.03

ImageNet16-12032

WA = 1 1046 5.35 × 10−10 42.95

WA = 0.5, WE = 0.5 1147 5.11 × 10−11 37.93

WA = 0.7, WE = 0.1, WF = 0.2 985 5.18 × 10−11 38.2

Malaria40

WA = 1 157 2.5 × 10−9 97.12

WA = 0.5, WE = 0.5 1517 5.56 × 10−12 96.44

WA = 0.7, WE = 0.1, WF = 0.2 2506 7.70 × 10−12 96.48

Euro-SAT39

WA = 1 1468 1.23 × 10−10 98.04

WA = 0.5, WE = 0.5 1815 2.25 × 10−11 95.7

WA = 0.7, WE = 0.1, WF = 0.2 1722 5.75 × 10−11 97.48

IMDb41

WA = 1 57 8.42 × 10−9 90.51

WA = 0.5, WE = 0.5 279 6.19 × 10−12 89.03

WA = 0.7, WE = 0.1, WF = 0.2 473 2.03 × 10−9 90.07

Table 6.  Utilizing LEMONADE for building neural networks for diverse applications with different priorities
and requirements..

Scientific Reports | (2025) 15:16871 10| https://doi.org/10.1038/s41598-025-97378-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

also noticeable for LEMONADE with the Gemini-Pro backend. For the EuroSAT dataset, the NasNet generated
model shows almost equal accuracy with respect to LEMONADE (chatGPT-4o) but we see that LEMONADE is
more efficient in terms of training time, inference time, and inference power.

In-depth analysis and limitations of LLM
The LEMONADE framework is also equipped with a post-processing module that ensures that the models
received from the LLM is indeed valid. If an invalid model is received, LEMONADE invokes an LLM command
to fix the identified issue. We illustrate such an example in Fig. 4.

Fig. 4.  Qualitative analysis of the effectiveness of LEMONADE with chatGPT-4o backend.

Dataset Method Settings
Test accuracy
(%)

Training time
(hrs)

Training energy
(kWh-PUE)

Inference
speed
(ms)

Inference
power (mW)

Model
size
(MB)

Malaria40

DARTS28 – 96.61 6.11 2.14 26.1 799.58 13.64

NasNet60 – 96.88 6.24 2.18 25.07 744.65 14.59

AmoebaNet24 – 97.09 5.31 1.87 22.29 745.66 11.98

LEMONADE(chatGPT-4o)

1 97.12 2.57 0.9 6.44 905.6 37.53

2 96.48 2.82 0.33 0.66 19.21 0.05

3 96.44 2.99 0.36 0.40 43.85 4.36

LEMONADE(Gemini-Pro)

1 96.77 2.60 0.58 1.28 1192 43.66

2 96.08 2.69 0.33 0.37 6.69 0.11

3 96.50 2.62 0.44 0.56 760.08 6.18

EuroSAT39

DARTS28 – 96.76 5.28 1.83 23.88 780.48 12.93

NasNet60 – 98.03 5.94 2.19 25.10 751.31 14.61

AmoebaNet24 – 97.67 5.05 1.74 21.87 744.1 12.00

LEMONADE(chat GPT-4o)

1 98.04 1.69 0.28 0.68 410.94 0.95

2 95.70 1.62 0.22 0.55 93.02 15.95

3 97.48 1.50 0.25 0.58 225.79 37.97

LEMONADE(Gemini-Pro)

1 97.48 1.61 0.24 0.68 133.93 4.39

2 95.56 1.72 0.23 0.41 61.54 3.42

3 97.44 1.62 0.89 0.86 209.54 56.99

Table 7.  In-depth analysis of LEMONADE with three different NAS with various priority settings:
{1 → (WA = 1); 2 → (WA = 0.5, WE = 0.5); 3 → (WA = 0.7, WE = 0.1, WF = 0.2)} with
consideration of edge AI metrics.. Significant values are in bold.

Scientific Reports | (2025) 15:16871 11| https://doi.org/10.1038/s41598-025-97378-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

We also showcase, with a few examples, how the the feedback mechanism of the LEMONADE’s Expert
System guides the LLM towards changing the generated neural network.

•	 Case 1: We can see that the initially generated model was a simple CNN model with two convolutional layers
having ReLU activations and Batch Normalization (BN), Maxpooling, and a single Dense layer. After getting
the feedback (ACL,ASC,ADL) chatGPT-4o generated a model with four blocks of convolutional layers with
ReLU activation and Batch Normalization (BN), and two Dense layers. It also added two skip connections
based on the feedback.

•	 Case 2: Shows another behavior of chatGPT-4o where it adds more skip connections by adding some convo-
lutional layers.

•	 Case 3: In some situations, skip connections make the network architecture more energy intensive to train/
run. In this case, chatGPT-4o reduces the skip connections based on the feedback from ES.

•	 Case 4: chatGPT-4o not always showed outstanding performance. We carefully checked the responses from
chatGPT-4o and saw that in approximately 10% of the cases it fails to follow the provided instructions. In one
case chatGPT-4o generated an invalid model that failed complication due to layer shape mismatch.

Limitations of using the GPT-4o/Gemini-Pro for NAS
ChatGPT-4o and Gemini-Pro can generate neural networks based on a prompt but they have several limitations
that necessities the use of an additional automated guidance system (such as LEMONADE). We discuss some of
these limitations below:

•	 Prompt dependency The effectiveness of a network architecture is significantly influenced by the quality of the
prompt. A well-defined prompt enables GPT-4o or Gemini-Pro to produce network architectures that align
with the specified requirements. Conversely, an ambiguous prompt may lead to outcomes that do not fulfill
the objectives.

•	 Inadequate validation capacity Although the LLMs can propose a network structure, they lack the capability
to independently train and validate the proposed architecture on a dataset.

•	 Deficiency in numerical optimization Current LLMs can not directly calculate the ideal hyperparameters of an
architecture for the given task specifications.

Fine tuning GPT-4o/Gemini-Pro for the NAS
The following techniques have been used to improve the performance of the LLMs to generate good quality
neural network architecture:

•	 Prompt engineering: Fine-tuning the prompt by specifying the constraints and validation outcomes helped us
generate good-quality architecture.

•	 Integrate expert system: We have proposed an expert system that helps generate high quality architectures by
providing structured feedback to the LLM backend (GPT-4o or Gemini-Pro).

•	 Integrate external validation: Since the LLMs lack the capability to train the proposed architectures, we have
integrated a system for assessing various performance metrics such as accuracy, power, inference speed, and
model size. These metrics were subsequently utilized in the next iteration’s prompt, emulating a reinforcement
approach.

Conclusion
In this article, we have formalized, implemented, and evaluated a multi-parameter neural discovery framework,
LEMONADE that can efficiently generate novel neural networks for diverse requirements without leveraging
any pre-defined search space. LEMONADE can effectively trade-off final model accuracy for other edge AI
parameters such as FPS and inferencing energy cap. The proposed framework operates with the help of a set of
customizable metrics and a rules-driven expert system. The proposed expert system generates instructions for a
backend large language model (LLM) such as ChatGPT-4o and Gemini-Pro to iteratively produce novel neural
networks. LEMONADE was able to successfully create state-of-the-art neural networks that are optimized for
accuracy, FPS, and power consumption across different applications/requirements and datasets (CIFAR-10,
CIFAR-100, ImageNet16-120, Malaria, Euro-SAT, IMDb). This work paves the way toward a new paradigm of
AI-guided AI designing. Future works will investigate efficient model pruning and quantization using AI. Future
works will also explore the use of a customized LLM that is specifically trained to generate AI models for a wider
range of user-defined applications.

Data availability
 The datasets analyzed in this study are publicly available in the following repository: The CIFAR-10 and CI-
FAR-100 datasets are available at https://www.cs.toronto.edu/~kriz/cifar.html. The ImageNet16-120 dataset is
available at https://github.com/hafizuriu/ImageNet16. Malaria parasite data is available at ​h​t​t​p​s​:​​/​/​w​w​w​.​​k​a​g​g​l​e​​.​
c​o​m​/​d​​a​t​a​s​e​​t​s​/​i​a​r​​u​n​a​v​a​/​​c​e​l​l​-​i​​m​a​g​e​s​-​f​o​r​-​d​e​t​e​c​t​i​n​g​-​m​a​l​a​r​i​a Euro-SAT data is available at ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​p​h​e​l​
b​e​r​/​e​u​r​o​s​a​t​​​​​. IMDb data is available at ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​k​a​g​g​l​​e​.​c​​o​m​​/​d​a​t​a​s​​e​​t​s​/​l​​a​k​s​h​m​i​​2​5​n​p​a​​​t​h​i​/​i​​​m​d​b​-​d​a​​t​​a​s​e​​t​​-​o​​f​-​5​​0​k​
-​​m​o​v​i​e​-​r​​e​v​i​e​w​s​/​d​a​t​a.

Received: 20 December 2024; Accepted: 3 April 2025

Scientific Reports | (2025) 15:16871 12| https://doi.org/10.1038/s41598-025-97378-5

www.nature.com/scientificreports/

https://www.cs.toronto.edu/%7ekriz/cifar.html
https://github.com/hafizuriu/ImageNet16
https://www.kaggle.com/datasets/iarunava/cell-images-for-detecting-malaria
https://www.kaggle.com/datasets/iarunava/cell-images-for-detecting-malaria
https://github.com/phelber/eurosat
https://github.com/phelber/eurosat
https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews/data
https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews/data
http://www.nature.com/scientificreports

References
	 1.	 Chua, M. et al. Tackling prediction uncertainty in machine learning for healthcare. Nat. Biomed. Eng. 7, 711–718 (2023).
	 2.	 Bhardwaj, R. & Tripathi, I. An enhanced reversible data hiding algorithm using deep neural network for e-healthcare. J. Amb. Intell.

Humaniz. Comput. 14, 10567–10585 (2023).
	 3.	 Nandy, S. et al. An intelligent heart disease prediction system based on swarm-artificial neural network. Neural Comput. Appl. 35,

14723–14737 (2023).
	 4.	 Jaafar, N. & Lachiri, Z. Multimodal fusion methods with deep neural networks and meta-information for aggression detection in

surveillance. Expert Syst. Appl. 211, 118523 (2023).
	 5.	 Mahum, R. et al. A robust framework to generate surveillance video summaries using combination of zernike moments and

r-transform and deep neural network. Multimed. Tools Appl. 82, 13811–13835 (2023).
	 6.	 Jan, Z. et al. Artificial intelligence for industry 4.0: Systematic review of applications, challenges, and opportunities. Expert Syst.

Appl. 216, 119456 (2023).
	 7.	 Raja Santhi, A. & Muthuswamy, P. Industry 5.0 or industry 4.0 s? Introduction to industry 4.0 and a peek into the prospective

industry 5.0 technologies. Int. J. Interact. Des. Manuf. (IJIDeM) 17, 947–979 (2023).
	 8.	 Shafiq, M. et al. Continuous quality control evaluation during manufacturing using supervised learning algorithm for industry 4.0.

Int. J. Adv. Manuf. Technol. (2023).
	 9.	 Rajput, D. S., Meena, G., Acharya, M. & Mohbey, K. K. Fault prediction using fuzzy convolution neural network on IoT environment

with heterogeneous sensing data fusion. Meas. Sens. 26, 100701 (2023).
	10.	 Liyakat, K. K. S. Machine learning approach using artificial neural networks to detect malicious nodes in IoT networks. In

International Conference on Machine Learning, IoT and Big Data 123–134 (Springer, 2023).
	11.	 Thakkar, A. & Lohiya, R. Attack classification of imbalanced intrusion data for IoT network using ensemble learning-based deep

neural network. IEEE Internet Things J. 10, 11888–11895 (2023).
	12.	 OpenAI, R. Gpt-4 technical report. Preprint at arxiv:2303.08774. View in Article2, 13 (2023).
	13.	 Wang, J. et al. El-nas: Efficient lightweight attention cross-domain architecture search for hyperspectral image classification.

Remote Sens. 15, 4688 (2023).
	14.	 Yang, T., He, Q. & Huang, L. OM-NAS: Pigmented skin lesion image classification based on a neural architecture search. Biomed.

Opt. Express 14, 2153–2165 (2023).
	15.	 Yang, Y., Wei, J., Yu, Z. & Zhang, R. A trustworthy neural architecture search framework for pneumonia image classification

utilizing blockchain technology. J. Supercomput. 80, 1694-1727 (2024).
	16.	 Hassan, E. et al. Mask r-CNN models. Nile J. Commun. Comput. Sci. 3, 17–27 (2022).
	17.	 Dong, P. et al. Rd-nas: Enhancing one-shot supernet ranking ability via ranking distillation from zero-cost proxies. In ICASSP

2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 1–5 (IEEE, 2023).
	18.	 Wang, J. et al. Nas-dymc: Nas-based dynamic multi-scale convolutional neural network for sound event detection. In ICASSP

2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 1–5 (IEEE, 2023).
	19.	 Li, J. et al. Graph neural network architecture search for rotating machinery fault diagnosis based on reinforcement learning. Mech.

Syst. Signal Process. 202, 110701 (2023).
	20.	 Yuan, W., Fu, C., Liu, R. & Fan, X. SSoB: Searching a scene-oriented architecture for underwater object detection. Vis. Comput. 39,

5199–5208 (2023).
	21.	 Jia, X. et al. Fast and accurate object detector for autonomous driving based on improved yolov5. Sci. Rep. 13, 1–13 (2023).
	22.	 Mehta, R., Jurečková, O. & Stamp, M. A natural language processing approach to malware classification. J. Comput. Virol. Hacking

Tech. 20, 173-184 (2024).
	23.	 Girdhar, N., Coustaty, M. & Doucet, A. Benchmarking nas for article separation in historical newspapers. In International

Conference on Asian Digital Libraries, 76–88 (Springer, 2023).
	24.	 Real, E., Aggarwal, A., Huang, Y. & Le, Q. V. Regularized evolution for image classifier architecture search. In Proceedings of the

AAAI conference on artificial intelligence vol. 33, 4780–4789 (2019).
	25.	 Liu, C. et al. Progressive neural architecture search. In Proceedings of the European conference on computer vision (ECCV) 19–34

(2018).
	26.	 Cai, H., Chen, T., Zhang, W., Yu, Y. & Wang, J. Efficient architecture search by network transformation. In Proceedings of the AAAI

conference on artificial intelligence, vol. 32 (2018).
	27.	 Pham, H., Guan, M., Zoph, B., Le, Q. & Dean, J. Efficient neural architecture search via parameters sharing. In International

conference on machine learning 4095–4104 (PMLR, 2018).
	28.	 Liu, H., Simonyan, K. & Yang, Y. Darts: Differentiable architecture search. Preprint at arXiv:1806.09055 (2018).
	29.	 Ying, C. et al. Nas-bench-101: Towards reproducible neural architecture search. In International conference on machine learning

7105–7114 (PMLR, 2019).
	30.	 Dong, X. & Yang, Y. Nas-bench-201: Extending the scope of reproducible neural architecture search. Preprint at arXiv:2001.00326

(2020).
	31.	 Krizhevsky, A. & Hinton, G. Learning multiple layers of features from tiny images (Tech. Rep, Toronto, ON, Canada, 2009).
	32.	 Chrabaszcz, P., Loshchilov, I. & Hutter, F. A downsampled variant of imagenet as an alternative to the cifar datasets. Preprint at

arXiv:1707.08819 (2017).
	33.	 Ye, P. et al. β-darts: Beta-decay regularization for differentiable architecture search. In 2022 IEEE/CVF conference on computer

vision and pattern recognition (CVPR) 10864–10873 (IEEE, 2022).
	34.	 Movahedi, S. et al. λ -darts: Mitigating performance collapse by harmonizing operation selection among cells. Preprint at

arXiv:2210.07998 (2022).
	35.	 Zheng, M. et al. Can GPT-4 perform neural architecture search? Preprint at arXiv:2304.10970 (2023).
	36.	 Achiam, J. et al. GPT-4 technical report. Preprint at arXiv:2303.08774 (2023).
	37.	 Wang, H. et al. Graph neural architecture search with GPT-4. Preprint at arXiv:2310.01436 (2023).
	38.	 Hassan, E., Bhatnagar, R. & Shams, M. Y. Advancing scientific research in computer science by ChatGPT and llama-a review. In

International conference on intelligent manufacturing and energy sustainability 23–37 (Springer, 2023).
	39.	 Helber, P., Bischke, B., Dengel, A. & Borth, D. Eurosat: A novel dataset and deep learning benchmark for land use and land cover

classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 12(7), 2217–2226 (2019).
	40.	 Rajaraman, S. et al. Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in

thin blood smear images. PeerJ 6, e4568 (2018).
	41.	 Maas, A. et al. Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the association for

computational linguistics: Human language technologies 142–150 (2011).
	42.	 PowerAPI. Pyjoules: Python-based energy measurement library for various domains including nvidia gpus. ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​p​

o​w​e​r​a​p​i​-​n​g​/​p​y​J​o​u​l​e​s​​​​ (2024). Accessed: 2024-05-31.
	43.	 Loni, M., Sinaei, S., Zoljodi, A., Daneshtalab, M. & Sjödin, M. Deepmaker: A multi-objective optimization framework for deep

neural networks in embedded systems. Microprocess. Microsyst. 73, 102989 (2020).
	44.	 Suganuma, M., Kobayashi, M., Shirakawa, S. & Nagao, T. Evolution of deep convolutional neural networks using cartesian genetic

programming. Evol. Comput. 28, 141–163 (2020).
	45.	 Ren, J. et al. Eigen: Ecologically-inspired genetic approach for neural network structure searching from scratch. In Proceedings of

the IEEE/CVF conference on computer vision and pattern recognition 9059–9068 (2019).

Scientific Reports | (2025) 15:16871 13| https://doi.org/10.1038/s41598-025-97378-5

www.nature.com/scientificreports/

http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/1806.09055
http://arxiv.org/abs/2001.00326
http://arxiv.org/abs/1707.08819
http://arxiv.org/abs/2210.07998
http://arxiv.org/abs/2304.10970
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2310.01436
https://github.com/powerapi-ng/pyJoules
https://github.com/powerapi-ng/pyJoules
http://www.nature.com/scientificreports

	46.	 Xie, L. & Yuille, A. Genetic CNN. In Proceedings of the IEEE international conference on computer vision 1379–1388 (2017).
	47.	 Lu, Z. et al. Multi-criterion evolutionary design of deep convolutional neural networks. Preprint at arXiv:1912.01369 (2019).
	48.	 Kandasamy, K., Neiswanger, W., Schneider, J., Poczos, B. & Xing, E. P. Neural architecture search with bayesian optimisation and

optimal transport. Adv. Neural Inf. Process. Syst. 31 (2018).
	49.	 Elsken, T., Metzen, J.-H. & Hutter, F. Simple and efficient architecture search for convolutional neural networks. Preprint at

arXiv:1711.04528 (2017).
	50.	 Dong, X. & Yang, Y. Searching for a robust neural architecture in four GPU hours. In Proceedings of the IEEE/CVF Conference on

computer vision and pattern recognition 1761–1770 (2019).
	51.	 Chu, X. et al. Darts-: Robustly stepping out of performance collapse without indicators. Preprint at arXiv:2009.01027 (2020).
	52.	 Chen, X., Wang, R., Cheng, M., Tang, X. & Hsieh, C.-J. Drnas: Dirichlet neural architecture search. Preprint at arXiv:2006.10355

(2020).
	53.	 Hu, Y., Wang, X., Li, L. & Gu, Q. Improving one-shot NAS with shrinking-and-expanding supernet. Pattern Recogn. 118, 108025

(2021).
	54.	 Chu, X., Zhang, B. & Xu, R. Fairnas: Rethinking evaluation fairness of weight sharing neural architecture search. In Proceedings of

the IEEE/CVF international conference on computer vision 12239–12248 (2021).
	55.	 Xiao, H., Wang, Z., Zhu, Z., Zhou, J. & Lu, J. Shapley-NAS: Discovering operation contribution for neural architecture search. In

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 11892–11901 (2022).
	56.	 Yu, K., Ranftl, R. & Salzmann, M. Landmark regularization: Ranking guided super-net training in neural architecture search. In

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 13723–13732 (2021).
	57.	 Cavagnero, N., Robbiano, L., Caputo, B. & Averta, G. Freerea: Training-free evolution-based architecture search. In Proceedings of

the IEEE/CVF Winter conference on applications of computer vision 1493–1502 (2023).
	58.	 Zheng, X. et al. Neural architecture search with representation mutual information. In Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition 11912–11921 (2022).
	59.	 Strubell, E., Ganesh, A. & McCallum, A. Energy and policy considerations for deep learning in NLP. Preprint at arXiv:1906.02243

(2019).
	60.	 Zoph, B., Vasudevan, V., Shlens, J. & Le, Q. V. Learning transferable architectures for scalable image recognition. In Proceedings of

the IEEE conference on computer vision and pattern recognition 8697–8710 (2018).

 Acknowledgments
This material is based upon work supported by the National Science Foundation (NSF) under Grant No. DRL-
2342746 and Grant No. OIA-2416915.

Author contributions
 M.H.R. was responsible for designing the experiment, analyzing the data, preparing the results, and writing the
manuscript. Z.H. conducted the experimental analysis and contributed to writing the manuscript. P.C. concep-
tualized the idea, contributed to the experimental design, and also participated in writing the manuscript.

Declarations

Competing interests
The authors declare that they have no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.H.R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025

Scientific Reports | (2025) 15:16871 14| https://doi.org/10.1038/s41598-025-97378-5

www.nature.com/scientificreports/

http://arxiv.org/abs/1912.01369
http://arxiv.org/abs/1711.04528
http://arxiv.org/abs/2009.01027
http://arxiv.org/abs/2006.10355
http://arxiv.org/abs/1906.02243
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿An automated multi parameter neural architecture discovery framework using ChatGPT in the backend
	﻿Background and motivation
	﻿Neural architecture search
	﻿Shortcomings of NAS
	﻿Why LLM and expert system for neural discovery?

	﻿Methodology
	﻿Neural discovery process
	﻿Expert system for instruction set generation
	﻿Conflict resolution
	﻿Dataset description and preparation

	﻿Experimental analysis and results
	﻿Intermediate and final model training process
	﻿Comparing LEMONADE with state-of-the-art NAS frameworks
	﻿Utilizing LEMONADE to construct neural networks for diverse datasets and application needs

	﻿In-depth analysis and limitations of LLM
	﻿Limitations of using the GPT-4o/Gemini-Pro for NAS
	﻿Fine tuning GPT-4o/Gemini-Pro for the NAS

	﻿Conclusion
	﻿References

