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Widely used ultrasonic simulation systems often rely on complex graphical user interfaces (GUIs) 
or scripting, resulting in substantial time investments and reduced accessibility for new users. In 
this study, we propose a novel text-based simulation control architecture, which leverages a large 
language model (LLM) and the ground artificial intelligence (AI) approach to streamline the control 
of ultrasonic simulation systems. By modularizing the functionalities of the SimNDT program into 
discrete functions and enabling natural language-based command interpretation, the proposed 
method reduces the average simulation configuration time by approximately 75%. To further mitigate 
task failures in scenario generation using the LLM, we introduce the ground AI approach, which 
employs self-review mechanisms and multi-agent collaboration to improve task completion rates. In 
particular, when vectorized output lengths deviate from the standard, we regenerate outputs using 
multiple LLM agents, reducing the scenario generation error rate from 23.89 to 1.48% and enhancing 
reliability significantly. These advancements underscore the potential of AI-driven methods in reducing 
operational costs and enhancing reliability in simulation frameworks. By integrating text-based control 
and Ground AI mechanisms, the proposed approach provides an efficient and scalable alternative to 
traditional GUI-based control methods, particularly in time-sensitive applications such as digital twin 
systems.
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In engineering, simulations are indispensable tools for analyzing and predicting the behavior of complex systems. 
They are widely utilized in fluid dynamics, structural analysis, and energy systems to support decision-making 
and enhance design processes. However, generating large amounts of diverse simulation data for practical 
applications requires expert manipulation and remains challenging owing to the inherently time-consuming 
and complex nature of repetitive simulation control. Prevailing methodologies rely heavily on graphical user 
interfaces (GUIs), necessitating manual user interaction, which limits automation and scalability when extensive 
datasets are required1–6.

Integrating large language models (LLMs) into simulation workflows offers the potential to address these 
challenges. LLMs, such as the generative pre-trained transformers (GPTs)7,8, have demonstrated remarkable 
capabilities based on training on extensive datasets, enabling rapid and efficient text processing9. By leveraging 
LLMs for natural language-based simulation control, repetitive tasks may be automated, parameter tuning may 
be optimized, and data generation processes may be streamlined significantly. This approach could revolutionize 
simulation management, enhancing efficiency and scalability across various engineering applications.

To this end, we propose a text-based simulation control framework by leveraging LLMs. By modularizing 
the functionalities of SimNDT: Ultrasound NDT simulation tool (Version: 0.52)10 into callable functions, we 
enable users to control simulations via natural language commands. For instance, when a user might input: 
”Simulate ultrasonic wave propagation in a rectangular object with a width of 10 and a height of 5,” the system 
interprets the prompt and executes the corresponding simulation scenario. This novel method simplifies 
simulation control and facilitates more intuitive interactions compared to traditional GUI-based methods. 
However, despite initial results suggesting significant improvements in efficiency and usability, challenges such 
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as those regarding accuracy and reliability of LLM-generated scenarios persist. To address these, we develop 
strategies based on Ground artificial intelligence (AI), which enhances LLM-driven systems by incorporating 
self-review mechanisms and multi-agent strategies to improve decision-making accuracy and reduce errors11. 
In this approach, LLMs refine their outputs iteratively or collaborate with other agents to generate more reliable 
results, providing a robust framework for addressing their inherent limitations in complex tasks.

In this work, we propose a novel text-based simulation control method that draws on large language models 
to address the constraints of traditional GUI-based approaches. We also develop a systematic integration of 
Ground AI principles-ranging from single-agent methods to multi-agent collaborations-and demonstrate how 
these strategies can reduce inaccuracies in LLM outputs. Furthermore, we validate the practical feasibility of 
our framework by incorporating it into SimNDT and assessing its performance under realistic ultrasonic wave 
propagation scenarios. By integrating sophisticated AI methodologies with ultrasonic simulation, this research 
presents a scalable, efficient alternative for managing complex engineering simulations, thereby expanding the 
potential of AI-powered tools in computational science and engineering.

The remainder of this paper is organized as follows. The implementation of the proposed LLM-based text 
simulation control architecture is discussed in Section 2, besides the text command-based approach, the modular 
structure for LLM function calls, and practical examples of text-based control. In Section 3, error reduction 
techniques based on the Ground AI approach are described, along with the concept, experimental configuration, 
and results of various error mitigation strategies. The overall results are presented and discussed in Section 4, 
highlighting the contributions and implications of our work. Finally, the paper is concluded in Section 5 by 
summarizing key findings and suggesting future research directions.

Literature review
Interest in AI models and their utilization12,13 have steadily increased over the past few years, spanning a wide 
range of industries, including economics and healthcare. The emergence of LLMs, e.g., the attention14-based 
architectures, BERT9 and GPT7,8, has not only motivated significant advancements in AI performance but 
also accelerated efforts to integrate these models within industrial applications. Organizations and research 
institutions are actively adopting large language models to achieve objectives such as increased productivity, 
cost reduction, personalized customer services, and precision medicine. The scope of real-world applications 
of LLMs is expanding rapidly, from medical diagnosis support systems and financial analysis to automated 
translation and AI-driven customer service chatbots12,15,16. This trend transcends mere AI adoption; it is 
fundamentally reshaping industrial processes and serving as a catalyst for innovation across sectors17–19. 
However, as AI technology continues to evolve, new concerns regarding ethics, privacy, and algorithmic bias 
are emerging. Addressing these concerns requires the establishment of proper guidelines to ensure transparency 
and implement responsible AI operations.

Consequently, AI, and in LLMs with their enhanced expressiveness and learning capabilities in particular, 
has evolved from merely serving static functions into a crucial tool for creative problem-solving and complex 
decision-making. This trend is expected to accelerate further in the coming years, leading to the continuous 
expansion of the scope of AI applications and profound transformations in various industries11,15,16,20. With 
the advancement of AI, autonomous controlling systems on this basis have gained prominence, leading to the 
development of the concept known as ’orchestration.’ Orchestration refers to the process of coordinating and 
managing the deployment, integration, and interaction of various AI components. Additionally, LLMs are 
assigned roles specific to individual agents, facilitating collaboration between humans and AI (often referred 
to as human-AI interaction) and expanding research related to agents. This approach enables AI agents to act 
autonomously and perform complex tasks without human intervention. Thus, AI orchestration and agent-based 
methodologies enhance the autonomy and efficiency of AI systems, elevating human-AI collaboration21–31 to a 
new dimension.

Traditional simulation automation frameworks11,12,15,20,32, such as MyCrunchGPT19 and the AI-based design 
system32, have made significant progress in data analysis, model recommendations, and single-step optimization. 
However, they lack a structured framework capable of fully orchestrating iterative simulations in a feedback-
driven manner26. MyCrunchGPT leverages LLMs for scientific machine learning tasks, primarily focusing on 
data analysis and model selection rather than on direct simulation execution. Similarly, the approach proposed 
by Park et al. employs a single-model generative AI pipeline integrated with an optimization solver, but does 
not incorporate a multi-agent system16,33,34, limiting its ability to conduct continuous, feedback-driven iterative 
experimentation.

In contrast, the framework proposed in this paper adopts a multi-agent architecture, where one agent 
translates natural language input of the user into executable commands, another executes the simulation based 
on these commands, and a third evaluates the results to refine inputs for subsequent iterations28. This automated 
workflow transcends single-step analysis or static optimization by continuously leveraging previous simulation 
results to guide subsequent iterations. Unlike existing approaches that operate within a fixed input-output loop, 
the proposed framework ensures that iterative feedback influences future simulation conditions dynamically, 
enabling a more autonomous and self-improving process. Moreover, the proposed framework adopts a modular 
orchestration strategy, allowing LLMs to control each stage of the simulation pipeline rather than being restricted 
to auxiliary functions. This design enhances simulation flexibility by enabling the framework to incorporate 
responses from another model automatically to refine the decision-making process when an intermediate 
result is determined to be erroneous23. This self-review mechanism not only improves simulation reliability 
but also significantly reduces the need for human intervention for error handling and adjustments. As a result, 
the proposed framework fosters a more efficient, robust, and autonomous simulation automation environment. 
Table 1 provides a comparison between existing research approaches, their limitations, the necessity of our work, 
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and our proposed methods that overcome these challenges through structured function calling, schema-based 
validation, and self-review mechanisms.

Implementation of LLM-based text simulation control architecture
To control the program using LLMs, we modularize the various functionalities of the SimNDT program into 
callable functions and design a code-based controllable structure. This enables the programmatic control 
of multiple tasks, including simulation configuration, execution, and result output. In this work, we adopt a 
modular architecture for the SimNDT program by separating core functionalities into distinct classes or 
functions. Specifically, components such as Scenario, Material, Boundary, Transducer, Signal, and Simulation 
are each implemented as individual modules, which are collectively packaged based on a SimPack object. 
Using this design, an LLM (e.g., GPT-4o) provides natural language inputs that are subsequently mapped to the 
corresponding modules, thereby orchestrating simulation tasks, such as configuration, execution, and output 
handling in a step-by-step, programmatic manner. Further, low-level details, such as the physics engine or 
postprocessing routines, are encapsulated under the SimNDT.engine folder, allowing independent functionalities, 
e.g., the EFIT2D solver, to operate without directly coupling with the high-level control. In practice, higher-
level classes, such as EngineController or SIM Custom, coordinate with these modules to run and manage the 
simulation. As a result, the LLM-based interface focuses on parameter delivery and orchestration logic, while the 
actual computation or physics modeling is handled by separate, specialized modules. This code-based structure 
not only enhances flexibility and scalability in ultrasonic simulation but also simplifies the extension to other 
domains (e.g., thermal or structural analysis) if needed.

With this modular design, we implemented an environment that interprets natural language text commands 
using the GPT-4o model of OpenAI to orchestrate simulations. Users can execute simulations based on simple 
text inputs without complex code or GUI operations, greatly enhancing user experience. LLMs translate the 
input natural language commands into SimNDT function calls, and the simulation engine executes them to 
yield the results.

Text command-based simulation control architecture
The text command-based simulation control comprises three primary components—prompt input, LLM, and 
the simulation engine. The entire process is depicted in Fig. 1. The prompt input is the medium in which users 
enter text prompts, i.e., natural language commands that specify the desired simulation tasks. Using the prompt 
input, users can easily instruct the system on the simulations they wish to perform without the need for complex 
coding or GUI navigation. LLM functions as the interpreter within the text-based simulation control framework. 
It processes the input text commands and translates them into code or specific function calls comprehensible to 
the simulation engine. This translation is crucial as it bridges the gap between human language and machine-
executable instructions, enabling seamless interaction between the user and the simulation engine. Finally, 
the simulation engine receives the code or function calls generated by LLM and executes the corresponding 
simulations, returning the results to the user. This component performs the computational tasks required for 
the simulations, serving as the core component of the system that delivers the outcomes to the user. Integrating 
these components allows users to control simulations using simple text prompts, simplifying the simulation 
configuration and execution processes significantly.

Existing research Limitations Necessity of our work Proposed method (ours)

Transformer-based 
LLM7–9,14

High computational cost and complexity; issues 
with factual accuracy, reasoning, and biases

Need for accurate translation from natural 
language to structured commands to mitigate 
misinterpretations

Using GPT-4o with structured function 
calling and predefined simulation schemas to 
improve accuracy and reduce ambiguity

Human-AI interaction 
(HAI) basedprogram 
control21,22,24,27

Limited real-world applicability and insufficient 
structured command handling; limited 
generalization and robustness

Robust, structured, and verifiable command 
interpretation required for practical program control

Employing structured prompt inputs and 
LLM-driven function calling mechanisms 
combined with schema-based validation

Multi-Agent and 
autonomous AI 
systems16,25,26,28

High complexity, limited resource efficiency, 
poor generalization across diverse scenarios

Efficient single-agent solutions needed for reliable 
scenario generation and resource optimization

Integrating Ground AI verification with single 
and multi-LLM agent configurations to ensure 
reliability while controlling resource usage

Human-feedback based 
learning29–31

Limited scalability and generalization to 
complex tasks; lack of structured command 
verification

Automatic validation and self-correction of 
structured commands required for complex tasks

Self-review mechanisms and structural 
schema validation embedded in LLM-
generated function calls

AI-based 
simulations12,13,19,32

Complexity in simulation setup, limited 
accessibility, insufficient verification of 
simulation parameters

Simplified and accessible methods for configuring 
and running accurate simulations needed

Prompt-based natural language inputs 
mapped automatically via Simulation Variable 
Schema to structured executable commands

Language-based data 
visualization andAI 
tools15,17,18,23

Limited handling of complex computational 
tasks; insufficient real-world validation

Effective integration of natural language commands 
with computational tasks, providing realistic and 
validated results

Structured parameter generation via 
predefined schemas linked directly to 
computational tasks within simulations

Table 1.  Flow of developments: existing research limitations and our improvements.
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Algorithm 1.  LLM-driven simulation configuration and execution

Program control through LLM function calling structure
To control the program effectively, we employ the function calling mechanism provided by the LLM, GPT-
4o. This feature enables the LLM to generate structured data that adheres to predefined function signatures, 
facilitating seamless integration between natural language inputs and programmatic function calls. In the 
implementation described here, the SimNDT program is transformed into a set of modular functions, each 
corresponding to a specific simulation task. To this end, a Simulation Variable Schema is developed as shown in 
Supplementary Figures (Figs. S1-3), which describes the variables necessary for these functions and facilitates 
their functionization. The schema includes comprehensive descriptions for each variable, which help the LLM 
understand the intended purpose and utilization of each variable, enhancing the relevance of the generated 
function calls.

Upon receiving a natural language command from the user via a prompt, the LLM initiates input processing. 
The function calling mechanism generates a function call corresponding to one of the predefined functions. 
Subsequently, the model identifies the most suitable function and populates the parameters following the input 
of the user, reflecting the intended outcome. If the user does not specify particular parameters, the model utilizes 
default values defined within the simulation variable schema to guarantee that the function call is complete and 
executable. For instance, if a user inputs the command ”Simulate ultrasonic wave propagation in a rectangular 
object with a width of 10 and a height of 5,” the LLM interprets this command and generates the corresponding 
simulation scenario via function calling based on the simulation variable schema, as illustrated in Fig. 2. 

Figure 1.  Flowchart of text command-based simulation control using LLM.
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This structured output follows the predefined simulation variable schema and can be directly utilized by the 
simulation engine to execute the simulation.

The proposed architecture enables the parallel generation of multiple simulation scenarios during the LLM 
processing stage. However, in the simulation execution phase, support for dedicated computational acceleration 
(such as GPU parallelization or cluster environments) is currently limited. Therefore, the feasibility of parallel 
execution depends on the complexity of the simulations and the available resources. Thus, while the architecture 
allows for the efficient simultaneous creation of various simulation scenarios, the actual execution phase may 
require sequential processing depending on the circumstances.

The simulation variable schema enumerates all essential parameters, e.g., geometry definitions, material 
properties, boundary conditions, and solver configurations, ensuring that each function call includes every 
component required for a valid simulation. If certain parameters are omitted in command of the user, they are 
automatically populated with predefined defaults specified by the schema, preventing incomplete or invalid 
configuration requests. Moreover, users can easily override default values using subsequent prompts or edits if 
they wish to refine specific conditions (e.g., adjusting the wave frequency or boundary thickness). This approach 
not only streamlines the configuration process for novices but also provides experienced users with precise 
control, striking a balance between simplicity and flexibility. As a result, once the schema-based function call is 
finalized, it can be transmitted to the underlying simulation engine seamlessly for immediate execution.

By leveraging the function calling mechanism, the LLM generates outputs that conform to the expected 
format consistently, thereby reducing errors and enhancing the stability of simulation execution. Further, this 
approach enables the LLM to comprehend the variables intended to be set by the user based on their input, 
thereby improving the validity and reliability of the simulation scenarios generated by the LLM. Furthermore, 
the simulation variable schema is constructed using the principles of functional modularization. The description 
field within the schema included an explanation of the function and role of each variable. This helps the LLM 

Figure 2.  Example of an output simulation scenario generated using function calls.
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understand the meaning of each variable, enabling the selection of suitable parameter configurations based on 
the input of the user. Default values are assigned in anticipation of scenarios where users may not set specific 
variables. This guarantees that all essential parameters for simulation execution are perpetually accessible, thereby 
enhancing the robustness of the text-based simulation control framework. Due to this structured approach, the 
LLM generates outputs following the predefined simulation variable schema consistently with each call, thereby 
ensuring stability in simulation execution. The LLM accurately interpreted the input of the user to determine 
which variables they wished to set and generated simulation scenarios accordingly for program execution.

Efficient text-based control and examples
The proposed system is an effective control tool, facilitating user interaction based on natural language prompts. 
For instance, a user may input: ”Generate simulation configurations for a rectangular defect in air with a label 
number of 200 and an aluminum background with a label number of 0. The defect’s depth, width, and height 
are 200, 10, and 5, respectively.” The LLM interprets the natural language commands and generates the requisite 
code or function calls for execution. Subsequently, the simulation engine executes the simulations and furnishes 
the results to the user. The outputs include the simulation geometry image, the simulation inspection condition 
animation, and the ultrasonic simulation result data stored as npy files. The npy files represent the ultrasonic 
simulation results stored as 2D matrices. Each value in the matrix corresponds to the signal amplitude at a 
specific spatial coordinate. Based on the aforementioned data, supplementary images, such as B-mode and 
synthetic aperture focusing technique (SAFT), are generated in the PNG format. The B-mode and SAFT graphs 
are generated based on the data obtained from the npy files, which visually represent the simulation results, as 
depicted in Fig. 3.

Implementing the proposed text-based control system reduces the time required for the configuration and 
execution of ultrasonic wave propagation simulations using the SimNDT program significantly. The average time 
required to execute a particular simulation is observed to decrease from approximately two minutes, required 

Figure 3.  Process flow of text-based command execution and simulation outputs.

 

Scientific Reports |        (2025) 15:12474 6| https://doi.org/10.1038/s41598-025-97498-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


by the traditional GUI-based control method, to approximately 30 seconds, required to write a prompt for the 
control command. This represents a 75% reduction, thereby greatly enhancing overall efficiency. In turn, this 
streamlines the workflow, rendering the system particularly useful when large amounts of simulation data are 
required or when continuous execution of simulations is necessary. Thus, the execution of numerous simulations 
over a short period becomes more feasible, which is especially beneficial in applications that demand repeated 
simulations.

Error reduction based on ground AI and experimental results
Concept and implementation of ground AI
Grounded AI represents an approach to ensuring that outputs generated by AI models are firmly based on 
reliable evidence rather than hallucinations or unfounded assertions. Despite their extensive training on 
diverse datasets, large language models may produce responses that appear plausible but lack factual accuracy. 
Ground AI addresses this limitation by implementing verification mechanisms that either validate outputs 
against trustworthy data sources or incorporate self-correction protocols, thereby minimizing potential issues 
such as misinformation or logical inconsistencies in AI-generated content35,36 A detailed comparison between 
rule-based validation and Ground AI approaches is summarized in Table 2, highlighting their differences in 
algorithmic flexibility, error management strategies, and contextual intelligence.

In this paper, Ground AI is employed to mitigate failures in the scenario generation process during simulation 
control. Considering a single-LLM agent without Ground AI as the baseline, three distinct approaches are 
implemented by combining Ground AI with a single-LLM agent with self-review and multi-LLM agents. The 
self-feedback method based on the single-LLM agent entails prompting the LLM to review the answer and 
correct it if required, encouraging it to revise and regenerate its response, as illustrated in Fig. 4. In this study, the 
self-review process of the proposed Ground AI approach focuses on the structural validation of the generated 
simulation schema, without incorporating feedback based on simulation results. Specifically, the generated 
schema is transmitted along with an internal self-review prompt to verify and enforce compliance with 
requirements, such as the presence of essential fields and parameter consistency. In all Ground AI approaches, a 
verification process of LLM answers is applied to ensure the integrity of the simulation scenarios. Following the 

Figure 4.  Flowchart of ground AI with self-review (single agent) approach.

 

Criteria Rule-based validation Ground AI approach

Validation paradigm Static and predefined rule enforcement Dynamic and adaptive multi-agent verification

Algorithmic flexibility Constrained by predetermined logical conditions Adaptive inference with contextual recalibration

Error management strategy Deterministic binary compliance checking Iterative error detection and generative correction

Computational complexity Low algorithmic overhead Moderate computational complexity with scalable agent configuration

Scenario adaptation capability Limited domain-specific applicability High contextual generalizability

Output refinement mechanism Strict output rejection Intelligent regeneration and systematic improvement

Verification protocol Deterministic checklist-based matching Structural integrity validation with probabilistic enhancement

Contextual intelligence Minimal semantic understanding Advanced contextual reasoning and interpretative capabilities

Architectural scalability Challenging cross-domain implementation Modular design enabling efficient domain transposition

Artificial intelligence integration Minimal AI model engagement Comprehensive leveraging of large language model capabilities

Table 2.  Comparative analysis of validation methodologies for rule-based and ground AI approaches.

 

Scientific Reports |        (2025) 15:12474 7| https://doi.org/10.1038/s41598-025-97498-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


vectorization of the generated simulation scenario, the vector length is evaluated to ascertain its equivalence with 
the number of keys present in the simulation variable schema (62 schema keys in this study). If the vector length 
equals the number of keys, the scenario is deemed valid and utilized to execute its corresponding simulation. 
Conversely, the scenario is classified as invalid and discarded if this equivalence is not established.

Similarly, a structured verification mechanism is also employed in AI-powered structured query language 
generation platforms, e.g., Vanna.ai37, which validates the generated queries by ensuring that all required 
components are included. Taking inspiration from this approach, our study adopts a predefined schema of 62 
keys to evaluate the completeness of AI-generated simulation scenarios. By verifying whether each scenario 
vector satisfies the 62-length criterion, we uphold a robust check against missing or inconsistent parameters, 
thereby enhancing both the reliability and reproducibility of the AI-driven simulation process. In the self-
feedback method based on the single-LLM agent, if the verification is not passed, the system transmits the 
invalid scenario, the prompt of the user, and a review message indicating that the response was incorrect38. This 
message instructs the LLM to correct the response and regenerate the simulation scenario to address the errors 
and enhance the validity of the generated scenarios, as shown in Fig. 4.

In contrast, multi-agent methods entail the utilization of multiple agents to generate responses in parallel. 
Each agent independently creates a simulation scenario, and these scenarios are validated in the order of 
generation. If the scenario from the initial LLM agent is deemed valid, its response proceeds to the subsequent 
phase, and the remaining agents remain inactive. If the initial scenario proposed by the first agent is deemed 
invalid, the scenario proposed by the second agent is validated next. This process is repeated until a valid scenario 
is generated, thereby ensuring the generation of a valid scenario. This method reduces the probability of failure 
by increasing the probability of obtaining at least one valid scenario based on the combined efforts of multiple 
LLM agents. However, multi-agent methods can become computationally expensive if excessively many agents 
are employed. Accordingly, the number of agents should be optimized to achieve an equilibrium between the 
computational cost and the probability of generating a valid scenario. Multi-agent methods with two and three 
agents are implemented to investigate the effectiveness of the number of LLM agents in Ground AI, as illustrated 
in Figs. 5 and 6, respectively.

Experimental configuration
In our experimental design, we aimed to rigorously assess the capability of LLMs to generate complex 
simulation scenarios while adhering to strict structural requirements. The fundamental challenge lies not just 
in understanding user requests, but in consistently generating a specific, deep, hierarchical JSON schema. 
This schema, which serves as the input for simulation execution, mandates a precise structure with nested 
parameters across multiple levels (e.g., scenario configuration, material properties, boundary conditions, defect 
specifications). The task demands more than just plausible variable naming and value generation; it requires 
precisely replicating the predefined schema structure in its entirety for every generation, incorporating only the 
modifications specified by user input, while ensuring the generated values maintain physical consistency and 
adhere to simulation constraints. For instance, the defect specification alone necessitates coordinating multiple 
interdependent parameters (shape, dimensions, position, material properties) within a specific nested hierarchy, 
demonstrating the intricate structural integrity the LLM must preserve. Any deviation from this required 
structure results in a simulation input error.

Experiments are conducted to evaluate the performance of four approaches—the initially designed approach 
without Ground AI, and the methods incorporating the self-feedback mechanism of Ground AI using a single-
LLM agent and multi-agent techniques using two and three agents. The performances of these methods are 

Figure 5.  Flowchart of ground AI with multi-LLM agents (two agents) approach.
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compared by adjusting a single variable in the simulation scenario to assess their impact on error rates in 
scenario generation.

Let us consider the following text control command (prompt) used for program control: ‘Generate simulation 
configurations for a rectangular defect in aluminum with a label number of 0 and air with a label number of 500. 
The original defect’s depth, width, and height are 1, 10, and 5, respectively.’ We aim to control the depth variable 
by assuming that it changes in increments of 1 mm. Even this simple modification of the user requirement, i.e., 
whether the LLM can create the simulation scenarios without failures, is investigated. On this basis, the failure 
probability of autonomous simulation control using the LLM and the periodicity can be evaluated qualitatively. 
To specifically probe the robustness of each approach against the difficulty of modifying this complex, fixed 
structure, we designed experiments with incremental modification demands based on user requirements. In 
the first experiment, only the depth of the defect is varied incrementally, whereas in the second experiment, 
both the depth and the width are varied. This dual-parameter modification significantly escalates the challenge, 
demanding that the LLM not only adjust multiple interdependent values but do so while meticulously preserving 
the integrity of the entire, complex, and predefined JSON structure. This stepwise approach allows for an 
assessment of the ability of the LLM to handle increasingly complex parameter changes and to understand the 
conditions under which simulation generation might fail or succeed.

All outputs are presented in the simulation scenario JSON results in the case of successful execution of 
the simulation control since all the necessary variables are generated correctly. In such cases, the length of the 
vectorized JN file is equal to the number of the schema keys. Thus, these coincidences are deemed to comprise 
a correct output. Otherwise, the tasks are considered failures due to input error during simulation execution. 
The error rate can be calculated by dividing the number of failed simulations by the total number of simulations. 
This process entails reading the critical values from the JSON files, vectorizing them, and measuring the 
lengths of the vectors. By verifying whether the vectors exhibit the expected length, the accurate generation 
of all necessary variables can be verified, thereby yielding the error rate. All experiments are conducted under 
identical conditions and the average error rate is calculated over five iterations.

Experimental results
In this section, we discuss the methodology and results of measuring error rates by vectorizing the JSON files 
and checking the lengths of the vectors to determine whether the outputs are generated correctly and can be 
executed as autonomous ultrasonic simulations via AI orchestration. The overall probability of error occurrence 
is observed to decrease considerably when Ground AI-based methodologies are employed, particularly in the 
case of multi-LLM agent approaches, as illustrated in Figs. 7 and 8. The average error rate of the method that does 
not include Ground AI is 23.89%. In contrast, Ground AI-based methods exhibit markedly lower error rates. 
In particular, the self-feedback method based on a single-LLM agent exhibits an average error rate of 15.84%, 
the multi-LLM agent method employing two agents exhibits that of 6.63%, and the multi-LLM agent method 
utilizing three agents exhibits the lowest average error rate of 1.48%. This suggests that incorporating Ground 
AI reduces the error rate associated with scenario generation significantly. Further, the multi-agent approaches 
yield lower error rates than the self-feedback method based on a single-LLM agent, indicating that employing 
multiple agents enhances the reliability of the simulation control process to a greater extent than the self-review 
prompt method.

During early phases of repetitive requests (call index: 0–500), the single-LLM agent-based method without 
Ground AI exhibits a high initial error rate exceeding 26%, which is significantly higher than those of other 
approaches. Incorporating Ground AI based on the self-feedback method that uses a single-LLM agent to review 
and correct the answer by itself results in a notable enhancement, with an initial error rate of 16%. However, the 
multi-LLM agent-based methods based on two or three agents exhibit even more favorable performance, with 
initial error rates of less than 8% and 4%, respectively.

As the experiments proceed to the accumulated phase (call index: 500–1000), the single-LLM agent-based 
method without Ground AI exhibits a cumulative error rate exceeding 20%, indicating a lack of sustained 
performance improvement. In contrast, the Ground AI-based implementation using the self-feedback method 

Figure 6.  Flowchart of ground AI with multi-LLM agents (three agents) approach.
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exhibits a stabilized error rate of approximately 10%, substantiating the efficacy of Ground AI and self-review 
mechanisms in a single-agent framework. The performances of the multi-LLM agent-based approaches are even 
more impressive, with error rates stabilizing below 5% for the two-LLM agent system and below 2% for the 
three-LLM agent system, which represents the best performance among the compared approaches. As illustrated 
in Fig. 8, experiments involving the control of two variables demonstrate that the multi-LLM agent approaches 
maintain impressive performance levels in all cases. Specifically, the error rates stabilize below 5% for the two-
LLM agent system and below 2% for the three-LLM agent system, mirroring the patterns observed in the single-
variable control experiments.

Further analysis of the standard deviation of error rates highlight the advantages of Ground AI and multi-
LLM agent methods. The single-LLM agent without Ground AI exhibits the highest variability between the initial 
and stabilized stages, reflecting inconsistent performance. In other words, achieving consistent performance 
with a single-LLM agent without Ground AI is challenging. The Ground AI-based self-feedback method exhibits 
relatively stable standard deviations—albeit higher than the those of the multi-agent approaches. Notably, the 
multi-agent approach with three agents exhibits the lowest standard deviations during the early and accumulated 

Figure 8.  Comparison of accumulated error rates of the four methods over 1000 calls with two-variable 
control.

 

Figure 7.  Comparison of accumulated error rates of the four methods over 1000 calls with single variable 
control.
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phases. This result suggests that the multi-LLM agent-based approaches with Ground AI yield more consistent 
and reliable performance in long-term practical applications.

The results of this study demonstrate that the integration of Ground AI in self-review and multi-agent systems 
enhances the efficiency and reliability of solutions for text-based simulation control. The superior performance 
of the multi-LLM agent-based approach with three agents indicates that employing multiple agents enhances the 
stability and reliability of autonomous ultrasonic simulation via AI orchestration and improves success rate of 
adjusting individual parameters during simulation execution. Building on these results, an additional experiment 
is conducted to explore whether increasing the number of agents beyond three enhances performance further. 
In the initial experiment, the number of agents is gradually increased up to three, resulting in a reduction of 
the error rate to 1.48%. Based on this observation, agents are dynamically added until the error is completely 
eliminated.

Multi-agent evaluation in a single-variable scenario
In this experiment, the error correction capability of a multi-LLM agent system is evaluated by conducting 
independent trials, where 1000 executions are repeated five times. Each trial is initiated with a single agent, 
and additional agents are introduced dynamically until the simulation is successfully completed. This approach 
enables the analysis of the distribution of the number of agents required to generate an error-free output. As 
illustrated in Fig. 9, the results reveal that, similar to our previous findings, approximately 20% of the scenarios 
require additional agents. When two agents are employed, 173 scenarios are successfully completed. When three 
agents are used, 22 scenarios are completed without requiring additional agents. When four or more agents 
are introduced, all errors are resolved, and no cases required the use of five or more agents. This experiment 
confirms that a multi-agent LLM system is significantly more robust than a single-agent approach and that, in a 
single-variable control environment, employing up to four agents is sufficient to eliminate all errors.

Cost analysis for single-agent vs. multi-agent approaches
Although the primary goal of this study is to reduce errors, resource expenditure also plays a crucial role in 
selecting an optimal agent configuration. To quantify cost implications in a single-agent environment, 5000 
simulation scenarios are considered and all application programming interface (API)-related expenses are 
recorded. According to the API usage logs provided by OpenAI, the total cost for generating these simulations 
amount to $37.85 (approximately 38 dollars), translating to an average cost of about $0.00757 (0.76 cents) 
per simulation. This result serves as a baseline for subsequent cost efficiency analysis of multi-agent systems. 
Considering that a single agent generates 1000 simulation scenarios in our experiment, the cost for a single-agent 
architecture is calculated to be approximately $7.57. As the number of agents is increased up to a maximum of 
five, the costs increase linearly to $7.57, $15.14, $22.71, $30.28, and $37.85, respectively. In other words, although 
deploying multiple agents reduces scenario generation errors, the cost increases linearly with each additional 
agent. Therefore, determining the optimal number of agents is crucial to balance cost and efficiency effectively.

Figure 9.  Comparison of empirical results of dynamic agent generation while controlling a single variable.
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Discussion
The experimental results demonstrate that although the methods integrating Ground AI concepts, particularly 
the multi-LLM agent approach utilizing three agents, are highly effective in reducing error rates in scenarios 
where a single variable is controlled, there is potential for further optimization of the performance of the system. 
Specifically, although the multi-LLM agent approach yields low error rates, further enhancements can be achieved 
by refining the decision-making mechanisms among the agents. In particular, improvements to the coordination 
strategies between agents may facilitate more effective consensus and more accurate scenario generation, thereby 
reducing residual errors and increasing the efficiency of the system. In particular, the multi-LLM agent-based 
approach with three agents is identified as the most effective method in our experiments in simulation scenarios 
involving the control of a single variable. However, further reliable autonomous ultrasonic simulation can be 
realized based on improvements to the decision-making processes among the multi-LLM agent system with 
many LLM agents and incorporating additional evaluation metrics. This would further enhance the robustness 
and reliability of Ground AI-based approaches for text-based simulation control in complex systems where 
efficiency and accuracy are paramount.

Moreover, the experiments in this study employ a vectorization process to measure error rates based on 
the verification of lengths of the vectors in the JSON files. Although this approach has been demonstrated to 
be effective, alternative evaluation metrics and methodologies should be considered to assess the ability of the 
system to produce outputs aligned with the intended objectives. Relying on a single metric may only partially 
capture the nuances of generative outputs. Thus, future research should explore complementary validation 
methods, such as expert evaluation, consistency analysis, and functional accuracy assessment. Expert evaluation, 
particularly based on human-in-the-loop assessment, may provide deeper insights into the contextual validity 
and reliability of the generated scenarios. Additionally, consistency testing, which involves measuring variations 
across repeated executions, could offer a quantitative measure of robustness. Further, functional accuracy 
analysis, comparing LLM-generated commands against predefined ground truth datasets, could enhance the 
evaluation framework, ensuring that outputs are aligned with expected behaviors.

As the number of agents is increased, the multi-LLM agent-based method exhibits enhanced reliability 
relative to the self-feedback method based on the single-LLM agent. These results demonstrate that the 
combination of self-review and multi-LLM agent approaches as Ground AI orchestration has the potential to 
enhance the scalability and reliability of the simulation control process. These methods address the limitations 
of relying on the output of a single LLM agent by providing mechanisms for error correction and leveraging 
multiple independent responses. This not only leverages the diversity of outputs obtained from multiple agents 
but also automates the validation process, increases efficiency, and reduces the scenario generation error rate. 
significantly.

Future works
Our immediate research priority is to develop an integrated validation framework that combines expert 
evaluation, consistency analysis, and functional accuracy assessment. Rather than merely exploring these 
methods individually, we will focus on creating a comprehensive system that automatically selects and applies 
the most appropriate validation technique based on simulation context. This framework will incorporate 
human-in-the-loop assessment protocols for high-stakes simulations while utilizing automated validation 
for routine tasks, creating a balanced approach that maximizes both efficiency and reliability across different 
operational requirements. To enhance scalability and stability for real-time simulations, we plan to investigate the 
integration of local LLMs, which would reduce dependency on API connections and internet connectivity. This 
approach would enable more responsive system performance and greater operational autonomy, particularly in 
environments with limited or unreliable network access, while also potentially reducing latency issues that could 
impact time-sensitive simulation applications in industrial settings.

We aim to strengthen the Ground AI concept by enhancing the agent paradigm with domain-specific 
capabilities rather than simply utilizing specialized LLMs. By developing specialized agents with distinct 
roles and expertise in fields such as nuclear energy, mechanical engineering, and robotics, we can create a 
more sophisticated multi-agent ecosystem. These domain-specialized agents would possess not only relevant 
knowledge but also specific reasoning patterns and validation protocols tailored to their respective domains. 
This approach focuses on the functional specialization of agents within the orchestration architecture, enabling 
more organized collaboration and domain-appropriate decision-making during simulation tasks. Building upon 
this agent specialization, we will develop an adaptive orchestration mechanism that dynamically configures the 
multi-agent system based on both task complexity and domain characteristics. This mechanism will intelligently 
determine the optimal composition of specialized agents, their interaction patterns, and the most effective 
validation strategy for each simulation task. By creating this context-aware orchestration layer, we can address 
the current limitations of fixed validation approaches while maintaining high accuracy standards. The system 
will learn from past simulation experiences to continuously refine its orchestration decisions, creating a truly 
adaptive framework that evolves alongside changing simulation requirements and domain knowledge.

Conclusions
In this study, we propose and implement a text-based simulation control architecture utilizing GPT-4o to 
enhance the efficiency and effectiveness of ultrasonic simulation control. By modularizing the functionalities 
of the SimNDT program into discrete functions and enabling simulation control based on natural language 
commands, the average time required for simulation configuration is reduced significantly—from two minutes 
to approximately 30 seconds. This indicates a 75% reduction in data generation costs. This improvement 
illustrates the potential for AI-driven methodologies to facilitate the optimization of simulation processes. To 
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address inherent limitations in LLM-based scenario generation, we introduced the Ground AI method, which 
integrates self-review mechanisms and multi-agent collaboration for enhanced reliability. The implementation 
of this approach enables the system to detect inconsistencies in generated scenarios and regenerate outputs 
under self-review guidance, significantly reducing the scenario generation error rate from 23.89% to 1.48%. This 
marked improvement underlines the effectiveness of the Ground AI approach in managing complex simulation 
tasks and highlights the importance of verification mechanisms when deploying LLMs in technical domains 
requiring high precision and consistency. Looking ahead, the proposed framework shows promise for real-
world industrial settings, particularly in digital twin architectures and other time-sensitive applications. Further 
research could explore GPU-accelerated or distributed processing to enhance real-time scalability, as well as 
deeper investigations into reliability and security under practical constraints. By pursuing these avenues, our text-
based control method and Ground AI framework can evolve into a more versatile solution for comprehensive 
and autonomous simulation control.

Data Availibility
The datasets generated and analyzed during the current study were produced using generative AI models. These 
datasets are available from the corresponding authors upon reasonable request.
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