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for text-based ultrasonic
simulation via self-review by multi-
large language model agents
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Widely used ultrasonic simulation systems often rely on complex graphical user interfaces (GUIs)

or scripting, resulting in substantial time investments and reduced accessibility for new users. In

this study, we propose a novel text-based simulation control architecture, which leverages a large
language model (LLM) and the ground artificial intelligence (Al) approach to streamline the control

of ultrasonic simulation systems. By modularizing the functionalities of the SimNDT program into
discrete functions and enabling natural language-based command interpretation, the proposed
method reduces the average simulation configuration time by approximately 75%. To further mitigate
task failures in scenario generation using the LLM, we introduce the ground Al approach, which
employs self-review mechanisms and multi-agent collaboration to improve task completion rates. In
particular, when vectorized output lengths deviate from the standard, we regenerate outputs using
multiple LLM agents, reducing the scenario generation error rate from 23.89 to 1.48% and enhancing
reliability significantly. These advancements underscore the potential of Al-driven methods in reducing
operational costs and enhancing reliability in simulation frameworks. By integrating text-based control
and Ground Al mechanisms, the proposed approach provides an efficient and scalable alternative to
traditional GUI-based control methods, particularly in time-sensitive applications such as digital twin
systems.

Keywords Simulation, Large language models, Multi-agents, Natural language commands, Text-based
control, Automation

In engineering, simulations are indispensable tools for analyzing and predicting the behavior of complex systems.
They are widely utilized in fluid dynamics, structural analysis, and energy systems to support decision-making
and enhance design processes. However, generating large amounts of diverse simulation data for practical
applications requires expert manipulation and remains challenging owing to the inherently time-consuming
and complex nature of repetitive simulation control. Prevailing methodologies rely heavily on graphical user
interfaces (GUIs), necessitating manual user interaction, which limits automation and scalability when extensive
datasets are required!°.

Integrating large language models (LLMs) into simulation workflows offers the potential to address these
challenges. LLMs, such as the generative pre-trained transformers (GPTs)”®, have demonstrated remarkable
capabilities based on training on extensive datasets, enabling rapid and efficient text processing’. By leveraging
LLMs for natural language-based simulation control, repetitive tasks may be automated, parameter tuning may
be optimized, and data generation processes may be streamlined significantly. This approach could revolutionize
simulation management, enhancing efficiency and scalability across various engineering applications.

To this end, we propose a text-based simulation control framework by leveraging LLMs. By modularizing
the functionalities of SImNDT: Ultrasound NDT simulation tool (Version: 0.52)!° into callable functions, we
enable users to control simulations via natural language commands. For instance, when a user might input:
”Simulate ultrasonic wave propagation in a rectangular object with a width of 10 and a height of 5, the system
interprets the prompt and executes the corresponding simulation scenario. This novel method simplifies
simulation control and facilitates more intuitive interactions compared to traditional GUI-based methods.
However, despite initial results suggesting significant improvements in efficiency and usability, challenges such
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as those regarding accuracy and reliability of LLM-generated scenarios persist. To address these, we develop
strategies based on Ground artificial intelligence (AI), which enhances LLM-driven systems by incorporating
self-review mechanisms and multi-agent strategies to improve decision-making accuracy and reduce errors'!.
In this approach, LLMs refine their outputs iteratively or collaborate with other agents to generate more reliable
results, providing a robust framework for addressing their inherent limitations in complex tasks.

In this work, we propose a novel text-based simulation control method that draws on large language models
to address the constraints of traditional GUI-based approaches. We also develop a systematic integration of
Ground Al principles-ranging from single-agent methods to multi-agent collaborations-and demonstrate how
these strategies can reduce inaccuracies in LLM outputs. Furthermore, we validate the practical feasibility of
our framework by incorporating it into SimNDT and assessing its performance under realistic ultrasonic wave
propagation scenarios. By integrating sophisticated AI methodologies with ultrasonic simulation, this research
presents a scalable, efficient alternative for managing complex engineering simulations, thereby expanding the
potential of AI-powered tools in computational science and engineering.

The remainder of this paper is organized as follows. The implementation of the proposed LLM-based text
simulation control architecture is discussed in Section 2, besides the text command-based approach, the modular
structure for LLM function calls, and practical examples of text-based control. In Section 3, error reduction
techniques based on the Ground Al approach are described, along with the concept, experimental configuration,
and results of various error mitigation strategies. The overall results are presented and discussed in Section 4,
highlighting the contributions and implications of our work. Finally, the paper is concluded in Section 5 by
summarizing key findings and suggesting future research directions.

Literature review

Interest in Al models and their utilization'>!3 have steadily increased over the past few years, spanning a wide
range of industries, including economics and healthcare. The emergence of LLMs, e.g., the attention!*-based
architectures, BERT® and GPT”#, has not only motivated significant advancements in AI performance but
also accelerated efforts to integrate these models within industrial applications. Organizations and research
institutions are actively adopting large language models to achieve objectives such as increased productivity,
cost reduction, personalized customer services, and precision medicine. The scope of real-world applications
of LLMs is expanding rapidly, from medical diagnosis support systems and financial analysis to automated
translation and Al-driven customer service chatbots'?>!>1%, This trend transcends mere Al adoption; it is
fundamentally reshaping industrial processes and serving as a catalyst for innovation across sectors!’~1°.
However, as Al technology continues to evolve, new concerns regarding ethics, privacy, and algorithmic bias
are emerging. Addressing these concerns requires the establishment of proper guidelines to ensure transparency
and implement responsible Al operations.

Consequently, Al, and in LLMs with their enhanced expressiveness and learning capabilities in particular,
has evolved from merely serving static functions into a crucial tool for creative problem-solving and complex
decision-making. This trend is expected to accelerate further in the coming years, leading to the continuous
expansion of the scope of Al applications and profound transformations in various industries'"1>1620, With
the advancement of Al, autonomous controlling systems on this basis have gained prominence, leading to the
development of the concept known as orchestration. Orchestration refers to the process of coordinating and
managing the deployment, integration, and interaction of various Al components. Additionally, LLMs are
assigned roles specific to individual agents, facilitating collaboration between humans and AI (often referred
to as human-AlI interaction) and expanding research related to agents. This approach enables AI agents to act
autonomously and perform complex tasks without human intervention. Thus, Al orchestration and agent-based
methodologies enhance the autonomy and efficiency of Al systems, elevating human-Al collaboration?!-3! to a
new dimension.

Traditional simulation automation frameworks! 1212032 such as MyCrunchGPT' and the Al-based design
system®2, have made significant progress in data analysis, model recommendations, and single-step optimization.
However, they lack a structured framework capable of fully orchestrating iterative simulations in a feedback-
driven manner?®. MyCrunchGPT leverages LLMs for scientific machine learning tasks, primarily focusing on
data analysis and model selection rather than on direct simulation execution. Similarly, the approach proposed
by Park et al. employs a single-model generative Al pipeline integrated with an optimization solver, but does
not incorporate a multi-agent system!®3>3, limiting its ability to conduct continuous, feedback-driven iterative
experimentation.

In contrast, the framework proposed in this paper adopts a multi-agent architecture, where one agent
translates natural language input of the user into executable commands, another executes the simulation based
on these commands, and a third evaluates the results to refine inputs for subsequent iterations?®. This automated
workflow transcends single-step analysis or static optimization by continuously leveraging previous simulation
results to guide subsequent iterations. Unlike existing approaches that operate within a fixed input-output loop,
the proposed framework ensures that iterative feedback influences future simulation conditions dynamically,
enabling a more autonomous and self-improving process. Moreover, the proposed framework adopts a modular
orchestration strategy, allowing LLM:s to control each stage of the simulation pipeline rather than being restricted
to auxiliary functions. This design enhances simulation flexibility by enabling the framework to incorporate
responses from another model automatically to refine the decision-making process when an intermediate
result is determined to be erroneous®. This self-review mechanism not only improves simulation reliability
but also significantly reduces the need for human intervention for error handling and adjustments. As a result,
the proposed framework fosters a more efficient, robust, and autonomous simulation automation environment.
Table 1 provides a comparison between existing research approaches, their limitations, the necessity of our work,
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Existing research

Limitations

Necessity of our work

Proposed method (ours)

Transformer-based
LLM7-514

High computational cost and complexity; issues
with factual accuracy, reasoning, and biases

Need for accurate translation from natural
language to structured commands to mitigate
misinterpretations

Using GPT-40 with structured function
calling and predefined simulation schemas to
improve accuracy and reduce ambiguity

Human-AlI interaction
(HAI) basedprogram
control21:22:24.27

Limited real-world applicability and insufficient
structured command handling; limited
generalization and robustness

Robust, structured, and verifiable command
interpretation required for practical program control

Employing structured prompt inputs and
LLM-driven function calling mechanisms
combined with schema-based validation

Multi-Agent and
autonomous Al
systems!6:252628

High complexity, limited resource efficiency,
poor generalization across diverse scenarios

Efficient single-agent solutions needed for reliable
scenario generation and resource optimization

Integrating Ground AI verification with single
and multi-LLM agent configurations to ensure
reliability while controlling resource usage

Human-feedback based
learning®3!

Limited scalability and generalization to
complex tasks; lack of structured command
verification

Automatic validation and self-correction of
structured commands required for complex tasks

Self-review mechanisms and structural
schema validation embedded in LLM-
generated function calls

Al-based

simulations!>1319:32

Complexity in simulation setup, limited
accessibility, insufficient verification of
simulation parameters

Simplified and accessible methods for configuring
and running accurate simulations needed

Prompt-based natural language inputs
mapped automatically via Simulation Variable
Schema to structured executable commands

Language-based data
visualization and Al

Limited handling of complex computational

Effective integration of natural language commands
with computational tasks, providing realistic and

Structured parameter generation via
predefined schemas linked directly to

tasks; insufficient real-world validation

tools!>17:18.23 validated results

computational tasks within simulations

Table 1. Flow of developments: existing research limitations and our improvements.

and our proposed methods that overcome these challenges through structured function calling, schema-based
validation, and self-review mechanisms.

Implementation of LLM-based text simulation control architecture

To control the program using LLMs, we modularize the various functionalities of the SimNDT program into
callable functions and design a code-based controllable structure. This enables the programmatic control
of multiple tasks, including simulation configuration, execution, and result output. In this work, we adopt a
modular architecture for the SimNDT program by separating core functionalities into distinct classes or
functions. Specifically, components such as Scenario, Material, Boundary, Transducer, Signal, and Simulation
are each implemented as individual modules, which are collectively packaged based on a SimPack object.
Using this design, an LLM (e.g., GPT-40) provides natural language inputs that are subsequently mapped to the
corresponding modules, thereby orchestrating simulation tasks, such as configuration, execution, and output
handling in a step-by-step, programmatic manner. Further, low-level details, such as the physics engine or
postprocessing routines, are encapsulated under the SimNDT.engine folder, allowing independent functionalities,
e.g., the EFIT2D solver, to operate without directly coupling with the high-level control. In practice, higher-
level classes, such as EngineController or SIM Custom, coordinate with these modules to run and manage the
simulation. As a result, the LLM-based interface focuses on parameter delivery and orchestration logic, while the
actual computation or physics modeling is handled by separate, specialized modules. This code-based structure
not only enhances flexibility and scalability in ultrasonic simulation but also simplifies the extension to other
domains (e.g., thermal or structural analysis) if needed.

With this modular design, we implemented an environment that interprets natural language text commands
using the GPT-40 model of OpenAl to orchestrate simulations. Users can execute simulations based on simple
text inputs without complex code or GUI operations, greatly enhancing user experience. LLMs translate the
input natural language commands into SimNDT function calls, and the simulation engine executes them to
yield the results.

Text command-based simulation control architecture

The text command-based simulation control comprises three primary components—prompt input, LLM, and
the simulation engine. The entire process is depicted in Fig. 1. The prompt input is the medium in which users
enter text prompts, i.e., natural language commands that specify the desired simulation tasks. Using the prompt
input, users can easily instruct the system on the simulations they wish to perform without the need for complex
coding or GUI navigation. LLM functions as the interpreter within the text-based simulation control framework.
It processes the input text commands and translates them into code or specific function calls comprehensible to
the simulation engine. This translation is crucial as it bridges the gap between human language and machine-
executable instructions, enabling seamless interaction between the user and the simulation engine. Finally,
the simulation engine receives the code or function calls generated by LLM and executes the corresponding
simulations, returning the results to the user. This component performs the computational tasks required for
the simulations, serving as the core component of the system that delivers the outcomes to the user. Integrating
these components allows users to control simulations using simple text prompts, simplifying the simulation
configuration and execution processes significantly.
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Figure 1. Flowchart of text command-based simulation control using LLM.

Inputs:

- userPrompt (natural language, e.g. "Generate simulation configurations for a rectangular defect in air..."),
- LLMModel (GPT-40),

- schemaDefinition (list of available function calls and parameter formats)

Outputs:

- simulationSchema (structured parameters for scenario, materials, boundaries),

- simulationResult (simulation execution outcome)

Parse userPrompt using LLM Model to extract control elements > depth, width labels, etc.
parsedParams < LLMModel.inter pret (userPrompt, schemaDefinition)

Match each extract parameter to relevant function calls in schemaDefinition

calls < constructFunctionCalls(parsed Params) >e.g. createScenario (Width=..., Height=...)
Execute each function in calls to construct a coherent simulationSchema

simulationResult < runSimulation(simulationSchema)

return {simulationSchema, simulationResult}

N2 k=

Algorithm 1. LLM-driven simulation configuration and execution

Program control through LLM function calling structure

To control the program effectively, we employ the function calling mechanism provided by the LLM, GPT-
4o. This feature enables the LLM to generate structured data that adheres to predefined function signatures,
facilitating seamless integration between natural language inputs and programmatic function calls. In the
implementation described here, the SimNDT program is transformed into a set of modular functions, each
corresponding to a specific simulation task. To this end, a Simulation Variable Schema is developed as shown in
Supplementary Figures (Figs. S1-3), which describes the variables necessary for these functions and facilitates
their functionization. The schema includes comprehensive descriptions for each variable, which help the LLM
understand the intended purpose and utilization of each variable, enhancing the relevance of the generated
function calls.

Upon receiving a natural language command from the user via a prompt, the LLM initiates input processing.
The function calling mechanism generates a function call corresponding to one of the predefined functions.
Subsequently, the model identifies the most suitable function and populates the parameters following the input
of the user, reflecting the intended outcome. If the user does not specify particular parameters, the model utilizes
default values defined within the simulation variable schema to guarantee that the function call is complete and
executable. For instance, if a user inputs the command ”Simulate ultrasonic wave propagation in a rectangular
object with a width of 10 and a height of 5, the LLM interprets this command and generates the corresponding
simulation scenario via function calling based on the simulation variable schema, as illustrated in Fig. 2.
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Figure 2. Example of an output simulation scenario generated using function calls.

This structured output follows the predefined simulation variable schema and can be directly utilized by the
simulation engine to execute the simulation.

The proposed architecture enables the parallel generation of multiple simulation scenarios during the LLM
processing stage. However, in the simulation execution phase, support for dedicated computational acceleration
(such as GPU parallelization or cluster environments) is currently limited. Therefore, the feasibility of parallel
execution depends on the complexity of the simulations and the available resources. Thus, while the architecture
allows for the efficient simultaneous creation of various simulation scenarios, the actual execution phase may
require sequential processing depending on the circumstances.

The simulation variable schema enumerates all essential parameters, e.g., geometry definitions, material
properties, boundary conditions, and solver configurations, ensuring that each function call includes every
component required for a valid simulation. If certain parameters are omitted in command of the user, they are
automatically populated with predefined defaults specified by the schema, preventing incomplete or invalid
configuration requests. Moreover, users can easily override default values using subsequent prompts or edits if
they wish to refine specific conditions (e.g., adjusting the wave frequency or boundary thickness). This approach
not only streamlines the configuration process for novices but also provides experienced users with precise
control, striking a balance between simplicity and flexibility. As a result, once the schema-based function call is
finalized, it can be transmitted to the underlying simulation engine seamlessly for immediate execution.

By leveraging the function calling mechanism, the LLM generates outputs that conform to the expected
format consistently, thereby reducing errors and enhancing the stability of simulation execution. Further, this
approach enables the LLM to comprehend the variables intended to be set by the user based on their input,
thereby improving the validity and reliability of the simulation scenarios generated by the LLM. Furthermore,
the simulation variable schema is constructed using the principles of functional modularization. The description
field within the schema included an explanation of the function and role of each variable. This helps the LLM

Scientific Reports |

(2025) 15:12474 | https://doi.org/10.1038/s41598-025-97498-y nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

understand the meaning of each variable, enabling the selection of suitable parameter configurations based on
the input of the user. Default values are assigned in anticipation of scenarios where users may not set specific
variables. This guarantees that all essential parameters for simulation execution are perpetually accessible, thereby
enhancing the robustness of the text-based simulation control framework. Due to this structured approach, the
LLM generates outputs following the predefined simulation variable schema consistently with each call, thereby
ensuring stability in simulation execution. The LLM accurately interpreted the input of the user to determine
which variables they wished to set and generated simulation scenarios accordingly for program execution.

Efficient text-based control and examples
The proposed system is an effective control tool, facilitating user interaction based on natural language prompts.
For instance, a user may input: “Generate simulation configurations for a rectangular defect in air with a label
number of 200 and an aluminum background with a label number of 0. The defect’s depth, width, and height
are 200, 10, and 5, respectively” The LLM interprets the natural language commands and generates the requisite
code or function calls for execution. Subsequently, the simulation engine executes the simulations and furnishes
the results to the user. The outputs include the simulation geometry image, the simulation inspection condition
animation, and the ultrasonic simulation result data stored as npy files. The npy files represent the ultrasonic
simulation results stored as 2D matrices. Each value in the matrix corresponds to the signal amplitude at a
specific spatial coordinate. Based on the aforementioned data, supplementary images, such as B-mode and
synthetic aperture focusing technique (SAFT), are generated in the PNG format. The B-mode and SAFT graphs
are generated based on the data obtained from the npy files, which visually represent the simulation results, as
depicted in Fig. 3.

Implementing the proposed text-based control system reduces the time required for the configuration and
execution of ultrasonic wave propagation simulations using the SimNDT program significantly. The average time
required to execute a particular simulation is observed to decrease from approximately two minutes, required

Generate simulation settings for

a rectangular defect in air with a Label number of 200
USER| and aluminium with a Label number of 0.

Original defect's depth, width and height is 200, 10 and 5.

: ¥

"path_base": ".Joutputs/example_01_Defect",
"defect_depth": 10,
"defect_width": 5,
"defect_height": 5,
"snapshot": false,
"simulation_settings": {
"width": 500,
"height": 500,
"pixel_mm": 20,
"label": 0,
"materials": [

{

”label": 0,
"material": "air"

”label": 500,
"material": "aluminium"

J

SIMULATION

/

Figure 3. Process flow of text-based command execution and simulation outputs.
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Criteria

Rule-based validation

Ground Al approach

Validation paradigm

Static and predefined rule enforcement

Dynamic and adaptive multi-agent verification

Algorithmic flexibility

Constrained by predetermined logical conditions

Adaptive inference with contextual recalibration

Error management strategy

Deterministic binary compliance checking

Tterative error detection and generative correction

Computational complexity

Low algorithmic overhead

Moderate computational complexity with scalable agent configuration

Scenario adaptation capability

Limited domain-specific applicability

High contextual generalizability

Output refinement mechanism

Strict output rejection

Intelligent regeneration and systematic improvement

Verification protocol

Deterministic checklist-based matching

Structural integrity validation with probabilistic enhancement

Contextual intelligence

Minimal semantic understanding

Advanced contextual reasoning and interpretative capabilities

Architectural scalability

Challenging cross-domain implementation Modular design enabling efficient domain transposition

Artificial intelligence integration | Minimal AI model engagement

Comprehensive leveraging of large language model capabilities

Table 2. Comparative analysis of validation methodologies for rule-based and ground AI approaches.
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Figure 4. Flowchart of ground Al with self-review (single agent) approach.

by the traditional GUI-based control method, to approximately 30 seconds, required to write a prompt for the
control command. This represents a 75% reduction, thereby greatly enhancing overall efficiency. In turn, this
streamlines the workflow, rendering the system particularly useful when large amounts of simulation data are
required or when continuous execution of simulations is necessary. Thus, the execution of numerous simulations
over a short period becomes more feasible, which is especially beneficial in applications that demand repeated
simulations.

Error reduction based on ground Al and experimental results

Concept and implementation of ground Al

Grounded AI represents an approach to ensuring that outputs generated by AI models are firmly based on
reliable evidence rather than hallucinations or unfounded assertions. Despite their extensive training on
diverse datasets, large language models may produce responses that appear plausible but lack factual accuracy.
Ground AI addresses this limitation by implementing verification mechanisms that either validate outputs
against trustworthy data sources or incorporate self-correction protocols, thereby minimizing potential issues
such as misinformation or logical inconsistencies in Al-generated content®>3¢ A detailed comparison between
rule-based validation and Ground AI approaches is summarized in Table 2, highlighting their differences in
algorithmic flexibility, error management strategies, and contextual intelligence.

In this paper, Ground Al is employed to mitigate failures in the scenario generation process during simulation
control. Considering a single-LLM agent without Ground AI as the baseline, three distinct approaches are
implemented by combining Ground AI with a single-LLM agent with self-review and multi-LLM agents. The
self-feedback method based on the single-LLM agent entails prompting the LLM to review the answer and
correct it if required, encouraging it to revise and regenerate its response, as illustrated in Fig. 4. In this study, the
self-review process of the proposed Ground Al approach focuses on the structural validation of the generated
simulation schema, without incorporating feedback based on simulation results. Specifically, the generated
schema is transmitted along with an internal self-review prompt to verify and enforce compliance with
requirements, such as the presence of essential fields and parameter consistency. In all Ground Al approaches, a
verification process of LLM answers is applied to ensure the integrity of the simulation scenarios. Following the
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vectorization of the generated simulation scenario, the vector length is evaluated to ascertain its equivalence with
the number of keys present in the simulation variable schema (62 schema keys in this study). If the vector length
equals the number of keys, the scenario is deemed valid and utilized to execute its corresponding simulation.
Conversely, the scenario is classified as invalid and discarded if this equivalence is not established.

Similarly, a structured verification mechanism is also employed in AI-powered structured query language
generation platforms, e.g., Vanna.ai’, which validates the generated queries by ensuring that all required
components are included. Taking inspiration from this approach, our study adopts a predefined schema of 62
keys to evaluate the completeness of Al-generated simulation scenarios. By verifying whether each scenario
vector satisfies the 62-length criterion, we uphold a robust check against missing or inconsistent parameters,
thereby enhancing both the reliability and reproducibility of the Al-driven simulation process. In the self-
feedback method based on the single-LLM agent, if the verification is not passed, the system transmits the
invalid scenario, the prompt of the user, and a review message indicating that the response was incorrect®®. This
message instructs the LLM to correct the response and regenerate the simulation scenario to address the errors
and enhance the validity of the generated scenarios, as shown in Fig. 4.

In contrast, multi-agent methods entail the utilization of multiple agents to generate responses in parallel.
Each agent independently creates a simulation scenario, and these scenarios are validated in the order of
generation. If the scenario from the initial LLM agent is deemed valid, its response proceeds to the subsequent
phase, and the remaining agents remain inactive. If the initial scenario proposed by the first agent is deemed
invalid, the scenario proposed by the second agent is validated next. This process is repeated until a valid scenario
is generated, thereby ensuring the generation of a valid scenario. This method reduces the probability of failure
by increasing the probability of obtaining at least one valid scenario based on the combined efforts of multiple
LLM agents. However, multi-agent methods can become computationally expensive if excessively many agents
are employed. Accordingly, the number of agents should be optimized to achieve an equilibrium between the
computational cost and the probability of generating a valid scenario. Multi-agent methods with two and three
agents are implemented to investigate the effectiveness of the number of LLM agents in Ground Al, as illustrated
in Figs. 5 and 6, respectively.

Experimental configuration
In our experimental design, we aimed to rigorously assess the capability of LLMs to generate complex
simulation scenarios while adhering to strict structural requirements. The fundamental challenge lies not just
in understanding user requests, but in consistently generating a specific, deep, hierarchical JSON schema.
This schema, which serves as the input for simulation execution, mandates a precise structure with nested
parameters across multiple levels (e.g., scenario configuration, material properties, boundary conditions, defect
specifications). The task demands more than just plausible variable naming and value generation; it requires
precisely replicating the predefined schema structure in its entirety for every generation, incorporating only the
modifications specified by user input, while ensuring the generated values maintain physical consistency and
adhere to simulation constraints. For instance, the defect specification alone necessitates coordinating multiple
interdependent parameters (shape, dimensions, position, material properties) within a specific nested hierarchy,
demonstrating the intricate structural integrity the LLM must preserve. Any deviation from this required
structure results in a simulation input error.

Experiments are conducted to evaluate the performance of four approaches—the initially designed approach
without Ground Al and the methods incorporating the self-feedback mechanism of Ground Al using a single-
LLM agent and multi-agent techniques using two and three agents. The performances of these methods are
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compared by adjusting a single variable in the simulation scenario to assess their impact on error rates in
scenario generation.

Let us consider the following text control command (prompt) used for program control: ‘Generate simulation
configurations for a rectangular defect in aluminum with a label number of 0 and air with a label number of 500.
The original defect’s depth, width, and height are 1, 10, and 5, respectively’ We aim to control the depth variable
by assuming that it changes in increments of 1 mm. Even this simple modification of the user requirement, i.e.,
whether the LLM can create the simulation scenarios without failures, is investigated. On this basis, the failure
probability of autonomous simulation control using the LLM and the periodicity can be evaluated qualitatively.
To specifically probe the robustness of each approach against the difficulty of modifying this complex, fixed
structure, we designed experiments with incremental modification demands based on user requirements. In
the first experiment, only the depth of the defect is varied incrementally, whereas in the second experiment,
both the depth and the width are varied. This dual-parameter modification significantly escalates the challenge,
demanding that the LLM not only adjust multiple interdependent values but do so while meticulously preserving
the integrity of the entire, complex, and predefined JSON structure. This stepwise approach allows for an
assessment of the ability of the LLM to handle increasingly complex parameter changes and to understand the
conditions under which simulation generation might fail or succeed.

All outputs are presented in the simulation scenario JSON results in the case of successful execution of
the simulation control since all the necessary variables are generated correctly. In such cases, the length of the
vectorized N file is equal to the number of the schema keys. Thus, these coincidences are deemed to comprise
a correct output. Otherwise, the tasks are considered failures due to input error during simulation execution.
The error rate can be calculated by dividing the number of failed simulations by the total number of simulations.
This process entails reading the critical values from the JSON files, vectorizing them, and measuring the
lengths of the vectors. By verifying whether the vectors exhibit the expected length, the accurate generation
of all necessary variables can be verified, thereby yielding the error rate. All experiments are conducted under
identical conditions and the average error rate is calculated over five iterations.

Experimental results

In this section, we discuss the methodology and results of measuring error rates by vectorizing the JSON files
and checking the lengths of the vectors to determine whether the outputs are generated correctly and can be
executed as autonomous ultrasonic simulations via AI orchestration. The overall probability of error occurrence
is observed to decrease considerably when Ground Al-based methodologies are employed, particularly in the
case of multi-LLM agent approaches, as illustrated in Figs. 7 and 8. The average error rate of the method that does
not include Ground AI is 23.89%. In contrast, Ground Al-based methods exhibit markedly lower error rates.
In particular, the self-feedback method based on a single-LLM agent exhibits an average error rate of 15.84%,
the multi-LLM agent method employing two agents exhibits that of 6.63%, and the multi-LLM agent method
utilizing three agents exhibits the lowest average error rate of 1.48%. This suggests that incorporating Ground
Al reduces the error rate associated with scenario generation significantly. Further, the multi-agent approaches
yield lower error rates than the self-feedback method based on a single-LLM agent, indicating that employing
multiple agents enhances the reliability of the simulation control process to a greater extent than the self-review
prompt method.

During early phases of repetitive requests (call index: 0-500), the single-LLM agent-based method without
Ground AI exhibits a high initial error rate exceeding 26%, which is significantly higher than those of other
approaches. Incorporating Ground Al based on the self-feedback method that uses a single-LLM agent to review
and correct the answer by itself results in a notable enhancement, with an initial error rate of 16%. However, the
multi-LLM agent-based methods based on two or three agents exhibit even more favorable performance, with
initial error rates of less than 8% and 4%, respectively.

As the experiments proceed to the accumulated phase (call index: 500-1000), the single-LLM agent-based
method without Ground AI exhibits a cumulative error rate exceeding 20%, indicating a lack of sustained
performance improvement. In contrast, the Ground Al-based implementation using the self-feedback method
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Figure 8. Comparison of accumulated error rates of the four methods over 1000 calls with two-variable
control.

exhibits a stabilized error rate of approximately 10%, substantiating the efficacy of Ground AI and self-review
mechanisms in a single-agent framework. The performances of the multi-LLM agent-based approaches are even
more impressive, with error rates stabilizing below 5% for the two-LLM agent system and below 2% for the
three-LLM agent system, which represents the best performance among the compared approaches. As illustrated
in Fig. 8, experiments involving the control of two variables demonstrate that the multi-LLM agent approaches
maintain impressive performance levels in all cases. Specifically, the error rates stabilize below 5% for the two-
LLM agent system and below 2% for the three-LLM agent system, mirroring the patterns observed in the single-
variable control experiments.

Further analysis of the standard deviation of error rates highlight the advantages of Ground AI and multi-
LLM agent methods. The single-LLM agent without Ground Al exhibits the highest variability between the initial
and stabilized stages, reflecting inconsistent performance. In other words, achieving consistent performance
with a single-LLM agent without Ground Al is challenging. The Ground Al-based self-feedback method exhibits
relatively stable standard deviations—albeit higher than the those of the multi-agent approaches. Notably, the
multi-agent approach with three agents exhibits the lowest standard deviations during the early and accumulated
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phases. This result suggests that the multi-LLM agent-based approaches with Ground Al yield more consistent
and reliable performance in long-term practical applications.

The results of this study demonstrate that the integration of Ground Al in self-review and multi-agent systems
enhances the efficiency and reliability of solutions for text-based simulation control. The superior performance
of the multi-LLM agent-based approach with three agents indicates that employing multiple agents enhances the
stability and reliability of autonomous ultrasonic simulation via Al orchestration and improves success rate of
adjusting individual parameters during simulation execution. Building on these results, an additional experiment
is conducted to explore whether increasing the number of agents beyond three enhances performance further.
In the initial experiment, the number of agents is gradually increased up to three, resulting in a reduction of
the error rate to 1.48%. Based on this observation, agents are dynamically added until the error is completely
eliminated.

Multi-agent evaluation in a single-variable scenario

In this experiment, the error correction capability of a multi-LLM agent system is evaluated by conducting
independent trials, where 1000 executions are repeated five times. Each trial is initiated with a single agent,
and additional agents are introduced dynamically until the simulation is successfully completed. This approach
enables the analysis of the distribution of the number of agents required to generate an error-free output. As
illustrated in Fig. 9, the results reveal that, similar to our previous findings, approximately 20% of the scenarios
require additional agents. When two agents are employed, 173 scenarios are successfully completed. When three
agents are used, 22 scenarios are completed without requiring additional agents. When four or more agents
are introduced, all errors are resolved, and no cases required the use of five or more agents. This experiment
confirms that a multi-agent LLM system is significantly more robust than a single-agent approach and that, in a
single-variable control environment, employing up to four agents is sufficient to eliminate all errors.

Cost analysis for single-agent vs. multi-agent approaches

Although the primary goal of this study is to reduce errors, resource expenditure also plays a crucial role in
selecting an optimal agent configuration. To quantify cost implications in a single-agent environment, 5000
simulation scenarios are considered and all application programming interface (API)-related expenses are
recorded. According to the API usage logs provided by OpenAl, the total cost for generating these simulations
amount to $37.85 (approximately 38 dollars), translating to an average cost of about $0.00757 (0.76 cents)
per simulation. This result serves as a baseline for subsequent cost efficiency analysis of multi-agent systems.
Considering that a single agent generates 1000 simulation scenarios in our experiment, the cost for a single-agent
architecture is calculated to be approximately $7.57. As the number of agents is increased up to a maximum of
five, the costs increase linearly to $7.57, $15.14, $22.71, $30.28, and $37.85, respectively. In other words, although
deploying multiple agents reduces scenario generation errors, the cost increases linearly with each additional
agent. Therefore, determining the optimal number of agents is crucial to balance cost and efficiency effectively.
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Discussion

The experimental results demonstrate that although the methods integrating Ground AI concepts, particularly
the multi-LLM agent approach utilizing three agents, are highly effective in reducing error rates in scenarios
where a single variable is controlled, there is potential for further optimization of the performance of the system.
Specifically, although the multi-LLM agent approach yields low error rates, further enhancements can be achieved
by refining the decision-making mechanisms among the agents. In particular, improvements to the coordination
strategies between agents may facilitate more effective consensus and more accurate scenario generation, thereby
reducing residual errors and increasing the efficiency of the system. In particular, the multi-LLM agent-based
approach with three agents is identified as the most effective method in our experiments in simulation scenarios
involving the control of a single variable. However, further reliable autonomous ultrasonic simulation can be
realized based on improvements to the decision-making processes among the multi-LLM agent system with
many LLM agents and incorporating additional evaluation metrics. This would further enhance the robustness
and reliability of Ground AlI-based approaches for text-based simulation control in complex systems where
efficiency and accuracy are paramount.

Moreover, the experiments in this study employ a vectorization process to measure error rates based on
the verification of lengths of the vectors in the JSON files. Although this approach has been demonstrated to
be effective, alternative evaluation metrics and methodologies should be considered to assess the ability of the
system to produce outputs aligned with the intended objectives. Relying on a single metric may only partially
capture the nuances of generative outputs. Thus, future research should explore complementary validation
methods, such as expert evaluation, consistency analysis, and functional accuracy assessment. Expert evaluation,
particularly based on human-in-the-loop assessment, may provide deeper insights into the contextual validity
and reliability of the generated scenarios. Additionally, consistency testing, which involves measuring variations
across repeated executions, could offer a quantitative measure of robustness. Further, functional accuracy
analysis, comparing LLM-generated commands against predefined ground truth datasets, could enhance the
evaluation framework, ensuring that outputs are aligned with expected behaviors.

As the number of agents is increased, the multi-LLM agent-based method exhibits enhanced reliability
relative to the self-feedback method based on the single-LLM agent. These results demonstrate that the
combination of self-review and multi-LLM agent approaches as Ground AI orchestration has the potential to
enhance the scalability and reliability of the simulation control process. These methods address the limitations
of relying on the output of a single LLM agent by providing mechanisms for error correction and leveraging
multiple independent responses. This not only leverages the diversity of outputs obtained from multiple agents
but also automates the validation process, increases efficiency, and reduces the scenario generation error rate.
significantly.

Future works

Our immediate research priority is to develop an integrated validation framework that combines expert
evaluation, consistency analysis, and functional accuracy assessment. Rather than merely exploring these
methods individually, we will focus on creating a comprehensive system that automatically selects and applies
the most appropriate validation technique based on simulation context. This framework will incorporate
human-in-the-loop assessment protocols for high-stakes simulations while utilizing automated validation
for routine tasks, creating a balanced approach that maximizes both efficiency and reliability across different
operational requirements. To enhance scalability and stability for real-time simulations, we plan to investigate the
integration of local LLMs, which would reduce dependency on API connections and internet connectivity. This
approach would enable more responsive system performance and greater operational autonomy, particularly in
environments with limited or unreliable network access, while also potentially reducing latency issues that could
impact time-sensitive simulation applications in industrial settings.

We aim to strengthen the Ground AI concept by enhancing the agent paradigm with domain-specific
capabilities rather than simply utilizing specialized LLMs. By developing specialized agents with distinct
roles and expertise in fields such as nuclear energy, mechanical engineering, and robotics, we can create a
more sophisticated multi-agent ecosystem. These domain-specialized agents would possess not only relevant
knowledge but also specific reasoning patterns and validation protocols tailored to their respective domains.
This approach focuses on the functional specialization of agents within the orchestration architecture, enabling
more organized collaboration and domain-appropriate decision-making during simulation tasks. Building upon
this agent specialization, we will develop an adaptive orchestration mechanism that dynamically configures the
multi-agent system based on both task complexity and domain characteristics. This mechanism will intelligently
determine the optimal composition of specialized agents, their interaction patterns, and the most effective
validation strategy for each simulation task. By creating this context-aware orchestration layer, we can address
the current limitations of fixed validation approaches while maintaining high accuracy standards. The system
will learn from past simulation experiences to continuously refine its orchestration decisions, creating a truly
adaptive framework that evolves alongside changing simulation requirements and domain knowledge.

Conclusions

In this study, we propose and implement a text-based simulation control architecture utilizing GPT-40 to
enhance the efficiency and effectiveness of ultrasonic simulation control. By modularizing the functionalities
of the SimNDT program into discrete functions and enabling simulation control based on natural language
commands, the average time required for simulation configuration is reduced significantly—from two minutes
to approximately 30 seconds. This indicates a 75% reduction in data generation costs. This improvement
illustrates the potential for AI-driven methodologies to facilitate the optimization of simulation processes. To
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address inherent limitations in LLM-based scenario generation, we introduced the Ground AI method, which
integrates self-review mechanisms and multi-agent collaboration for enhanced reliability. The implementation
of this approach enables the system to detect inconsistencies in generated scenarios and regenerate outputs
under self-review guidance, significantly reducing the scenario generation error rate from 23.89% to 1.48%. This
marked improvement underlines the effectiveness of the Ground AI approach in managing complex simulation
tasks and highlights the importance of verification mechanisms when deploying LLMs in technical domains
requiring high precision and consistency. Looking ahead, the proposed framework shows promise for real-
world industrial settings, particularly in digital twin architectures and other time-sensitive applications. Further
research could explore GPU-accelerated or distributed processing to enhance real-time scalability, as well as
deeper investigations into reliability and security under practical constraints. By pursuing these avenues, our text-
based control method and Ground AI framework can evolve into a more versatile solution for comprehensive
and autonomous simulation control.

Data Availibility
The datasets generated and analyzed during the current study were produced using generative AT models. These
datasets are available from the corresponding authors upon reasonable request.
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