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In this study, we investigate an epidemiological model for tuberculosis in China using the Caputo 
fractional-order derivative. To ensure dimensional consistency, we appropriately adjust model 
parameters to maintain uniform units. The mathematical properties of the model, including the non-
negativity, boundedness, existence, and uniqueness of its solutions, are thoroughly examined and 
established. Sensitivity analysis, based on the basic reproduction number, is performed to evaluate 
the impact of critical parameters on disease dynamics, and additional insights are provided through 
3D mesh and contour plots, which illustrate how key parameters influence tuberculosis transmission. 
We estimate the model parameters, including the fractional-order derivative, and determine that the 
optimal fractional order, which best fits the real data, is approximately 0.93. Numerical simulations 
are performed using the Adams–Bashforth–Moulton method. By utilizing the root mean square error 
(RMSE) metric, the fractional-order model demonstrates an efficiency improvement of approximately 
28.5% compared to its integer-order counterpart, highlighting the superior accuracy of fractional-order 
models in describing tuberculosis transmission dynamics. These findings underscore the significance 
of fractional-order models in epidemiological analysis. They provide a more refined approach for 
modeling infectious diseases and aiding in public health decision-making.
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Tuberculosis (TB) is a highly transmissible disease caused by the bacterium Mycobacterium tuberculosis. It 
primarily targets the lungs, but in certain cases, it can also affect other organs of the body, such as the brain, 
kidneys, skin, and spine.1 TB is not a new disease; it has been known to humankind for centuries, with historical 
records tracing its existence back to ancient Egypt, China, and India. The disease is primarily transmitted 
through airborne droplets containing TB bacteria, which are released when an infected individual coughs, 
sneezes, speaks, or spits. Family members, friends, and close contacts of infected individuals are at high risk 
of contracting the disease by inhaling these bacteria. Of those infected with TB bacteria, approximately 10% 
develop an active TB infection, while the remaining 90% have latent TB. Individuals with latent TB do not exhibit 
symptoms and cannot spread the infection. Active TB, on the other hand, is characterized by symptoms such 
as a persistent cough lasting more than three weeks, fever, chest pain, coughing up blood, night sweats, fatigue, 
and unintentional weight loss. TB diagnosis is typically conducted through skin or blood tests. Individuals with 
compromised immune systems, such as those with HIV or diabetes, are at a higher risk of developing active TB. 
The World Health Organization (WHO) reported in 2013 that there were 8.6 million new cases of TB and 1.3 
million deaths in 2012, with approximately 320,000 of these cases involving individuals infected with HIV. A 
2018 WHO report indicated that about one-third of the global population is infected with TB, highlighting the 
disease’s continued prevalence as a public health crisis. China and India bear the highest TB burden globally, 
contributing 12% and 26% of cases, respectively, as TB continues to rank among the top 10 infectious diseases 
worldwide. In spite of various measures to combat the disease, such as Bacillus Calmette-Guerin (BCG) 
vaccination, antimicrobial chemotherapy, and antiretroviral therapy, TB continues to pose a significant health 
challenge in numerous high-incidence areas, including China. The emergence of drug-resistant TB strains and 

1Department of Mathematics, Malaviya National Institute of Technology Jaipur, Jaipur, India. 2Department of HEAS 
(Mathematics), Rajasthan Technical University, Kota, India. 3Department of Mathematics, Wollo University, Dessie, 
Amhara, Ethiopia. 4Department of Mathematics, Saveetha School of Engineering (SIMATS), Thandalam, Chennai, 
Tamil Nadu 600124, India. email: dlsuthar@gmail.com

OPEN

Scientific Reports |        (2025) 15:12672 1| https://doi.org/10.1038/s41598-025-97502-5

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-97502-5&domain=pdf&date_stamp=2025-4-12


the spread of HIV/AIDS have exacerbated this challenge in countries like China, where TB prevalence has 
increased over the last two decades.

Epidemiological studies are crucial for understanding the societal impacts of infectious diseases, and 
mathematical modeling has emerged as a vital tool in this regard. Mathematical models are extensively used across 
disciplines, including natural sciences, engineering, and social sciences, to explain complex systems, analyze 
nonlinear processes, and predict behavior. In disease modeling, these approaches help investigate infection 
dynamics, estimate key parameters, and simulate scenarios to understand disease spread and control measures. 
TB modeling has seen significant progress over the years.2,3 Waaler et al.4 first modeled TB transmission, while 
subsequent researchers extended their work. Yang et al.5 incorporated incomplete treatment and explored fast 
and slow TB transmission. Okuonghae6 examined the effect of genetic heterogeneity on the spread of TB. Zhang 
et al.7 introduced a model with hospitalized and non-hospitalized classes using China TB data. Al-Hdaibat 
et al.8 investigated a tuberculosis model incorporating four distinct control strategies: vaccination, awareness 
campaigns, screening, and pathogen clearance, demonstrating their combined impact on disease mitigation.

Traditional models based on ordinary differential equations (ODEs) are often limited in capturing the 
complexities of biological systems. Fractional-order differential equations (FODEs), which generalize ODEs by 
allowing non-integer derivatives, provide a more comprehensive framework for studying these dynamics.9–12 
Fractional derivatives account for memory effects, capturing long-term dependencies and non-local behaviors 
that integer-order models cannot address13. The use of fractional-order derivatives in modeling infectious diseases 
offers several advantages . Unlike integer-order derivatives, fractional derivatives account for the history of the 
system, enabling a more accurate representation of diseases with long-term effects, such as TB.14–16 Fractional-
order models can also describe a wide range of dynamics, from simple to complex behaviors, by adjusting the 
order of the derivative. For instance, a derivative of order 1 may represent straightforward disease transmission, 
while a derivative of order 0.5 can capture more intricate patterns. Fractional-order models provide a continuous 
transition between integer-order models, offering better fits for empirical data. They are particularly suited 
for diseases with multiscale dynamics, where processes such as pathogen replication and immune response 
operate on different time scales. Additionally, they can model anomalous diffusion processes, such as non-local 
movements and long-tail distributions, which are often observed in disease transmission.

In recent years, fractional calculus and its wide-ranging applications have gained significant attention in 
various fields, including biology, finance, geology, thermodynamics, and fluid dynamics. Its ability to incorporate 
memory and hereditary effects provides a more comprehensive understanding of dynamic systems compared 
to the localized behavior of integer-order derivatives, as extensively documented in the literature.17–21 Among 
these applications,22 investigates the dynamics of an interacting phytoplankton species model using a fractional-
order operator, demonstrating how memory effects influence the stability of equilibrium points. In,23 fractional 
derivative operators are employed to examine chaotic behavior in a financial system. Similarly,24 presents a 
fractional-order cancer treatment model that explores drug-targeting strategies through nanotechnology, 
emphasizing innovative approaches for improving drug delivery efficiency. Khirasiya et al.25 analyze a fractional-
order rat bite fever model, illustrating how these models offer greater flexibility in capturing memory effects and 
disease progression for specific datasets. Dasumani et al.26 explore a fractional-order fishery resource model in 
the presence of predators, incorporating the Crowley-Martin functional response to better describe ecological 
interactions. Further, Zhang et al.27 formulate a fractional-order model to study the transmission dynamics of 
tuberculosis in a Pakistani city, highlighting the advantages of fractional calculus in epidemiological modeling. 
In,28 researchers extend an integer-order COVID-19 model to its fractional counterpart, comparing their results 
against actual data. Their findings reveal that a fractional-order model with a derivative order of 0.98 yields 
more accurate predictions than the classical integer-order approach. Qureshi et al.29 investigate a dengue fever 
outbreak using three distinct fractional-order derivative operators. Their analysis indicates that these operators 
provide superior efficiency compared to traditional integer-order models. The growing recognition of fractional 
calculus and its success in modeling real-world phenomena serve as the motivation for this study.30,31 Building 
upon this foundation, our research aims to analyze an integer-order mathematical model for tuberculosis by 
incorporating the Caputo fractional-order derivative. Through this approach, we seek to demonstrate how 
fractional-order models achieve better alignment with real data compared to their integer-order counterparts.

The structure of the paper is as follows: Section “Preliminaries” provides key definitions and concepts in 
fractional calculus. Section “Model formulation” introduces the proposed Caputo fractional-order TB model. 
Section “Model analysis” discusses the positivity, existence, boundedness and uniqueness of the model’s 
solutions. Section “Parameter estimation” presents sensitivity analysis of model parameters. Section “Sensitivity 
analysis” outlines the implementation of the model using TB data, with parameter estimation performed via 
MATLAB’s lsqcurvefit function. Section “Numerical simulation and discussion” offers numerical simulations 
using the predictor–corrector scheme, and Section “Conclusion” concludes the study with remarks on the 
findings and their implications.

Preliminaries
Definition 2.1  The fractional integral operator in the Riemann–Liouville sense, for a function f : (0, ∞) → R, 
is expressed for an order φ > 0 as32

	
RL
0 Iφ

t f(t) = 1
Γ(φ)

∫ t

0
(t − ξ)φ−1f(ξ)dξ,� (1)

here, φ > 0 and Γ(.) is a Gamma function.
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Definition 2.2  The Riemann–Liouville fractional derivative operator for a function f : (0, ∞) → R of order 
φ > 0 is given as32

	

RL
0 Dφ

t f(t) =




1
Γ(n − φ)

(
d

dt

)n ∫ t

0 (t − ξ)n−φ−1 f(ξ) dξ; 0 ≤ n − 1 < φ < n,

(
d

dt

)n

f(t); φ = n, n ∈ N.

� (2)

Definition 2.3  The Caputo fractional derivative of order φ for a function f : (0, ∞) → R is expressed as fol-
lows:32

	

C
0 Dφ

t f(t) =




1
Γ(n − φ)

∫ t

0
fn(ξ)

(t − ξ)φ−n+1 dξ; 0 ≤ n − 1 < φ < n,

(
d

dt

)n

f(t); φ = n, n ∈ N.

� (3)

Definition 2.4  The Laplace transform (LT) of the Caputo operator for f(t) of order φ > 0 is represented as:33

	
L

[C

0

Dφ
t f(t)

]
= sφF (s) −

n−1∑
k=0

fk(0)sφ−k−1.� (4)

Definition 2.5  The two-parameter Mittag-Leffler function, denoted as Em,n(z) is described as34

	
Em,n(z) =

∞∑
k=0

zk

Γ(mk + n) ; m, n > 0,� (5)

and the Laplace transform of function tn−1Em,n(±atm) is described as:33

	
L

[
tn−1Em,n(±atm)

]
= sm−n

sm ∓ a
.� (6)

Model formulation
In this study, the integer-order TB model35 is extended to a fractional-order model by incorporating the Caputo 
fractional derivative. The model categorized the host population into four main epidemiological groups. The 
susceptible group S(t) includes individuals who are at risk of infection. The exposed group A(t) consists of 
individuals who have been exposed to the infection but are not yet actively infectious. The infected group I(t) 
includes those currently infected and capable of spreading the disease, while the recovered group R(t) comprises 
individuals who have overcome the infection. To investigate the influence of age on infection dynamics within 
the susceptible and infectious populations, the susceptible class further subdivide into three distinct age groups: 
childhood (S1), representing ages 0−14 years; middle-aged (S2), representing ages 15−59 years; and senior 
(S3), representing individuals over 60 years of age. The exposed, infected, and recovered classes remain consistent 
across these age groups. Furthermore, the model incorporates two key control strategies for TB in China. The 
first is the Directly Observed Treatment, Short-Course (DOTS) program, which enhances the recovery rate of 
infected individuals per year, represented by (0 < ψ < 1). The second is the Bacillus Calmette-Guérin (BCG) 
immunization program, which provides immunity to newborns, denoted by (0 < ϕ < 1). The following system 
of ODEs defines the resulting model.

	

dS1

dt
= Λ − m1S1 − d1S1 − γ1S1I,

dS2

dt
= d1S1 − m2S2 − γ2S2I − d2S2,

dS3

dt
= d2S2 − m3S3 − γ3S3I,

dA

dt
= (1 − β)[(1 − ϕ)γ1S1I + γ2S2I + γ3S3I] − (ν + d)A,

dI

dt
= β

[
(1 − ϕ)γ1S1I + γ2S2I + γ3S3I

]
−

[
d + (1 + ψ)r + µ

]
I + νA + ηR,

dR

dt
= (1 + ψ)rI − (d + η)R,

� (7)

where, the parameters and their descriptions are provided in Table 1.
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The above ODEs model (7) is further extended into a fractional-order system of order (φ) using the Caputo 
fractional derivative, as shown in Fig. 1. The motivation for employing the Caputo derivative lies in its ability to 
effectively capture memory effects and non-local behaviors, which are crucial for understanding the complex 
dynamics of TB infection. A key advantage of the Caputo definition is its compatibility with classical initial 
conditions, as its Laplace transform requires only integer-order derivatives of the initial values, making it more 
practical for real-world applications. Moreover, its initial conditions retain the same form as those in integer-
order differential equations, enhancing its applicability in engineering and other applied sciences where such 
formulations have well-understood physical meanings. Additionally, the Caputo derivative avoids certain 
mathematical inconsistencies present in other fractional definitions, such as hyper-singular improper integrals, 
mass balance errors, and non-zero derivatives of constants, ensuring a more robust and physically meaningful 
representation of the system . These features make it a compelling choice for extending classical epidemiological 
models to fractional-order frameworks, allowing for improved accuracy in disease modeling while maintaining 
consistency with conventional differential equations.36,37 Moreover, in fractional-order systems, maintaining 
dimensional consistency is essential to ensure that both sides of the equations retain uniform units of 

Fig. 1.  Compartment diagram of the TB model.

 

Parameters Description Values Sources

Λ Annual birth rate 1.623e + 07 35

d Natural death rate 0.0067 35

m1 Mortality rate of younger age group 0.0017 35

m2 Mortality rate of middle age group 0.0023 35

m3 Mortality rate of senior age group 0.0367 35

r Recovery rate 0.496 35

β Fraction of fast developing infection 0.05 35

ν Re-activation rate of latent TB 6 35

γ1 Infection rate in younger age group 1.182e − 10 Fitted

γ2 Infection rate in middle age group 5.265e − 09 Fitted

γ3 Infection rate of senior age group 2.575e − 09 Fitted

d1 Rate of conversion from the susceptible children 0.0729 Fitted

to middle aged category

d2 Rate of conversion from the susceptible middle 0.00618 Fitted

aged to older group

φ Fractional order 0.93 Fitted

µ Disease induced death rate 0.0025 35

ψ Annual recovery increment due to Directly Observed 0.51 35

Treatment, Short-course (DOTS)

ϕ Immunity rate of the Bacillus Calmette 0.9 35

Guerin (BCG) vaccine

η Re-infection rate among successfully treated TB cases 0.00341 35

Table 1.  Parameter description.
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measurement. To preserve this consistency, a common approach involves modifying the parameters on the 
right-hand side of the equations, typically by raising their power to (φ). Thus, the resulting system is represented 
as follows:

	

C
0 Dφ

t S1 = Λφ − mφ
1 S1 − dφ

1 S1 − γφ
1 S1I,

C
0 Dφ

t S2 = dφ
1 S1 − mφ

2 S2 − γφ
2 S2I − dφ

2 S2,
C
0 Dφ

t S3 = dφ
2 S2 − mφ

3 S3 − γφ
3 S3I,

C
0 Dφ

t A = (1 − βφ)[(1 − ϕφ)γφ
1 S1I + γφ

2 S2I + γφ
3 S3I] − (νφ + dφ)A,

C
0 Dφ

t I = βφ
[
(1 − ϕφ)γφ

1 S1I + γφ
2 S2I + γφ

3 S3I
]

−
[
dφ + (1 + ψφ)rφ + µφ

]
I + νφA + ηφR,

C
0 Dφ

t R = (1 + ψφ)rφI − (dφ + ηφ)R,

� (8)

subject to initial conditions:

	 S1(0) = S10 , S2(0) = S20 , S3(0) = S30 , A(0) = A0, I(0) = I0, R(0) = R0.� (9)

Model analysis
Non-negativity and boundedness
To ensure the biological feasibility of the model, we establish the non-negativity and boundedness of solutions. 
Before proceeding with the proof of theorem on the non-negativity of the model’s solutions, we first introduce 
the following lemma.38

Lemma 4.1  Let a function ζ ∈ C[c, d] and the Caputo fractional derivative C0 Dφ
x ζ(x) ∈ C[c, d] for 0 < φ ≤ 1, 

then we have,

	
ζ(x) = ζ(s) + 1

Γ(φ)
C
0 Dφ

x ζ(τ)(x − s)φ,

with 0 ≤ τ ≤ x, ∀ x ∈ (c, d].

Remark 4.2  Consider a function ζ(x) ∈ C[0, d] and suppose that C
0 Dφ

x ζ(x) ∈ C[0, d] for 0 < φ ≤ 1. 
From Lemma1 it follows that if C

0 Dφ
x ζ(x) ≥ 0, for all x ∈ (0, d] then ζ(x) is non-decreasing. Conversely, if 

C
0 Dφ

x ζ(x) ≤ 0, for all x ∈ (0, d], then ζ(x) is non-increasing for all x ∈ (0, d].

Theorem 4.3  All solutions of the system (8) are non-negative and are remains in with non-negative initial condi-
tions remain positive for all t ≥ 0.

	 R6
+ =

{
G : G = (S1, S2, S3, A, I, R) ∈ R6, G > 0

}
.

Proof  We will prove the non-negativity of solutions for our system (8) by using the Lemma 1. Since,

	

C
0 Dφ

t S1(t)
∣∣∣
S1=0

= Λφ ≥ 0,

C
0 Dφ

t S2(t)
∣∣∣
S2=0

= dφ
1 S1 ≥ 0,

C
0 Dφ

t S3(t)
∣∣∣
S3=0

= dφ
2 S2 ≥ 0,

C
0 Dφ

t A(t)
∣∣∣
A=0

= (1 − βφ)[(1 − ϕφ)γφ
1 S1I + γφ

2 S2I + γφ
3 S3I] ≥ 0,

C
0 Dφ

t I(t)
∣∣∣
I=0

= νφA + ηφR ≥ 0,

C
0 Dφ

t R(t)
∣∣∣
R=0

= (1 + ψφ)rφI ≥ 0.

As, a result ∀t > 0, the solutions of the system remain positive and they will remain within R6
+. � □

Theorem 4.4  The bounded region P =
{(

S1, S2, S3, A, I, R
)

→ R6
+ : 0 ≤ T (t) ≤ Λ

d̂

}
 serves as a positively 

invariant set for the system (8), attracting all solutions that remain positive.

Proof  Adding all equation of the system (8), we get
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C
0 Dφ

t T (t) = Λφ − mφ
1 S1 − m2S2 − mφ

3 S3 − dφA − dφI − µφI − dφR,

= Λφ − d̂
(
S1 + S2 + S3 + A + I + R

)

= Λφ − d̂T ,

where, d̂ = min
{

mφ
1 , mφ

2 , mφ
3 , dφ, dφ + µφ

}
. Applying the Laplace transform of Caputo derivative, we get

	

sφT (s) − T (0)sφ−1 = Λ
s

− d̂T (s),

T (s) = Λ
s(sφ + d̂)

+ T (0) sφ−1

sφ + d̂
,

T (t) = Λ
d̂

L−1
[

d̂

s(sφ + d̂)

]
+ T (0)L−1

[
sφ−1

sφ + d̂

]
,

T (t) = Λ
d̂

−
[

Λ
d̂

− T (0)
]

Ea(−d̂tφ).

It follows that, 0 ≤ T (t) ≤ Λ
d̂

, as t → ∞. Therefore, T (t) is bounded and all solutions begin in P will remains 

in P. As a result, we obtained the following positive invariant set of model (8). This result ensures that the total 
population remains within a finite, biologically meaningful domain, reinforcing the model’s reliability.�  □

Existence and uniqueness of solution
This section provides a explicit proof of the existence and uniqueness of the solution to the fractional order TB 
model (8) using Banach contraction theorem.

Theorem 4.5  Assuming the initial values of the model (8) are non-negative, the model (8) has a unique solution 
in R6

+, for all t ≥ 0.

Proof  Let the RHS of the fractional model (8) is written by

	

f1 = Λφ − mφ
1 S1 − dφ

1 S1 − γφ
1 S1I,

f2 = dφ
1 S1 − mφ

2 S2 − γφ
2 S2I − dφ

2 S2,

f3 = dφ
2 S2 − mφ

3 S3 − γφ
3 S3I,

f4 = (1 − βφ)[(1 − ϕφ)γφ
1 S1I + γφ

2 S2I + γφ
3 S3I] − (νφ + dφ)A,

f5 = βφ
[
(1 − ϕφ)γφ

1 S1I + γφ
2 S2I + γφ

3 S3I
]

−
[
dφ + (1 + ψφ)rφ + µφ

]
I + νφA + ηφR,

f6 = (1 + ψφ)rφI − (dφ + ηφ)R.

Now, we find for every S1, S1 ∈ R6
+ that

	

∥f1(t, S1) − f1(t, S1)∥ = ∥ − (mφ
1 + dφ

1 + γφ
1 I)S1 + (mφ

1 + dφ
1 + γφ

1 I)S1∥,

= ∥ − (mφ
1 + dφ

1 + γφ
1 I)(S1 − S1)∥.

� (10)

Since, S1, S2, S3, A, I, R are bounded functions, i.e. ∥S1∥ ≤ k1,  ∥S2∥ ≤ k2, ∥S3∥ ≤ k3, 
∥A∥ ≤ k4, ∥I∥ ≤ k5, ∥R∥ ≤ k6, by the property of norm, the Eq. (10) can be reformulated as,

	 ∥f1(t, S1) − f1(t, S1)∥ ≤ Θ1∥S1 − S1∥,� (11)

where, Θ1 = mφ
1 + dφ

1 + γφ
1 k5. Similarly, it can be demonstrated that

	 ∥f2(t, S2) − f2(t, S2)∥ ≤ Θ2∥S2 − S2∥, � (12)

	 ∥f3(t, S3) − f3(t, S3)∥ ≤ Θ3∥S3 − S3∥, � (13)

	 ∥f4(t, A) − f4(t, A)∥ ≤ Θ4∥A − A∥, � (14)

	 ∥f5(t, I) − f6(t, I)∥ ≤ Θ5∥I − I∥, � (15)

	 ∥f6(t, R) − f6(t, R)∥ ≤ Θ6∥R − R∥, � (16)

where, Θ2 = mφ
2 + γφ

2 k5 + dφ
2 , Θ3 = mφ

3 + γφ
3 k5, Θ4 = νφ + dφ, 

Θ5 = βφ
[
(1 − ϕφ)γφ

1 S1k5 + γφ
2 S2k5 + γφ

3 S3k5
]
, Θ6 = dφ + ηφ. It is evident that all kernels of fi contract 

and meet the Lipschitz condition if 0 < Θi < 1, i = 1, . . . , 6.
By integrating both sides of the model (8), we obtain
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S1(t) − S1(0) = 1
Γ(φ)

∫ t

0
f1(s, S1)(t − s)φ−1ds,

S2(t) − S2(0) = 1
Γ(φ)

∫ t

0
f2(s, S2)(t − s)φ−1ds,

S3(t) − S3(0) = 1
Γ(φ)

∫ t

0
f3(s, s3)(t − s)φ−1ds,

A(t) − A(0) = 1
Γ(φ)

∫ t

0
f4(s, A)(t − s)φ−1ds,

I(t) − I(0) = 1
Γ(φ)

∫ t

0
f5(s, I)(t − s)φ−1ds,

R(t) − R(0) = 1
Γ(φ)

∫ t

0
f6(s, R)(t − s)φ−1ds.

Hence, we obtain the iterative scheme as,

	

S1n = S10 + 1
Γ(φ)

∫ t

0
(t − s)φ−1f1(s, S1(n−1))ds,

S2n = S20 + 1
Γ(φ)

∫ t

0
(t − s)φ−1f2(s, S2(n−1))ds,

S3n = S30 + 1
Γ(φ)

∫ t

0
(t − s)φ−1f3(s, S3(n−1))ds,

An = A0 + 1
Γ(φ)

∫ t

0
(t − s)φ−1f4(s, An−1)ds,

In = I0 + 1
Γ(φ)

∫ t

0
(t − s)φ−1f5(s, In−1)ds,

Rn = R0 + 1
Γ(φ)

∫ t

0
(t − s)φ−1f6(s, Rn−1)ds.

� (17)

We now formulate a recursive expression based on Eq. (17) as follows:

	

Ω1n(t) = S1n − S1(n−1) = 1
Γ(φ)

∫ t

0
(t − s)φ−1(

f1(s, S1(n−1)) − f1(s, S1(n−2))
)
ds,

Ω2n(t) = S2n − S2(n−1) = 1
Γ(φ)

∫ t

0
(t − s)φ−1(

f2(s, S2(n−1)) − f2(s, S2(n−2))
)
ds,

Ω3n(t) = S3n − S3(n−1) = 1
Γ(φ)

∫ t

0
(t − s)φ−1(

f3(s, S3(n−1)) − f3(s, S3(n−2))
)
ds,

Ω4n(t) = An − An−1 = 1
Γ(φ)

∫ t

0
(t − s)φ−1(

f4(s, An−1) − f4(s, An−2)
)
ds,

Ω5n(t) = In − In−1 = 1
Γ(φ)

∫ t

0
(t − s)φ−1(

f5(s, In−1) − f5(s, In−2)
)
ds,

Ω6n(t) = Rn − Rn−1 = 1
Γ(φ)

∫ t

0
(t − s)φ−1(

f6(s, Rn−1) − f6(s, Rn−2)
)
ds.

� (18)

The norm of the first Equation of (18) can be written as
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∥Ω1n(t)∥ = ∥S1n − S1(n−1)∥ =
∥∥∥∥

1
Γ(φ)

∫ t

0
(t − s)φ−1(

f1(s, S1(n−1)) − f1(s, S1(n−2))
)
ds

∥∥∥∥,

≤ 1
Γ(φ)

∫ t

0
(t − s)φ−1∥

(
f1(s, S1(n−1)) − f1(s, S1(n−2))

)
∥ds,

≤ Θ1

Γ(φ)

∫ t

0
(t − s)φ−1∥S1(n−1)(s) − S1(n−2)(s)∥ds,

= Θ1

Γ(φ)

∫ t

0
(t − s)φ−1∥Ω1(n−1)(t)∥ds,

=
(

Θ1t

Γ(φ + 1)

)n

∥S(0)∥.

Similarly, we have

	
∥Ωjn(t)∥ ≤

(
Θjt

Γ(φ + 1)

)n

∥Zj(0)∥; ∀j = 2, 3, . . . , 6,

where, 
(
Z1, Z2, Z3, Z4, Z5, Z6

)
=

(
S1, S2, S3, A, I, R

)
.

Assume that there is t = T , s.t. 
ΘjT

Γ(φ + 1) < 1, ∀ j = 1, . . . , 6. As n → ∞, it is evident that for each 

j = 1, . . . , 6, ∥Ωjn(t)∥ → 0. Consequently, model (8) has a solution.
We now prove the uniqueness of solutions with the same initial conditions. Assume that the model (8) has 

two distinct solutions corresponding to the same initial values, which we denoted as Ŝ1, Ŝ2, Ŝ2, Â, Î, R̂. We 
obtain,

	
S1 − Ŝ1 = 1

Γ(φ)

∫ t

0
(t − s)φ−1(

f1(s, S1) − f1(s, Ŝ1)
)
ds.� (19)

The norm of the above equation is

	
∥S1 − Ŝ1∥ = 1

Γ(φ)

∫ t

0
(t − s)φ−1∥f1(s, S1) − f1(s, Ŝ1)∥ds.

Thus, by applying the Lipschitz condition, we derive:

	
∥S1 − Ŝ1∥ ≤ Θ1T

Γ(φ + 1)∥S1 − Ŝ1∥. � (20)

	

(
1 − Θ1T

Γ(φ + 1)

)
∥S1 − Ŝ1∥ ≤ 0. � (21)

If ∥S1 − Ŝ1∥ = 0, then S1 = Ŝ1, satisfies the inequality (21). S1(t) is therefore unique. Similarly, we 
demonstrates the uniqueness of S1(t), S2(t), S3(t), A(t), I(t), and, R(t). � □

Reproduction number
In a fully susceptible population, the basic reproduction number, which is commonly represented as R0, is the 
number of secondary cases produced by a single infectious individual. It serves as a key metric for assessing the 
potential for disease transmission within a community. If R0 < 1 the infection dies out over time, whereas if 
R0 > 1, the infection persists and continues to spread. In order to compute the reproduction number, we begin 
by identifying the disease-free equilibrium (DFE) point. The DFE corresponds to a state where the disease does 
not continue to exist in the population. It is obtained by setting

	
C
0 Dφ

t S1(t) =C
0 Dφ

t S2(t) =C
0 Dφ

t S3(t) =C
0 Dφ

t A(t) =C
0 Dφ

t I(t) =C
0 Dφ

t R(t) = 0,

and assuming that the infectious compartments in the model are zero. The DFE point for the model is obtained 
as

	

E ∗ = (S∗
1 , S∗

2 .S∗
3 , 0, 0, 0)

=
(

Λφ

(mφ
1 + dφ

1 ) ,
dφ

1 Λφ

(mφ
1 + dφ

1 )(mφ
2 + dφ

2 ) ,
dφ

1 dφ
2 Λφ

(mφ
1 + dφ

1 )(mφ
2 + dφ

2 )dφ
3

, 0, 0, 0
)

.

Next, we utilize the next-generation matrix method39 to determine the basic reproduction number. Using this 
method, R0 is derived as,
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R0 = (νφ + βφdφ)[(1 − ϕφ)γφ

1 S∗
1 + γφ

2 S∗
2 + γφ

3 S∗
3 ]

(νφ + dφ)[dφ + (1 + ψφ)rφ + µφ]

[
1 + ηφ(1 + ψφ)rφ

(dφ + ηφ)(dφ + (1 + ψφ)rφ + µφ)

]
.� (22)

Parameter estimation
The estimation of model parameters plays a fundamental role in validating epidemiological models. Accurate 
parameter estimation not only ensures the model reflects real-world dynamics but also enhances its predictive 
capabilities, aiding in the understanding of disease transmission and future epidemic trends. In this section, we 
estimate the model parameters by applying the least squares method, which minimizes the difference between 
the numerical solution for the infected population and the observed data of reported infections. To achieve 
this, we use MATLAB’s built-in function lsqcurvefit, which applies a non-linear least squares approach. 
The fractional-order model for TB incorporates 17 parameters. Of these, we estimate five key parameters 
m1, m2, γ1, γ2, γ3, by fitting the model to TB case data from China spanning the years 2005 to 2016, as provided 
in.35 Additionally, we compute the root mean square error (RMSE) to compare the performance of the classical 
integer-order model with the fractional-order model. RMSE is calculated using the formula:

	

RMSE =

√√√√1
l

l∑
k=0

(
X(tk) − Xdata(tk)

)2� (23)

Here, Xdata(tk) and X(tk) represent the real and fitted data respectively at time tk  and l, is the length of the 
corresponding data.

In the case of fractional-order models, where the fractional derivative order, denoted by φ, can be adjusted to 
achieve the best fit between the model and observed data. This flexibility is a distinct advantage over deterministic 
integer-order models, where such adjustments are not possible. Let Y(t) represent the cumulative number of TB-
infected people at time t in the model. The governing equation for this system is:

	
C
0 Dφ

t Y (t) = βφ
[
(1 − ϕφ)γφ

1 S1I + γφ
2 S2I + γφ

3 S3I
]

+ νφA + ηφR,� (24)

where, I(t) represents the number of individuals in the infected compartment at time t, and Z(t) = Y (t) − Y (t − 1) 
corresponds to the newly infected TB cases at time t.

We estimated the optimal parameters of the fractional-order TB model by comparing the cumulative 
infected cases, with the model’s predictions. Our results indicate that the model produces the best fit to the 
observed data when φ = 0.93, demonstrating the presence of memory effects in TB transmission dynamics. The 
observed TB cases are depicted as solid red circles, while the best-fit curves of the model for both integer-order 
and fractional-order cases are shown in blue in Fig. 2a,b. The biological parameters used in the model, along 
with their best estimates obtained via the least squares method, are presented in Table 1. Table 2 compares the 
cumulative infected cases predicted by the classical integer-order model and the fractional-order model with 
the observed data, along with the RMSE values for both cases. The results show that the RMSE for the fractional 
order model is approximately ϵ = 5.89e + 05, while for the classical model, it is ϵ = 8.24e + 05, representing a 
28.6% reduction in error in the fractional case. This demonstrates that the fractional-order model offers greater 

Fig. 2.  The behavior of classical and Caputo fractional models in comparison with statistical real cases.
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flexibility and improved accuracy in data fitting compared to the integer-order model. Based on these findings, 
we conclude that fractional-order models are better suited for capturing the dynamics of epidemics.

Sensitivity analysis
In this section, we conduct a sensitivity analysis of the basic reproduction number R0. The objective of this 
analysis is to determine the influence of each model parameter on R0, quantified using the sensitivity index. The 
normalized forward sensitivity index of R0 with respect to a specific parameter p̂ is given as:40

	
Ip̂ = p̂

R0
× ∂R0

∂p̂
.� (25)

A parameter’s impact on R0 is directly related to the absolute value of its sensitivity index, the larger the value, 
the greater the parameter’s influence. The sign of the index also provides insight into the direction of change: 
a positive index indicates that increasing the parameter enlarges R0, while a negative index suggests that an 
increase in the parameter reduces R0.

The sensitivity index for each parameter is calculated by substituting the parameter values from Table 1 into 
the sensitivity formula. The results are presented in Fig. 3, and the numerical values of the sensitivity indices are 
summarized in Table 3. Among the parameters, Λ, m3, γ3, and r exhibit the most significant influence on R0
, with sensitivity indices of 0.93, −0.961, 0.9261, and − 0.9108 respectively. These findings underscore the 
critical role of the senior population in the dynamics of tuberculosis transmission. Specifically, reducing the 
infection rate (γ3) through enhanced diagnostics, prophylaxis, and isolation measures, as well as improving 

Fig. 3.  Bar plot showing the sensitivity indices of R0 for each parameter.

 

Time(t) Real data Classical order predictions

Fractional order predication

(φ = 0.93)

0 1.25e+06 1.25e+06 1.25e+06

1 2.38e+06 2.15e+06 2.2e+06

2 3.55e+06 3.08e+06 3.10e+06

3 4.72e+06 4.04e+06 4.00e+06

4 5.67e+06 5.03e+06 4.93e+06

5 6.62e+06 6.07e+06 5.89e+06

6 7.70e+06 7.17e+06 6.89e+06

7 8.69e+06 8.36e+06 7.95e+06

8 9.58e+06 9.63e+06 9.08e+06

9 1.04e+06 1.10e+06 1.03e+06

10 1.13e+06 1.25e+06 1.16e+06

11 1.21e+06 1.42e+06 1.30e+06

RMSE(ϵ) 8.24e+05 5.89e+05

Table 2.  Comparison of model predictions and RMSE for fractional order and classical order TB models.
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the recovery rate (r) via effective treatment programs, can significantly mitigate the spread of TB. Furthermore, 
healthcare improvements tailored to seniors, such as regular screenings and latent TB management, are vital 
to controlling transmission. To provide a more comprehensive understanding, 3D surface meshes and contour 
plots are included to illustrate the impact of various parameters on R0 in Figs. 4, 5, 6 and 7. These visualization 
techniques are widely used in epidemiological modeling as they provide a clear representation of parameter 
interactions and their nonlinear effects on disease dynamics. Figure 4 demonstrates the combined effects 
of the annual recovery increment due to DOTS (ψ) and the senior population mortality rate (m3) on R0. 
It emphasizes the crucial role of simultaneously raising ψ and decreasing m3 through improved healthcare 
measures to effectively control TB transmission. The Fig. 5 displays the variation with the recovery rate (r) and 
the infection rate in seniors (γ3). A decrease in (γ3) further reduces disease transmission, while a higher recovery 
rate significantly lowers R0. The interaction between age group transition rates d1, d2 and their effect on R0 is 

Fig. 4.  Influence of senior mortality rate (m3) and annual recovery increment (ψ) on R0; (a) presents the 3D 
mesh plot, (b) shows the corresponding contour plot.

 

Parameters Sensitivity indices

Λ 0.93

m1 −0.0276919
m2 −0.266303
m3 −0.926139
γ1 3.774e − 05
γ2 0.00016811

γ3 0.926139

d1 0.023993

d2 0.266471

d −0.169845
ψ −0.317324
η 0.15462

r −0.910881
β 0.000103

ν 0.001565

µ −0.00054605

Table 3.  The values of sensitivity index of R0.
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depicted in the Fig. 6. Additionally, the Fig. 7 illustrates how R0 is influenced by the fractional order (φ) and 
the reinfection rate (η). These results demonstrate how fractional dynamics interact with key epidemiological 
parameters to shape the transmission and control of TB.

Fig. 6.  Combined impact of age transition rates (d1) and (d2) on R0; (a) presents the 3D mesh plot, (b) shows 
the corresponding contour plot.

 

Fig. 5.  Influence of infection rate in seniors (γ3) and recovery rate (r) on R0; (a) presents the 3D mesh plot, 
(b) shows the corresponding contour plot.
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Numerical simulation and discussion
In this section, we simulate the proposed TB disease model (8) governed by the Caputo fractional operator, 
which is autonomous in nature. The state variables S1(t), S2(t), S3(t), A(t), I(t) and, R(t) are evaluated 
under different biological parameter values (both fixed and fitted) and the optimized fractional-order 
parameter, obtained through the non-linear least squares curve-fitting approach. The simulations are 
performed using the fractional Adams method, a widely used numerical method that employs a predictor-
corrector scheme, as detailed in.41,42 This method combines explicit and implicit procedures via the 
Adams-Bashforth-Moulton (ABM) fractional numerical technique to efficiently and accurately solve 
fractional-order differential equations. For the simulations, the time step size is chosen as h = 1e − 02
, corresponding to the interval of time [0,  80]. The initial conditions of the system are specified as:35 
S1(0) = 26, 504e + 04, S2(0) = 94, 197e + 04, S3(0) = 10, 055e + 04, A(0) = 1, 174, 03, I(0) = 1, 259, 308, and R(0) = 776, 223
, with biological parameter values taken from Table 1. To demonstrate the method, the fractional differential 
equations are formulated in the following form:

	
C
0 Dφ

t ϑ(t) = F(t, ϑ(t)), � (26)

	 ϑi(0) = ϑi
0; i = 0, 1, . . . , n − 1, � (27)

where, φ > 0, and i = ⌈φ⌉. The fractional differential equation stated above can be transformed into an 
equivalent Volterra integral equation, which is expressed as:

	
ϑ(t) =

n−1∑
i=0

ϑi
0

ti

i! + 1
Γ(φ)

∫ t

0
(t − τ)φ−1F(τ, ϑ(τ))dτ.� (28)

When applying Adams Bashforth Moulton’s generalized predictor-corrector approach, the uniform grid points 
are set to tk = kh, k = 0, 1, . . . , m with m ∈ N. Then, the following discretization of Eq. (28) is possible:

	
ϑk+1 =

n−1∑
i=0

ϑi
0

ti
k+1

i! + hφ

Γ(φ + 2)

[ k∑
i=0

ai,k+1 F(ti, ϑi) + ak+1,k+1F(tk+1, ϑP
k+1)

]
, � (29)

	
ϑP

k+1 =
n−1∑
i=0

ϑi
0

ti
k+1

i! + hφ

Γ(φ + 2)

[ k∑
i=0

bi,k+1 F(ti, ϑi)
]

, � (30)

where, the weights are defined as:

Fig. 7.  Variation of R0 with respect to the fractional order (ϕ) and reinfection rate (η); (a) presents the 3D 
mesh plot, (b) shows the corresponding contour plot.
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ai,k+1 =

{
kφ+1 − (k − φ)(k + φ)φ; i = 0
(k − i + 2)φ+1 + (k − i)φ+1 − 2(k − i + 1)φ+1; 1 ≤ i ≤ k
1; i = k + 1

� (31)

	 and bi,k+1 = (k − i + 1)φ − (k − i)φ; i = 0, 1, . . . , k. � (32)

The fractional Adams method, as discussed earlier, is used to simulate the Caputo model (8). The following is the 
system’s reduction to the corrector formula:

	

S1(tn+1) =S1(t0) + hφ

Γ(φ + 2)

k∑
i=0

ai,n+1
(
Λφ − mφ

1 S1(ti) − dφ
1 S1(ti) − γφ

1 S1(ti)I(ti)
)

+ hφ

Γ(φ + 2)
(
Λφ − mφ

1 SP
1 (tn+1) − dφ

1 SP
1 (tn+1) − γφ

1 SP
1 (tn+1)IP (tn+1)

)
,

� (33)

	

S2(tn+1) =S2(t0) + hφ

Γ(φ + 2)

k∑
i=0

ai,n+1
(
dφ

1 S1(ti) − mφ
2 S2(ti) − γφ

2 S2(ti)I(ti) − dφ
2 S2(ti)

)

+ hφ

Γ(φ + 2)
(
dφ

1 SP
1 (tn+1) − mφ

2 SP
2 (tn+1) − γφ

2 SP
2 (tn+1)IP (tn+1) − dφ

2 SP
2 (tn+1)

)
,

� (34)

	

S3(tn+1) =S3(t0) + hφ

Γ(φ + 2)

k∑
i=0

ai,n+1
(
dφ

2 S2(ti) − mφ
3 S3(ti) − γφ

3 S3(ti)I(ti)
)

+ hφ

Γ(φ + 2)
(
dφ

2 SP
2 (tn+1) − mφ

3 SP
3 (tn+1) − γφ

3 SP
3 (tn+1)IP (tn+1)

)
,

� (35)

	

A(tn+1) =A(t0) + hφ

Γ(φ + 2)

k∑
i=0

ai,n+1
(
(1 − βφ)[(1 − ϕφ)γφ

1 S1(ti)I(ti) + γφ
2 S2(ti)I(ti)

+ γφ
3 S3(ti)I(ti)] − (νφ + dφ)A(ti)

)
+ hφ

Γ(φ + 2)
(
(1 − βφ)[(1 − ϕφ)γφ

1 SP
1 (tn+1)IP (tn+1)

+ γφ
2 SP

2 (tn+1)IP (tn+1) + γφ
3 SP

3 (tn+1)IP (tn+1)] − (νφ + dφ)AP (tn+1)
)
,

� (36)

	

I(tn+1) =I(t0) + hφ

Γ(φ + 2)

k∑
i=0

ai,n+1
(
βφ

[
(1 − ϕφ)γφ

1 S1(ti)I(ti) + γφ
2 S2(ti)I(ti) + γφ

3 S3(ti)I(ti)
]

−
[
dφ + (1 + ψφ)rφ + µφ

]
I(ti) + νφA(ti) + ηφR(ti)

)
+ hφ

Γ(φ + 2)
×

(
βφ

[
(1 − ϕφ)γφ

1 SP
1 (tn+1)IP (tn+1) + γφ

2 SP
2 (tn+1)IP (tn+1) + γφ

3 SP
3 (tn+1)IP (tn+1)

]

−
[
dφ + (1 + ψφ)rφ + µφ

]
IP (tn+1) + νφAP (tn+1) + ηφRP (tn+1)

)
,

� (37)

	

R(tn+1) =R(t0) + hφ

Γ(φ + 2)

k∑
i=0

ai,n+1
(
(1 + ψφ)rφI(ti) − (dφ + ηφ)R(ti)

)

+ hφ

Γ(φ + 2)
(
(1 + ψφ)rφIP (tn+1) − (dφ + ηφ)RP (tn+1)

)
.

� (38)

and the predictor formula is given by,

	
SP

1 (tn+1) = S1(t0) + hφ

Γ(φ + 2)

k∑
i=0

bi,n+1
(
Λφ − mφ

1 S1(ti) − dφ
1 S1(ti) − γφ

1 S1(ti)I(ti)
)
, � (39)

	
SP

2 (tn+1) = S2(t0) + hφ

Γ(φ + 2)

k∑
i=0

bi,n+1

(
dφ

1 S1(ti) − mφ
2 S2(ti) − γφ

2 S2(ti)I(ti) − dφ
2 S2(ti)

)
, � (40)

	
SP

3 (tn+1) = S3(t0) + hφ

Γ(φ + 2)

k∑
i=0

bi,n+1
(
dφ

2 S2(ti) − mφ
3 S3(ti) − γφ

3 S3(ti)I(ti)
)
, � (41)

	

AP (tn+1) = A(t0) + hφ

Γ(φ + 2)

k∑
i=0

bi,n+1
(
(1 − βφ)[(1 − ϕφ)γφ

1 S1(ti)I(ti) + γφ
2 S2(ti)I(ti)

+ γφ
3 S3(ti)I(ti)] − (νφ + dφ)A(ti)

)
,

� (42)
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IP (tn+1) = I(t0) + hφ

Γ(φ + 2)

k∑
i=0

bi,n+1
(
βφ

[
(1 − ϕφ)γφ

1 S1(ti)I(ti) + γφ
2 S2(ti)I(ti) + γφ

3 S3(ti)I(ti)
]

−
[
dφ + (1 + ψφ)rφ + µφ

]
I(ti) + νφA(ti) + ηφR(ti)

)
,

� (43)

	
RP (tn+1) = R(t0) + hφ

Γ(φ + 2)

k∑
i=0

bi,n+1
(
(1 + ψφ)rφI(ti) − (dφ + ηφ)R(ti)

)
. � (44)

To analyze the dynamics of the proposed fractional-order TB model, we graphically represent the behavior 
of each compartment across various fractional-order values. These visualizations, presented in Figs. 8, 9, 10, 
11, 12 and 13, illustrate the impact of the Caputo fractional derivative on the population dynamics under 
different scenarios: the classical case φ = 1, fractional cases φ = 0.98, φ = 0.96, φ = 0.93 (fitted to data), and 
φ = 0.90. These graphs allow us to analyze the disease dynamics across these fractional orders and explore the 
future course.

Figure 8 highlights the temporal progression of the younger susceptible population. The graph reveals a sharp 
initial decline followed by a gradual slowdown, with the curve flattening towards the end. This trend indicates 
that the model predicts a decrease in the younger population transitioning from susceptibility to exposure over 
time. Figures 9 and 10 depict the dynamics of the middle-aged and senior susceptible populations, respectively. 
Both show an initial increase, followed by consistent growth and a gradual decrease after t = 35. This indicates 
that the number of middle-aged and senior individuals susceptible to exposure initially increases, followed by 
a period of stabilization and a gradual decline over time. Notably, the graphs reveal that the Bacillus Calmette-
Guerin (BCG) vaccine (ϕ) is more effective for younger populations and has limited impact on middle-aged 
and senior individuals, calling for tailored vaccination strategies for these age groups. Figure 12 demonstrates 
the numerical simulations for the infected compartment. The classical case (φ = 1) predicts a rapid increase 

Fig. 9.  The behavior of middle aged susceptible population for different values of fractional order (φ).

 

Fig. 8.  The behavior of child age susceptible population for different values of fractional order (φ).
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Fig. 12.  The behavior of infected population for different values of fractional order (φ).

 

Fig. 11.  The behavior of exposed population for different values of fractional order (φ).

 

Fig. 10.  The behavior of older aged susceptible population for different values of fractional order (φ).
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in infections, whereas fractional-order cases show slower infection growth and a more gradual decline post-
peak. Similarly, Fig. 11 illustrates the evolution of the exposed population. The trend across different fractional 
orders aligns with the infected population, where fractional models predict smoother transitions and reduced 
peak values compared to the integer-order case. The dynamics of the recovered population depicted in Fig. 13, 
show that fractional-order cases predict an initial slow rise in recoveries, with a substantial increase beginning 
around t = 20 and stabilizing after t = 40. This behavior underscores the model’s ability to represent recovery 
processes accurately, highlighting the delayed yet significant impact of interventions in reducing the number of 
infected individuals. Finally, Fig. 14 provides a comprehensive comparison of all compartments for the data-
fitted fractional-order value φ = 0.93. All these results confirm that as φ decreases, solutions converge more 
slowly, and peak values reduce. This behavior indicates the incorporation of memory effects in fractional-order 
models, making them superior to classical models in capturing the persistence and gradual attenuation of 
disease dynamics.

Conclusion
Epidemiological models serve as an essential tool in visualizing the transmission dynamics of diseases, fitting 
them to real data, and suggesting better control interventions based on thorough analysis. In this study, we 
formulated a compartmental model to capture the spread dynamics of tuberculosis within a fractional framework 
to incorporate memory effects. The model employed the Caputo fractional derivative and was validated using 
real data from China. The key findings and recommendations from the study are outlined below:

•	 The non-negativity of solutions and the boundedness of the model’s compartments were ensured, highlight-
ing the biological significance of the system. Furthermore, the existence and uniqueness of solutions were 
rigorously proven, establishing the mathematical robustness of the proposed model.

•	 The optimal fractional derivative order (φ = 0.93) obtained through parameter estimation confirms the 
presence of memory effects in TB transmission, which integer-order models fail to capture. This result sup-

Fig. 14.  The behavior of all state variables of the model for fractional order (φ = 0.93).

 

Fig. 13.  The behavior of recovered population for different values of fractional order (φ).
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ports the use of fractional calculus in epidemiological modeling, as it allows for a more realistic representation 
of disease dynamics by incorporating long-term dependencies and non-local effects.

•	 Sensitivity analysis of the basic reproduction number (R0 = 1.291) was performed to quantify the impact 
of model parameters on disease transmission. Results indicated that parameters such as γ3 (senior infection 
rate), r (recovery rate), and m3 (senior mortality rate) significantly influence R0. Additionally, 3D mesh and 
contour plots were used to visualize the interplay between these parameters and their influence on R0, pro-
viding actionable insights for intervention strategies.

•	 The fractional-order model (φ = 0.93) achieved an RMSE of 5.89e + 05, demonstrating a 28.6% reduction 
in error compared to the integer-order model (RMSE = 8.24e + 055). This confirms that the fractional-order 
model provides a significantly better fit to real TB data, reinforcing its superiority in accurately capturing 
disease dynamics.

•	 Numerical simulations using the Adams-Bashforth-Moulton method were conducted to analyze the behavior 
of all compartments under varying fractional orders. These simulations provided valuable insights into dis-
ease progression and intervention effectiveness over time.

While Caputo fractional differentiation and integration were used in this study to capture the complexities of 
tuberculosis dynamics, future research can explore alternative and more advanced fractional operators, such 
as Caputo-Fabrizio, and Atangana-Baleanu derivatives. Additionally, other datasets can be incorporated to 
generalize the model’s applicability to different types of biological models. Advanced parameter estimation 
methods, such as maximum likelihood, can also be considered to improve accuracy further.

Data availibility
The data utilized in this study were obtained from,35 as referenced in the manuscript. Additionally, the data 
are available upon reasonable request from the second author, Sangeeta Kumawat (00sangeetakumawat@gmail.
com).
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