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The fuel efficiency of plug-in hybrid electric vehicle is influenced by various factors, including working 
conditions, driving style, and environmental variables, with the design of their energy management 
strategy (EMS) serving as the core and critical technology. In order to adapt to traffic environment, it 
is of great significance to construct driving cycles that align with driving characteristics, providing data 
support for the optimization of the EMS. This paper carried out research on the EMS optimization for 
multi-mode hybrid electric vehicle (MMHEV). Firstly, the traffic speed was established interval by using 
data envelopment analysis (DEA) and the urban comprehensive driving cycles based on the proportion 
of driving time was constructed. Then, an EMS optimized based on road condition information (RC-
EMS) was developed according to the operating curves and interval thresholds of motors and engine. 
The initial optimal parameters for offline optimization of the EMS were obtained using a bare-bones 
multi-objective particle swarm optimization algorithm, with the constructed comprehensive driving 
cycle serving as the input information for the optimization model. After that, a fuzzy adaptive 
parameter optimization module (ARC-EMS) was designed to update the key parameters of the RC-EMS 
in real time, so as to realize the optimal dynamic energy allocation adaptively according to the road 
conditions. Finally, the simulation and experimental results fully showed that the proposed ARC-
EMS can balance the performance more effectively. As anticipated, the strategy effectively balances 
energy savings and battery health, and it can be utilized to develop an EMS that enhances the overall 
performance of the MMHEV.
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In order to reduce dependence on fossil fuels, PHEV are widely recognized as one of the key technologies for 
clean transportation in the future1. Multi-mode hybrid electric vehicle (MMHEV) is typically equipped with 
high-capacity power batteries whose state of charge (SoC) can vary in a wide range, where the better overall fuel 
economy can be achieved through capturing and storing energy from the grid to provide propulsion energy to 
the vehicle2. The essence of EMS is to obtain the vehicle’s demand power according to the operating condition 
information and the driving intention of drivers, and then carry out power distribution according to the dynamic 
characteristics of each power source.

Literature review
PHEV powered by gasoline and electricity have been studied in a number of publications3. The flexibility of 
power distribution leads to more complex EMS problems yet to be well addressed, especially for MMHEV. In 
previous studies, the main objective of EMS was to achieve maximum overall efficiency. Rule-based is widely 
adopted due to the advantages of strong robustness, high operation efficiency and being easy to implement4. The 
rule-based strategy is developed based on a mathematical model, and according to the external characteristic 
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curve of the engine, the engine is coordinated to work in the high-efficiency zone through the supplementation 
of the drive motor during operation, which enables efficient switching and combination of various operating 
modes in the operation of the vehicle, thus obtaining better fuel economy. Rule-based energy management 
strategies (EMS) have demonstrated remarkable advantages in the fields of PHEV and fuel cell commercial 
vehicles. They are capable of further enhancing the fuel economy of PHEVs, achieved through rapid calculation 
speeds and straightforward establishment processes5, as well as effectively reducing hydrogen consumption 
in real-time applications through rule-based learning strategies, thereby prolonging the lifespan of fuel cells6. 
Additionally, such strategies offer PHEVs more adaptable, flexible, and higher-performance EMS solutions7. 
More importantly, by utilizing rule-based algorithms, precise extraction and application of fuel cell output 
power rules can be achieved, ensuring that the EMS for fuel cell commercial vehicles can be implemented in 
real-time and optimized8.

Optimization-based energy management strategy is to optimize the energy management taking into account 
the driving conditions and driving style, in terms of offline optimization, it is mainly based on the knowledge 
and experience of the past or future power demand to optimize the fuel economy for a fixed route or known 
conditions, the main methods are reinforcement learning9, dynamic programming10, genetic algorithms11, model 
predictive control12, equivalent fuel minimum control13. In the research conducted on HEVs, optimized EMS 
based on diverse algorithms have been extensively explored. Among them, an energy management strategy for 
parallel HEVs grounded in optimal control has been proposed, which effectively reduces fuel consumption and 
battery wear, thereby extending battery life, utilizing the Principle of Pontryagin’s Maximum Principle (PMP)14. 
Additionally, a modularized powertrain design approach that integrates Constrained Multi-Objective Particle 
Swarm Optimization with dynamic programming has been introduced, significantly optimizing the economy 
and durability of FCHVs15. Furthermore, three real-time EMS aimed at minimizing overall operational costs 
have been suggested, with the strategy combining rules and optimization demonstrating superior performance16. 
To address uncertainties, an integrated predictive energy-dynamic programming hierarchical optimization 
framework has been further proposed, utilizing information entropy to provide a theoretical foundation for 
optimizing vehicle fuel economy and energy consumption17. Lastly, a rule-optimized energy management 
strategy based on the Particle Swarm Optimization (PSO) algorithm has been developed, which significantly 
enhances fuel economy by optimizing the mode switching and torque distribution of PHEV18.

Road conditions represent the process and state of vehicle travelling, which is usually presented through 
speed-time curves, and is an important reference for vehicle technology development and EMS. In the 
construction of working conditions, in order to solve the problem of under-representation of the standard 
working conditions, relevant research has carried out the construction of driving conditions, and constructed 
the driving conditions that meet the local roads in many cities. The commonly used methods for constructing 
driving conditions are short trip analysis19, random selection method20Markov analysis21, and hierarchical 
clustering method22. Significant advancements have been made in the research of EMS relying on road condition 
information. The fuel economy and ride comfort of connected PHEV have been enhanced, and stops at traffic 
signals have been avoided, through the utilization of real traffic light information in conjunction with a multi-
objective hierarchical optimization strategy23.The adoption of EMS based on Cyber-Physical Systems and Deep 
Reinforcement Learning, coupled with the integration of multimodal traffic information, has led to optimized 
power flow management24. Furthermore, a variable-level, multi-modal driving pattern recognition framework, 
proposed based on real two-dimensional vehicle-road information, has significantly improved recognition 
accuracy, providing support for the formulation of intelligent EMS25.

In relation to the design of EMS, the collection of urban road condition data to construct driving conditions, 
data processing and analysis research based on data envelopment analysis, to construct comprehensive driving 
conditions, to provide data support for EMS and optimization. In addition, the EMS design should gradually 
improve from the initial single-objective optimization to real-time and intelligent multi-objective optimization 
(MOO). In fact, EMS performance optimization is a typical issue of MOO with the independent and balanced 
results. The battery pack is the energy storage system of MMHEV, and its durability has an important impact 
on the vehicle’s operational safety and drive ability. The battery life is largely determined by how the electrical 
energy is used during the trip. Therefore, it is meaningful to comprehensively consider the performance of the 
vehicle in terms of energy consumption, emissions and battery life, so as to achieve MOO that can balance the 
comprehensive performance, which is also the focus in this paper.

Motivation and innovation
This paper focused on the design and optimization of EMS for MMHEV, a fuzzy adaptive parameter 
optimization module (ARC-EMS) was designed to update the key parameters of the RC-EMS in real time is 
introduced and a MOO method is proposed, so as to realize the optimal dynamic energy allocation adaptively 
according to the road conditions. Promisingly, in Sect. 2, the traffic speed was established interval by using data 
envelopment analysis (DEA) and the urban comprehensive driving cycles based on the proportion of driving 
time was constructed. Section 3 describes the MOO problem, and the bare bones-multi objective particle swarm 
optimization (BB-MOPSO) algorithm is selected to solve MOO problem. In Sect. 4, a series of simulation and 
experimental bench tests are carried out to validate the effectiveness and feasibility of the proposed strategy. 
Conclusions are drawn in the final section. The innovations of this study are as follows: (1) The DEA method 
was used to establish the traffic speed interval, and the comprehensive driving cycles of urban were constructed 
based on the proportion of driving time, which laid the data foundation for the design and optimization of EMS. 
(2) A data-driven EMS based on travel conditions was designed, whose threshold parameters were optimized 
offline based on BB-MOPSO algorithm. (3) A real-time adaptive parameter optimization module based on fuzzy 
algorithm was designed to realize the multi-objective comprehensive optimal performance control which can 
adapt to the optimal road conditions.
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Design of parameter adaptation EMS based on road condition information driven
In order to study the performance of the designed EMS, the energy distribution among the engine, motor and 
battery is discussed. Considering the dynamic information of the battery, a real-time optimization and parameter 
adjustment module based on fuzzy logic is designed.

Configuration of the studied MMHEV model and EMS optimized based on road condition
The powertrain system of the MMHEV consists of power battery, internal combustion engine (ICE), electrical 
machine (EM), mechanical driving mechanism and control system26. Figure 1 shows the powertrain system of 
the MMHEV, which is selected as the research object in this paper for EMS design.

A dedicated hybrid transmission (DHT) is used to realize conversion and delivery of oil-electric energy. The 
power source of the MMHEV consists of ICE and two different power EMs, of which the EM1 is mainly used as 
a generator in the series mode, and the EM2 can be used as a drive motor to power the wheels, or as a generator 
to recharge the battery by regenerative braking or absorbing excess power from the ICE27. The driving mode of 
the MMHEV can be changed by controlling the engagement and disengagement of the clutch C1 and C2. The 
driver mode implemented by this configuration is as follows: In the EV mode, both clutch 1 and clutch 2 are 
disengaged, exhibiting a characteristic where EM2 provides all the required power. In the Series mode, clutch 1 
is engaged, and clutch 2 is disengaged, displaying a feature where a power-following control strategy is adopted 
to adjust the operating points of the ICE in the high efficiency area, and the output power of the ICE not only 
meets the required power of the EM2, but also outputs excess power to charge the battery. In the Parallel-CD 
mode, both clutch 1 and clutch 2 are engaged, exhibiting a characteristic where, under the working condition of 
high required power, the EM2 generates the maximum power, and the insufficient power is supplemented by the 
ICE. In the Parallel-CS mode, both clutch 1 and 2 are engaged, exhibiting a characteristic where the ICE always 
operates at the optimal torque, with excess power being used to charge the battery through EM2 and insufficient 
power being supplied by consuming battery energy through EM2. When the mode is engine drive mode, with 
both clutch 1 and 2 engaged, the system is characterized by the ICE providing all the required energy.

Establishment of traffic speed database based on DEA method
The core of driving cycle construction is to establish representative driving cycles that can reflect the actual 
road conditions, which means it should have high fitting precision. The research is carried out considering both 
time domain and space domain. Based on DEA, a non-parametric statistical estimation method, traffic speed 
intervals are constructed to analyze short road segments representing driving cycles, by establishing evaluation 
models to verify and assess the efficiency between inputs and outputs (decision making unit, DMU). The DEA 
method is highly inclusive of interference and uncertainty factors in the driving cycle, allowing it to objectively 
reflect the characteristics of driving cycles28. The 1600 speed segments that were collected have been designated 
as decision making units (DMUs), with 700 DMUs in driving condition A, 600 DMUs in driving condition 
B, and 300 DMUs in driving condition C. Subsequently, the C2R model was used to calculate characteristic 
parameters such as velocity difference and acceleration between each pair of anchor points, as well as the average 
acceleration for each segment unit (DMU).

The efficiency evaluation index of the j-th decision-making unit is:

	

hj = uT yj

vT xj
=

n∑
i=1

uryrj

n∑
i=1

vixij

, j = 1, 2, . . . , n� (1)

Where hj is the weight coefficient; vi is the i-th input metric; ui is the r-th output metric; xij is the input amount 
of the j-th DMU for the i-th input; yij is the output of the j-th DMU for the r-th output.

When evaluating the j0-th DMU, with the efficiency index of the j0-th MDU as the objective and all DMU 
efficiency indices as constraints, the established optimization model is:

Fig. 1.  Configuration of the studied multi-mode hybrid electric vehicle.
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(p)





max
uT yj0

vT xj0

s.t.
uT yj

vT xj
⩽ 1, j = 1, 2 . . . , n

� (2)

Perform Charnes Cooper transformation on the above equation to obtain:

	
s = 1

vT xj0
> 0, w = s · v, µ = s · u� (3)

The equivalent linear programming problem obtained from the transformation is:

	

(PC2R)




maxhj0 = µT yj0

s.t.ωT xj − µT yj ⩾ 0,

ωT xj0 = 1,

ω ⩾ 0, µ ⩾ 0.

j = 1, 2 . . . , n� (4)

Its dual programming is DC
2

R, while introducing relaxation variables:

	

(DC2R)




minθ

s.t.

n∑
j=1

λjxj ⩽ θxj0 ,

n∑
j=1

λjyj ⩾ θyj0 ,

λj ⩾ 0, j = 1, 2 . . . , n

⇔ (D1
C2R)




minθ

s.t.

n∑
j=1

λjxj + S− = θxj0 ,

n∑
j=1

λjyj − S+ = θyj0 ,

λj ⩾ 0, j = 1, 2 . . . , n

S−, S+ ⩾ 0

� (5)

When the output result value is close to 1, it is evaluated as DEA effective, and when it is close to 0, it is evaluated 
as DEA invalid. By organizing the filtered data and comparing the velocity data of each group in the same time 
domain, the upper and lower envelope points of each positioning point can be obtained. By using MATLAB 
software to interpolate the data between the positioning points of units under different working conditions, the 
velocity time distribution at different times is formed, which is then assembled into the travel speed interval. The 
final velocity envelope diagram for each working condition is obtained.

The speed interval is obtained by analyzing and sorting out the data collected by the real vehicle, in which 
the idle stage is set as the parking point with the speed of 0. The corresponding speed around the parking point 
is smoothed and limited to avoid large speed fluctuations. In addition, appropriate selection of short segments 
is carried out to reduce the deviation of concatenation. The comprehensive driving cycle of urban road in 
Changchun is shown in the Fig. 2.

Design of parameter adaptation EMS based on road condition information driven
Road condition information holds great significance in the design of vehicle EMS, as it directly impacts the 
vehicle’s energy consumption and performance. The parameter-adaptive EMS, driven by real-time road condition 
information, can dynamically adjust its parameters to achieve optimal energy management and performance. 
Parameter-adaptive EMS design: Dynamically adjusting the cooperation mode between the engine and motor 
to achieve optimal energy consumption and performance. When driving on the highway, more engine power is 
utilized; in congested urban road conditions, more electric motors can be employed to provide power, thereby 

Fig. 2.  The comprehensive driving cycle of urban road.
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reducing emissions and energy consumption. Parameter optimization and fuzzy adaptive EMS driven by road 
information proposed are shown in Fig. 3.

As shown in Fig. 3, in the engine map, the operating modes are divided into four types, namely pure electric 
(EV) mode (M1), extended range (ER) mode (M2), blend drive (BL) mode (M3), and internal combustion 
engine (ICE) drive mode (M4). The four modes are divided by the following rules and the curves between 
modes are as follows: and left and right area demarcation line, the minimum value of rotational speed in the 
optimal working interval of the engine, set the value as the speed threshold (ne); The mode boundary between 
the upper and lower parts on the left is the torque threshold (Te); The pattern boundary between the upper 
and lower parts on the right is: the coupling line between the optimal operating curve of the engine and the 
external characteristic curve of the motor 2. The demand line above the mode on the right side: The coupling 
line between the external characteristic curves of motor 1 and motor 2 and the external characteristic curve of 
the engine. The upper and lower limits of SoC are set to SoCH (0.8) and SoCL (0.5), respectively, within which 
the internal resistance of battery charging and discharging is small and the efficiency is high. The four operating 
modes (M1-M4) switch based on key threshold values in different battery SoC states.

The control results of an EMS with fixed parameters may deviate from the optimal outcomes, and the 
trajectory of the SoC may become uncontrolled, straying completely from its normal operating range. It is 
necessary to take control actions accordingly by optimizing the performance index horizon to adjust parameter 
in real time in order to obtain the best performance. The fuzzy controller is applied as an adaptive regulator 
which tunes its parameters with the evaluation under the MOO framework in this section. In order to make 
better use of the energy between battery and engine, and thereby extend battery service life, a relatively flat 
SoC trajectory is important, as a hybrid energy storage system29. As shown in Fig. 4, the fuzzy logic controller 
is employed to identify the threshold adjustment factor for the optimal control process. The ∆SoCH and ∆SoCL 
were used to update the SoCH and SoCL in real time according to the following equation:

	

SoCH = SoCH_0 + ∆SoCH

SoCL = SoCL_0 + ∆SoCL
� (6)

Fig. 4.  Diagram of parameter adjustment based on fuzzy controller.

 

Fig. 3.  Parameter optimization and fuzzy adaptive EMS driven by road information.
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Where ∆SoCH is the threshold adjustment factor value of the SoCH; SoCH _0 is the initial threshold value after the 
optimization decision; ∆SoCL is the threshold adjustment factor value of the SoCL; SoCL _0 is the initial threshold 
value after the optimization decision.

The fuzzy logic controller is a map from the controller inputs to outputs with a set of logic rules, which 
is employed to realize parameters adjustment in real time30. The details of the fuzzy controller are displayed 
below: (1) Fuzzification: ΔSoC is the SoC difference between the real battery SoC (SoCact) and the predefined 
battery SoC (SoCpre). Power requirement (Preq) and ΔSoC are selected as two inputs in the fuzzy logic controller. 
ΔSoC∈[− 0.05, 0.05], Preq∈[0 kW, 160 kW]. The outputs are the threshold adjustment factor ∆SoCH and ∆SoCL, 
which ranges within [− 0.2, 0.2], and its membership function is defined as encompassing negative large (NL), 
negative medium (NM), negative small (NS), zero (ZO), positive small (PS), positive medium (PM), positive 
large (PL). (2) Rule base: The rule base of the fuzzy controller, as shown in Table 1., exemplifies a typical pattern 
of fuzzy logic in the M + N→W (if M and N, then W) form, where M represents the fuzzy set of ΔSoC, N represents 
the fuzzy set of Preq and W represents the fuzzy set of ∆SoCH and ∆SoCL. (3) Fuzzy reasoning and defuzzification: 
The Mamdani method was used to perform the fuzzy logic calculation. In order to ensure the control accuracy 
and calculation speed, the weighted average method is adopted in fuzzy controller for defuzzification, which is 
widely used in industrial control.

Multi-objective optimization for ARC-EMS
Fuel economy and battery life are the two main objectives considered in the ARC-EMS for MMHEV. By 
optimizing the engine operating mode and intelligently switching power sources to optimize battery charging 
and discharging strategies, the optimization control of these two objectives can be achieved.

Description of MOO problem for ARC-EMS
In pursuit of the harmonious coexistence of energy consumption and battery life, we propose an innovative 
ARC-EMS solution based on MOO in this section. Compared to traditional methods, this approach no longer 
solely pursues the extreme of a certain indicator, but achieves balance and coordination among the two through 
carefully designed optimization strategies. In ARC-EMS, the allocation of power system work mode is no longer 
arbitrary or fixed, but determined by a refined system of rules. This rule system includes two key SoC thresholds 
(SoCH and SoCL) and speed and torque threshold values (ne and Te). By adjusting these parameters, we can flexibly 
and accurately control the working state of the power system, ensuring that the system can perform optimally 
under different operating conditions. Under multidimensional constraints, we optimized the system with the 
main objectives of Cfuel_ele (the evaluation index of fuel-electricity conversion loss rate) and Qloss (the battery 
capacity loss rate). These goals do not exist in isolation, but are interrelated and interdependent. Therefore, we 
plan to use the PSO algorithm to obtain an optimization solution that can simultaneously meet the requirements 
of multiple objectives by comprehensively considering the trade-off relationship between each objective. The 
overall expression of this scheme can be expressed as a complex MOO function, which can comprehensively 
reflect the comprehensive performance of the system in terms of energy consumption and battery life. The 
overall expression of the objective is shown in Eq. (7):

	
Jmin[ne, Te, SoCH_0, SoCL_0] = arg

∫ Tcyc

0
Icom_ovp = arg

∫ Tcyc

0

1
ωcCfuel_ele+ωQQloss

� (7)

Where Jmin represents the minimizing MOO cost function of control system Icom_ovp, which is the comprehensive 
performance evaluation index. SoCH_0, SoCL_0, neand Te represent optimization variables. ωC and ωQ is the 
weight coefficients. This article uses the Analytic Hierarchy Process to obtain a multi-objective evaluation 
matrix, and calculates the weight vector result as [ωC, ωQ]T=[0.63, 0.37]T, which is based on engineering or 
research experience.

∆SoCH

∆SoC

NL NS ZO PS PL

Preq

NL PL PM PB PB PB

NS ZO PL PM PB PB

ZO ZO ZO ZO ZO ZO

PS NM NM NL NL ZO

PL NB NM NM NL NL

∆SoCL

∆SoC

NL NS ZO PS PL

Preq

NL PL PM PB PB PB

NS ZO PL PM PB PB

ZO ZO ZO ZO ZO ZO

PS NM NM NL NL ZO

PL NB NM NM NL NL

Table 1..  The fuzzy control rules base of parameters adjustment.
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ICE is one of the energy sources of MMHEV, and the whole fuel consumption are produced by engine. This 
section describes the fuel consumption and battery capacity decay evaluation criteria. Maintaining a relatively 
flat SoC trajectory is beneficial for battery life, as it facilitates more efficient energy transfer between the battery 
and the engine. The hybrid energy storage system integrates the functions of the APU and the batteries, making 
it an effective solution for extending the service life of the batteries. The battery degradation model adopted in 
this study incorporates temperature effects, cycle count, and charge rate as variables, which was made to evaluate 
control strategy effectiveness while balancing computational efficiency, model complexity and data availability. 
Although less precise than mechanistic models, the simplified approach was chosen for its practical utility in 
rapid assessment. For the purpose of this investigation, taking into account the efficiency of the electric motor, 
the oil-to-electric conversion loss rate (Cfuel_ele) and battery life degradation (Qloss) are specified is shown in Eq. 
(8):

	





Cfuel_ele = 1 − 360 · ηele

ηfuel · ρ

Qloss =
∫ Tcyc

0
0.495 × dIbat (t)

dt
× exp

(
0.379Ibat (t)

Ahcell

)
× Ncyc × DODdt

� (8)

Where, ηfuel represents the power generation efficiency of the generator, ηfuel denotes the efficiency between the 
fuel consumption and the effective power output of the engine, and ρ stands for the gasoline calorific value, 
which is 4.6 × 107 J/kg. Tcyc is the total cycle time, Ibat(t) is the battery current; DOD is the depth of charge or 
discharge, DOD = 0.7; Ncyc is life cycles, Ahcell is the cumulative capacity of the battery.

Multi-objective optimization algorithm
Traditional PSO initializes a group of particles in the feasible domain in the optimization process. Three 
characteristics (position, velocity and fitness function value) of each particle will be used, and the particle 
information features are updated by considering its own factors, individual optimality and global optimality. 
T﻿he speed update formula is shown in Eq. (9):

	 v
(k+1)
ij = ωv

(k+1)
ij + c1r1(P (k)

best_ij − x
(k)
ij ) + c2r2(G(k)

best_ij − x
(k)
ij )� (9)

Where v(k)
ij is the speed of particle i at the j-th dimension component in the k-th generation, w is the inertia 

weight, c1 and c2 are the individual and social learning factors respectively.
The position update formula is shown in Eq. (10):

	 x
(k+1)
ij = x

(k)
ij + v

(k+1)
ij � (10)

Where x(k)
ij represents the position of particle i at the j-th dimension component in the k-th generation. However, 

the traditional PSO has the disadvantage of being sensitive to control parameters, necessitating constant real 
time adjustment of the inertia weight and acceleration coefficients to obtain ideal solutions.

An effective bare-bones multi-objective particle swarm optimization (BB-MOPSO) method with adaptive 
perturbation has been adopted to realize a control-parameter-free process31. The BB-MOPSO algorithm 
integrates the principles of PSO and is specifically designed for multi-objective optimization. It simultaneously 
processes multiple conflicting objective functions without requiring iterative single-objective optimization 
or complex weight allocation, directly generating a Pareto optimal solution set (non-dominated solutions) 
to provide decision-makers with diverse alternatives. Effective population evolution is achieved through 
particle collaborative learning and controlled stochasticity. An external archive dynamically preserves non-
dominated solutions, accelerating convergence while maintaining search diversity and efficiency. BB-MOPSO 
is adaptable to both continuous and discrete optimization problems, with optimal solutions for multi-variable 
decision spaces being efficiently identified through tailored fitness functions and local search mechanisms. Its 
modular architecture allows for customization to address application-specific constraints. Although moderate 
computational resources are required for complex problems, the algorithm’s high search efficiency and scalability 
ensure rapid convergence to high-quality solutions within practical timeframes. The BB-MOPSO algorithm with 
adaptive perturbation factor can improve the global exploration ability in the initial stage and local exploitation 
capability in the later stage. The position update formula in BB-MOPSO is presented in Eq. (11):

	

x
(k+1)
ij =




N

(
r3P

(k)
best_ij + (1 − r3)G(k)

best_ij

2 ,

∣∣∣P (k)
best_ij − G

(k)
best_ij

∣∣∣ + εj

)
, ifU(0, 1) < 0

G
(k)
best_ij , else

� (11)

Where (X, Y) is a Gaussian distribution function with mean X and the variance Y; r3 is a random number 
uniformly distributed within the interval [0, 1]; and U(0,1)represents a uniformly distributed random number 
between [0, 1]. εj is a disturbance factor determined by the similarity between G(k)

best_ij and P(k)
best_ij, and it 

decreases with the decrease of iteration time.
The calculation of εj is shown in Eq. (12):
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εj =

{
(xj_up − xj_low)e(−5t/T ), H > rand

0 , else
� (12)

Where t represents the current iteration time, T is the maximal iteration time, xj_up and xj_low are the upper and 
lower limits of the j-th variable. Additionally, H is a probability factor that is calculated based on the difference 
between f(G(k)

best_ij) and f(P(k)
best_ij).

The calculation of H is shown in Eq. (13):

	
H = 1

2(1 − 1
A

A∑
a=1

∣∣∣∣∣
fa(P (k)

best_ij) − fa(G(k)
best_ij)

fmax
a − fmin

b

∣∣∣∣∣)� (13)

Where fa
max and fa

min are the maximal and minimal values of the a-th objective function obtained by the 
swarm. In a multi-cycle scenario, DEA is used to characterize urban dynamic driving patterns [39]. Finally, the 
implementation steps of the optimization algorithm are described in Fig. 5.

Verification and discussion
In this section, in order to test the optimization effect of ARC-EMS and the ability of the proposed MOO method 
to balance energy consumption and emissions, simulation and experimental bench will be used to validate the 
EMS described in Sect. 2.

MOO simulation model
AMEsim and MATLAB/Simulink software are used to build the vehicle dynamic model and the proposed EMS 
respectively, and the co-simulation of the two is realized through the S-function, as shown in Fig. 6.

The fundamental parameters of the target vehicle researched are shown in Table 2.
The algorithm design scheme employed in the study enhances computational efficiency through the 

optimization of data structures, reduction of unnecessary computational steps, and utilization of parallel 
computing techniques. This is reflected in multiple aspects including the simplified battery degradation model, 
the low-computational-cost fuzzy adaptive algorithm, and the implementation of rule-based strategy control 
logic using pre-stored rules. Regarding implementation difficulty, both algorithmic complexity and programming 
feasibility have been carefully considered. The implementation complexity has been reduced through rational 
module partitioning and well-structured code organization. Furthermore, comprehensive validation has been 
conducted through unit testing, integration testing, and performance testing to ensure algorithmic stability and 
reliability.

Parameter optimization results based on Pareto solution sets
An optimization model was built and integrated based on the AMEsim software mentioned above, and 
the optimization variable results was observed. As shown in Fig.  7, the variations in optimization variables 
throughout the iterative process, demonstrating the trend of these variables as the iteration count increases. After 
approximately 120 optimization iterations, the optimization variables converge to a constant value, and during 
the iteration process, the paths of convergence exhibit some discrepancies, which indicate the effectiveness of 
the algorithm.

In the initial phase of the convergence analysis for ne and Te, a relatively large fluctuation range of ne, 
spanning from 1000 to 1650, was observed. This indicates that, during the early stages of the optimization 
process, the algorithm was exploring a variety of potential velocity values in order to locate the optimal solution. 
After approximately 40 iterations had elapsed, the fluctuation range of ne began to diminish and stabilize. This 
indicates that the algorithm has commenced convergence and is progressively approaching the optimal velocity 
value. After undergoing 60 iterations, the fluctuation ranges of ne and Te stabilized within [1250, 1350] and 
[100, 120], respectively, and converged steadily to approximately 1280 and 115. These values are likely to be the 

Fig. 5.  The optimization algorithm processes based on BB-MOPSO.
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optimized velocity and torque thresholds that achieve the optimization objectives under the given constraints. 
This reflects the efficiency characteristics of the hybrid power system across different power operating regions. 
In the low-power consumption region, the system efficiency is relatively low; therefore, the optimization results 
tend to be oriented towards increasing the power margin values to enhance efficiency. During the convergence 
analysis phase for SoCH_0 and SoCL_0, the fluctuation ranges of both SoCH_0 and SoCL_0 were initially large and 
exhibited a downward trend. After approximately 80 iterations had elapsed, the fluctuation ranges of SoCH_0 and 
SoCL_0 began to diminish and stabilize. This indicates that the algorithm has commenced convergence and is 
progressively approaching the optimal velocity values. After undergoing 120 iterations, the fluctuation ranges 
of SoCH_0 and SoCL_0 were stabilized within [0.65, 0.68] and [0.42, 0.44], respectively, and converged steadily to 
approximately 0.66 and 0.43. At the low SoC stage, the battery charging and discharging efficiency is relatively 
low; therefore, the optimization results tend to increase the proportion of charging conditions, maintaining a 
trend of sustaining the SoC within a higher efficiency range to enhance overall efficiency. The uniformity and 
rationality of the working mode distribution also demonstrate the effectiveness of the optimization algorithm. 

Component Parameter Value

Vehicle

Total vehicle mass (kg) 2050

Air resistance coefficient 0.33

Frontal area (m2) 2.95

Wheels radius (m) 0.365

Rolling resistance coefficient 0.0072

Transmission

Transmission ratio from the ICE to the wheels 5.176/2.556

Transmission ratio from the EM2 to the wheels 10.8

Transmission ratio from the ICE to the EM1 0.372

Battery
Capacity (As) 23,400

Open circuit voltage (V) 300

ICE

Rated power (kW) 130

Peak speed (r/min) 6000

Peak torque (Nm) 250

EM1

Rated power (kW) 60

Peak speed (r/min) 17,000

Peak torque (Nm) 100

EM2

Rated power (kW) 120

Peak speed (r/min) 17,000

Peak torque (Nm) 300

Table 2.  Parameters of MMHEV simulation model.

 

Fig. 6.   Simulation platform of the R-EEV for the MOO problem: (a) Simulation platform of the R-EEV; (b) 
Control strategy model developed using MATLAB/Simulink.
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This allocation method can balance the required power range during operation, thereby ensuring the stable 
operation of the M-MPHV across different driving scenarios and loading conditions.

This section adopts the analysis method of Pareto optimal theory, which reflects the essential features of 
MOO problem directly. The contradictory relationship between the two goals is comparatively analyzed in 
relation to evaluation indicators such as Cfuel_ele, Qloss and Icom_ovp. Figure 8 shows the solution set of the optimal 
Icom_ovp, which is described at length later as the optimized decision result.

The configuration of the powertrain operating modes, specifically the manner in which the internal 
combustion engine, electric motor, and battery collaborate, directly leads to differences in energy consumption 
and battery capacity degradation. These differences are profoundly influenced by the control strategies that are 
implemented. In order to minimize energy consumption, strategies are flexibly adjusted based on the state of the 
battery: When the battery’s SoC is low, the system tends to select the range-extended mode (M2), in which the 
internal combustion engine operates at its optimal efficiency point to charge the battery, thereby avoiding battery 

Fig. 8.  Multi objective optimization results based on Pareto and comparative analysis: (a) distribution of the 
Pareto optimal solution in objective space; (b)performance comparison.

 

Fig. 7.  Optimization variables changes during the iterative process.
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operation in low-efficiency ranges, reducing energy consumption, and protecting the battery. Conversely, when 
the battery’s SoC is high, there is a greater tendency to adopt the pure electric mode (M1), allowing the battery to 
operate in a high-efficiency state and maximizing the utilization efficiency of electrical energy. When confronted 
with high power demands (Preq), the system is switched to the internal combustion engine drive mode (M4), 
leveraging the advantage of the internal combustion engine operating in its high-efficiency range to further 
reduce energy consumption and enhance the battery’s lifespan. It is noteworthy that when the proportion of Preq 
is low, the system may face the challenge of increased energy consumption. Although frequent power switching 
in M4 mode may result in additional fuel consumption, this mode actually reduces the frequency of battery 
usage, thereby contributing to the extension of battery life. The inherent contradiction between these control 
objectives is an inevitable issue in powertrain optimization, highlighting the importance of optimizing relevant 
thresholds and key parameters to achieve an optimal balance between energy consumption and battery life.

Comparison results of parameter fixation and parameter adaptation
In this section, in order to verify the universality, the parameter optimization results with the optimal Icom_APU 
are selected for comparative study, and the RC-EMS with adaptive parameter adjustment module is referred to as 
a revise strategy (ARC-EMS). As a result, much more engine power transients can be observed within the entire 
CS phases. The comparison of simulation results before and after optimization is shown in Fig. 9.

Figure  9 shows the significant differences in the switching results of the power system operating modes 
under RC-EMS and ARC-EMS. And the designed control logic was implemented when the power switching 
conditions were met, which demonstrates the excellent ability of the two comparison strategies. The addition 
of adaptive modules increases the working ratio of M1 and M4 under ARC-EMS. By running the ICE at its 
optimal efficiency point in M4, the battery is charged to avoid working in the low efficiency range, reduce energy 
consumption, and protect the battery; The M1 is relatively increased to drive vehicles with as much electricity as 
possible, while the M2 is relatively reduced to save fuel consumption. In M4 mode, ICE operation is optimized 
to maintain peak efficiency by the adaptive module, reducing energy waste. Dynamic adjustments to M1 and M2 
modes are implemented, prioritizing electric propulsion to lower fuel consumption. ARC-EMS demonstrates 
superior SoC management, with smoother trajectory variations and reduced discharge depth, achieving 
significant improvements in both energy efficiency and battery lifespan. The SoC trajectory and battery charging 
and discharging current information under RC-EMS and ARC-EMS. The two SoC curves, which are considered 
roughly monotonic, slowly decrease to 0.631 and 0.622, respectively. Compared with RC-EMS, as expected, 
the SoC curve of ARC-EMS has reached a lower final SoC value, because the adaptive module will adjust the 
operating mode after curing according to the objective situation that the SoC value is too large, so that more 
battery energy can be used. According to the constraints set in the problem, the battery SoC varies within the 

Fig. 9.  The comparison of simulation results before and after optimization.
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range of [0.6, 0.7], with minimal variation during the driving cycle, achieving good tracking characteristics 
for SoC reference and thus extending battery life. The slight changes in SoC significantly reduce the depth of 
discharge, which is beneficial for achieving longer battery life and ensuring that the SoC trajectory does not 
exceed the lower limit, thereby avoiding damage to battery health.

Experimental test implementation and its results
Comparative study against benchmark control strategy to thoroughly evaluate the proposed ARC-EMS, the 
control strategies are introduced as comparison basis. The proposed ARC-EMS urges multiple energy sources 
to work towards more battery discharge conditions, and the robustness of its strategies is proven as the overall 
trend of statistical results remains similar even as working conditions become more. The developed control 
strategy exhibits excellent performance in terms of energy consumption, emissions, and battery life, with a 
particular highlight being the significant reduction in battery life attenuation that can substantially lower the 
overall vehicle’s service cost economically. Similar to the previous study, due to the different units and scales, 
before comparing the performance of the four strategies horizontally across different cycles, the normalization 
parameters of the performance indicators are calculated as follow:

	
θik =

δij − δmin
ij

δmax
ij − δmin

ij

� (14)

Where ɵik is the normalized index of j-th evaluation index on i-strategy; δij is the index value; δmin
ij and δmax

ij are 
the index minimum and maximum value, respectively.

In addition to considering the results of the energy storage system, the simulation results of system fuel 
consumption, the comparison of 100 km equivalent fuel consumption (Ge) between six control strategies after 
the modification of terminal SoC (the SoC corrected fuel efficiencies) are shown in Fig. 10; Table 3. DP is utilized 
as an optimal off-line baseline under the test driving cycle, while optimal control is employed with Icom_ovp as the 
objective function. Eventually, the data domain used for normalization analysis is determined, which includes 
the simulation results under the above strategies and the result data under the single target based on Pareto 
solution set. Based on formula 15, the normalized statistical results are shown in Fig. 10.

As shown in Fig. 10, the result of the proposed strategy is closest to the best performance that can be achieved. 
And the performance results under each strategy show different performance, which implies that the ARC-EMS 
considered in this study can achieve the better balance among the two objectives.

The total consumption of ARC-EMS slightly reduced by about 2.7% compared to M2, whereas the ARC-EMS 
is almost identical to M2 with a difference of only 1.3%, leading to the conclusion that ARC-EMS is slightly better 
than RC-EMS. Comparing with the results of RC-EMS and ARC-EMS with threshold parameter adjustable, 
there is not much difference in fuel consumption (Ge), which signifies that the proposed ARC-EMS performs 

Strategy Cfuel_ele ∆ Cfuel_ele Ge (L/100 km) ∆Ge Qloss ∆Qloss Icom_ovp

M1 0 − 0 − 15.1% − 0.72

M2 0.73 − 4.7 − 12.6% − 16.6% 0.78

M3 0.74 1.4% 4.8 2.1% 9.7% − 35.8% 0.84

M4 0.79 8.2% 7.2 53.2% 3.4% − 77.5% 0.63

DP 0.68 − 5.4% 4.0 − 14.8% 9.9% − 34.4% 0.92

RC-EMS 0.72 − 1.4% 4.2 − 10.1% 11.8% − 21.9% 0.87

ARC-EMS 0.71 − 2.7% 4.1 − 12.7% 10.2% − 32.5% 0.91

Table 3.  Test results of experimental test.

 

Fig. 10.  Comparison of normalized evaluation indicators.
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well in terms of fuel economy. Based on the different operating characteristics of M-HEV in different modes, 
the optimized strategy will tend to operate ICE in the high-efficiency region. This mode adopts a power tracking 
control strategy to operate the engine at the optimal operating point corresponding to the required power. In 
terms of battery life, the Qloss under ARC-EMS is relatively small, reaching 10.2%, which is 32.5% lower than the 
15.1% under M1. The comprehensive index Icom_ovp considering energy consumption and battery life reaches the 
maximum value of 0.91. In summary, ARC-EMS has shown good performance in energy consumption control, 
engine operating efficiency, battery life, and overall performance. These advantages make ARC-EMS an energy 
management strategy worth considering and applying in hybrid power systems. The results demonstrate that 
the proposed ARC-EMS achieves comparable optimization performance to DP-based strategies. Specifically, 
4% improvement in energy efficiency and 3% reduction in battery capacity degradation are observed in 
ARC-EMS compared to the DP-based approach. However, the advantages of ARC-EMS extend beyond these 
metrics. Superior performance in real-world vehicle applications is demonstrated, with computational resource 
requirements being significantly lower than those of DP-based algorithms. This characteristic enhances the 
practicality and cost-effectiveness of ARC-EMS in actual vehicular environments. Therefore, it can be concluded 
that while ARC-EMS matches DP in optimization outcomes, its superior real-world applicability and reduced 
computational demands represent a breakthrough in energy management systems. ARC-EMS not only achieves 
optimization effects similar to DP but also exhibits significant advantages in practical implementation and 
computational efficiency, solidifying its potential for high utility and broad application prospects in energy 
management.

Conclusion
In order to achieve the optimal energy allocation of the MMHEV from the perspective of multi-objective, a data-
driven EMS based on travel conditions is proposed. Firstly, a RC-EMS was developed according to the operating 
curves and interval thresholds of motors and engine based on Amesim and MATLAB/Simulink platforms. 
The DEA was used to establish the traffic speed interval, and the comprehensive driving cycles of urban was 
constructed based on the proportion of driving time, which is used as the input information of the optimization 
model. Then, the key threshold parameters of EMS are optimized offline by using BB-MOPSO algorithm from 
the multi-objective perspective, and the optimal parameters obtained are used as the initial values of adaptive 
parameter optimization. After optimization, the comprehensive energy consumption and battery capacity decay 
are reduced, with the majority of the ICE operating points now concentrated in the high efficiency zone. The 
designed fuzzy adaptive parameter optimization module updates the key parameters of the strategy in real time, 
so as to realize the optimal dynamic energy allocation which can adapt to the road conditions. The simulation 
outcomes for various performance indicators of distinct EMS demonstrate the following: a). The adaptive module 
for parameter adjustment, which leverages a fuzzy algorithm, successfully fulfills the established control tasks 
in accordance with the predefined control logic. b). A comparison between the parameter-fixed and parameter-
adaptive optimization approaches reveals that the latter exhibits superior adaptability to varying road conditions. 
c). The control strategy maintains robustness across different driving cycles. Furthermore, both simulation and 
experimental results highlight that the data-driven ARC-EMS offers a more balanced performance compared to 
the traditional RC-EMS. As anticipated, the strategy effectively balances energy savings and emission reductions, 
and serves as a viable approach for developing an EMS to enhance the overall performance of the MMHEV. 
Ultimately, the feasibility of this optimization method is confirmed through experimentation, demonstrating 
its potential benefits in practical applications. Additionally, the generalization capability of the model defined 
as its adaptability to diverse scenarios or datasets has been enhanced by incorporating the complexity of vehicle 
systems and the dynamic characteristics of traffic environments. This improvement aims to further refine the 
accuracy and reliability of the proposed RC-EMS particularly in scenarios involving heterogeneous urban traffic 
conditions, varying driver behaviors, and fluctuating vehicle states. Furthermore, extended performance metrics, 
such as driving comfort and vehicle acceleration, will be integrated into the optimization strategy parameter set 
to construct a more comprehensive evaluation framework for EMS performance.
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