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Cholangiocarcinoma (CCA) has high recurrence rates that severely limit long-term survival. Effective 
tools for accurate recurrence monitoring and diagnosis remain lacking. Metabolic reprogramming, 
a key driver of CCA growth and recurrence, is underutilized in cancer screening and management. 
This study aimed to identify metabolite-based biomarkers to evaluate recurrence severity, enhance 
disease management, and elucidate the molecular mechanisms underlying CCA recurrence. A 
comprehensive, non-targeted serum metabolomics analysis using ultra-high-performance liquid 
chromatography coupled with quadrupole time-of-flight mass spectrometry was conducted. 
Support Vector Machine (SVM) modeling was employed to develop a predictive framework based on 
metabolite biomarkers. The analysis revealed significant alterations in metabolomics and lipidomics 
across CCA recurrence subtypes. Notably, changes in metabolites such as amino acids, lipid-derived 
carnitines, and glycerophospholipids were associated with cancer progression through enhanced 
energy production and lipid remodeling. The SVM-constructed metabolite-based predictive model 
demonstrated predictive accuracy comparable to current clinical diagnostic standards. These findings 
provide novel insights into the metabolic mechanisms underlying CCA recurrence, addressing critical 
clinical challenges. By advancing early diagnostic approaches, particularly for preoperative detection, 
this study offers a reliable method for predicting recurrence in CCA patients. This enables effective 
treatment planning and supports the development of personalized therapeutic strategies, ultimately 
improving patient outcomes.
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Cholangiocarcinoma (CCA) is an aggressive biliary tract malignancy, often diagnosed at advanced stages due to 
its asymptomatic early phase. Surgical resection followed by adjuvant chemotherapy is the primary treatment, 
but survival outcomes remain poor due to high recurrence rates even after complete resection1. Recurrence, 
whether early or late, is a critical determinant of prognosis, with early recurrence linked to aggressive tumor 
traits such as poor differentiation, high malignancy grade, and lymphovascular invasion. Whereas, late 
recurrence is associated with slow tumor growth or micrometastases2–5. Therefore, accurately predicting early 
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recurrence for each regimen in individual patients may guide the selection or modification of adjuvant treatment 
plans. Although Carcinoembryonic Antigen (CEA) and Cancer Antigen 19 − 9 (CA 19 − 9) have been utilized in 
screening, diagnosis, treatment monitoring, recurrence detection, and disease progression for CCA, they also 
have several limitations including specific to cancer types, overlap with benign conditions, limited diagnostic 
values, inconsistent levels of biomarker, lack of established cut-off values and limited role in early detection6,7. 
The ideal biomarker or set of biomarkers for accurately predicting recurrence remains challenging to identify. 
Thus, there is a pressing need to develop a rapid and highly efficient method to enhance diagnostic accuracy.

Biomarkers are crucial for improving the diagnosis and treatment of cholangiocarcinoma (CCA). The 
strong link between cancer and metabolic changes makes metabolomics a promising tool for discovering 
new biomarkers. Recent studies show that metabolomics can provide valuable molecular biomarkers, offering 
insights into the full range of metabolites in a biological system. By analyzing a wide array of small molecules in 
a single sample, metabolomics expands beyond clinical diagnostics to identify disease-specific markers8,9.

Metabolomics captures the physiological state of a biological system, where deviations from the normal 
metabolome can indicate disease, especially in cancer patients with recurrence or poor survival outcomes after 
surgery. Alterations in metabolite profiles have the potential to reveal novel diagnostic biomarkers. Additionally, 
serum and plasma metabolite analysis has been validated in multiple studies, demonstrating its ability to identify 
disease-specific metabolic signatures, distinguish between healthy and diseased states, and assess disease stage 
or severity10–12. Furthermore, applications in metabolomics can also be utilized to predict the recurrence of 
various types of cancer13–17. A previous study by Padthaisong et al.. revealed that the metabolites in CCA 
patients after surgery differ significantly between those with no recurrence and those with recurrence. High-rate 
energy metabolism in recurrent cancer is recognized as a hallmark of cancer development, as it is essential for 
maintaining energy balance to support cancer cell survival and growth. In addition to this, alterations in other 
metabolic pathways, such as lipid and amino acid metabolism, have also been reported to play a role in tumor 
progression17. However, this study did not perform metabolomics analysis by dividing patients into early and 
late recurrence groups. Previous reports have suggested that patients with early recurrence and those with late 
recurrence should be analyzed separately, as they exhibit significantly different survival outcomes.

This study aimed to identify potential metabolic biomarkers and evaluate the effectiveness of serum 
metabolomics combined with machine learning in predicting early and late recurrence in CCA patients. Serum 
samples were analyzed using ultrahigh-performance liquid chromatography-mass spectrometry (UPLC-MS) to 
characterize metabolite profiles, while Support Vector Machine (SVM) was employed to develop a predictive 
model for recurrence stratification. The identified metabolites not only serve as promising biomarkers 
for clinical application but also provide valuable insights into the biochemical pathways underlying CCA 
recurrence, advancing our understanding of disease progression and supporting precision medicine approaches 
for improved patient management.

Results
Patient characteristics and patient outcomes
In this study, 88 CCA patients who underwent curative surgery and experienced disease recurrence during 
follow-up, as per clinical guidelines, were included. The patients were divided into a training cohort (n = 60) 
and a testing cohort (n = 28). Based on a previous study2, recurrent CCA cases were classified by recurrence-free 
survival (RFS) into early recurrence (RFS < 365 days) and late recurrence (RFS ≥ 365 days). The training cohort 
included 28 early recurrence cases and 32 late recurrence cases, while the testing cohort comprised 10 early 
recurrence cases and 18 late recurrence cases. Overview of clinicopathological characteristics—such as age, sex, 
tumor site, histological type, and TNM stage (based on the 8th edition of the American Joint Committee on 
Cancer [AJCC] Staging Manual)—and preoperative laboratory (liver function test and tumor biomarkers) was 
shown in Table 1.

Global metabolomics analysis of recurrence in CCA patients
The untargeted metabolomics analysis identified 2,369 metabolites in positive mode and 1,872 in negative mode 
using accurate mass and MS/MS fragmentation. Metabolites were filtered via MetaboAnalyst 6.0, and OPLS-DA 
effectively distinguished early and late recurrence groups in both modes. A permutation test (100 iterations) 
confirmed model significance, with permR² = 0.98, permQ² = 0.92 (positive mode), and permR² = 0.929, 
permQ² = 0.986 (negative mode), all with p < 0.01, indicating no overfitting (Fig. 1A-B).

The variable importance in projection (VIP) plot identified the top 15 metabolites contributing to group 
separation (Fig. 1C-D). A volcano plot highlighted significant metabolites based on fold change (FC > 1.2 or 
< 0.83) and FDR-adjusted p < 0.05 (Fig.  1E-F). Metabolites meeting VIP > 1.2, FC > 1.2 or < 0.83, and FDR-
adjusted p < 0.05 were retained, with duplicates removed. Those with lower AUC values or complex profiles were 
excluded, resulting in 90 significant metabolites, including amino acids, fatty acids, and lipids.

The identified candidate metabolites were categorized into common metabolites (predominantly detected 
in positive mode; see Supplementary Table S1) and lipid metabolites (primarily detected in negative mode; see 
Supplementary Table S2). This categorization enabled a more focused analysis of distinct metabolic pathways. 
This separation was based on the distinct biological roles and metabolic pathways associated with each group: 
common metabolites are involved in broad metabolic processes such as energy production (e.g., glycolysis, 
TCA cycle), biosynthesis of amino acids, nucleotides, and other essential molecules, while lipid metabolites are 
specifically associated with lipid metabolism, including energy storage, signaling, and membrane formation. 
This categorization allowed us to examine the unique contributions of lipid and non-lipid metabolic pathways 
to the observed metabolic alterations, providing clearer insights into the underlying biology of early and late 
recurrence in CCA.
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The top 10 candidate metabolites with significant AUROC values included LysoPC(18:3/0:0), LysoPC(16:1/0:0), 
LysoPI(16:0/0:0), kynurenine, LysoPE(18:3/0:0), LysoPE(16:0/0:0), LysoPE(17:0/0:0), thymidine 5’-triphosphate, 
creatinine, and L-cysteine (Fig.  2A). Hierarchical clustering analysis (HCA) clearly separated early and late 
recurrence groups based on 90 differentially expressed metabolites—46 common metabolites (Fig. 2B) and 44 
lipid metabolites (Fig. 2C). Among them, 20 metabolites and 5 lipids were upregulated in early recurrence, while 
26 metabolites and 39 lipids were elevated in late recurrence, indicating distinct metabolic profiles between 
recurrence subtypes.

Efficiency of candidate metabolites in differentiating early and late recurrence in CCA 
patients
To evaluate the ability of the 90 candidate metabolites to distinguish between recurrence groups, we performed 
OPLS-DA analysis in two steps. In the first step, the analysis was conducted using a training set, which 
included samples used for identifying the 90 metabolites and for training the model. The OPLS-DA analysis 
clearly separated the early and late recurrence groups, with an R² of 0.573 (explanatory ability) and Q² of 0.557 
(predictive ability), indicating moderate to good performance. Cross-validation through a permutation test 
(2000 iterations) confirmed the model’s robustness, yielding R² = 0.921 and Q² = 0.868, with p < 5e− 4, indicating 
no overfitting (Fig. 3A).

In the second step, the same 90 candidate metabolites were used to evaluate the model performance in a 
testing set. The OPLS-DA analysis successfully differentiated the two patient groups, with an R² of 0.625 and 
Q² of 0.59, indicating moderate to good performance. A permutation test with 2,000 iterations validated the 

Training set (n = 60) Testing set (n = 28)

Early recurrence (n = 28; 100%) Late recurrence (n = 32; 100%) Early recurrence (n = 10) Late recurrence (n = 18)

Age; median (range) 63 (44–73) 62 (49–77) 59 (41–73) 62 (34–72)

Gender (n (%))

 Male 15 (54%) 21 (66%) 8 (80%) 12 (67%)

 Female 13 (46%) 11 (34%) 2 (20%) 6 (33%)

Tumor location

 iCCA 17 (61%) 19 (59%) 6 (60%) 10 (56%)

 eCCA 11 (39%) 13 (41%) 4 (40%) 8 (44%)

Tumor morphology

 MF/PI 14 (50%) 12 (38%) 5 (50%) 9 (50%)

 ID/mixed type 14 (50%) 20 (62%) 5 9 (50%)

Surgical margin (R)

 R0 15 (54%) 21 (66%) 4 (40%) 11 (61%)

 R1 13 (46%) 11 (34%) 6 (60%) 7 (39%)

Histological type

 Well 20 (71%) 26 (81%) 8 (80%) 14 (78%)

 Moderately/poorly 8 (29%) 6 (19%) 2 (20%) 4 (22%)

Lymph node metastasis (N)

 N0 9 (32%) 21 (66%) 8 (80%) 12 (67%)

 N1 19 (68%) 11 (34%) 2 (20%) 6 (33%)

TNM$ staging

 I-II 5 (18%) 10 (31%) 2 (20%) 5 (28%)

 III-IV 23 (82%) 22 (69%) 8 (80%) 13 (72%)

Preoperative laboratory data$

 Cholesterol (mg/dL) 174.5 (135–290) 180 (93–266) 197 (103–251) 190.5 (107–257)

 Albumin (g/dL) 4.2 (2.9–4.8) 4.2 (2.9–5.3) 3.7 (2.6–4.4) 4.3 (2.8–4.7)

 Globulin (g/dL) 3.6 (2.5–4.8) 3.3 (1.7–4.8) 3.3 (2.6–5.1) 3.1 (2.5–4.9)

 Total protein (g/dL) 7.8 (5.4–8.3) 7.6 (4.6–8.8) 7.1 (6.6–7.7) 7.5 (5.4–9.4)

 Direct bilirubin (mg/dL) 0.2 (0.1–1.3) 0.2 (0.1-1) 1.4 (0.2–5.1) 0.3 (0.1–2.9)

 Total bilirubin (mg/dL) 0.4 (0.2–1.8) 0.5 (0.3–5.2) 1.9 (0.5–6.2) 0.5 (0.3–3.1)

 AST (U/L) 29 (10–57) 29 (17–193) 56 (25–95) 44 (18–195)

 ALT (U/L) 25 (10–99) 31 (2–88) 51 (30–78) 31 (17–228)

 ALP (U/L) 177.5 (65-1068) 125 (61–716) 264.5 (92–899) 133.5 (67–397)

Tumor biomarkers$

 CA19-9 (ng/mL) 279.4 (0.6–1000) 112.2 (0.8–1000) 275.8 (1.5–1000) 195 (1.07–1000)

 CEA (U/mL) 9.72 (1.03–1000) 7.2 (1.1-109.1) 8.8 (2.6-128.5) 7.3 (1.94–402)

Table 1.  Clinicopathological characteristics. $There is missing data in some cases.
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Fig. 1.  Chemometrics analysis of metabolomics data. The OPLS-DA score plots for metabolites in positive 
(A) and negative (B) modes, with permutation tests to assess model robustness and stability. VIP plots of 
the top 15 metabolites in positive (C) and negative (D) modes, highlighting key metabolites contributing to 
group separation. Volcano plots of metabolites in positive (E) and negative (F) modes, displaying significant 
metabolites between the groups.
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Fig. 2.  Differential expression of candidate metabolites between early and late recurrence. Boxplots of the 
top 10 metabolites with the highest AUROC values, illustrating differential expression between early (green) 
and late (red) recurrence groups, alongside their corresponding ROC curves and AUC values (A). Heatmap 
of common metabolites, highlighting expression differences between the early and late recurrence groups (B). 
Heatmap of lipid metabolites, emphasizing significant lipid profile changes associated with the early and late 
recurrence groups (C).
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results, yielding R² = 0.96 and Q² = 0.905, with p < 5e− 4, further confirming the model’s reliability and absence of 
overfitting (Fig. 3B). The results from both the training and testing sets demonstrate the effectiveness of the 90 
candidate metabolites in distinguishing between recurrence groups in this study.

Support vector machine-based predictive modeling of early and late recurrence in CCA using 
candidate metabolites
This study identified serum metabolites that distinguished early and late recurrence groups, suggesting their 
potential as biomarkers for preoperative screening in CCA patients. These biomarkers might serve predict 
recurrence patterns, guide treatment decisions, and improve patient monitoring. To construct predictive models, 
we employed a support vector machine (SVM) approach based on candidate metabolites, using a training set to 
develop the classification model and a testing set to validate model performance. The SVM model was constructed 
using the training set, which included 60 recurrent CCA patients (27 early and 33 late recurrence cases), through 
an initial feature selection process that identified 90 candidate metabolites, prioritizing their relevance to the 
classification task. The selection of metabolites for model construction was guided by the SVM algorithm, which 
focused on their ability to effectively differentiate between classes, emphasizing their contribution to model 

Fig. 3.  Chemometric analysis of candidate metabolites for distinguishing early and late recurrence. OPLS-
DA score plot for the training set showing the separation of 90 candidate metabolites between early and late 
recurrence groups. Model performance was evaluated by cross-validation (middle panel), with R2 indicating 
the proportion of variance explained and Q² representing predictive accuracy. A permutation test (2000 
permutations) yielded p < 0.001 (right panel), confirming the model’s robustness and statistical significance 
(A). OPLS-DA score plot for the testing set, illustrating separation of early and late recurrence based on the 90 
candidate metabolites. Model validation was conducted with R2 and Q2 values from cross-validation (middle 
panel), and the permutation test (2000 permutations) showed p < 0.001 (right panel), validating the model 
reliability and discriminative power (B).
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performance rather than relying solely on statistical significance. Using these 90 metabolites, six distinct SVM 
models were developed, ensuring the identification of the most informative features for accurate classification 
(Fig.  4A and Supplementary Fig. S1A). The model 4, which incorporated 20 metabolites (Supplementary 
Table S3), demonstrated the highest predictive accuracy. The predicted class probabilities from the best-
performing classifier, based on AUC, were presented in Fig. 4A. Confusion matrix analysis showed Model 4 
achieved a true positive rate of 92.9%, a true negative rate of 94.3%, a false positive rate of 3.0%, and a false 
negative rate of 7.1%. The performance metrics were as follows: accuracy = 95%, precision = 96.29%, recall 
(sensitivity) = 92.86%, specificity = 96.88%, and F1-score = 94.4%. These findings indicate Model 4 as the most 
stable and accurate classifier. Feature selection frequency and mean importance measures highlighted the key 
metabolites contributing to model performance (Supplementary Table S3). The predictive outcomes of Model 
4 closely aligned with diagnostic results. The Kaplan-Meier (KM) analysis of diagnosis showed significantly 
shorter recurrence-free survival (RFS) and overall survival (OS) in early vs. late recurrence patients (RFS = 200 
vs. 786 days, p < 0.001; OS = 264 vs. 960 days, p < 0.001) (Table 2; Fig. 4B and Supplementary Fig. S1B). SVM-
based predictions reflected a similar trend of RFS and OS as diagnostic results (RFS = 200 vs. 829 days, p < 0.001; 
OS = 264 vs. 960 days, p < 0.001) (Table 2; Fig. 4C and Supplementary Fig. S1C). Interestingly, model 3, which 
utilized only 10 metabolites, demonstrated predictive performance comparable to Model 4 while significantly 
reducing model complexity. In the training set, model 3 achieved similar AUC values and overall classification 
metrics to model 4 (the best model). Additionally, the prediction accuracy closely aligned with diagnosis 
(Table 2; Fig. 4D and Supplementary Fig. S1D).

The testing set included 28 recurrent CCA patients (10 early and 18 late recurrence cases). The same 90 
metabolites from the training set were used to construct six SVM models. Model 4, incorporating the same 20 
metabolites, was selected for evaluation. In the testing set, model 4 maintained strong predictive performance 
with an AUC of 0.898. Confusion matrix analysis yielded an accuracy of 85.71%, precision of 90%, recall of 
75%, specificity of 93.75%, and an F1-score of 81.82% (Table 2; Fig. 4E and Supplementary Fig. S1E). Predictive 
accuracies across all six models ranged from 78.9 to 84%. The KM analysis confirmed that early recurrence 
patients exhibited significantly shorter survival outcomes in both diagnostic and SVM-based predictions. The 
diagnostic results showed RFS = 208 vs. 787 days (p < 0.001) and OS = 345 vs. 984 days (p < 0.001) (Table 2; Fig. 4F, 
and Supplementary Fig. S1F). Similarly, SVM-based prediction of model 4 produced RFS = 233 vs. 787 days 
(p < 0.001) and OS = 381 vs. 984 days (p < 0.001), further demonstrating the model’s robustness and consistency 
across datasets (Table 2; Fig. 4G, Supplementary Fig. S1G). Moreover, to validate performance of model 3 of 
the training set, the same 10-metabolite model was validated in the testing set, where its predictions closely 
matched clinical outcomes (diagnosis) and model 4 (20-metabolite model). This highlights the potential for a 
more streamlined model with fewer metabolites while maintaining strong predictive accuracy (Table 2; Fig. 4H 
and Supplementary Fig. S1H).

Additionally, a comparative analysis between metabolite-based models and tumor biomarkers (CA19-9 
and CEA) was conducted. The metabolite-based models demonstrated superior predictive performance, while 
tumor biomarkers showed lower accuracy in distinguishing early and late recurrence groups (Table 2). These 
results reinforce the clinical relevance of serum metabolites as recurrence biomarkers in CCA patients.

Pathway analysis highlights global metabolic changes in recurrence of CCA patients
A metabolic pathway impact analysis using MetaboAnalyst 6.0 identified key pathways associated with serum 
metabolite changes. To improve accuracy, metabolites and lipid metabolites were analyzed separately. The 
analysis integrated metabolite set enrichment and pathway topology to extract biological insights for early and 
late recurrence. Pathway impact and enrichment were assessed using a global test and relative betweenness 
centrality, excluding unidentified metabolites or those lacking HMDB IDs. Figure 5 illustrates the results, where 
circle color and size indicate p-values and pathway impact values, respectively.

For common metabolites, nine significant pathways were identified for metabolites, including six amino acid 
metabolism pathways (arginine biosynthesis, alanine/aspartate/glutamate metabolism, glycine/serine/threonine 
metabolism, valine/leucine/isoleucine biosynthesis, arginine/proline metabolism, and tryptophan metabolism), 
along with the TCA cycle, glyoxylate/dicarboxylate metabolism, and sphingolipid metabolism (Fig. 5A). Pathway 
impact analysis confirmed significant involvement of amino acid metabolism, fatty acid oxidation, and the TCA 
cycle (Fig. 5C and Supplementary Table S4).

For lipid metabolites, key pathways included unsaturated fatty acid biosynthesis, glycerophospholipid 
metabolism, sphingolipid metabolism, alpha-linolenic acid metabolism, and arachidonic acid metabolism. 
Enrichment analysis highlighted significant pathways such as alpha-linolenic acid metabolism, arachidonic 
acid metabolism, phospholipid biosynthesis, beta-oxidation of long-chain fatty acids, glycolipid metabolism, 
and oxidation of branched-chain fatty acids (Fig. 5B). Fatty acid metabolism showed strong links to metabolic 
alterations (Fig. 5D and Supplementary Table S5).

These results suggested that the identified pathways, related to both metabolites and lipid metabolites, are 
closely linked to the observed alterations in amino acid metabolism, lipid metabolism, and energy metabolism 
(TCA cycle), which may contribute to disease progression.

Discussion
Cholangiocarcinoma (CCA) has a high recurrence rate after surgical resection, with the recurrence-free interval 
being a key factor in disease severity and survival. Early recurrence, occurring within 6 months to 1 year, is 
associated with significantly lower survival rates and serves as an independent prognostic factor. In this study, we 
categorized recurrence into early and late groups using a 365-day cut-off. Understanding recurrence biology is 
critical for developing diagnostic tools to detect relapse. Cancer recurrence involves proliferation, inflammation, 
migration, invasion, immune evasion, and cell membrane remodeling, all influenced by metabolic alterations. 

Scientific Reports |        (2025) 15:12782 7| https://doi.org/10.1038/s41598-025-97641-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


These metabolic changes, particularly in nutrient uptake, provide energy for growth and development. 
Identifying these alterations may reveal biomarkers for CCA, offering new strategies for treatment and reducing 
early recurrence risks.

Currently, no reliable biomarkers exist for preoperative screening to predict recurrence risk or subtype. 
Common markers like CEA and CA19-9 have limitations, including low specificity and inability to distinguish 
between early and late recurrence6,7. Consistent with previous studies, our findings show that CEA and CA19-9 
have low accuracy, high false-positive rates, and poor classification of recurrence subtypes. Additionally, their 
suboptimal performance in predicting DFS and OS might be attributed to the wide variation in biomarker levels, 
complicating the determination of appropriate cut-off values (Table 1). This raises the question of whether a 
biomarker panel or multiple biomarkers in combination could enhance diagnostic accuracy. These limitations 
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highlight the need for novel, highly specific biomarkers that can accurately predict recurrence patterns and 
improve clinical management strategies.

In this study, we analyzed metabolites from preoperative serum samples of CCA patients, revealing distinct 
metabolic profiles between early and late recurrence groups. Our findings align with prior research in breast, lung, 
and liver cancers. Using chemometric tools, specifically OPLS-DA, along with statistical analysis via Volcano 
Plot, we established criteria for identifying metabolites differentiating between early and late recurrence. We 
identified 90 metabolites (Supplementary Table S1-2), categorized into general metabolites and lipid metabolites 
(Fig. 2B-C). OPLS-DA effectively distinguished recurrence subtypes, demonstrating the strong discriminatory 
power of these metabolites and their potential as biomarkers for preoperative recurrence classification in CCA.

To enhance predictive capability, we employed Support Vector Machine (SVM), a robust machine learning 
algorithm optimized for classification tasks. SVM identifies an optimal hyperplane to maximize separation 
between distinct data groups, ensuring high accuracy and reliability18,19. It is important to note that although 
the top candidate metabolites identified in Figs. 1 and 2 from the initial analysis were statistically significant, not 
all of them were incorporated into the final metabolite signatures in SVM model construction (Fig. 4A). This 
discrepancy stems from the differing selection criteria employed in these analyses. Specifically, the top 10/15 
metabolites were selected based on their individual statistical significance, whereas the final metabolite signatures 
were constructed by prioritizing metabolites with the highest collective discriminatory power within the SVM 
model from candidate metabolites. This methodological distinction is consistent with previous studies20,21, 
wherein metabolites that demonstrate statistical significance in univariate analyses do not necessarily contribute 
to the predictive capacity of multivariate models. By emphasizing metabolites with superior classification 
performance, this approach enhances the robustness, generalizability, and interpretability of the predictive model, 
ensuring optimal differentiation between study groups. In our study, SVM significantly improved classification 
accuracy between early and late recurrence groups. Among the 90 metabolites, SVM constructed six models 
with varying metabolite numbers, achieving AUROC values between 0.772 and 0.959. Model 4, containing 20 
metabolites, demonstrated the highest predictive performance. This model provided DFS and OS predictions 
comparable to physician diagnoses post-surgery and follow-up, highlighting its potential as a clinical tool for 

Fig. 4.  Support Vector Machine (SVM)-based predictive modeling of early and late recurrence using candidate 
metabolites. SVM classification of early and late recurrence using 90 candidate metabolites in the training set. 
Model 4 (20 metabolites) achieved the highest accuracy (A). Kaplan-Meier (KM) curves based on diagnostic 
outcomes, showing shorter overall survival (OS) in early recurrence than late recurrence (B). KM curves 
based on SVM Model 4 predictions, confirming shorter OS in early recurrence than late recurrence (C). KM 
curves based on SVM model 3 (10 metabolites) predictions, confirming shorter OS in early recurrence than 
late recurrence (D). The SVM classification in the testing set using the same 90 metabolites. Model 4 achieved 
an AUC of 0.898, with performance metrics assessed similarly to the training set (E). KM curves based on 
diagnostic outcomes in the testing set, showing survival differences between early and late recurrence (F). KM 
curves based on SVM model 4 predictions in the testing set, mirroring diagnostic trends in OS (G). Model 3 
(10 metabolites) predictions in the testing set, demonstrating clear separation of OS between early recurrence 
and late recurrence as similar trend in model 4 and diagnostic outcomes in the testing set (H).

◂

Training set Testing set Tumor biomarkers (training set) Diagnosis result#

20 Features 10 Features 20 Features 10 Features CA19-9 (ng/mL)
CEA
(U/mL) Combined Training set

Testing 
set

Model performance

 ROC 0.959 0.924 0.898 0.860 0.654 0.521 0.589 – –

 Accuracy 95% 94.92% 85.71% 79.31% 63.33% 53.33% 60% – –

 Precision 96.29% 92.86% 90% 66.67% 42.86% 39.29% 39.29% – –

 Recall (sensitivity) 92.86% 96.77% 75% 88.24% 66.67% 50% 61.11% – –

 Specificity 96.88% 96.30% 93.75% 80.00% 52.17% 44% 47.78% – –

 F1-score 94.4% 94.52% 81.82% 72.73% 81.25% 65.63% 78.13% – –

Clinical outcome

 RFS
early vs. late (day);
p-value

200 vs. 829 
days
p < 0.001

201 vs. 655 
days
p < 0.001

233 vs. 787 days
p < 0.001

233 vs. 787 
days
p < 0.001

281 vs. 431
days
p = 0.109

382 vs. 436
days
p = 0.234

281 vs. 409
days
p = 0.158

200 vs. 786 
days
p < 0.001

208 
vs787 
days
p < 0.001

 OS
early vs. late (day);
p-value

264 vs. 960 
days p < 0.001

264 vs. 861 
days
p < 0.001

381 vs. 984 days
p < 0.001

381 vs. 984 
days
p < 0.001

408 vs. 663
days
p = 0069

375 vs. 663
days
p = 0.043

477 vs. 663
days
p = 0.058

264 vs. 960 
days
p < 0.001

345 vs. 
984 
days
p < 0.001

Table 2.  Model performance and prediction of metabolite-base biomarker using SVM and tumor biomarkers. 
#The diagnosis result served as a reference for evaluating the model performance in both the training set and 
testing set.

 

Scientific Reports |        (2025) 15:12782 9| https://doi.org/10.1038/s41598-025-97641-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


recurrence classification. The model’s performance was validated in an independent testing group, where results 
closely aligned with observed clinical outcomes as shown in Table 2; Fig. 4F-G and Supplementary Fig. S1F-G.

To facilitate clinical application, using 20 metabolites for prediction could be considered complex and 
challenging to implement in practice. Therefore, simplifying the model by reducing the number of metabolites 
is crucial for clinical translation. However, this simplification often comes at the cost of decreased model 

Fig. 5.  Pathway analysis of serum metabolic alteration in CCA recurrence. Pathway enrichment analysis for 
common metabolites (A). Pathway enrichment analysis for lipid metabolites (B). Pathway impact analysis for 
common metabolites (C). Pathway impact analysis for lipid metabolites (D), highlighting significant pathways. 
Circle size and color represent p-value and pathway impact, with larger circles indicating greater pathway 
impact.
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performance. In this study, we found that model 3, constructed with 10 metabolites, exhibited predictive 
performance comparable to model 4, which utilized the full set of 20 metabolites and represented the best-
performing model. When applying model 3 to predict recurrence in CCA patients, the predictions for RFS 
and OS were closely aligned with clinical diagnoses made by physicians. Furthermore, the predictive accuracy 
of model 3 was comparable to that of model 4, demonstrating its robustness despite the reduced number of 
metabolites. Notably, the 10-metabolite set of model 3 was validated effectively in the testing set, reinforcing 
its potential reliability in clinical settings. These findings suggested that predictive models leveraging a reduced 
metabolite set could offer a practical alternative for preoperative recurrence prediction in CCA (Table 2). Such 
models provide a balance between maintaining sufficient predictive power and reducing complexity, paving 
the way for their potential integration into routine clinical workflows. By adopting this approach, clinicians 
might gain a valuable tool for identifying patients at risk of recurrence, enabling timely and personalized 
interventions to improve patient outcomes (Fig. 6). Our findings are consistent with previous research, where 
the SVM algorithm has been widely applied in metabolomics, particularly for biomarker identification, patient 
classification, and disease prediction models. Notable applications include research on obesity22 and various 
cancers, such as esophageal squamous cell carcinoma23, breast cancer11, colon cancer12, and ovarian cancer24. 
These studies could identify abnormalities using SVM, which is constructed from metabolites, and could be 
further developed for future management and treatment planning.

Fig. 6.  Summary of key findings and concepts discussed in the study. Illustration created using Canva software 
(https://www.canva.com/).
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To investigate the molecular mechanisms underlying the 90 metabolites identified in this study, we aimed 
to elucidate the biological pathways contributing to recurrence. Our findings provide deeper insights into the 
metabolic processes driving CCA recurrence, highlighting the involvement of metabolites in various pathways.

Cancer progression, especial in recurrent cancer, cells have an elevated ATP demand to support rapid 
proliferation, survival under stress, and resistance to therapy. To meet these demands, cancer cells undergo 
significant metabolic changes, including enhanced amino acid degradation and phospholipid breakdown for 
fatty acid oxidation. Amino acid catabolism fuels the tricarboxylic acid (TCA) cycle, providing ATP and key 
intermediates, while fatty acids undergo beta-oxidation to generate large amounts of ATP. This metabolic 
flexibility allows recurrent cancers to thrive in nutrient-limited, hypoxic microenvironments, supporting 
continued growth and metastasis. Enhanced ATP production also supports survival pathways, DNA repair, and 
drug resistance mechanisms, contributing to the resilience of recurrent cancers against conventional therapies. 
This study revealed that the metabolic pathways associated with CCA recurrence primarily involved amino 
acid metabolism, lipid metabolism (including beta-oxidation, glycolipid, phospholipid, and arachidonic acid 
metabolism), and energy production (TCA cycle) (Fig. 5). These metabolic alterations reflected the adaptive 
changes of cancer cells during both early and late recurrences.

The study identified a set of amino acids, detected by LC-MS/MS, associated with CCA recurrence, including 
both essential amino acids like phenylalanine, arginine, tryptophan, threonine, valine, isoleucine, and non-
essential amino acids like aspartic acid, serine, cystine, asparagine, glutamine, and proline. Notably, branched-
chain amino acids, such as valine and isoleucine, were emphasized for their roles in cancer progression. These 
amino acids are involved in key metabolic pathways, including arginine, alanine, glutamate, and tryptophan 
metabolism, which converge on energy production through the TCA cycle, fueling cancer cell growth and 
survival. The study observed reduced levels of most amino acids in the serum of early recurrence, highly aggressive 
CCA subtypes compared to late recurrence, suggesting that cancer cells consume amino acids more rapidly to 
support growth, protein synthesis, and energy production through the malate-aspartate shuttle and TCA cycle. 
This enhanced amino acid utilization for energy production promotes uncontrolled proliferation, metastasis, 
and adaptation to microenvironmental stress, driving cancer progression. Previous studies corroborate this 
finding, demonstrating that amino acids are vital for maintaining redox balance, regulating epigenetics, and 
modulating immune responses linked to tumorigenesis25,26. Additionally, Padthaisong et al.. showed that 
recurrent (aggressive) CCA requires increased energy production, reflected by a significant reduction in amino 
acid levels compared to non-recurrent (less aggressive) CCA17.

Our study also revealed the pivotal roles of specific amino acids in cancer progression, where they modulate 
signaling pathways, promote angiogenesis, and influence immune responses. Notably, tryptophan plays a 
crucial role in enabling tumors to adapt to fluctuating environments, evade immune surveillance, and establish 
a microenvironment that supports growth and metastasis, primarily through its metabolic products, especially 
kynurenine27. Additionally, during cancer progression, the synthesis of glutathione from glutamate, cysteine28, 
and serine-derived one-carbon units via the folate cycle supports NADPH production29, which is vital for 
maintaining redox balance, especially given the high energy demands of cancer cells. This metabolic process 
generates reactive oxygen species (ROS), and specific amino acids help regulate redox balance, as observed in 
pancreatic cancer growth30 and breast cancer recurrence31.

Tryptophan metabolism is critical in cancer progression beyond energy production. In early recurrences, we 
observed upregulation of tryptophan metabolites, including kynurenine, indole-3-acetaldehyde (IAAld), and 
indoxyl sulfate. The kynurenine pathway, the primary metabolic route for tryptophan, produces metabolites that 
promote tumor progression by suppressing immune responses, promoting regulatory T-cell differentiation, and 
inducing inflammation. Jia Y et al.. showed that high kynurenine levels in non-small cell lung cancer correlate 
with higher cancer stages and lower overall survival32. Similarly, elevated kynurenine metabolites are associated 
with increased mortality in stage I–III colorectal cancer patients33. Additionally, tryptophan is metabolized by 
gut microbiota into indole derivatives like indole-3-acetaldehyde (3-IAA) and indoxyl sulfate. Tintelnot J et 
al.. found that 3-IAA in the serum of pancreatic cancer patients and chemotherapy-sensitive mice correlates 
with improved progression-free and overall survival34. Meanwhile, indoxyl sulfate has been shown to promote 
colorectal cancer cell proliferation by activating the aryl hydrocarbon receptor and Akt signaling pathways, 
inducing EGFR expression35.

Moreover, we also found that lipid metabolism pathways—such as beta-oxidation, glycolipid metabolism, 
phospholipid metabolism, unsaturated fatty acid metabolism, and arachidonic acid metabolism—in 
CCA recurrence. In particular, lipid-derived carnitines, including the acetylated forms of L-carnitine like 
L-acetylcarnitine (LAC), butyrylcarnitine, hexanoylcarnitine, and others, were upregulated in early recurrences 
of CCA. This underscores the critical role of energy metabolism in the aggressive nature of CCA, which is a 
rapidly progressing cancer. Lipid-derived carnitines facilitate the transport of fatty acids into mitochondria, 
where they are oxidized via β-oxidation, activating the TCA cycle and contributing to energy production 
(Fig. 5B). This supports tumorigenesis and cancer progression, alongside glucose and amino acid metabolism. 
Such metabolic reprogramming allows cancer cells to survive under nutrient-limiting conditions, supporting 
processes like membrane biosynthesis, energy production, and the generation of signaling intermediates36. 
Previous studies have also shown that lipid metabolism alterations are linked to poor survival outcomes and 
cancer recurrence in cancers such as breast37, liver38, and cholangiocarcinoma (CCA)17,39.

Our study identified significant changes in glycerophospholipid and sphingolipid metabolism during 
early recurrence of CCA. Phospholipids such as phosphatidylcholines (PC), phosphatidylinositols (PI), 
phosphatidylethanolamines (PE), phosphatidylserines (PS), and sphingomyelin (SM) are crucial for cell 
membrane structure, fluidity, and permeability. They facilitate substance exchange between cells and their 
environment, playing key roles in signaling, immune responses, and apoptosis. Lysophospholipids (e.g., 
LysoPC, LysoPE, LysoPI) derived from phospholipid degradation regulate inflammation, immune responses, 
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and cellular signaling. Altered lysophospholipid levels can indicate cancer. Metabolic reprogramming of 
phospholipids, marked by enhanced turnover, supports energy production, membrane biosynthesis, and tumor 
growth, contributing to malignant transformation and metastasis. They could serve as valuable biomarkers 
for assessing cancer progression and recurrence risk, providing a means of early diagnosis and prognosis in 
oncology40,41. Notably, we observed significant differences in the serum levels of specific phospholipids that 
could effectively distinguish early from late recurrence in CCA patients. These included LysoPC(18:3/0:0), 
LysoPC(16:1/0:0), LysoPE(0:0/18:3), LysoPC(14:0/0:0), LysoPE(16:0/0:0), LysoPI(16:0/0:0), LysoPE(20:1/0:0), 
LysoPE(18:1/0:0), LysoPC(18:1/0:0), and LysoPE(20:3/0:0), which are consistent with previous studies that 
highlight the relationship between lipid profile alterations and cancer pathogenesis42 such as blader43, ovarian44, 
liver cancer45, squamous carcinoma and adenocarcinoma lung cancers46. Supporting our findings, a previous 
report by Padthaisong et al.. demonstrated distinct lipid metabolism profiles—particularly in triglycerides (TG) 
and diglycerides (DG)—between recurrent and non-recurrent CCA. They also identified certain phospholipids, 
such as PC (18:0/22:6) and PE (16:0, 18:0, 18:1, and 20:3), with no detectable levels of lysophospholipids. Despite 
these variations, lipid metabolism profiles appear to be sufficiently robust to serve as potential biomarkers for 
predicting recurrence and non-recurrence (NR) in CCA17. Furthermore, in 2024, Bi et al.. examined alterations 
in phospholipid metabolites, particularly PC(32:0), LysoPA(16:0/0:0), and LysoPC(16:0/0:0), in CCA patients 
compared to healthy controls. They identified significant differences in lipid metabolite profiles, particularly in 
several phospholipids and lysophospholipids, which can be used to discriminate between healthy individuals 
and CCA patients. Moreover, they demonstrated that specific phospholipids and lysophospholipids, notably 
LysoPA(16:0/0:0) and LysoPC(16:0/0:0), effectively differentiate CCA from HCC10. This underscores the critical 
role of alterations in lipid metabolites, particularly phospholipids and lysophospholipids, in reflecting disease-
specific abnormalities and indicating the severity of the condition. Building on previous studies in CCA and 
our findings, these results strengthen the hypothesis that lipid metabolite patterns—especially those involving 
lysophospholipids (LPL) and phospholipids (PL)—could distinguish distinct profiles among cancer subtypes, 
including non-recurrent (NR) CCA, recurrent (R) CCA; early recurrence and late recurrence, and healthy 
tissues.

Finally, our study revealed significant changes in unsaturated fatty acid metabolism, with reduced levels of 
oleic acid, alpha-linolenic acid (ALA), and linolelaidic acid (TFA) in the early recurrence group compared to the 
late recurrence group. These essential fatty acids are crucial for membrane fluidity, cellular signaling, and lipid 
storage. Their decrease suggests altered fatty acid metabolism, potentially promoting inflammation, modulating 
the tumor microenvironment, and inducing immunosuppression, which contribute to cancer progression, 
especially in early recurrence47. Monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA) play a 
dual role in cancer, supporting energy production, membrane formation, and pro-inflammatory processes that 
promote tumor-supportive environment and cancer survival under nutrient-limiting conditions48,49. Our findings 
align with studies showing that aggressive cancers, like ovarian and colorectal cancer, increase unsaturated fatty 
acid uptake to meet metabolic demands. Additionally, we observed an interaction between unsaturated fatty acid 
metabolism and arachidonic acid metabolism. Decreased arachidonic acid levels and increased leukotriene A4 
suggested that arachidonic acid may convert into leukotrienes, promoting inflammation and supporting cancer 
progression50.

Our results were consistent with previous studies on metabolomics-based prediction of cancer recurrence. 
In CCA, significant metabolic differences were observed between post-surgical patients who experienced 
recurrence and those who remained recurrence-free. Integrated global metabolomics and lipidomics 
analyses revealed that key energy metabolism pathways, such as pyruvate metabolism and the tricarboxylic 
acid (TCA) cycle, were downregulated in patients with recurrence. In contrast, most lipid species—including 
triglycerides, phosphatidylcholines, phosphatidylethanolamines, and phosphatidic acids—were upregulated 
in these patients. These findings suggest that dysregulation of energy metabolism and lipid homeostasis may 
play a critical role in CCA recurrence, offering potential biomarkers for recurrence prediction and therapeutic 
targeting17. Similarly, in pancreatic ductal adenocarcinoma (PDAC), metabolomics studies have highlighted key 
metabolic alterations and potential therapeutic targets following neoadjuvant chemoradiation therapy. Choline 
metabolism emerged as a critical pathway associated with recurrence in PDAC patients. Furthermore, levels of 
phosphocholine, carnitine, and glutathione were strongly correlated with recurrence-free survival, particularly 
in patients undergoing this treatment regimen15. In gastric cancer, metabolomic profiling has enabled the 
stratification of patients into high- and low-risk recurrence groups. Four metabolites—aspartate, beta-alanine, 
guanosine diphosphate, and glycine—were identified as robust predictive biomarkers for recurrence risk. Lower 
concentrations of these metabolites were associated with an increased risk of recurrence and poorer survival 
outcomes, establishing their utility as potential cutoff values for risk assessment14. Likewise, in ovarian cancer, 
specific metabolites have been identified as indicators of cancer risk, poor survival outcomes, and increased 
recurrence likelihood. Phospholipids and their derivatives, along with alterations in amino acids and lipid 
profiles, were significantly associated with the risk of ovarian cancer recurrence16. These results highlight the 
potential of metabolic biomarkers in predicting cancer recurrence, a process driven by significant metabolic 
reprogramming in cancer cells, particularly emphasizing the critical roles of energy production, amino acid and 
lipid metabolism, and glycophospholipid metabolism (cell membranes) in supporting cancer progression and 
resilience.

In conclusion, our study highlights the potential of metabolic profiling to identify biomarkers for predicting 
recurrent status in CCA. Distinct metabolic signatures were detected between early and late recurrence, with 
key pathways such as amino acid metabolism, lipid metabolism, and energy production playing pivotal roles. 
The application of SVM models, demonstrated effective classification of recurrence subtypes, offering promise 
for preoperative screening. The simplification of the metabolite panel to 10 metabolites ensures high predictive 
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accuracy and feasibility for clinical use. These findings pave the way for utilizing metabolic signatures in clinical 
decision-making, enhancing early detection, and improving patient outcomes in CCA.

Materials and methods
Ethics approval
This study was conducted in accordance with Good Clinical Practice guidelines, the Declaration of Helsinki, 
and relevant national laws and regulations governing clinical research. Informed consent was obtained from 
all participants, and all study procedures were reviewed and approved by the Khon Kaen University Ethics 
Committee for Human Research (reference number HE661318).

Population and sample group
This research involved serum samples from 88 patients diagnosed with cholangiocarcinoma. Data were 
retrospectively collected from medical records at Srinagarind Hospital, Faculty of Medicine, Khon Kaen 
University, Thailand, covering clinical information from January 1, 2017, to December 31, 2021. Serum samples 
were sourced from the biobank at the Cholangiocarcinoma Research Institute (CARI), Khon Kaen University. 
Prognostic factors were gathered using a retrospective data collection form and the ISAN Cohort database from 
CARI. The collected data included the age at diagnosis, gender, histological confirmation, tumor size, cancer 
grade, cancer staging, surgical margins, lymph node metastasis, lymphovascular invasion, histological grade, 
and details of chemotherapy received. Finally, tumor morphology (gross examination) and pathological findings 
were correlated with previous report and the 8th AJCC Staging Manual51, respectively.

Clinical outcome follow-up
The follow-up period for patients with cholangiocarcinoma extended from the date of surgery for a minimum of 
five years, commencing on January 1, 2017. All causes of death were monitored through life status verification 
from the Ministry of Interior’s database, supplemented by additional data from medical records documented by 
physicians. Typically, patients were scheduled for follow-up visits at Srinagarind Hospital, Faculty of Medicine, 
Khon Kaen University, every six months for at least five years after treatment. The variables studied included 
overall survival (OS), and disease-free survival (DFS).

Sample collection and serum preservation
For serum sample collection from patients with cholangiocarcinoma prior to surgical treatment, blood was 
drawn from a vein (venipuncture) with a volume of 5 milliliters into a clot blood tube. It was ensured that clot 
formation was complete before centrifugation. Serum was then separated from red blood cells using a centrifuge 
at 3,000–3,500 RPM at 4 °C for 10 min. The serum was aspirated and aliquoted into 1 µl portions in Eppendorf 
tubes to avoid repeated thawing of samples, and then stored at -80 °C in the biobank of the Cholangiocarcinoma 
Research Institute, Khon Kaen University, until further analysis.

Sample preparation
Serum was centrifuged at 14,000 rpm for 10 min. Twenty µl of supernatant was aliquoted and mixed with 80 µl of 
methanol, containing 25 ng/ml sulfa mix standards (sulfamethizole, sulfamethazine, sulfachloropyridazine and 
sulfadimethoxine). Fifteen µl of each sample was mixed to create a pooled QC sample. Seven dilution QCs were 
made by diluting pooled QC sample to 0%, 1%, 10%, 20%, 50%, 80% and 100% in concentration52. All samples 
were centrifuged at 14,000 rpm for 10 min. Supernatant was transferred to LC-MS vial and subjected to LC-MS 
analysis.

LC-MS/MS acquisition
Dilution QCs were acquired at the beginning from low to high concentration. Serum sample was run in 
triplicates, where pooled QC sample was inserted every 10 runs. All samples were analyzed using an Agilent 
1290 Infinity II LC system connected with a 6545XT Q-TOF mass spectrometer (Agilent Technologies, USA). 
Electrospray ionization (ESI) was used as an ionization source. LC separation was conducted on Agilent 
Poroshell 120 EC-C18 column (2.1 × 100 mm, 2.7 μm) at 50 °C. Injection volume was 10 µl for both positive 
and negative ionization modes. Mobile phases A and B were a 0.1% formic acid (FA) in water and acetonitrile 
(ACN), respectively. LC gradient was set as follows; 0% B for 0.5 min, 0–55% B in 10 min, 55–75% B in 2 min, 
75–100% B in 1.5 min, 100% B for 3 min, 100–0% B in 0.5 min, 0% B for 2.5 min, with constant flow rate of 
0.4 ml/min. A 10% isopropanol in water was used as a needle wash. MS analysis was conducted with MS1 mass 
range of 100–1700 m/z and MS2 range of 25–1000 m/z. MS parameters were set as follows; gas temperature at 
325 °C, nebulizer at 45 psi, dying gas at 13 L/ min, sheath gas temperature at 275 °C, sheath gas flow at 12 L/min, 
nozzle voltage at 500 V, fragmentor voltage at 175 V and skimmer voltage at 65 V. Capillary voltage was 4000 
and 3000 V for positive and negative modes, respectively. Acquisition rate was 3.35 spectrum per s. Maximum 
10 precursor ions per cycle with precursor threshold at 5,000 counts were selected for MS/MS fragmentation. 
Collision energy (CE) was 20 and 10 eV for positive and negative modes, respectively. Purine, trifluoroacetic 
acid ammonium salt and hexakis (1 H, 1 H, 3 H-tetrafluoropropoxy) phosphazine were used as reference masses. 
Data was collected in centroid mode53.

Metabolite identification, data filtering, preprocessing, and statistical analysis
Raw data in Agilent.d format were converted to .abf files using the Reifycs Abf Converter and subsequently 
uploaded to MS-DIAL software (version 5.3)54 for further processing. Peak detection, sample alignment, and 
compound identification were performed using default settings. Alignment was conducted against QC samples 
to ensure data consistency. Normalization was carried out using the LOWESS method, with sulfadimethoxine 
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(311.0809 m/z in positive mode and 309.0658 m/z in negative mode) applied as the internal standard for quality 
control. Mass exclusion was applied to remove features with m/z values of 121.0509 and 922.0098 in positive 
mode, and 112.9856, 119.0363, 966.0007, and 1033.9881 in negative mode. Reference masses were excluded 
from the analysis to ensure accuracy. Metabolite identification was conducted using the online ESI (+/-) MS/MS 
database derived from authentic standards, supplemented by searches against the Human Metabolome Database 
(HMDB). Detected adducts included M + H in positive ionization mode and M-H in negative ionization 
mode, with a retention time window of 0.2 to 18 min. Data were pre-filtered based on the following criteria: 
Pearson correlation coefficient ≥ 0.70 against 7 dilution QC samples, coefficient of variation (%CV) among QC 
samples ≤ 50%, and an identification score ≥ 0.7055. Features that did not meet these criteria were excluded from 
further analysis.

The raw metabolite profile data were normalized using log10 transformation and Pareto scaling prior 
to statistical analysis. The data were then split into training and test sets. Feature selection was exclusively 
performed on the training set to avoid data leakage and to ensure that the testing set remained unseen until 
the final evaluation. This process ensured the integrity of the model by preventing overfitting and maintaining 
an unbiased assessment. Multivariate analysis was performed using MetaboAnalyst 6.056 ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​m​e​t​a​b​o​
a​n​a​l​y​s​t​.​c​a​/​​​​​)​, including principal component analysis (PCA) and orthogonal partial least squares discriminant 
analysis (OPLS-DA). Clustering heatmaps were generated to visualize differentially abundant metabolites. A 
volcano plot was constructed to illustrate fold changes and statistical significance, with p-values adjusted using 
the Benjamini–Hochberg false discovery rate (FDR) method (threshold: FDR < 0.05). In addition, receiver 
operating characteristic (ROC) curves were plotted, and the area under curve (AUC) was calculated to evaluate 
the diagnostic performance of the selected metabolites. Feature selection for candidate metabolites were selected 
based on their statistical significance according to the following criteria: variable importance in projection 
(VIP) > 1.2 from OPLS-DA analysis, fold change (FC) > 1.2 or < 0.83, and FDR-adjusted p < 0.05, which were 
considered significant for the discriminatory model. Duplicate metabolites were removed, and only metabolites 
with higher AUC values from the ROC analysis were retained. Subsequently, the candidate metabolites that 
passed the feature selection criteria were further analyzed in the Support Vector Machine (SVM) model and 
pathway analysis.

Support vector machine model for candidate metabolites
The Support Vector Machine (SVM) model was used to classify and predict potential biomarkers from the 
candidate metabolites identified in serum samples. The candidate metabolites were selected based on feature 
selection criteria according to VIP > 1.2 from OPLS-DA analysis, FC > 1.2 or < 0.83, and FDR-adjusted p < 0.05, 
which were considered significant for the discriminatory model. Duplicates were removed, and only metabolites 
with higher AUC values in ROC analysis. Using the MetaboAnalyst 6.0 platform, candidate metabolite data from 
the training set were first normalized to ensure uniform scaling. The SVM model was applied using a Radial 
Basis Function (RBF) kernel (default kernel in MetaboAnalyst), and cross-validation techniques such as 10-fold 
cross-validation were used to assess the model generalizability and to avoid overfitting. The default parameters 
for the SVM model included a cost value of 1 and gamma value of 1/n, where n is the number of features (default 
settings in MetaboAnalyst). The model performance was evaluated using classification metrics such as accuracy, 
sensitivity, specificity, and area under the curve (AUC) based on the training set18. The SVM model developed 
from the training set was then validated using an independent testing set, and model performance was further 
assessed through the same classification metrics (accuracy, sensitivity, specificity, and AUC) derived from the 
testing set.

Pathway analysis
Pathway enrichment and pathway impact analysis were performed using MetaboAnalyst 6.056 ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​m​
e​t​a​b​o​a​n​a​l​y​s​t​.​c​a​/​​​​​)​, with KEGG pathways used as a reference for the analysis57. To ensure a focused and accurate 
interpretation, significantly altered candidate metabolites were categorized into two groups: common (non-
lipid) metabolites and lipid metabolites, which were analyzed separately. The candidate metabolite lists were 
uploaded to the platform, and their corresponding Human Metabolome Database (HMDB) IDs were mapped 
to reference pathways. The pathway analysis module in MetaboAnalyst 6.0 utilizes a hypergeometric test to 
evaluate the overrepresentation of metabolites within specific pathways and a relative-betweenness centrality 
measure to assess the topological importance of pathways. To address multiple testing, False Discovery Rate 
(FDR) correction was applied. We established research-specific criteria to effectively elucidate the biological 
phenomena associated with cancer progression and recurrence for this study. Pathways were deemed statistically 
significant if they met either of the following thresholds: (1) p < 0.05 and FDR < 0.2, or (2) p < 0.05, FDR < 0.3, and 
an impact score > 0.2. The results were visualized using interactive pathway maps, highlighting key metabolic 
alterations in both common and lipid metabolites.

Bioinformatics analysis
The overall survival (OS) was calculated using the Kaplan-Meier (KM) method, where disease-free survival 
(DFS) was defined as the time from surgery to recurrence, and overall survival was defined as the time from 
surgery to death. Patients who survived beyond the study period had their median DFS and OS calculated, 
and comparisons between groups were analyzed using the Log-rank test. A p-value of < 0.05 was considered 
statistically significant. All analyses were conducted using IBM SPSS Statistics version 26.
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Data availability
The datasets generated during this study are available in the ProteomeXchange repository under the accession 
IDs JPST003566 and PXD060214 (via https://repository.jpostdb.org/entry/JPST003566.0). Clinical data ​s​u​p​p​o​r​t​
i​n​g the findings of this study are available from the corresponding author upon reasonable request.
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