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Breast cancer ranks among the most prevalent cancers in women globally, with its treatment 
efficacy heavily reliant on the early identification and diagnosis of the disease. The importance of 
early detection and diagnosis cannot be overstated in enhancing the survival prospects of those 
afflicted with breast cancer. With the increasing application of machine learning technology in the 
medical field, algorithm-based diagnostic tools provide new possibilities for early prediction of breast 
cancer. In this study, we introduced a novel feature selection approach, which leverages Shapley 
additive explanation (SHAP) values as the basis for Recursive Feature Elimination (RFE), utilizing a 
Random Forest (RF) algorithm within the RFE framework. To address the data imbalance challenge, 
we incorporated Borderline-SMOTE1. The efficacy of the proposed method was assessed using five 
machine learning models, K-Nearest Neighbor (KNN), Random Forest (RF), Logistic Regression (LR), 
Support Vector Machine (SVM), and Light Gradient Boosting Machine (LightGBM), applied to the 
Wisconsin Breast Cancer Diagnosis (WBCD) datasets. Optimizing hyperparameters of five models using 
the Particle Swarm Optimization (PSO) algorithm. In the datasets, 26 features were filtered using our 
recommended algorithm, the LightGBM-PSO model demonstrated an outstanding performance. The 
model demonstrated an impressive accuracy of 99.0% in differentiating between benign and malignant 
cases, boasting a specificity and precision of 100%, a recall rate of 97.40%, an F-measure of 98.68%, 
an AUC of 0.9870, and a 10-fold cross-validation accuracy of 0.9808. Subsequently, we developed a 
corresponding online tool ​(​h​t​t​p​s​​:​/​/​b​r​e​​a​s​t​-​c​a​​n​c​e​r​-​p​​r​e​d​i​c​t​i​o​n​-​t​o​o​l​-​c​g​b​j​l​h​k​n​s​7​y​i​g​6​b​m​z​v​z​t​m​c​.​s​t​r​e​a​m​l​i​t​.​a​
p​p​/​) based on this model for predicting the risk of breast cancer. Feature selection using recommended 
algorithm and optimization of the LightGBM model through PSO can significantly enhance the 
accuracy of breast cancer prediction. This could potentially improve the prognosis for patients 
diagnosed with breast cancer. 
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Breast cancer is the leading cause of cancer among women worldwide1,2and the second leading cause of death 
among women3,4. The early stages of many breast cancers often present no noticeable symptoms. Consequently, 
the extraction and analysis of pertinent information from the vast data pool for the scientific evaluation of 
breast cancer is both complex and time-intensive5,6. This complexity poses significant challenges for early 
diagnosis, affecting both the treatment effectiveness and patient prognosis. Notably, accurate and early diagnosis 
substantially enhances the likelihood of patients receiving timely treatment, thereby reducing breast cancer 
mortality rates7,8.

Recently, many researchers have adopted diverse techniques for the early detection of breast cancer9, 
incorporating various machine learning algorithms into the WDBC dataset. Specifically, Tarek Khater 
et al.‘s k-nearest neighbors model10 reached a remarkable 97.7% accuracy and 98.2% precision for breast 
cancer classification using WDBC data. Masri Ayob et al.11 successfully employed a Fast Learning Network 
(FLN), attaining an impressive 98.37% accuracy on the WBCD database. Further reinforcing these findings, 
Sheng Zhou et al.12, through extensive experimentation with various machine learning models on the same 
dataset, highlighted the superior performance of AdaBoost-Logistic, exhibiting commendable classification 
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capabilities for both benign and malignant cases. Deepa Kumari et al.13 achieved a 97% diagnostic accuracy 
by combining hybrid multi-layer perceptron (MLP) with random forest (RF), as well as Xception (a type of 
convolutional neural network) with RF. Indu Chhillar et al.14 successfully addressed class imbalance through 
Synthetic Minority Over-sampling Technique-Edited Nearest Neighbor (SMOTEENN) and employed Boruta 
and Coefficient-Based Feature Selection (CBFS) for robust feature selection, ultimately proposing a soft voting 
ensemble model. Their approach yielded an impressive 99.42% accuracy when utilizing the CBFS method. 
Vandana Rawat et al.15employed several ML algorithms for classification purposes and found that the Support 
Vector Machine algorithm delivered superior results. However, further explanation of the model is lacking, 
making it challenging for people to comprehend. To address the widespread issue of imbalanced learning, a 
common challenge for standard machine learning algorithms16, T. R. Mahesh et al.6implemented A-SMOTE 
for dataset balancing and achieved noteworthy outcomes. Nonetheless, A-SMOTE’s occasional selection 
of unsuitable samples as synthetics introduces noise that impairs the classification capability of the model. 
Feature selection is an essential step preceding classification tasks, particularly given the high dimensionality 
of biomedical datasets that frequently encompass irrelevant and redundant features17. In breast cancer research, 
Principal Component Analysis (PCA) has gained prominence as the preferred feature selection technique18,19. 
However, PCA synthesizes new components as linear combinations of the original features, potentially resulting 
in an information loss from the initial dataset. Furthermore, these newly formed features often pose challenges 
for an intuitive interpretation. Overall, challenges persist in areas such as dataset balancing, feature optimization, 
and model interpretability. The entire experimental process is shown in Fig. 1.

Materials and methods
Dataset
In this study, we used the publicly accessible Wisconsin Diagnostic Breast Cancer (WDBC) datasets (​h​t​t​p​s​:​​
/​/​a​r​c​h​​i​v​e​.​i​c​​s​.​u​c​i​.​​e​d​u​/​d​a​t​a​s​e​t​/​1​7​/​b​r​e​a​s​t​+​c​a​n​c​e​r​+​w​i​s​c​o​n​s​i​n​+​d​i​a​g​n​o​s​t​i​c)20. The datasets comprised 569 samples, 
with a distribution of 357 benign and 212 malignant cases, all devoid of missing values. These features were 
extracted from digital images of breast mass fine-needle aspiration (FNA), which describes the characteristics 
of cell nuclei21.

Data preprocessing
Before employing machine learning (ML) for classification tasks, the data were subjected to a series of pre-
processing steps22. Initially, min-max normalization was employed to normalize all feature values to a range 
between 0 and 1. Subsequently, the dataset was split 65:35 to train and test. Thereafter, to mitigate data imbalance 
in the training set, the Borderline Smote1 technique is applied23. The detailed process is shown in Fig. 2.
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SHAP is a technique used to explain the predictions made by machine learning models24.
This method creates a framework for understanding by determining Shapley values, treating each feature 

as a “contributor.” In this framework, each feature is assigned a SHAP value in a specific set of predictors. 
These values show how much each feature contributes to the final prediction result. They also show whether 
each feature promotes or inhibits changes in the target variable and how each feature interacts with the target 
variable25,26. The mean absolute SHAP values across features are indicative of their respective importance. The 
calculation formula is as follows:

Each leaf node will contain a proper proportion of all possible subsets in the collection , where Sj is the 
feature subset that appears at leaf node j,  is a subset of Sj , Lj  is the path length from the root node to leaf 
node j, (𝑤(|𝑃|,𝑗)) is the proportion of all subsets of at leaf node j, pi,j

o  and pi,j
z  represent the proportions of 

subsets that include and exclude feature i, respectively, and υ j  is the output value of leaf node j .

SHAP-RF-RFE
Recursive Feature Elimination (RFE) is an effective feature selection technique that systematically reduces 
feature set sizes via a recursive process27. In this study, we developed a unique algorithm, designated SHAP-RF-
RFE, by integrating the Shapley additive explanation (SHAP) values with the Random Forest (RF) methodology 
within the RFE framework. This algorithm unfolds in a structured manner, as follows:

	1.	 Initially, a Random Forest classifier is trained using the available dataset.
	2.	 Subsequently, SHAP values for each feature are computed, quantifying their contribution to the prediction.
	3.	 The feature exhibiting the least SHAP value is then eliminated, signifying its minimal impact on the model’s 

predictive accuracy.

Machine learning models
The Random Forest (RF) algorithm is a sophisticated ensemble learning method. It comprises multiple distinct 
Decision Trees (DTs), each contributing to the final decision-making process. Unlike methods that depend on 
a single decision tree, RF aggregates the predictions from each tree, relying on the majority vote to formulate 
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the ultimate prediction28,29. In this framework, each decision tree node executes splits based on the Gini Index, 
which is a measure of the statistical dispersion.

The Support Vector Machine (SVM) is a robust supervised learning model that is frequently employed to 
address classification and regression issues. Its fundamental premise is to identify an optimal hyperplane within 
the feature space that maximizes the distance between data points belonging to disparate categories, thereby 
facilitating effective classification18.

The logistic regression (LR) classification algorithm is a widely used tool in the field of machine learning. Its 
main goal is to predict the occurrence of an event by estimating probabilities, and it has the characteristics of 
easy implementation and strong interpretability of results30.

The K-Nearest Neighbor (KNN) algorithm is a fundamental and pervasive classification and regression 
technique. Its working principle is simple and intuitive, mainly relying on measuring the distance between 
different feature points to perform classification or regression31.

LightGBM represents an advanced iteration of the Gradient-Boosted Decision Tree (GBDT) system32. 
LightGBM employs a histogram-based approach and leaf-wise growth strategy. This accelerates training and 
reduces the memory usage33,34. LightGBM retains data points with large gradients and down samples other data 
points while maintaining the essential characteristics of the data35. Given the typically sparse nature of high-
dimensional data, this sparsity enables the formulation of a near-lossless method for feature-dimensionality 
reduction. In these sparse feature spaces, many features are often mutually exclusive and do not assume nonzero 

Fig. 1.  Experimental procedure of breast cancer.
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values simultaneously. LightGBM capitalizes on this by amalgamating these exclusive features into a single entity 
in a process called Exclusive Feature Bundling (EFB).

Hyperparameter optimization
Metaheuristic algorithms demonstrate significant advantages in optimizing machine learning model parameters, 
particularly in handling large-scale, complex problems with no explicit gradient information. By mimicking 
natural search mechanisms, they facilitate effective global searches across extensive solution spaces, avoiding 
the pitfalls of local optima. Among metaheuristics, Genetic Algorithms (GA) stand out for simulating biological 
evolution processes using selection, crossover, and mutation to navigate the solution space, gradually refining 
candidate solutions toward optimality. Notable members include Particle Swarm Optimization (PSO), GA, 
Differential Evolution (DE), Artificial Bee Colony (ABC), Firefly Algorithm (FA), the Coati Optimization 
Algorithm, and various hybrid intelligent algorithms36–39, which have found widespread applications in diverse 
domains such as healthcare, engineering, mathematics, and science40. This work focuses on Particle Swarm 
Optimization (PSO) due to its merits: minimal parameter tuning requirements, high computational efficiency, 
robust performance, and ease of implementation for hyperparameter optimization. From analyzing bird flocking 
behavior, PSO is a collective intelligence optimization technique introduced by Kennedy and Eberhart et al.41. 
Its core principle is leveraging collaborative efforts and information sharing among particles to achieve optimal 
solutions. Fundamentally, PSO simulates the movement of a swarm of particles in the search space, continuously 
updating their positions and velocities until converging to the global optimum. Each particle maintains a position 
and velocity vector, and through iterative adjustments of these parameters, the swarm collectively identifies the 
best solution to the problem at hand42,43.

Performance assessment
Performance evaluation metrics include: accuracy, precision, recall, specificity, and F-measure; the ROC curve 
graphically displays the performance of the model at different thresholds; ten cross validations are used to 
evaluate the effectiveness and stability of the model on unseen data to enhance the understanding of the model’s 
performance44.

Results
The training and testing samples were run on a Windows 11 machine equipped with an i5 processor and NVIDIA 
RTX 2050. The model was implemented using Python 3.9. The data preprocessing was mainly performed using 

Fig. 2.  Borderline Smote1 algorithm.
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the ‘imblearn’ and ‘pandas’ libraries. The model development was carried out using the ‘nump’, ‘sklearn’, ‘shap’, 
and ‘scikit-opt’ packages. For the development of the online platform, the ‘streamlit’ package was employed.

The best machine learning model
Initially, we employed and evaluated RF, SVM, LR, KNN, and LightGBM models to classify the WDBC dataset. 
Figure 3(a) shows the accuracy achieved by employing all the feature subsets ranging from 1 to 30. Figure 3(b) 
presents the AUC values and Fig. 3(c) shows the 10-fold cross-validation accuracy. After analyzing the accuracy 
of the five distinct models, it was observed that the LightGBM model generally surpassed the performance of the 
other models across most feature subsets. However, this model exhibits a slight decrease in accuracy compared 
with the others when the feature subsets include four, seven, ten, eleven, or twelve features. Remarkably, the 
accuracy of the LightGBM model reached 99.0% with a subset of 26 features. Moreover, a comparative analysis 
of the AUC values revealed that the LightGBM model typically outperformed the other models, achieving an 
AUC as high as 0.987 for the 26-feature subset. Nonetheless, the AUC values were marginally lower in smaller 
subsets of features 4, 7, 10, 11, and 12. The ten-fold cross-validation comparison of the accuracy rates for five 
models indicates that, within feature subsets ranging from 1 to 30, there is no significant difference among the 
LightGBM, KNN, and RF models. Conversely, the SVM and LR models generally exhibit weaker performance.

Subsequently, we evaluated the performance of RF, SVM, LR, KNN, and LightGBM models by selecting the 
model with the highest accuracy, AUC values, and ten-fold cross-validation accuracy from 30 models, each 
representing different feature subsets. Figure  4 displays the confusion matrices for the five best-performing 

Fig. 3.  The training results of five models: (a) Accuracy, (b) AUC, (c) 10-fold cross-validation Accuracy.
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models. Notably, the RF model with 28 features achieved a TP of 74, FN of 3, FP of 0, and TN of 123. The SVM 
model, equipped with 18 features, recorded a TP of 76, FN of 1, FP of 3, and TN of 120. Similarly, the LR model 
with 27 features showed a TP of 75, FN of 2, FP of 3, and TN of 120. The KNN model, with the least features at 12, 
excelled with a TP of 76, FN of 1, FP of 2, and TN of 121. The LightGBM model, with 26 features, demonstrated 
superior performance with a TP of 75, FN of 2, FP of 0, and TN of 123. Figure 5; Table 1 show the ROC curves 
and performance metrics of these models, highlighting the LightGBM model’s top accuracy of 99%, which is 
0.5% higher than both the RF and KNN models, 1.0% higher than the SVM model, and 1.5% higher than the LR 
model. This model also excelled in specificity (100%), precision (100%), recall (97.40%), F-measure (98.68%), 
AUC (0.9870), and ten-fold cross-validation accuracy (0.9808). Table 2 details the optimized hyperparameters 
of the LightGBM model with 26 features, achieved through the PSO algorithm.

Models Number of Features Accuracy(%) Specificity(%) Precision(%) Recall(%) F-Measure(%) AUC 10-fold cross-validation accuracy

RF 28 98.50 100 100 96.10 98.01 0.9805 0.9743

SVM 18 98.00 97.56 96.20 98.70 97.44 0.9813 0.9743

LR 27 97.5 97.56 96.15 97.40 96.77 0.9748 0.9636

KNN 12 98.50 98.37 98.44 97.70 98.06 0.9854 0.9572

LightGBM 26 99.00 100 100 97.4 98.68 0.987 0.9808

Table 1.  The performance of different models.

 

Fig. 5.  The receiver operating characteristic (ROC) curve for the five models. (a) RF, (b) SVM, (c) LR, (d) 
KNN, (e) LightGBM.

 

Fig. 4.  The confusion matrices for the five models. (a) RF, (b) SVM, (c) LR, (d) KNN, (e) LightGBM.
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Distribution of importance of 26 features
In the SHAP-RF-RFE feature-selection algorithm, the average absolute SHAP values of each feature indicate 
their respective importance. Figure  6 illustrates the important distributions of these 26 features in the best-
performing LightGBM model obtained using the SHAP-RF-RFE algorithm. The 26 features are ranked in order 
of importance from top to bottom. Notably, ‘radius_worst’, ‘area_worst’, and ‘perimeter_worst’ are deemed 
pivotal. The ‘radius_worst’ represents the radius of the largest cross-sectional area of the tumor. Generally, a 

Fig. 6.  Ranking of SHAP values in recommended algorithm.

 

Hyperparameter Range PSO

learning_rate 0.01–0.3 0.27

max_depth 1–10 10

num_leaves 2–100 100

n_estimators 1–1000 1000

max_bin 10–300 264

min_child_samples 1–50 1

colsample_bytree 0.5–1 0.5

subsample 0.5–1 0.6

subsample_freq 0–80 80

reg_alpha 0–1 0

reg_lambda 0–1 1

min_split_gain 0–1 0

Table 2.  Hyperparameters optimized for the LightGBM model using a subset of 26 features with PSO.
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larger radius signifies a larger tumor, which could potentially indicate a more aggressive form of cancer. The 
‘area_worst’ refers to the area of the tumor’s largest cross-section. Typically, a larger tumor area implies a higher 
tumor load and may correlate with a higher degree of malignancy. ‘Perimeter_worst’ is the circumference of the 
tumor at its largest cross-section. The size of the perimeter mirrors the tumor’s morphology and the complexity 
of its growth. Generally, a longer perimeter may suggest a more irregular tumor morphology, which is often 
associated with a higher degree of aggressiveness and malignancy.

The interpretation of the model
In the subsequent analysis, the SHAP values were employed to interpret the LightGBM model, which integrates 
the previously mentioned 26 features. The SHAP swarm plot of this model is shown in Fig. 7, where positive 
SHAP values correlate with an increased probability of breast cancer diagnosis, whereas negative values suggest a 
decreased likelihood. To enhance visual comprehension, higher values were represented in red and lower values 
in blue. Notably, the feature with the most substantial impact on the model is ‘radius_worst.'A high value indicates 
an elevated risk of breast cancer, whereas a low value indicates a diminished risk. Conversely, ‘concavity_se’ 
emerges as the feature with the least influence on the model. Figure 7 shows that breast cancer risk is associated 
with the following 18 characteristics: radius_worst, texture_mean, area_worst, perimeter_worst, concave point 
s_worst, smoothness_worst, texture_worst, concavity_worst, concave points_mean, area_se, symmetry_worst, 
radius_se, smoothness_mean, concavity_mean, area_mean, perimeter_mean, fractal_dimension_worst, and 
compactness_worst. Conversely, lower values of these attributes imply reduced risk. For the subsequent five 
features, compactness_se, symmetry_se, concave points_se, fractal_dimension_se, and compactness_mean, the 
relationship was inverse; higher values correlated with a decreased likelihood of breast cancer, whereas lower 
values suggested an increased risk. Notably, for the symmetry_mean feature, a low value yielded an ambiguous 
prediction of the likelihood of breast cancer. For the radius_mean feature, a high value also yields an ambiguous 
prediction. However, the predictive value of concavity_se in breast cancer remains unclear.

Fig. 7.  SHAP Beeswarm plot for LightGBM-PSO.

 

Scientific Reports |        2025 15:13015 8| https://doi.org/10.1038/s41598-025-97685-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Comparison with other models
Comparative analysis (detailed in Table 3) highlights the exceptional performance of our breast cancer prediction 
model, leveraging SHAP-RF-RFE for feature selection, LightGBM as the classifier, and PSO for hyperparameter 
tuning. Achieving remarkable accuracy (99%) and perfect precision (100%), our model surpasses counterparts in 
the literature, demonstrating superior predictive capability. While this high precision ensures no false positives, 
a slightly lower recall rate of 97.4% indicates potential under-detection of some actual cases. This integrated 
approach showcases strong predictive power and promising application potential for enhancing breast cancer 
diagnosis.

Discussion and conclusion
This study introduces a new breast cancer diagnostic model that is more accurate and efficient. We also use 
SHAP values to understand how the model makes decisions.

Breast cancer poses a significant public health concern and is also among the primary causes of mortality 
in women45,46. The early identification of breast cancer continues to be a pivotal focus in medical research. 
Traditionally, pathologists and radiologists are accustomed to manually observing breast images and reaching 
a consensus with other medical experts to make decisions and conduct analyses47,48. However, manually 
analyzing a large number of images used for diagnosing breast cancer is both laborious and time-consuming, 
which often may lead to false positive or false negative results49. Therefore, we need an automated system to 
improve analysis efficiency to assist radiologists in the early diagnosis of breast cancer50, where the role of 
machine learning in research is becoming increasingly vital. First, these algorithms analyze breast X-ray 
imagery, encompassing mammography, ultrasound, and MRI, to aid physicians in pinpointing potential lesions 
indicative of breast cancer51,52. Jia Li et al.53employed the Self-Attention Random Forest (SARF) model to classify 
breast X-ray images and achieved excellent accuracy. Second, through machine learning-driven analysis of 
extensive genomic data, researchers have delved into genetic mutations and biomarkers linked to breast cancer 
emergence, thereby facilitating the identification of genetic predispositions and crafting tailored preventive and 
therapeutic strategies54,55. Byung-Chul Kim et al.56constructed a high-accuracy model for predicting breast 
cancer metastasis using RNA-seq data and machine learning algorithms. Additionally, machine learning has 
been employed in the scrutiny of clinical patient data to discern potential risk factors and early indicators of 
breast cancer, utilizing both pathological findings and clinical histories to support more informed diagnostic and 
treatment decisions by medical professionals57,58. Mahendran Botlagunta et al.59proposed a machine learning-
based web application that utilizes blood feature data for the early detection of breast cancer metastasis. The 
integration of machine learning into telemedicine systems enables real-time screening and diagnostic services 
for breast cancer, addresses disparities in medical resources, and enhances the accessibility and effectiveness of 
early detection efforts60.

Despite the impressive performance of our model, several limitations warrant consideration. Primarily, its 
generalization capability across diverse datasets requires further validation. While we achieved outstanding 
results on a specific dataset, applicability in other clinical settings or varied populations remains to be 
comprehensively assessed. Additionally, the model’s complexity may incur higher computational costs during 
practical deployment, posing challenges particularly in resource-constrained healthcare environments. Our 
research has culminated in a novel breast cancer prediction model, marked by significant accuracy, adaptability, 
and scalability improvements. To democratize access to this advanced technology, we have launched the “Breast 
Cancer Prediction Tool” (​h​t​t​p​s​:​​/​/​b​r​e​a​​s​t​-​c​a​n​​c​e​r​-​p​r​​e​d​i​c​t​​i​o​n​-​t​o​​o​l​-​c​g​b​​j​l​h​k​n​s​​7​y​i​g​6​b​m​z​v​z​t​m​c​.​s​t​r​e​a​m​l​i​t​.​a​p​p​/), an 
intuitive online platform offering accessible risk assessment services. Patients and healthcare professionals 
can input relevant health data through a user-friendly interface to receive personalized risk evaluations 
instantaneously. This immediate feedback mechanism empowers early interventions and tailored treatment 
plans, supporting clinicians in making more informed and precise diagnoses and treatment decisions. Future 
work will encompass several key directions to enhance the robustness and applicability of our model. First, 
we aim to train the model on a more diverse set of datasets and integrate various imaging modalities to enrich 
the assessment of disease manifestations. Second, we plan to explore advanced optimization algorithms such 
as Hybrid Particle Swarm Optimization (HPSO) and HPSO with Time-Varying Acceleration Coefficients 
(HPSO-TVAC)61. These techniques have demonstrated superior performance in tackling complex problems by 
efficiently converging towards optimal solutions, thereby boosting model accuracy62. Third, we intend to expand 
the scope of the model to predict the risk of other diseases such as lung cancer, thereby significantly enhancing 
its practical value.

Author Year Model Accuracy (%) Precision (%) Recall (%)

V.Nanda Gopal et al.19 2021 PCA + MLP 98 98 97

Khandaker Mohammad Mohi Uddin et al.26 2023 PCA + VC 98.77 98.83 98.54

Zexian Huang et al.4 2022 VIM + HCRF 97.05 97.32 94.77

Marion Olubunmi Adebiyi
et al.8 2022 LDA + SVM 96.4 96.4 95.7

Tarek Khater et al.10 2025 ANN 98.6 94.4 NA

This work SHAP-RF-RFE
+LightGBM + PSO 99.0 100 97.4

Table 3.  Accuracy comparison with other works from the literature.
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Data availability
The datasets used during the current study are available in the Wisconsin Diagnostic Breast Cancer datasets (​h​t​
t​p​s​:​​/​/​a​r​c​h​​i​v​e​.​i​c​​s​.​u​c​i​.​​e​d​u​/​d​a​t​a​s​e​t​/​1​7​/​b​r​e​a​s​t​+​c​a​n​c​e​r​+​w​i​s​c​o​n​s​i​n​+​d​i​a​g​n​o​s​t​i​c). The data generated during the ​c​u​r​r​e​
n​t study available from the corresponding author on reasonable request.
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