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In this manuscript, the three-component nonlinear stochastic Schrö dinger equation under the 
effects of Brownian motion in the Stratonovich sense is examined here. The different types of exact 
optical soliton solutions are explored under the noise effects. The propagation of an optical pulse in 
a birefringent optical fiber is described by the three nonlinear complex models. A system of coupled 
nonlinear Schrödinger equations can be used to characterize the propagation of light in birefringent 
optical fibers. The interactions between the various polarization modes of the optical field are taken 
into account by the equations for a three-component system. In a three-component nonlinear Schr 
ödinger (NLS) equation, the three-wave mixing effect typically arises from cross-phase modulation 
(XPM) and four-wave mixing (FWM) terms. These terms describe interactions between the three wave 
components. A well-known mathematical technique is used namely as generalized Riccati equation 
mapping method. The different types of dark, singular, combined, and solitary wave solutions are 
constructed. Moreover, the effect of noise is visualized on these optical solitons. To show the stability 
of our results we have explored one more method namely as modified auxiliary equation method, 
which provided us only hyperbolic, trigonometric and rational solitons. The effect of noise is shown via 
simulations in the 3D, 2D, and corresponding contours. The computational software Mathematica11.1 
is used to construct these solutions, and their verifications and to draw the plots as well under the 
effect of noise.

Keywords  Exact solutions, Brownian motion, Nonlinear Schrödinger equation, Generalized Riccati equation 
mapping method, Modified auxiliary equation approach

Nonlinear Schrödinger equations (NLSEs) can be used to model a variety of complex nonlinear physical 
phenomena. Such equations are used in a wide range of nonlinear physical processes, such as fluid mechanics, 
photonics, ocean engineering, plasma physics, electromagnetism, and more. A fascinating topic for researching 
soliton propagation via nonlinear optical fibers is the optical solitons theory1–3. In the study of optics, any optical 
field that remains constant throughout transmission because of a meticulous balancing act between nonlinear 
and linear effects in the medium is called a soliton. The transmission of ultrashort electromagnetic radiation 
pulses in a nonlinear medium is a multidimensional process. The interplay of multiple physical characteristics, 
including dispersion, material dispersion, diffraction, and nonlinear response, affects the pulse dynamics4,5.

Stochastic evolution equations are mathematical formulas that are used to describe how a system evolves over 
time while accounting for both random and deterministic factors6. In order to examine complex systems that 
display random behavior, they are extensively employed in many scientific disciplines, such as physics, biology, 
and finance. Economists and researchers can better comprehend the behavior and forecasts of these systems by 
utilizing the strong framework that stochastic evolution equations offer for studying their dynamics.
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As a result, the primary emphasis of this work is the well-known three-component coupled NLS (or tc-
CNLS, for short) equation. Multi-component nonlinear wave equations are being studied more than scalar NLS 
equations because they can yield more valuable information and lead to more applications. The three-component 
stochastic coupled nonlinear Schrö dinger equation is given by7

	
iϕk,t + 1

2ϕk,xx + (|ϕ1|2 + |ϕ2|2 + |ϕ3|2)ϕk = iλϕk ◦ Bt,� (1)

where ϕk = ϕk(x, t), (k = 1, 2, 3) represents the wave envelopes and B(t) is a multiplicative time noise with 
the control parameter λ which is satisfies the following prosperities such as i) B(t) is a continuous function ii) 
B(0) = 0 and iii) B(ti+1) − B(ti) has standard normal distribution. The propagation of an optical pulse in a 
birefringent optical fiber is described by the three nonlinear complex models.

One of the key features of the three-component stochastic coupled nonlinear Schrödinger equation is that it 
allows for the study of complex interactions between different wave functions. In traditional quantum mechanics, 
wave functions are typically considered to be independent of each other. However, in systems where multiple 
wave functions interact, such as in certain types of matter or light waves, the behavior of each wave function 
can be influenced by the presence of the others. By incorporating stochastic fluctuations into the equation, 
researchers can gain a more nuanced understanding of how these interactions affect the overall dynamics of the 
system.

Chen et al. presented a succinct method for quantitatively investigated coupled stochastic nonlinear 
Schrödinger equations8. Kraichnan et al. described a method for dealing with nonlinear stochastic systems that 
may be useful in quantum mechanics and turbulence theory9. Cai et al. looked into the statistical mechanics 
of a complex field that the nonlinear Schrödinger equation explained. In a nonlinear medium, a propagating 
laser field and Langmuir waves in a plasma are explained by such fields when idealized appropriately10. In order 
to understand optical solitons in fiber optics, Younas et al. examined the three-component coupled nonlinear 
Schrödinger equation. The study of multi-component NLSE equations is becoming increasingly popular due to 
their capacity to represent complicated physical processes and provide dynamic solutions for localized waves11. 
The Darboux transformation was devised12 by Xu et al. for three-component coupled derivative nonlinear Schrö 
dinger equations. Kevrekidis et al. attempted to communicate a portion of the current buzz surrounding multi-
component nonlinear Schrödinger models, which has been sparked by several theoretical and computational 
investigations as well as experimental discoveries13. Among the most active fields of study in the field of optical 
soliton is still the nonlinear dynamics of an optical pulse or beam, as demonstrated by Stalin et al.14. In order 
to regulate the propagation and interaction of optical-soliton in optical media such as multimode fibers, fiber 
arrays, and birefringent fibers, Jiang et al. introduced the coupled nonlinear Schrö dinger (CNLS) equations15.

Abdullah et al. explored the traveling wave solutions for explicit-time nonlinear photorefractive dynamics 
equation16, also, the bright and dark spatial solitons for the linear and quadratic electro-optic effects based on low 
amplitude approximations17. Ripai et al. worked on the solitonic characteristics of optical airy beams nonlinear 
propagation18, and temporal behavior of diffusion-trapped19. Moreover, they are also worked on the effect of 
ansatz on soliton propagation pattern in photorefractive crystals20. Raipai et al. investigated the application of 
the split-step Fourier method in investigating a bright soliton solution21. Chen et al. worked on the overview and 
recent advances of optical spatial solitons22. Conti et al. observed the optical spatial solitons in a highly nonlocal 
medium23.

Radhakrishnan et al. constructed an integrable set of linked nonlinear Schr ödinger equations which 
described the quintic nonlinearity influences the propagation of ultrashort optical soliton pulses24. Wang et 
al. considered the integrable coupled nonlinear Schrödinger system and investigated the exact solitary wave 
solutions of underlying model. The Riemann-Hilbert technique is utilized to locate N-soliton solutions in this 
system. The collision dynamics of two solitons are also studied25. Chan et al., used the nonlinear Schrödinger 
equation to generate rogue waves (RWs)26. Kanna et al., considered the Hirota technique to produce precise 
bright one-soliton and two-soliton solutions for the integrable three coupled nonlinear Schrödinger equations 
(3-CNLS) and general N-coupled Schrödinger equations27.

Brownian motion or Wiener process is one of the original stochastic processes for modelling random events, 
and is very important in the theory of mathematical finance. It is named as an honour to Scottish botanist Robert 
Brown who first noted the movement in 1827, known as brownian of individual pollen grains in water. Although 
the three-component nonlinear Schrödinger equation has been introduced, the study should have described 
more elaborately how Brownian motion impacts the optical soliton solutions of the model. It is recognized that 
noise affects the system and, therefore, soliton formation; nevertheless, Brownian motions (or flapping) role in 
determining the core characteristics of the soliton, including its amplitude, velocity, width, and stability, must be 
incorporated. More clarity of these effects would have provided broader understanding of the role of Brownian 
motion regarding soliton evolution. This clarification would enhance the scholarly applicability of the study by 
demonstrating how, apart from stochastic perturbations, Brownian motion alters soliton dynamics in specific 
ways.

In this modern era of research exact optical soliton solutions have many importance and applications. 
Because the stochastic evolution equations are important, many techniques have been devised to solve the 
including the new modified extended direct algebraic method28 , ϕ6-model expansion method29, He’s semi-
invers method30, Jaccobi elliptic function method31, Riccati equation mapping method32 and etc. But in this 
study we used the well-known method namely as generalized Riccati equation mapping method. This approach 
gives us the abundant families of exact optical soliton and solitary wave solutions. The novelty of this work is 
to acquire the closed form solitary wave solutions for the three-component nonlinear stochastic Schrödinger 
equation. To, gain these solution we used the generalized Riccati equation mapping method and get the solutions 
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in the form of hyperbolic, and trigonometric function solutions. Given that the three-component nonlinear 
stochastic Schrö dinger equation is necessary to describe wave propagation, the solutions that were generated 
are significant in explaining a number of fascinating properties. Furthermore, we investigate how noise affects 
the precise solutions of the three-component nonlinear stochastic Schrödinger equation by utilizing the 
MATHEMATICA11.1 software to provide a variety of figures.

Methodology
Using a given nonlinear partial differential equation (NPDE) with independent variables x = (x0, x1, x2, ..., xm) 
and dependent variable ϕ, the generalized Riccati equation mapping method works as follows.

	 F (ϕ, ϕt, ϕx, ϕxx, · · · ) = 0,� (2)

where ϕ = ϕ(x, t) is unknown function and F represents the polynomial of ϕ. Further Eq. (2) can be solve by 
using the traveling wave transformation which is taken as

	 ϕ(x, t) = ψ(ϖ), where ϖ = ϖ1x − ϖ2t.� (3)

Now, Eq. (2) is converted into ODE by the help of Eq. (3) as

	 F (ψ, ψ′, ψ′′, ψ′′′, · · · ) = 0,� (4)

where ϕ = ψ(ϖ), ψ′ = dψ
dϖ , ψ′′ = d2ψ

dϖ2 , · · · . Suppose that Eq. (4) has a general solution in the following form

	
ψ(ϖ) =

M∑
j=0

αjΩj(ϖ),� (5)

here αj ,(j = 0, 1, 2, · · · ) are constants that are found to be later and Ω(ϖ) must satisfy the following ODE as

	 Ω
′
(ϖ) = κ + θΩ(ϖ) + νΩ(ϖ)2,� (6)

where θ, ν and κ are the constants. The general solutions of Eq. (6) is given as
Case-I: If M = θ2 − 4κν > 0 and κν ̸= 0 then,

	

Ω1(ϖ) = −
√

M tanh
(

1
2 ϖ

√
M

)
+ θ

2ν
,

Ω2(ϖ) = −
√

M coth
(

1
2 ϖ

√
M

)
+ θ

2ν
,

Ω3(ϖ) = −
√

M
(
tanh

(
ϖ

√
M

)
+ isech

(
ϖ

√
M

))
+ θ

2ν
,

Ω4(ϖ) = −
√

M
(
tanh

(
1
4 ϖ

√
M

)
+ coth

(
1
4 ϖ

√
M

))
+ 2θ

4ν
,

Ω5(ϖ) =

√
M(G2+H2)−G

√
θ2−4κν cosh(ϖ

√
M)

G sinh(ϖ
√

M)+H
− θ

2ν
,

Ω6(ϖ) =
−

√
M(G2+H2)+G

√
M cosh(ϖ

√
M)

G sinh(ϖ
√

M)+H
− θ

2ν
.

where G and H are two non-zero real constants and H2 − G2 > 0.

	
Ω7(ϖ) =

2κ cosh
(

1
2 ϖ

√
M

)
√

M sinh
(

1
2 ϖ

√
M

)
− θ cosh

(
1
2 ϖ

√
M

) , � (7)

	
Ω8(ϖ) = −

2κ sinh
(

1
2 ϖ

√
M

)

θ sinh
(

1
2 ϖ

√
M

)
−

√
M cosh

(
1
2 ϖ

√
M

) , � (8)

	
Ω9(ϖ) =

2κ sinh
(
ϖ

√
M

)

−θ sinh
(
ϖ

√
A

)
+

√
M cosh

(
ϖ

√
M

)
+

√
M

. � (9)

Case-II: If D = 4κν − θ2 > 0 and κν ̸= 0, then
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Ω10(ϖ) =
√

D tan
(

1
2 ϖ

√
D

)
− θ

2ν
,

Ω11(ϖ) = −
√

D cot
(

1
2 ϖ

√
D

)
+ θ

2ν
,

Ω12(ϖ) =
√

D
(
tan

(
ϖ

√
D

)
− sec

(
ϖ

√
D

))
− θ

2ν
,

Ω13(ϖ) =
√

D
(
tan

(
1
4 ϖ

√
D

)
− cot

(
1
4 ϖ

√
D

))
− 2θ

4ν
,

Ω14(ϖ) =

√
D(G2−H2)−G

√
D cos(ϖ

√
D)

G sin(ξ
√

D)+H
− θ

2ν
,

where G and H are two non-zero real constants and G2 − H2 > 0

	
Ω16(ϖ) =

2κ cos
(

1
2 ϖ

√
D

)
√

4κν − θ2 sin
(

1
2 ϖ

√
D

)
+ θ cos

(
1
2 ϖ

√
D

) , � (10)

	
Ω17(ϖ) =

2κ sin
(

1
2 ϖ

√
D

)
√

D cos
(

1
2 ϖ

√
D

)
− θ sin

(
1
2 ϖ

√
D

) , � (11)

	
Ω18(ϖ) =

2κ sin
(
ϖ

√
D

)

−θ sin
(
ϖ

√
D

)
+

√
D cos

(
ϖ

√
D

)
+

√
D

. � (12)

 Case-III: If θ = 0 and κν ̸= 0, then

	

Ω19(ϖ) = − dν

q(d − sinh(νκ) + cosh(νκ)) ,

Ω20(ϖ) = ν(sinh(νκ) + cosh(νκ))
κ(d + sinh(νκ) + cosh(νκ)) .

where d is an arbitrary constant.

Exact soliton solutions via generalized Riccati equation mapping method
In this section, we convert the PDE into the ODE form by using the wave transformation39–41 such as

	 ϕk(x, t) = ψk(ϖ)eiϱ+λβ(t)−λ2t, where ϖ = ϖ1x − ϖ2t, ϱ = ϱ1x + ϱ2t.� (13)

Where ϱ and ψk(ϖ) are the real functions and ϖ1, ϖ2, ϱ1, ϱ2 are the frequencies and wave numbers while λ is 
the control parameter with β(t) is the Brownian motion. Taking the derivatives of the above Eq. (13) and system 
(1) is converted into following ODE system

	 −2ϖ2ψ′
ki−ϱ2

1ψk − 2ψkϱ2 + ϖ2
1ψ

′′
k + 2ϖ1ψ′

kiϱ1 + ψk(ψ2
1 + ψ2

2 + ψ2
3)e2λβ(t)−2λ2t = 0,� (14)

for k = 1, 2, 3. Now, comparing the real and imaginary part such as

	 ϖ2
1ψ

′′
k − (ϱ2

1 + 2ϱ2)ψk + 2ψk(ψ2
1 + 2ψ2

2 + 2ψ2
3)e2λβ(t)−2λ2t = 0,

Taking the expectation into both sides39,40, we get

	 ϖ2
1ψ

′′
k − (ϱ2

1 + 2ϱ2)ψk + 2ψk(ψ2
1 + 2ψ2

2 + 2ψ2
3) = 0,� (15)

from the imaginary part the parametric condition is gain as ϖ2 = ϖ1ϱ1.
Assume that the general solution of the system (15) in the form of polynomial such as36–38,

	
ψk(ϖ) =

N∑
i=0

αk,iΩi(ϖ),� (16)

where αk,i for i = 0, 1, 2, · · · , N  are constants such that αk,N ̸= 0 and they will be defined later. The positive 
number N is found by applying the homogeneous balancing principle on the system (15). Consider the highest 
derivatives and highest power nonlinear terms in equation (15) ψ

′′
k  and ψ3

k . Using these term and applying the 
homogeneous balancing principle, we get N = 1. We used this value in system ( 16) and get the expression such 
as
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	 ψk(ϖ) = αk,0 + αk,1Ω(ϖ),� (17)

for k = 1, 2, 3. Now taking the derivatives of above system (17) and substitute into the system (15) by taking 
the help of equation ( 6) and get the expression in polynomial Ωj(ϖ), (j = 0, 1, 2, · · · ). Comparing all the 
coefficients of the same powers of Ωj(ϖ), (j = 0, 1, 2, · · · ) and equating them equal to zero to get the system 
of algebraic equations. Solving this system of equations by the computational software MATHEMATICA11.1 
and get the constants values such as

	
αk,0 = ℏαk,1, θ = κℏ, ν = 2κ

ℏ2 , ρ2 = −
A + β2

1
(
γ2

0 + ρ2
1
)

2β2
1

.

where

	
ℏ = 1√

2α2,1

√
A − ℏα2

2,1α3,0

α2
1,1 + α2

2,1
and A =

√
α4

2,1
(
α4

3,0 − κ2ω2
1

(
α2

1,1 + α2
2,1

))
.

Case-I: If M = θ2 − 4κν > 0 and κν ̸= 0, then the solutions of Eq. (1), for k = 1, 2, 3,  are

	
ϕk,1(x, t) =αk

(
ℏ −

√
M tanh

(
1
2

√
M(ϖ1x − ϖ2t)

)
+ θ

2ν

)
eiϱ+λβ(t)−λ2t, � (18)

	
ϕk,2(x, t) =αk

(
ℏ −

√
M coth

(
1
2

√
M(ϖ1x − ϖ2t)

)
+ θ

2ν

)
eiϱ+λβ(t)−λ2t, � (19)

	
ϕk,3(x, t) =αk

(
ℏ −

√
M

(
tanh

(
1
4 ϖ

√
M

)
+ coth

(
1
4

√
M

))
+ 2θ

4ν

)
eiϱ+λβ(t)−λ2t, � (20)

	
ϕk,4(x, t) =αk

(
ℏ −

√
M (G2 + H2) − G

√
θ2 − 4κν cosh

(
ϖ

√
M

)

2νG sinh
(
ϖ

√
M

)
+ H

− 2νθ

)
eiϱ+λβ(t)−λ2t, � (21)

	
ϕk,5(x, t) =αk

(
ℏ −

√
M (G2 + H2) + G

√
M cosh

(
ϖ

√
M

)

G sinh
(
ϖ

√
M

)
+ H

+ 2νθ

)
eiϱ+λβ(t)−λ2t, � (22)

	
ϕk,6(x, t) =αk

(
ℏ +

2κ cosh
(

1
2 ϖ

√
M

)
√

M sinh
(

1
2 ϖ

√
M

)
− θ cosh

(
1
2 ϖ

√
M

)
)

eiϱ+λβ(t)−λ2t, � (23)

	
ϕk,7(x, t) =αk

(
ℏ −

2κ sinh
(

1
2 ϖ

√
M

)

θ sinh
(

1
2 ϖ

√
M

)
−

√
M cosh

(
1
2 ϖ

√
M

)
)

eiϱ+λβ(t)−λ2t, � (24)

and

	
ϕk,8(x, t) = αk

(
ℏ +

2κ sinh
(
ϖ

√
M

)

θ sinh
(
ϖ

√
A

)
−

√
M cosh

(
ϖ

√
M

)
+

√
M

)
eiϱ+λβ(t)−λ2t,� (25)

where ϖ = (ϖ1x − ϖ1ϱ1t).
Case-II: If D = 4κν − θ2 > 0 and κν ̸= 0, then the solutions of Eq. (1) are

	
ϕk,9(x, t) =αk

(
ℏ +

√
D tan

(
1
2 ϖ

√
D

)
− θ

2ν

)
eiϱ+λβ(t)−λ2t, � (26)

	
ϕk,10(x, t) =αk

(
ℏ −

√
D cot

(
1
2 ϖ

√
D

)
+ θ

2ν

)
eiϱ+λβ(t)−λ2t, � (27)

	
ϕk,11(x, t) =αk

(
ℏ +

√
D

(
tan

(
ϖ

√
D

)
− sec

(
ϖ

√
D

))
− θ

2ν

)
eiϱ+λβ(t)−λ2t, � (28)
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ϕk,12(x, t) =αk

(
ℏ +

√
D

(
tan

(
1
4 ϖ

√
D

)
− cot

(
1
4 ϖ

√
D

))
− 2θ

4ν

)
eiϱ+λβ(t)−λ2t, � (29)

	
ϕk,13(x, t) =αk

(
ℏ +

√
D (G2 − H2) − G

√
D cos

(
ϖ

√
D

)

2νG sin
(
ξ
√

D
)

+ H
− 2νθ

)
eiϱ+λβ(t)−λ2t, � (30)

	
ϕk,14(x, t) =αk

(
ℏ +

2κ cos
(

1
2

√
Dϖ

)
√

4κν − θ2 sin
(

1
2 ϖ

√
D

)
+ θ cos

(
1
2 ϖ

√
D

)
)

eiϱ+λβ(t)−λ2t, � (31)

	
ϕk,15(x, t) =αk

(
ℏ +

2κ sin
(

1
2 ϖ

√
D

)
√

D cos
(

1
2 ϖ

√
D

)
− θ sin

(
1
2 ϖ

√
D

)
)

eiϱ+λβ(t)−λ2t, � (32)

and

	
ϕk,16(x, t) = αk

(
ℏ +

2κ sin
(
ϖ

√
D

)

−θ sin
(
ϖ

√
D

)
+

√
D cos

(
ϖ

√
D

)
+

√
D

)
eiϱ+λβ(t)−λ2t,� (33)

where ϖ = (ϖ1x − ϖ1ϱ1t).
Case-III: If θ = 0 and κν ̸= 0, then

	
ϕk,17(x, t) = αk

(
ℏ − dν

q(d − sinh(νκϖ) + cosh(νκϖ))

)
eiϱ+λβ(t)−λ2t,� (34)

and

	
ϕk,18(x, t) = αk

(
ℏ + ν(sinh(νκϖ) + cosh(νκϖ))

κ(d + sinh(νκϖ) + cosh(νκϖ))

)
eiϱ+λβ(t)−λ2t.� (35)

Modified auxiliary equation approach
In this section, we used the MAE method to show the stability of our results42. We take the solution of eq.(15) 
and get the polynomials form as follows,

	




ψ1(ϖ) = α0 +
∑M

i=1

(
αiω

(zϖ)i + δiω
−(zϖ)i

)
,

ψ2(ϖ) = β0 +
∑M

i=1

(
βiω

(zϖ)i + τiω
−(zϖ)i

)
,

ψ3(ϖ) = γ0 +
∑M

i=1

(
γiω

(zϖ)i + σiω
−(zϖ)i

)
,

� (36)

where the constants α0, αi, β0, βi, γ0, γi, δi, τi and σi( i=1,2,3,...M) that are found to be later, here ω(η) is 
simplify the solution that is given below.

	
z′(ϖ) = 1

ln(ω)

(
ϵ + µωzϖ + χω−zϖ

)
,� (37)

here, ϵ, µ, χ and z with z > 0 z ̸= 1 are arbitrary constants that are determine later. Homogenous balancing 
principle can be applied to find the value of M in the previous Eq. (15) and we can enter M = 1 in Eq. (36)

	

{
ψ1(ϖ) = α0 + α1ωzϖ + δ1ω−zϖ,
ψ2(ϖ) = β0 + β1ωzϖ + τ1ω−zϖ,
ψ3(ϖ) = γ0 + γ1ωzϖ + σ1ω−zϖ,

� (38)

Determine the derivatives of Eq. (38) by applying the Eq. (37) and replace in the Eq. (15). After simplifying, 
collecting the coefficients of the same power of ω(zϖ)j  and ω−(zϖ)j  and set them then equal to zero in all 
polynomials to gain a system of equations. Apply mathematica to deal with the system of calculation and gain 
the family of solution as,

Family of solutions:

	

α1 =2α0µ

ϵ
, β1 = 2β0µ

ϵ
, σ1 = 0, γ0 = −1

2
√

−4α2
0 − 4β2

0 − ϖ2
1ϵ2, γ1 = −

µ
√

−4α2
0 − 4β2

0 − ϖ2
1ϵ2

ϵ
,

δ1 =0, τ1 = 0, ϱ2 = 1
4

(
4µχϖ2

1 − 2ϱ2
1 − ϖ2

1ϵ2)
. where − 4α2

0 − 4β2
0 − ϖ2

1ϵ2 > 0.

� (39)

Case-I: If ϵ2 − 4χµ < 0 and χ ̸= 0, then
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ϕ±
1,18(x, t) =


α0

√
4χµ − ϵ2 tan

(
1
2

√
4χµ − ϵ2 (xϖ1 − ϱ1tϖ1)

)

ϵ




ei( t
4 (4µχϖ2

1−2ϱ2
1−ϖ2

1ϵ2)+ϱ1x)+λ2t−λβ(t),

� (40)

	

ϕ±
2,18(x, t) =


β0

√
4χµ − ϵ2 tan

(
1
2

√
4χµ − ϵ2 (xϖ1 − ϱ1tϖ1)

)

ϵ




ei( t
4 (4µχϖ2

1−2ϱ2
1−ϖ2

1ϵ2)+ϱ1x)+λ2t−λβ(t),

� (41)

	

ϕ±
3,18(x, t) =




√
4χµ − ϵ2

√
ϖ2

1 (−ϵ2) − 4 (α2
0 + β2

0) tan
(√

4χµ−ϵ2

2 (xϖ1 − ϱ1tϖ1)
)

2ϵ




ei( t
4 (4µχϖ2

1−2ϱ2
1−ϖ2

1ϵ2)+ϱ1x)+λ2t−λβ(t).

� (42)

	

ϕ±
1,19(x, t) =


α0

√
4χµ − ϵ2 cot

(
1
2

√
4χµ − ϵ2 (xϖ1 − ϱ1tϖ1)

)

ϵ




ei( t
4 (4µχϖ2

1−2ϱ2
1−ϖ2

1ϵ2)+ϱ1x)+λ2t−λβ(t),

� (43)

	

ϕ±
2,19(x, t) =


β0

√
4χµ − ϵ2 cot

(
1
2

√
4χµ − ϵ2 (xϖ1 − ϱ1tϖ1)

)

ϵ




ei( t
4 (4µχϖ2

1−2ϱ2
1−ϖ2

1ϵ2)+ϱ1x)+λ2t−λβ(t),

� (44)

	

ϕ±
3,19(x, t) =




√
4χµ − ϵ2

√
ϖ2

1 (−ϵ2) − 4 (α2
0 + β2

0) cot
(√

4χµ−ϵ2

2 (xϖ1 − ϱ1tϖ1)
)

2ϵ




ei( t
4 (4µχϖ2

1−2ϱ2
1−ϖ2

1ϵ2)+ϱ1x)+λ2t−λβ(t).

� (45)

Case-II: If ϵ2 − 4χµ > 0 and χ ̸= 0, then

	

ϕ±
1,20(x, t) =


α0

√
ϵ2 − 4χµ tanh

(
1
2

√
ϵ2 − 4χµ (xϖ1 − ϱ1tϖ1)

)

ϵ




ei( t
4 (4µχϖ2

1−2ϱ2
1−ϖ2

1ϵ2)+ϱ1x)+λ2t−λβ(t),

� (46)

	

ϕ±
2,20(x, t) =


β0

√
ϵ2 − 4χµ tanh

(
1
2

√
ϵ2 − 4χµ (xϖ1 − ϱ1tϖ1)

)

ϵ




ei( t
4 (4µχϖ2

1−2ϱ2
1−ϖ2

1ϵ2)+ϱ1x)+λ2t−λβ(t),

� (47)

	

ϕ±
3,20(x, t) =


−

√
ϵ2 − 4χµ

√
ϖ2

1 (−ϵ2) − 4 (α2
0 + β2

0) tanh
(√

ϵ2−4χµ

2 (xϖ1 − ϱ1tϖ1)
)

2ϵ




ei( t
4 (4µχϖ2

1−2ϱ2
1−ϖ2

1ϵ2)+ϱ1x)+λ2t−λβ(t).

� (48)

	

ϕ±
1,21(x, t) =


α0

√
ϵ2 − 4χµ coth

(
1
2

√
ϵ2 − 4χµ (xϖ1 − ϱ1tϖ1)

)

ϵ




ei( t
4 (4µχϖ2

1−2ϱ2
1−ϖ2

1ϵ2)+ϱ1x)+λ2t−λβ(t),

� (49)
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ϕ±
2,21(x, t) =


β0

√
ϵ2 − 4χµ coth

(
1
2

√
ϵ2 − 4χµ (xϖ1 − ϱ1tϖ1)

)

ϵ




ei( t
4 (4µχϖ2

1−2ϱ2
1−ϖ2

1ϵ2)+ϱ1x)+λ2t−λβ(t),

� (50)

	

ϕ±
3,21(x, t) =


−

√
ϵ2 − 4χµ

√
ϖ2

1 (−ϵ2) − 4 (α2
0 + β2

0) coth
(√

µ2−4χϵ

2 (xϖ1 − ϱ1tϖ1)
)

2ϵ




ei( t
4 (4µχϖ2

1−2ϱ2
1−ϖ2

1ϵ2)+ϱ1x)+λ2t−λβ(t).

� (51)

Case-III: If ϵ2 − 4χµ = 0 and χ ̸= 0, then

	
ϕ±

1,22(x, t) = −
(

2α0

ϵ (xϖ1 − ϱ1tϖ1)

)
ei( t

4 (4µχϖ2
1−2ϱ2

1−ϖ2
1ϵ2)+ϱ1x)+λ2t−λβ(t), � (52)

	
ϕ±

2,22(x, t) = −
(

2β0

ϵ (xϖ1 − ϱ1tϖ1)

)
ei( t

4 (4µχϖ2
1−2ϱ2

1−ϖ2
1ϵ2)+ϱ1x)+λ2t−λβ(t), � (53)

	

ϕ±
3,22(x, t) =

(√
ϖ2

1 (−ϵ2) − 4 (α2
0 + β2

0)
ϵ (xϖ1 − ϱ1tϖ1)

)

ei( t
4 (4µχϖ2

1−2ϱ2
1−ϖ2

1ϵ2)+ϱ1x)+λ2t−λβ(t).

� (54)

Physical representation of optical solitons
Finally, in this section, we will be analyzing the graphical representation of solutions along with a few effects 
of noise on the solutions. Out of all those optical solitons some of the equations are successfully solved by 
using the generalized Riccati equation mapping method. These solutions are expressed in dark, complex dark-
bright and combined form solitons and solitary wave solution. These optical soliton have given application in the 
domain of optical fibers. According to the previous section, the propagation of an optical pulse in a birefringent 
optical fiber is characterized by the three nonlinear complex models. In some cases, these solutions are illustrate 
by the physical phenomena of these solutions are provided here. Despite the fact that these solitons enjoy 
inherent stability, they can undergo a certain fragmentation or decay in the presence of a sufficient number of 
perturbations. To show the physical behavior we draw some solutions in the form of 3D, 2D and corresponding 
contour form for the different values of parameters. Figure 1 is drawn for the solutions ϕ1,1(x, t) that will 
provided us the dark soliton solution while, Fig. 2 provided us the solitary wave solution for ϕ1,14(x, t). To 
control this randomness we take into account the Wiener process and construct their solution. The effects of 
noise are clearly shown in the figures that how the noise is affected our solutions. When we take λ = 0 into 
account moreover we increase the values of λ = 0.3, 0.7 and check that how the noise is affected our solutions. If 
we choose λ = 0 then these solutions have no noise effect in their results. Noise greatly flattens the surface, and 
after a few brief minor transits, its strength increases. For the better understanding of the discussed solitary wave 
solutions, it is necessary to give the additional analysis of their graphical characteristics. Although amplitude 
plots give information about the wave shape, plotting density that is directly proportional to the square of 
amplitude is more useful in optics. Intensity plots were illustrated to show the energy profile of the soliton and 
provide a better view of the output power as well as the stability over time and space coordinates. This type of 
analysis provides a better possibility to identify the essential soliton properties, influencing factors, such as the 
intensity and width of peaks, and effect of external perturbation. Additional intensity plots together with the 
amplitude plots would give the overlying information on the physical specifications of the soliton, which could 
explain why such plots are vital complements to amplitude plots. Based on this fact that the intensity is directly 
related to the energy distribution that can be measured within the optical systems, this approach will provide a 
clearer view on other characteristics of the soliton, including the peak intensity and spatial distribution. These 
additions will give more details of the solitary wave behaviour and make the results support the proposed 
solutions more compelling. Solitons and solitary waves in the presence of noise have many potential application 
in contemporary optics technologies. Solitons are used as information vectors in optical systems owing to their 
capacity to preserve their shape and speed after migrating over large distance and resisting noise and dispersion. 
This property is indeed very essential in overall fiber-optic telecommunications particularly in the large distance 
link where repeater noises etc., are disturbances. Soliton based transmission systems require fewer repeaters 
and also improve the quality of the received signal. Further, the spatial soliton, found in photorefractive and 
nonlinear media, make it possible to develop the optical waveguides, switch and the reconfigurable photonic 
circuits. Solitons are immune to noise and therefore likely to be put to use in quantum communication where 
coherence is imperative under a noisy environment. These applications highlight the needs for understanding 
the effects of noise, especially the Brownian motion on the soliton stability and their performance in the real 
optical systems. Figure 2a–e display 3D-shape of solution |ϕ1,13| in Eq (30) with x ∈ [−4, 4], t ∈ [0, 3] and 
λ = 0, 0.1, 0.3, 1, 2( 2f) shows 2D-shape of Eq. (30) with different λ.
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Figure 1a–e display 3D-shape of solution |ϕ1,1| in Eq (18) with x ∈ [−4, 4], t ∈ [0, 3] and 
λ = 0, 0.1, 0.3, 1, 2 Fig. 1f shows 2D-shape of Eq. (18).

Conclusions
In this manuscript we studied the three component nonlinear stochastic Schr ödinger equation analytically 
under the Stratonovich sense. The Birefringent optical fibers three component nonlinear stochastic Schrö dinger 

Fig. 1.  Different effects of noise for the solution |ϕ1,1| when the constants are chooses as 
κ = 0.8, α1 = 0.9, β1 = 1.1, γ1 = 1, γ0 = 2.7, ρ1 = 0.7, ω1 = 0.1.
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equation, the noise perturb the optical solitons in different ways such as, noise in the position and phase areas 
as well as noises in the shape and amplitude of solitons and lastly it alters the sourroundings in which solitons 
interact. The generalized Riccati equation mapping method is adoped to obtained the different abundant families 
of solitons. These solitons are explored in the dark, complex dark-bright, combined form and periodic form 
solutions as well. Mainly, we are focused on the effects of noise on the solitons. We have added modified auxiliary 
equation method to compare the results. This method is provided us only hyperbolic, trigonometric and rational 

Fig. 2.  Different effects of noise for the solution |ϕ1,13| when the constants are chooses as 
κ = 1.8, α1 = 1.9, β1 = 0.8, γ1 = 1, γ0 = 0.7, G = 2, θ = 0.1, H = 1, ν = 1.2, ρ1 = 0.7, ω1 = 0.1.
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solutions. So, our results are very novel for the applications of the underlying model when we take noise into 
account. Finally, we plot some solutions and show their behavior in 3D, 2D and corresponding contours. It is 
crucial for the development of fiber-optic communication technologies and ensuring the ability to keep solitons 
well transmitted over longer distances. Lastly, the impact of noise on the exact solutions of the three component 
nonlinear Schrödinger equation was illustrated using the MATHEMATICA11.1 program. We might look into 
additive fractional derivatives in the three-component nonlinear Schrödinger equation in the future.

Data availability
Data will be provided by corresponding author on reasonable request.
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