www.nature.com/scientificreports

scientific reports

OPEN

W) Check for updates

Impact of Brownian motion on
the optical soliton solutions for
the three component nonlinear
Schrodinger equation

Muhammad Zafarullah Baber?, Tahir Shahzad?, Wael W. Mohammed?, Nauman Ahmed*“*,
Baboucarr Ceesay>™” & Muhammad Wagqas Yasin®

In this manuscript, the three-component nonlinear stochastic Schro dinger equation under the

effects of Brownian motion in the Stratonovich sense is examined here. The different types of exact
optical soliton solutions are explored under the noise effects. The propagation of an optical pulse in

a birefringent optical fiber is described by the three nonlinear complex models. A system of coupled
nonlinear Schrédinger equations can be used to characterize the propagation of light in birefringent
optical fibers. The interactions between the various polarization modes of the optical field are taken
into account by the equations for a three-component system. In a three-component nonlinear Schr
odinger (NLS) equation, the three-wave mixing effect typically arises from cross-phase modulation
(XPM) and four-wave mixing (FWM) terms. These terms describe interactions between the three wave
components. A well-known mathematical technique is used namely as generalized Riccati equation
mapping method. The different types of dark, singular, combined, and solitary wave solutions are
constructed. Moreover, the effect of noise is visualized on these optical solitons. To show the stability
of our results we have explored one more method namely as modified auxiliary equation method,
which provided us only hyperbolic, trigonometric and rational solitons. The effect of noise is shown via
simulations in the 3D, 2D, and corresponding contours. The computational software Mathematicall.l
is used to construct these solutions, and their verifications and to draw the plots as well under the
effect of noise.

Keywords Exact solutions, Brownian motion, Nonlinear Schrédinger equation, Generalized Riccati equation
mapping method, Modified auxiliary equation approach

Nonlinear Schrodinger equations (NLSEs) can be used to model a variety of complex nonlinear physical
phenomena. Such equations are used in a wide range of nonlinear physical processes, such as fluid mechanics,
photonics, ocean engineering, plasma physics, electromagnetism, and more. A fascinating topic for researching
soliton propagation via nonlinear optical fibers is the optical solitons theory!'~>. In the study of optics, any optical
field that remains constant throughout transmission because of a meticulous balancing act between nonlinear
and linear effects in the medium is called a soliton. The transmission of ultrashort electromagnetic radiation
pulses in a nonlinear medium is a multidimensional process. The interplay of multiple physical characteristics,
including dispersion, material dispersion, diffraction, and nonlinear response, affects the pulse dynamics*>.

Stochastic evolution equations are mathematical formulas that are used to describe how a system evolves over
time while accounting for both random and deterministic factors®. In order to examine complex systems that
display random behavior, they are extensively employed in many scientific disciplines, such as physics, biology,
and finance. Economists and researchers can better comprehend the behavior and forecasts of these systems by
utilizing the strong framework that stochastic evolution equations offer for studying their dynamics.
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As a result, the primary emphasis of this work is the well-known three-component coupled NLS (or tc-
CNLS, for short) equation. Multi-component nonlinear wave equations are being studied more than scalar NLS
equations because they can yield more valuable information and lead to more applications. The three-component
stochastic coupled nonlinear Schré dinger equation is given by’

i + %m,m + (161]? + 2] + 16312 = iAo Be, (1)

where ¢r = dr(z,t), (k = 1,2, 3) represents the wave envelopes and B(¢) is a multiplicative time noise with
the control parameter A which is satisfies the following prosperities such as i) B(t) is a continuous function ii)
B(0) = 0 and iii) B(ti+1) — B(¢:) has standard normal distribution. The propagation of an optical pulse in a
birefringent optical fiber is described by the three nonlinear complex models.

One of the key features of the three-component stochastic coupled nonlinear Schrodinger equation is that it
allows for the study of complex interactions between different wave functions. In traditional quantum mechanics,
wave functions are typically considered to be independent of each other. However, in systems where multiple
wave functions interact, such as in certain types of matter or light waves, the behavior of each wave function
can be influenced by the presence of the others. By incorporating stochastic fluctuations into the equation,
researchers can gain a more nuanced understanding of how these interactions affect the overall dynamics of the
system.

Chen et al. presented a succinct method for quantitatively investigated coupled stochastic nonlinear
Schrédinger equations®. Kraichnan et al. described a method for dealing with nonlinear stochastic systems that
may be useful in quantum mechanics and turbulence theory®. Cai et al. looked into the statistical mechanics
of a complex field that the nonlinear Schrédinger equation explained. In a nonlinear medium, a propagating
laser field and Langmuir waves in a plasma are explained by such fields when idealized appropriately°. In order
to understand optical solitons in fiber optics, Younas et al. examined the three-component coupled nonlinear
Schrodinger equation. The study of multi-component NLSE equations is becoming increasingly popular due to
their capacity to represent complicated physical processes and provide dynamic solutions for localized waves!!.
The Darboux transformation was devised'? by Xu et al. for three-component coupled derivative nonlinear Schro
dinger equations. Kevrekidis et al. attempted to communicate a portion of the current buzz surrounding multi-
component nonlinear Schrodinger models, which has been sparked by several theoretical and computational
investigations as well as experimental discoveries'>. Among the most active fields of study in the field of optical
soliton is still the nonlinear dynamics of an optical pulse or beam, as demonstrated by Stalin et al.'%. In order
to regulate the propagation and interaction of optical-soliton in optical media such as multimode fibers, fiber
arrays, and birefringent fibers, Jiang et al. introduced the coupled nonlinear Schrd dinger (CNLS) equations'®.

Abdullah et al. explored the traveling wave solutions for explicit-time nonlinear photorefractive dynamics
equation'®, also, the bright and dark spatial solitons for the linear and quadratic electro-optic effects based on low
amplitude approximations!”. Ripai et al. worked on the solitonic characteristics of optical airy beams nonlinear
propagation'®, and temporal behavior of diffusion-trapped'®. Moreover, they are also worked on the effect of
ansatz on soliton propagation pattern in photorefractive crystals?’. Raipai et al. investigated the application of
the split-step Fourier method in investigating a bright soliton solution?!. Chen et al. worked on the overview and
recent advances of optical spatial solitons??. Conti et al. observed the optical spatial solitons in a highly nonlocal
medium??.

Radhakrishnan et al. constructed an integrable set of linked nonlinear Schr 6dinger equations which
described the quintic nonlinearity influences the propagation of ultrashort optical soliton pulses*!. Wang et
al. considered the integrable coupled nonlinear Schrodinger system and investigated the exact solitary wave
solutions of underlying model. The Riemann-Hilbert technique is utilized to locate N-soliton solutions in this
system. The collision dynamics of two solitons are also studied®. Chan et al., used the nonlinear Schrodinger
equation to generate rogue waves (RWs)?°. Kanna et al., considered the Hirota technique to produce precise
bright one-soliton and two-soliton solutions for the integrable three coupled nonlinear Schrodinger equations
(3-CNLS) and general N-coupled Schrédinger equations?’.

Brownian motion or Wiener process is one of the original stochastic processes for modelling random events,
and is very important in the theory of mathematical finance. It is named as an honour to Scottish botanist Robert
Brown who first noted the movement in 1827, known as brownian of individual pollen grains in water. Although
the three-component nonlinear Schrédinger equation has been introduced, the study should have described
more elaborately how Brownian motion impacts the optical soliton solutions of the model. It is recognized that
noise affects the system and, therefore, soliton formation; nevertheless, Brownian motions (or flapping) role in
determining the core characteristics of the soliton, including its amplitude, velocity, width, and stability, must be
incorporated. More clarity of these effects would have provided broader understanding of the role of Brownian
motion regarding soliton evolution. This clarification would enhance the scholarly applicability of the study by
demonstrating how, apart from stochastic perturbations, Brownian motion alters soliton dynamics in specific
ways.

In this modern era of research exact optical soliton solutions have many importance and applications.
Because the stochastic evolution equations are important, many techniques have been devised to solve the
including the new modified extended direct algebraic method?® , #°-model expansion method?, He's semi-
invers method®, Jaccobi elliptic function method?!, Riccati equation mapping method*? and etc. But in this
study we used the well-known method namely as generalized Riccati equation mapping method. This approach
gives us the abundant families of exact optical soliton and solitary wave solutions. The novelty of this work is
to acquire the closed form solitary wave solutions for the three-component nonlinear stochastic Schrodinger
equation. To, gain these solution we used the generalized Riccati equation mapping method and get the solutions
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in the form of hyperbolic, and trigonometric function solutions. Given that the three-component nonlinear
stochastic Schro dinger equation is necessary to describe wave propagation, the solutions that were generated
are significant in explaining a number of fascinating properties. Furthermore, we investigate how noise affects
the precise solutions of the three-component nonlinear stochastic Schrédinger equation by utilizing the
MATHEMATICA11.1 software to provide a variety of figures.

Methodology
Usinga given nonlinear partial differential equation (NPDE) with independent variablesz = (xo, z1, T2, ..., Zm)
and dependent variable ¢, the generalized Riccati equation mapping method works as follows.

F(¢7¢t7¢z7¢zz7"'):07 (2)

where ¢ = ¢(z,t) is unknown function and F represents the polynomial of ¢. Further Eq. (2) can be solve by
using the traveling wave transformation which is taken as

¢(x,t) = YP(w), where w = wiz — wat. (3)

Now, Eq. (2) is converted into ODE by the help of Eq. (3) as

F(l/),1/1,71/)/,7w/"7“') = 03 (4)

where ¢ = (@), = %, Y = 32?’@, -+ . Suppose that Eq. (4) has a general solution in the following form
M

@) = a0 (w), 5)

§=0
here a;,(j = 0,1,2, - - - ) are constants that are found to be later and (z) must satisfy the following ODE as
9 (@) = ki +69(@) + 1Q(w)’, ©)

where 0, v and & are the constants. The general solutions of Eq. (6) is given as
Case-L: If M = 6% — 4kv > 0 and kv # 0 then,

\/7tanh( wx/7)+0

(=) = 2v
\/Mco h
QQ(W) = - ‘ (21/ \/7) )
Qs () VM (tanh (wm) -+ 4sech (wm)) + 6
Aw =" 2v ’
() = \/M(tanh(élwx/i)—&—coth( wx/i))—i—Q@
N/ M(G24H?) - \/mcmh(w\ﬁ) _o
Gsmh(wW)JrH
Qs(w) = 5 :
B IW(G2+H2)+G\/Mcosh(wm) _0
Qo () = Gsinh(wvM)+H

2v

where G and H are two non-zero real constants and H2 — G2 > 0.

2k cosh (%wr)

r(w) :\/Mbmh( wx/7) —Hcosh(zwf) @)
B 2k sinh ( wr)

f2s(w) = Gsmh ( wr) v/M cosh ( wr) ®

() 2k sinh (wm) ©)

:—9 sinh (W\/Z) + +/M cosh (wm) + \/M

Case-IL: If D = 4kv — 0% > 0 and kv # 0, then
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\/ﬁtan (%W\/ﬁ) —

QIO(W) B 2v ’

sy = YD (VD) 0

() YD (20 (VD) —ec (D) 0
12(w) = - |

Q ( ) \/E(tan(iw\/ﬁ)—cot (%w\/ﬁ))—Qe
13(w) = - |

D(G2—H?)~GVD cos(wVD) L
Qus(w) = Gsin(¢vD)+H

v ’
where G and H are two non-zero real constants and G2 — H? > 0

2K COS (%w\/ﬁ)

Qi6(w) = , 10
16(%) VA4ky — 02 sin (%wﬁ) + 0O cos (%wﬁ) (10)
Qur (e ) 2k sin (lwx/») ()
7 \/ﬁcos( wf)—@sm( W\F)
Qs () = 2k sin (wxﬁ) (12)
" —0sin (wxﬁ) + /D cos (wxﬁ) +VD’
Case-III: If = 0 and kv # 0, then
dv
Q =—
19() q(d — sinh(vk) + cosh(vk))’
v(sinh(vk) 4 cosh(vk))
Q20(w) =
k(d + sinh(vk) + cosh(vk))
where d is an arbitrary constant.
Exact soliton solutions via generalized Riccati equation mapping method
In this section, we convert the PDE into the ODE form by using the wave transformation®*-*! such as
iz, t) = wk(w)eiﬁmm*ﬁt, where @ = wiz — wat, 0= o1x + 0at. (13)

Where g and 1y (t) are the real functions and w1, w2, g1, 2 are the frequencies and wave numbers while A is
the control parameter with 5(t) is the Brownian motion. Taking the derivatives of the above Eq. (13) and system
(1) is converted into following ODE system

" 2
~2wyyli—olun — 202 + Wity + 2mdiior + k(YT + U5 + U O =0, (19)
for k = 1, 2, 3. Now, comparing the real and imaginary part such as

1 _ P
iy — (.Q% + 202)Yi + 21/%(1/)% + 243 + 21/)%)62)‘5(” 27—,

39,40

Taking the expectation into both sides’”*, we get

oy, — (03 + 202) 0k + 20k (3 + 203 + 23) = 0, (15)

from the imaginary part the parametric condition is gain as wz = w1 01.
Assume that the general solution of the system (15) in the form of polynomial such as

N
= Zakviﬁi(w), (16)
i=0

where g ; fori = 0,1,2,--- , N are constants such that ax, v 7# 0 and they will be defined later. The positive
number N is found by applymg the homogeneous balancing princjple on the system (15). Consider the highest
derivatives and highest power nonlinear terms in equation (15) 1, and 5. Using these term and applying the
homogeneous balancing principle, we get N = 1. We used this value in system ( 16) and get the expression such
as

36-38
>
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Yr(w) = ako + ar1Q(w@), (17)

for k =1, 2, 3. Now taking the derivatives of above system (17) and substitute into the system (15) by taking
the help of equation ( 6) and get the expression in polynomial Q’(w), (j =0,1,2,---). Comparing all the
coefficients of the same powers of ¥’ (w), (j =0, 1,2, - - - ) and equating them equal to zero to get the system
of algebraic equations. Solving this system of equations by the computational software MATHEMATICA11.1
and get the constants values such as

2% A+ Bt (76 + p1)
ak,o0 = hagy, 0=kh, v= 20 P2 = —T

where

2
1 A— ha271(13’0

— o Sor (o — k202 (o2 2
2 and A = \/0‘2,1 <a3,0 kowy (a1,1+a2,1))'

h= 5
\/5042,1 ai; t+ag,

Case-I: If M = 6% — 4kv > 0 and kv # 0, then the solutions of Eq. (1), for k = 1, 2, 3, are

VM tanh (VM (wiz — wat)) + 6\ .
Pk (2, t) =o (h " (2 2(u 11’ : )) elﬁw(t)*)‘?t, (18)
VM coth (VM (wi1z — wat)) + 6 )
Pr,2(z,t) =, (h— (2 2(1/ ! 2 )) ezﬁwﬁ)*)‘%, (19)
VM (tanh (3 M) + coth (3+/M)) + 26 )
or,3(z, t) =ax (ﬁ— ( (4 )41/ (4 )) elﬁm(t)_sz’, (20)

/M (G? + H?) — G\/6? — 4kv cosh (wm)
2v (G sinh (wm) +H

bra(z,t) =0 <h - - 2u9> gletAB) =A%t (21)

M (G? + H?) + Gv'M cosh (wv/M )
br,5(w,t) =on | h— ( ) (=v31) 200 | et (22)
G sinh (wm) +H
2k cosh (Loov M )
¢r6(w,t) =op | B+ <2w ) emﬂﬂ(t)ﬂ?z? (23)
VM sinh (%W\/M) — 0 cosh (%WN/M)

2k sinh 1wm ]
ok, 7(x,t) =g [ h— (2 ) elg+>\,8(t)—,\2t7 (24)
0 sinh (%W\/M) — VM cosh (%wm)
and
2k sinh (wv M )
drs(x,t) =ar | h+ ( ) (IoFAB A (25)
0 sinh (W\/Z) — VM cosh (wm) +vVM
where w = (w1 — @1 01t).
Case-IL: If D = 4kv — 02 > 0 and kv # 0, then the solutions of Eq. (1) are
\/Etan lw\/ﬁ —0 )
Oro(z,t) =ak (h + (221/ ) ezg-Mﬂ(t)—)\Zt, (26)
\/Ecot lw@ +0 )
Pr0(z,t) =g (h— (éy ) RO -
VD (tan (wvD) — sec (wvD)) — 6\ .
Graa(x,t) =ak <h+ (tan ( )21/ ( ) gletABO (28)
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Pr2(w,t) =ak <h+ VD (tan (3wvD) ;/COt (5=vD)) - 29) ie TS =27t (29)
dras(x,t) =ag ( \/X(E\GF\/?;?O;I(W\F) 21/9) eig+>\B(t)—A2t7 (30)
e = ) K
dras(z,t) =ag <h+ NP (;;ii/%();wg/g(;wﬁ)> GOHABO—NE (32)

and
drae(z,t) = ax <h+ — (w\/;)ﬁiir\l/%ww\/sﬁ()w\/ﬁ) - @) eIt (33)

where w = (w1x — w101t).
Case-III: If = 0 and kv # 0, then

dv i 2
t) = h— io+AB(H)—A%t
rar(@,t) = o < : q(d — sinh(vrw) + cosh(umw))) ¢ ’ (34)

and

_ v(sinh(vkw) + cosh(vkw)) o+ AB(£)— A2t
Gr18(@,t) = (h t(d + sinh(vkw) + cosh(vkw)) € ) (35)

Modified auxiliary equation approach
In this section, we used the MAE method to show the stability of our results*2. We take the solution of eq.(15)
and get the polynomials form as follows,

1 (@) = ao + Zfil (aiw(zw)i n aiw—(zw)i) ’
1/}2(77) = BO + Z;\;l (ﬂiw(zw).z + ’Tiw7<zw)l') 7 (36)
ws(w) = + Zi:l (,yiw(zw)z + O_iw—(zw)z) 7

where the constants o, «i, Bo, Bi> Yo, Vs> 93> Ts and o;( i=1,2,3,...M) that are found to be later, here w(n) is
simplify the solution that is given below.

! 1 Z2T0 —Zw
z(w):ln(w)<e+uw + xw ), (37)

here, €, 11, X and z with z > 0 z # 1 are arbitrary constants that are determine later. Homogenous balancing
principle can be applied to find the value of M in the previous Eq. (15) and we can enter M = 1 in Eq. (36)

Y1(w) = o + aw®™ + dw™ 77,
’lbz(w) = ﬂo —+ ﬁ1wzw + leizw, (38)

zw

P3(w) = v + 1w +o1w *7,

Determine the derivatives of Eq. (38) by applying the Eq. (37) and replace in the Eq. (15). After simplifying,
collecting the coefficients of the same power of w**)7 and w™(**)7 and set them then equal to zero in all
polynomials to gain a system of equations. Apply mathematica to deal with the system of calculation and gain
the family of solution as,

Family of solutions:
204 2 puy/—4a2 — 482 — w 52
0/1”317 50#07 0,70 = _7\/4 —4ﬂ§—wf62,’y1:— \/ 0 - 0 1 (39)
1
61 =0,71 =0,02 = 1 (4uxw1 —20% — wfe2) . where —4a2 — 482 — w?e® > 0.

Case-I: If €2 — 4y < 0 and x # 0, then
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aopy/4xp — €2 tan (%\/4)(/; — €2 (zw1 — gltwl))

+
¢1,18($at) = c

i(i(4uxw%—2g%—w%ez)+glm)+>\2t—)\[3(t)
)

Bo+/4xp — €% tan (%\/4)(;1 — €2 (zw1 — Qltw1)>

€

e
+
¢2,18(w7t) =

ot (% (4nxwi —201 ~wie®) +or2) + 2%t -AB(1)
K

Vaxp — e \/@? (=) — 4 (ad + B3) tan (74"2‘_62 (zmo1 — @mm))

+
t) =
¢3,18(m7 ) R
et (& (4nxwi—20] ~wie®) +or2) + 2%t -A6(t)
QOWCOt (%\/490“—*62(96@1 - Qltwl))
¢1i,19(‘r7 t) =
€
e"(ﬁ(4!”@?*2@?*1?%62)+91z)+>\2t7w(t)7
/B = oot (3B = (a1 — xteo))
¢;19(x7t) = .
ei(%(4“Xw%*29?*‘w%62)+91I)+)\2t7)\ﬁ(t)7
—e2
4 ( ) \/4XN_62\/W% (—62)—4(a3+ﬁ§)cot (@ (ZL’W1 _Qltwl))
$3.19(x,t) =

2e

ei(i(4;1.)(wf—29?—w%ez)-&-glz)-&-kzt—)\ﬁ(t) .

Case-IL: If € — 4xp > 0 and x # 0, then

o/ €2 — 4xp tanh (%\/62 —Axp (zwr — gltwl))

+
¢1,20($7 t) = p
ei(%(éluxwf—2@?—wfe2)+91m)+)\2t—/\/3(t)
¢i - Bo+/ €2 — dxutanh (%\/62 — 4dxp (v — g1tw1))
2,20\, 1) =

€

ot (5 (4nxmi—20 —wie®) +or2) 22 -2B(1)
b

\/52 — 4x,u\/w% (—€?) — 4 (a2 + B2) tanh <7V€22_4X“ (zo1

- gﬂzm))

+
7t -
¢3,20($ ) 5
ot (% (4nxw?—20 ~wie®)+or2) + A2t -2B()
+ ao@coth (%M(ﬂf?ﬂl - Q1tw1))
¢1,21($»t) =

€

ot (% (4nxw? —20] ~wie) +or2) + 2%t -AB(1)
K

(40)

(41)

(43)

(44)

(45)

(46)

(47)

(48)

(49)
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Bo+/ €2 — 4xp coth (%\/62 — 4dxp (v — gltwl))

€ (50)

¢3:,21(m7 t) =

ot (F(anxwi—20f —wie®) tor2) + 22 -26(1)
b

\/62 — 4xu\/w1 —e2) — 4 (a2 + B2) coth (7”‘22_4)(€ (zw1 — gltwl))

+
¢3,21($7 t) =
2¢€ 1)
ot (% (4nxw?—20] ~wie®)+ora) + A2t -A6(t)

Case-IIL: If €2 — 4y = 0 and x # 0, then
45%[,22(95775) =-— ( ) i( 4 (4ux=i—20] —=ie?)+or2) +A%t— @), (52)

€ (wwl - Q1tW1

> =- ot (% (4nxw? —20] ~wie) o1z )+ 2%t~ AB(H).

$200(z,t) = (53)

€ (iﬂwl - Q1tW1

V@t (=€) —4(ad + 53)
€ (xww1 — p1twr) (54)

¢3j,[,22($:t) =

ot (& (anxwi—20f ~wie®) +ora) + A%t -2B(t)

Physical representation of optical solitons

Finally, in this section, we will be analyzing the graphical representation of solutions along with a few effects
of noise on the solutions. Out of all those optical solitons some of the equations are successfully solved by
using the generalized Riccati equation mapping method. These solutions are expressed in dark, complex dark-
bright and combined form solitons and solitary wave solution. These optical soliton have given application in the
domain of optical fibers. According to the previous section, the propagation of an optical pulse in a birefringent
optical fiber is characterized by the three nonlinear complex models. In some cases, these solutions are illustrate
by the physical phenomena of these solutions are provided here. Despite the fact that these solitons enjoy
inherent stability, they can undergo a certain fragmentation or decay in the presence of a sufficient number of
perturbations. To show the physical behavior we draw some solutions in the form of 3D, 2D and corresponding
contour form for the different values of parameters. Figure 1 is drawn for the solutions ¢1,1(z,t) that will
provided us the dark soliton solution while, Fig. 2 provided us the solitary wave solution for ¢1,14(x,t). To
control this randomness we take into account the Wiener process and construct their solution. The effects of
noise are clearly shown in the figures that how the noise is affected our solutions. When we take A = 0 into
account moreover we increase the values of A = 0.3, 0.7 and check that how the noise is affected our solutions. If
we choose A = 0 then these solutions have no noise effect in their results. Noise greatly flattens the surface, and
after a few brief minor transits, its strength increases. For the better understanding of the discussed solitary wave
solutions, it is necessary to give the additional analysis of their graphical characteristics. Although amplitude
plots give information about the wave shape, plotting density that is directly proportional to the square of
amplitude is more useful in optics. Intensity plots were illustrated to show the energy profile of the soliton and
provide a better view of the output power as well as the stability over time and space coordinates. This type of
analysis provides a better possibility to identify the essential soliton properties, influencing factors, such as the
intensity and width of peaks, and effect of external perturbation. Additional intensity plots together with the
amplitude plots would give the overlying information on the physical specifications of the soliton, which could
explain why such plots are vital complements to amplitude plots. Based on this fact that the intensity is directly
related to the energy distribution that can be measured within the optical systems, this approach will provide a
clearer view on other characteristics of the soliton, including the peak intensity and spatial distribution. These
additions will give more details of the solitary wave behaviour and make the results support the proposed
solutions more compelling. Solitons and solitary waves in the presence of noise have many potential application
in contemporary optics technologies. Solitons are used as information vectors in optical systems owing to their
capacity to preserve their shape and speed after migrating over large distance and resisting noise and dispersion.
This property is indeed very essential in overall fiber-optic telecommunications particularly in the large distance
link where repeater noises etc., are disturbances. Soliton based transmission systems require fewer repeaters
and also improve the quality of the received signal. Further, the spatial soliton, found in photorefractive and
nonlinear media, make it possible to develop the optical waveguides, switch and the reconfigurable photonic
circuits. Solitons are immune to noise and therefore likely to be put to use in quantum communication where
coherence is imperative under a noisy environment. These applications highlight the needs for understanding
the effects of noise, especially the Brownian motion on the soliton stability and their performance in the real
optical systems. Figure 2a-e display 3D-shape of solution |¢1,13| in Eq (30) withz € [—4,4], ¢ € [0, 3] and
A =0, 0.1, 0.3, 1, 2(2f) shows 2D-shape of Eq. (30) with different .
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Fig. 1. Different effects of noise for the solution |¢1,1| when the constants are chooses as
R = 0.8,0&1 = 0.9, ﬂl = 1.1,’}/1 = 1,’}/0 = 2.7, p1 = 0.7,(;.}1 =0.1.

Figure la-e display 3D-shape of solution |¢1,1] in Eq (18) withz € [—4,4], ¢t €[0,3] and
A=0, 0.1, 0.3, 1, 2Fig. 1f shows 2D-shape of Eq. (18).

Conclusions
In this manuscript we studied the three component nonlinear stochastic Schr 6dinger equation analytically

under the Stratonovich sense. The Birefringent optical fibers three component nonlinear stochastic Schré dinger
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equation, the noise perturb the optical solitons in different ways such as, noise in the position and phase areas
as well as noises in the shape and amplitude of solitons and lastly it alters the sourroundings in which solitons
interact. The generalized Riccati equation mapping method is adoped to obtained the different abundant families
of solitons. These solitons are explored in the dark, complex dark-bright, combined form and periodic form
solutions as well. Mainly, we are focused on the effects of noise on the solitons. We have added modified auxiliary
equation method to compare the results. This method is provided us only hyperbolic, trigonometric and rational
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solutions. So, our results are very novel for the applications of the underlying model when we take noise into
account. Finally, we plot some solutions and show their behavior in 3D, 2D and corresponding contours. It is
crucial for the development of fiber-optic communication technologies and ensuring the ability to keep solitons
well transmitted over longer distances. Lastly, the impact of noise on the exact solutions of the three component
nonlinear Schrodinger equation was illustrated using the MATHEMATICA11.1 program. We might look into
additive fractional derivatives in the three-component nonlinear Schrédinger equation in the future.

Data availability
Data will be provided by corresponding author on reasonable request.
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