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Microwave fabrication of aluminium composites has emerged as a novel and trending technique in the 
current industrial landscape due to its efficiency and energy-saving potential. In this study, Al-kaolin 
composites were fabricated using microwave energy techniques, focusing on predictive modelling of 
the microwave-assisted Al-kaolin composite’s wear rate and coefficient of friction (COF). The fabricated 
composites were evaluated for hardness, wear rate, and coefficient of friction (COF) under varying 
parameters. It was observed that 4 wt% kaolin is the optimal reinforcement fraction, resulting in a 34% 
improvement in tensile strength, while hardness showed a consistent increase up to 4 wt% Kaolin, 
reaching a maximum value of 96 RHC. Additionally, wear rate and COF exhibited a decreasing trend 
with increasing kaolin content, indicating enhanced tribological performance. The lowest wear rate 
of 3.2 × 10⁻4 mm3/Nm and COF of 0.42 were observed for the 4 wt% Kaolin composite, demonstrating 
improved wear resistance. To further understand and predict the behaviour of the composites, a 
systematic dataset was collected, and various machine learning (ML) models were trained and tested 
for predictive modelling of wear rate and COF. Among the trained models, XGBoost demonstrated the 
highest predictive accuracy, achieving 94.33% for wear rate and 94.62% for COF. A feature importance 
analysis revealed that the standard of distance (Sod) was the most influential parameter affecting 
these outputs.
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In the rapidly advancing industrial landscape, the demand for high-performance materials has significantly 
increased. Composite materials, characterized by their unique ability to combine properties of different 
constituents, have emerged as vital candidates in sectors such as aerospace, automotive, marine, and biomedical 
applications1. Their tailored properties, such as enhanced strength-to-weight ratio, improved thermal stability, 
and corrosion resistance, make them indispensable for modern industrial needs. These features enable industries 
to achieve operational efficiency, environmental sustainability, and economic viability2,3.

Fabrication techniques play a pivotal role in determining the properties and performance of composites. 
Among the various fabrication methods, solid-state techniques have gained prominence over liquid-state 
techniques4. While liquid-state methods, such as ultrasonic and magnetic stirring, have demonstrated 
improvements in the dispersion of reinforcements, their high-temperature processing often results in the 
formation of undesirable intermetallic compounds, adversely affecting the composite’s mechanical properties5. 
In contrast, solid-state techniques, particularly advanced sintering methods like microwave sintering and spark 
plasma sintering, offer significant advantages6. Microwave sintering enables uniform heating, reduced processing 
times, and energy efficiency, while spark plasma sintering allows rapid consolidation under lower temperatures 
with precise control over microstructural evolution. These unique features mitigate thermal mismatches and 
enhance the overall mechanical performance of composites7,8.
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To meet the growing demand for high-performance materials in manufacturing sectors, it is imperative to 
accurately predict the mechanical responses of composites, which exhibit complex behavior due to the interplay 
of multiple factors9. In this context, machine learning (ML) techniques have garnered substantial attention 
from researchers and industry professionals. ML offers the capability to model non-linear relationships, analyze 
vast datasets, and provide accurate predictions for mechanical responses, thereby accelerating the design and 
optimization of composite materials10,11.

Machine learning (ML) has emerged as a powerful tool for predicting and optimizing the mechanical properties 
of composite materials, offering significant advantages over traditional experimental and computational 
methods9,12. The integration of machine learning (ML) techniques in materials science has revolutionized the 
way composite materials are analyzed and optimized. ML models offer a data-driven approach to predicting 
mechanical and tribological properties, reducing reliance on costly and time-intensive experimental trials. 
Various supervised learning techniques, such as Artificial Neural Networks (ANN), Support Vector Machines 
(SVM), Decision Trees (DT), and Random Forest (RF), have been extensively employed for predicting properties 
such as tensile strength, hardness, wear resistance, and fracture toughness in different composite systems. Deep 
learning methods, such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), 
have been successfully employed in this field. Yang et al.13 utilized CNNs to predict the elastic properties of 
3D woven composites from their microstructure images, while Zhu et al. demonstrated the effectiveness of 
RNNs in forecasting the stress–strain behavior of sand subjected to monotonic triaxial compression loading14,15. 
Regression-based models, particularly Support Vector Machines (SVMs), have also been applied to classify 
composite materials based on their microstructure and mechanical performance. Abuomar et al. used SVMs 
to categorize vapor-grown carbon nanofibre/vinyl ester nanocomposites into ten different classes based on 
their mechanical properties16. Feature extraction and dimensionality reduction techniques, such as Principal 
Component Analysis (PCA), have been widely used to reduce the complexity of microstructural data while 
retaining essential features17. Pathan et al.18 employed principal component regression with polynomial basis 
functions to predict the elastic–plastic response of composite systems with various inclusion shapes. In the realm 
of unidirectional fibre composites, Ren et al.19 presented a data-driven approach using supervised machine 
learning to predict the macroscopic stiffness and yield strength of composites loaded in the transverse plane. 
Their method combined image analysis of material microstructures with knowledge of constituent material 
properties, achieving accurate predictions without performing physical calculations. For polymer composites, 
Qi et al. highlighted the potential of ML in improving design and optimization, demonstrating the ability of ML 
techniques to predict the characteristics of novel composite materials based on their microstructures. Despite 
these advancements, several challenges remain in the field, including limited data availability, the need for multi-
scale modeling, and improving the interpretability of ML models. Wang et al. proposed data augmentation 
techniques to address the data scarcity issue, while Liu et al. explored multi-scale modeling of composite 
materials. Zhang et al. investigated feature importance analysis techniques to enhance model interpretability, and 
Chen et al. demonstrated the effectiveness of hybrid approaches combining ML with physics-based models20–22. 
As research in this field continues to advance, ML techniques are expected to play an increasingly important role 
in the design, optimization, and understanding of composite materials, potentially revolutionizing the field of 
materials science and engineering.

Moreover, advanced ML techniques, such as XGBoost, Deep Learning (DL), and Convolutional Neural 
Networks (CNNs), have been explored for more complex materials, where feature importance analysis has 
played a significant role in understanding the contribution of various fabrication parameters to composite 
performance. Unlike traditional regression-based approaches, which assume a linear correlation between 
variables, ML models can capture nonlinear relationships, making them highly suitable for predicting composite 
behavior under varying conditions.

Kaoline has gained significant attention as a reinforcement material in aluminum composites due to its unique 
properties that cater to the needs of the automobile and industrial sectors. Its incorporation into aluminum 
alloys addresses critical performance metrics such as achieving a low wear rate and a high coefficient of friction 
(COF), essential for enhancing the durability and efficiency of components in demanding applications23,24.

Although several studies have focused on aluminum matrix composites reinforced with SiC, B₄C, and 
Al₂O₃, limited research has explored the use of Kaolin as a reinforcement in microwave-sintered aluminum 
composites. Kaolin, being a naturally abundant ceramic material, offers potential benefits in enhancing both 
mechanical and tribological properties. Furthermore, conventional studies predominantly rely on experimental 
characterization, whereas this work integrates machine learning (ML) methodologies to predict and optimize 
wear behavior and COF. The application of supervised ML models, including Support Vector Machines (SVM), 
Random Forest (RF), K-Nearest Neighbors (KNN), Artificial Neural Networks (ANN), and XGBoost, provides a 
robust framework for accurately modeling tribological performance. Additionally, a feature importance analysis 
has been conducted to determine the key process parameters influencing wear rate and COF, ensuring a data-
driven approach to composite design and optimization. The novelty of this study lies in the combination of 
microwave sintering and ML-based predictive modeling, offering an innovative strategy for improving the 
design and performance of Al-Kaolin composites.

In this view, the present work focuses on the predictive modeling of the wear rate and COF of the AA7075/
kaoline composite fabricated through a novel hybrid microwave sintering technique. The study aims to combine 
the advanced fabrication capabilities of microwave sintering with supervised machine learning methodologies 
to provide accurate predictions of mechanical responses, thereby contributing to the development of high-
performance materials tailored for industrial applications.
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Materials and methods
The kaolin clay was collected from the exposed areas of the Deopani deposit in Assam, situated between latitudes 
26°14′27ʺ and 26°14′39ʺ, and longitudes at 93°45′54ʺ and 93°46′05ʺ. The collection was carried out by the State 
Directorate of Geology and Mining, Government of Assam. A representative sample of the clay was prepared in 
accordance with the Indian standard mixing method25. Initially, the natural kaolin clay mineral was air-dried, 
crushed, and ground into a fine powder using a mortar and pestle, followed by sieving through a 75 µm (∼583 
mesh) sieve. The resulting powder underwent wet beneficiation using deionized water to remove impurities such 
as metallic oxides, organic matter, soluble salts, quartz, grits, and coarse particles, thereby refining its physical 
and chemical properties26,27. This process involved vigorously stirring 100 g of kaolin clay powder in 1000 mL of 
deionized water at room temperature for 24 h using a magnetic stirrer. The suspension was left to settle, forming 
a solid clay cake, which was subsequently filtered and washed three times with deionized water Deionized water 
with a resistivity of approximately 10 MΩ·cm at 25 °C was used for the kaolin clay purification process. The final 
product was air-dried overnight at 60 °C in an oven, then powdered, sieved, and stored for future use.

Pure aluminium powder (99% purity) and processed kaolin clay are utilized as a matrix and reinforcement 
material in this study. To ensure that the reinforcement is evenly distributed and diffused throughout the matrix 
material, the raw powder was combined with a ball-to-powder ratio of 10:1. Stearic acid (1.5 wt%) was utilized 
as a process control agent and the ball milling was performed at ambient temperature. The blended composite 
powders were uniaxially pressed by applying a 580 MPa pressure with a dwell time of 5 min. The compacted 
composite was heated to 530 ± 5 °C through the generated electromagnetic field inside the microwave sintering 
furnace (1.4 kW and 2.45 GHz) for 30 min at a heating rate of 10 °C/min in a protective argon gas atmosphere to 
prevent from oxidation. After that, it is allowed to cool down to room temperature in a controlled environment. 
An infrared pyrometer (Make Fluke 572) accurately measured sintered composite temperature. The SiC 
susceptor was employed to raise the cold compacts to 400 °C, facilitating the direct coupling of microwaves to 
the aluminum matrix to commence the heat initiation inside the composite. During microwave sintering, a SiC 
susceptor was utilized to enhance heat absorption and ensure uniform temperature distribution. The dimensions 
of the SiC susceptor used in this study were 50 mm in diameter and 10 mm in thickness. SiC is well known 
for its high thermal conductivity (~ 120 W/m K), low dielectric loss factor (~ 0.02 at 2.45 GHz), and excellent 
thermal stability, making it an ideal choice for microwave-assisted sintering. The susceptor facilitated rapid and 
uniform heating, minimizing thermal gradients that could lead to differential expansion and internal stresses in 
the composite material. The cold compacted specimens were mounted at the canter of the susceptor cavity and 
sintering was carried out in the multimode cavity. The composites were prepared by reinforcing 2wt%, 4wt%, 
and 6wt% kaolin clay in the aluminium composite.

Characterization techniques
The elemental constituents present in the as-received powders and the Al-Kaolin composites were identified 
through X-ray Diffraction studies performed on the Bruker DIFFRAC Plus diffractometer at a scanning of 1°/
min between the scanning angle 10°–90°.

The morphology of Al and Kaolin powders, reinforcement dispersions, and elemental composition of 
composites were analyzed using scanning electron microscopy (SEM) and integrated with Energy Dispersive 
Spectroscopy EDS. The Archimedes principle was used to measure the sintered density of the Al-Kaolin 
composite. The Rockwell hardness of the fabricated composite was analyzed as per ASTM E18-15 standards28,29. 
The parameters used for the Rockwell measurement are presented in Table 1. The wear test was performed 
on the TR-201 CL, Ducom wear testing machine for the 12 mm diameter composite specimens. The polished 
Al-Kaolin composite was pressed against a rotating EN32 steel disc having 120 mm diameter and 10 mm 
thickness (hardness 65 HRC, surface roughness of 0.3 µm) at 450 rpm, with a constant sliding distance of 1000 
m maintained during the wear test. The wear rate of the specimens was calculated using the mass loss approach, 
providing a quantifiable estimate of the loss of material due to the wear test. The wear rate is calculated using 
the Eq. (1)

Wear rate COF

SVM
‘C’: 100, 
‘epsilon’: 0.1, 
‘gamma’: ‘auto’, 
‘kernel’: ‘rbf ’

‘C’: 1, 
‘epsilon’: 0.1, 
‘gamma’: ‘auto’, 
‘kernel’: ‘rbf ’

Random Forest ‘max_depth’: 10, 
‘max_features’: ‘sqrt’, ‘min_samples_leaf ’: 1, ‘min_samples_split’: 2, ‘n_estimators’: 500

‘max_depth’: 10, 
‘max_features’: ‘sqrt’, ‘min_samples_leaf ’: 1, 
‘min_samples_split’: 2, ‘n_estimators’: 500

XG Boost
‘colsample_bytree’: 0.8, ‘learning_rate’: 0.2, 
‘max_depth’: 3, 
‘n_estimators’: 200, 
‘subsample’: 0.8

‘colsample_bytree’: 0.8, ‘learning_rate’: 0.2, 
‘max_depth’: 3, 
‘n_estimators’: 200, 
‘subsample’: 0.8

KNN ‘metric’: ‘manhattan’, ‘n_neighbors’: 4, 
‘weights’: ‘distance’

‘metric’: ‘manhattan’, ‘n_neighbors’: 5, 
‘weights’: ‘distance’

ANN
‘activation’: ‘tanh’, 
‘alpha’: 0.1, 
‘hidden_layer_sizes’: (100, 100), ‘learning_rate’: ‘constant’, ‘max_iter’: 1000, 
‘solver’: ‘lbfgs’

‘activation’: ‘relu’, 
‘alpha’: 0.01, ‘hidden_layer_sizes’: (50, 100), 
‘learning_rate’: ‘constant’, ‘max_iter’: 1000, 
‘solver’: ‘lbfgs’

Table 1.  Optimized hyperparameters obtained through gridsearchCV techniques.
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Wear Rate = V olume Loss (V )

Applied Load (F ) × Sliding Distance (D) � (1)

where V is the wear volume (mm3), F is the applied load (N) and D is the Sliding Distance (m).
The volume loss was calculated using the following Eq. (2)

	
V = ∆m

ρ
� (2)

where ∆m = Initial mass–Final mass (in gr).
The volume loss was estimated by dividing the mass loss by the density (g/mm3) of the composite.

Scale Indenter Load Dwell time Temp (°C)

B 1/16 inch 100 kgf 20 s 24 °C
 

Results and discussion
XRD and SEM analysis of the as-received powders and synthesized composites
Figure 1a, c depict the SEM images for the as-received Al and extracted Kaolin powders and Fig. 1b, d depict the 
XRD analysis of the received powders. The aluminium powders had an irregular spherical shape, and the Kaolin 
particles could appear as irregular flake-shaped structures with sharp corners. The particle sizes of the aluminum 
and kaolin were determined to be 30 microns and 40 microns, respectively, using ImageJ software (Version: 
1.54 k, URL: https://imagej.net/ij/). The average particle size was calculated by considering the average of fifteen 
measurements for both the Al and kaolin particles. The XRD analysis of the aluminum and kaolin powders 
confirmed the presence of aluminum peaks at diffraction angles (2θ) 35°, 44°, 65.6°, and 78.3°. Additionally, 

Fig. 1.  SEM and XRD of (a, b) received aluminium, (c, d) extracted kaolin powders.

 

Scientific Reports |        (2025) 15:13370 4| https://doi.org/10.1038/s41598-025-97782-x

www.nature.com/scientificreports/

https://imagej.net/ij/
http://www.nature.com/scientificreports


the presence of aluminum oxide, magnesium oxide, silicon oxide, and titanium oxide indicated the successful 
identification of kaolin in the extracted reinforcement powder.

The XRD pattern for the microwave-sintered Al-Kaolin composites is shown in Fig. 2. The Al-2 wt%Kaolin and 
Al-4 wt%Kaolin composites show the presence of aluminium oxide ((110) plane), titanium oxide ((220) plane), 
silicon dioxide ((002) plane) potassium oxide ((311) plane), and magnesium oxide ((111) plane). However, the 
Al2C4 (JCPDS-96-154-0875) secondary phase was observed for the Al-6 wt%Kaolin composite. The Secondary 
phase formation at the composite interface significantly impacts the mechanical characteristics. During the 
sintering process, surplus free energy activates chemical reactions between the matrix and reinforcements. The 
degree of reactivity varies based on exposure time and wt% of the kaolin reinforcement30.

The SEM images for the Al-2  wt%kaolin, Al-4  wt%kaolin, and Al-6  wt%kaolin composites are shown in 
Fig. 3a, b, c. The kaolin particles were observed to be evenly dispersed in the aluminium materials for the 2 wt% 
and 4 wt% kaolin reinforcement. The addition of the kaolin of more than 4 wt% generates the Al2C4 clusters as 
depicted in Figure (c) and the corresponding agglomerated peak and confirmed in the XRD pattern of Figure 
(c) and the EDS mapping of the clustered site of the Al-6 wt%kaolin composite. The inherent properties of the 
different thermal expansions of the kaolin and aluminium particles accelerate the variable expansions during 
the microwave sintering and are susceptible to cluster formation for the Al-6 wt%kaolin composite, which in 
turn deteriorates the composite hardness31,32. The corresponding clusters in the Al-6 wt%kaolin composite were 
identified through XRD analysis and the Al2C4 element was confirmed for the Al-4 wt%kaolin composite.

Hardness study for the Al-kaolin composite
The Rockwell hardness of the polished Al-kaolin composite is measured by applying a 100 kgf load. The 
average of six hardness readings was taken and the average readings were reported in the Fig. 4. The hardness 
of the composite increases from 78 RHC for the unreinforced kaolin to 96 RHC for 4wt%kaolin reinforcement, 
signifying a 23.07% harder than the unreinforced aluminium. This enhancement in the hardness was due to the 
uniform kaolin particle dispersion and the presence of the ceramic aluminium oxide and silicon oxide particles 
in the kaolin clay. In addition to this, the magnesium content in the kaolin improves the wettability among the 
aluminium and reinforced kaolin particles. The decrement in the hardness of the Al-6 wt%kaolin from 96 to 83 
RHC due to the presence of the agglomerations which makes the generation of the triaxial stresses prone to the 
material to make indentation at lower applied loads.

Generally, an increase in hardness leads to a lower wear rate due to improved resistance against plastic 
deformation and material removal. However, in the present study, a notable drop in hardness at 6% kaolin 
reinforcement was observed, which correlates with an increase in wear rate. The decline in hardness at 6% kaolin 
can be attributed to particle agglomeration and increased porosity. As the reinforcement content increases 
beyond an optimal level, particles tend to cluster together, leading to non-uniform dispersion and localized 
weak zones within the matrix. These regions become stress concentrators, promoting crack initiation under 
loading conditions. Additionally, a higher reinforcement fraction can lead to increased porosity, reducing the 
composite’s overall density and load-bearing capacity, which negatively impacts hardness.

Methodology and performance evaluation of machine learning models
To predict the wear rate and coefficient of friction (COF) for an aluminium-Kaoline (Al/Kaoline) composite, 
a structured approach was taken to collect and process data. The dataset used in this study consists of 193 
data points, each characterized by four input parameters: Reinforcement percentage (wt%), Angle, Pressure, 
and Standard of Distance (Sod), and two output parameters: Wear Rate (10−4  mm3/Nm) and Coefficient of 
Friction (COF). To analyze the distribution and relationships among the features, a pairplot was generated, 
revealing correlations between input variables and output responses. Additionally, a hexbin plot was included 

Fig. 2.  XRD pattern for the microwave-sintered Al-Kaolin composites.
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to illustrate the density of data distribution across different parameter ranges. To ensure high-quality data for 
machine learning predictions, outlier detection and removal were performed using the Z-score method. Data 
points with |Z|> 3 were identified as outliers and removed to prevent skewed model predictions. After outlier 
removal, the dataset retained 193 data points, ensuring a robust training set without extreme values. For faster 
model convergence and improved numerical stability, Min–Max scaling was applied to normalize the feature 
values between 0 and 1. This transformation ensures that all input features contribute equally during the training 
process, preventing dominance by features with larger numerical ranges. The dataset was systematically split into 
training (80%) and testing (20%) subsets, maintaining a balanced representation of the feature space.

In machine learning, hyperparameters play a major role in determining model performance. To optimize 
these parameters, a GridSearchCV approach was applied, allowing for systematic evaluation of parameter 

Fig. 3.  FESEM and EDX spectra for the (a) Al-2 wt%Kaolin, (b) Al-4 wt%Kaolin, and (c) Al-6 wt%Kaolin.
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combinations to maximize model accuracy. With the optimized parameters, various machine learning models 
were trained, tested, and validated33,34.

Metric scores, such as mean absolute error, mean squared error, and coefficient of determination (R2), are 
essential for understanding and comparing model performance. These scores help assess model accuracy, 
consistency, and generalization ability on unseen data. By evaluating metrics across different models, we gain 
insights into each model’s strengths and limitations, enabling us to select the most reliable model for predicting 
wear rate and COF in Al/Kaoline composites. These metrics serve as objective indicators, guiding us to improve 
model accuracy and ensure practical applicability in industrial settings35,36.

To better understand the data relationships and distribution, pairplots and hexbins were employed. 
Pairplots, shown in Figs. 5 and 6, provide a multi-dimensional view of variable interactions within the dataset. 
This visualization helps highlight trends and correlations between input variables (e.g., reinforcement content, 
angle, pressure) and output parameters (wear rate and COF). It also helps in identifying any patterns that may 
impact model predictions. Starting with Wear Rate, it is evident that Reinforcement (%) plays a critical role. 
As the percentage of reinforcement increases, the Wear Rate decreases significantly. This can be attributed to 
the enhanced hardness and load-bearing capacity provided by the reinforcing particles, which resist material 
removal during sliding. Conversely, increasing Pressure leads to a noticeable rise in Wear Rate. This is expected 
as higher pressures intensify the contact forces, promoting material deformation and wear through mechanisms 
such as abrasive and adhesive wear. The variation of Wear Rate with Sod (sliding distance or related parameter) 
reveals a slight increasing trend. This could be due to the progressive material degradation or changes in surface 
interactions over longer distances. Interestingly, the Wear Rate shows minimal dependence on Angle, suggesting 
that this parameter does not significantly affect the wear behavior under the studied conditions.

For the COF, a similar trend is observed with Reinforcement (%), where an increase in reinforcement results 
in a reduction of the COF. The hard reinforcement particles create a smoother sliding interface and reduce direct 
metal-to-metal contact, thereby minimizing friction. However, unlike Wear Rate, the influence of Pressure on the 
COF is less pronounced, though a slight increase is observed. This could be due to increased material adhesion 
or changes in contact mechanics at higher pressures. The effect of Sod on COF follows a similar trend to Wear 
Rate, with a minor increase observed as Sod increases, potentially due to dynamic effects or surface energy 
changes over extended interactions. Like with Wear Rate, Angle exhibits negligible influence on COF, indicating 
that the tribological properties are largely unaffected by this parameter in the given experimental setup.

Hexbin plots, illustrated in Figs. 7 and 8, were used to display the density of data points. By binning data into 
hexagonal cells, these plots give a clear picture of data concentration in different regions, revealing areas where 
data points are densely packed or sparse. Hexbins are especially useful for identifying clusters and understanding 
the overall distribution in continuous datasets, helping to visually validate the effectiveness of the preprocessing 
steps applied to remove outliers and ensure data consistency37,38.

The selection of machine learning models in this study was based on their ability to handle nonlinear 
relationships, effectively process small-to-moderate dataset sizes, and provide reliable predictive performance. 
Five models—Support Vector Machine (SVM), Random Forest (RF), XGBoost, K-Nearest Neighbors (KNN), 
and Artificial Neural Networks (ANN)—were chosen due to their proven applicability in predicting material 
properties. SVM was selected for its capability to map nonlinear data into higher-dimensional spaces using 
kernel functions, making it suitable for small datasets with complex relationships. RF, a widely used ensemble 
learning technique, was included due to its ability to reduce overfitting and improve predictive accuracy by 
averaging multiple decision trees. XGBoost, an advanced gradient boosting method, was considered for its 
superior accuracy, computational efficiency, and ability to reduce both variance and bias, making it one of 
the most robust models for structured data. KNN was evaluated due to its ability to capture local patterns in 

Fig. 4.  Hardness of the microwave sintered (a) Al-2 wt%Kaolin, (b) Al-4 wt%Kaolin and (c) Al-6 wt%Kaolin 
composites.
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the dataset, which is useful when feature interactions play a crucial role in determining composite properties. 
Lastly, ANN was included to explore the potential of deep learning-based approaches in modeling the nonlinear 
mechanical behavior of composites. While deep learning models such as Deep Neural Networks (DNNs) and 
Convolutional Neural Networks (CNNs) have demonstrated significant advancements in predictive modeling, 
they were not considered in this study due to the limited dataset size (193 data points). Deep learning models 
typically require many training samples to prevent overfitting and achieve optimal performance. Given the 
constraints of the available data, traditional ML models were more suitable for generating accurate and reliable 
predictions.

To optimize the performance of the selected models, hyperparameter tuning was conducted using 
GridSearchCV with fivefold cross-validation. This approach systematically searched for the best hyperparameter 
combinations, ensuring that the models were trained and validated on different subsets of the dataset, reducing 
the risk of overfitting. The cross-validation method allowed for a more generalized performance evaluation, 
ensuring that the predictive models could be effectively applied to unseen data. By implementing this structured 
approach, the study enhances the reliability and robustness of machine learning-based predictive modeling for 
composite materials.

To ensure efficient convergence during training, scaling was applied, which normalized the feature space 
and facilitated quicker convergence of each model. Hyperparameter optimization is key to maximizing model 
accuracy. GridSearchCV was employed to tune model hyperparameters systematically by searching across 
specified parameter values. This approach ensures each model is optimized for the dataset at hand. The optimized 
hyperparameters for each model are presented in Table 1, showcasing the selected values that achieved the 
highest performance in predictive accuracy. To evaluate the predictive performance of the machine learning 

Fig. 5.  Pairplot between variables with hue as wear rate.

 

Scientific Reports |        (2025) 15:13370 8| https://doi.org/10.1038/s41598-025-97782-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


models used in this study, three key metrics—coefficient of determination (R2), mean absolute error (MAE), 
and root mean squared error (RMSE)—were selected. Each of these metrics provides unique insights into the 
model’s accuracy and generalization ability. R2 was chosen as it quantifies the proportion of variance in the 
experimental data that is explained by the model. A value close to 1.0 indicates a strong correlation between 
predicted and actual values, demonstrating the model’s ability to capture data trends effectively. However, R2 
alone does not indicate the magnitude of errors in predictions, which necessitates the inclusion of additional 
error-based metrics.

MAE was used to measure the average absolute differences between predicted and actual values. This metric 
provides an intuitive understanding of prediction accuracy by expressing the error in the same units as the target 
variable, making it straightforward to interpret. Since MAE treats all errors equally, it offers a balanced measure 
of overall prediction deviation. However, it does not heavily penalize larger deviations, which can be crucial in 
wear rate predictions where extreme values may occur.

To address this, RMSE was selected as it places greater emphasis on larger errors by squaring the deviations 
before averaging. This ensures that models with occasional high-magnitude errors are penalized more 
significantly, making RMSE a more sensitive indicator of prediction robustness. Given that tribological properties 
such as wear rate and coefficient of friction (COF) can exhibit nonlinear variations and extreme values, RMSE 
helps assess how well the model performs under such conditions. By employing a combination of R2, MAE, and 
RMSE, the study ensures a comprehensive evaluation of the machine learning models, balancing both goodness 
of fit and prediction error magnitude, thus improving confidence in the model’s predictive reliability. These 
metrics, displayed in Table 2, help illustrate the relative strengths of each model in capturing the wear rate and 
COF patterns within the data.

Fig. 6.  Pairplot between variables with hue as Coefficient of Friction (COF).
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In later sections, there is a discussion regarding each model’s performance based on these metrics, identifying 
the model with the best generalization ability on the dataset. The discussion will also cover possible reasons 
for each model’s behavior with the present data, addressing both advantages and limitations. Some models 
may excel in minimizing error (MAE, RMSE), while others may better capture overall variance (R2), leading to 
different practical implications in predictive reliability.

Support vector machine (SVM)
The SVM model’s performance in predicting the wear rate and coefficient of friction (COF) for the Al/Kaoline 
composite was comprehensively analyzed using both regression curves and residual diagnostics, as well as 
key metrics including R-squared, Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE). The 
regression plots in Fig.  9 display a strong linear relationship between actual and predicted values, with the 
majority of data points clustering closely along the regression line, especially for wear rate. This visual alignment 
reflects high predictive accuracy, further supported by the R-squared values of 0.9371 for wear rate and 0.7262 
for COF. These values suggest that the SVM model successfully captured approximately 93.71% of the variance 
in wear rate and 72.62% of the variance in COF, with wear rate predictions showing a notably higher explanatory 
power.

The MAE and RMSE values further validate the SVM model’s predictive performance. For wear rate, MAE 
was 0.1623 and RMSE was 0.2408, while for COF, MAE was 0.0405 and RMSE was 0.0502. These low error 
metrics indicate a strong predictive fit, with wear rate predictions showing slightly higher error values, possibly 
due to a broader data range or more subtle influencing factors in the wear data. RMSE, which penalizes larger 
deviations, highlights that significant prediction errors were minimized, demonstrating the model’s effectiveness 
in providing reliable results for both wear rate and COF.

In Fig.  10, residual diagnostics reveal additional insights into the model’s reliability and behavior. The 
residuals versus predicted plots for both wear rate and COF show a random scatter around the zero line, 
indicating that the SVM model effectively captured the data structure without introducing systematic biases. 

Fig. 7.  Hex bins representing the density of data points between input parameters versus wear rate.
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The autocorrelation plots show minimal correlation across lags, suggesting independence in the residuals, while 
the QQ plots and residual histograms for both properties confirm an approximate normal distribution, with 
residuals symmetrically distributed around zero. This normality and lack of autocorrelation are indicative of a 
well-fitted model that generalized well on the dataset without overfitting.

Overall, the combination of visual and quantitative analyses in Figs. 9 and 10, along with the performance 
metrics, underscores the SVM model’s effectiveness in accurately predicting the wear rate and COF of the Al/
Kaoline composite. The alignment of predicted versus actual values, low MAE and RMSE values, and favorable 
residual behavior affirm that the optimized SVM model provides reliable, unbiased predictions, making it 
suitable for applications in materials science where accurate prediction of material properties is critical.

R square MAE RMSE

Wear rate COF Wear rate COF Wear rate COF

SVM 0.9371 0.7262 0.1623 0.0405 0.2408 0.0502

Random Forest 0.9006 0.9020 0.2328 0.0231 0.3027 0.0300

XG Boost 0.9433 0.9462 0.1698 0.0165 0.2284 0.0220

KNN 0.8505 0.8504 0.2792 0.2797 0.3712 0.0371

ANN 0.9483 0.9416 0.1605 0.0169 0.2182 0.0232

Table 2.  Metrics of different ML models used in the present study.

 

Fig. 8.  Hex bins representing the density of data points between input parameters versus Coefficient of 
Friction (COF).
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Random forest (RF)
The Random Forest model’s performance in predicting the wear rate and coefficient of friction (COF) for the 
Al/Kaoline composite is effectively demonstrated through both its regression metrics and diagnostic plots, as 
illustrated in Figs.  11 and 12. The regression curves in Fig.  11 show a strong alignment between actual and 
predicted values, indicating high predictive accuracy for both wear rate and COF. The R-squared values for the 
Random Forest model were 0.9006 for wear rate and 0.9020 for COF, suggesting that the model successfully 
explained 90.06% of the variance in wear rate and 90.20% of the variance in COF. This high explanatory power 
reflects the model’s capacity to capture complex relationships within the data, achieving consistent accuracy 
across both target variables.

The Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) values further validate the Random 
Forest model’s reliability. For wear rate, the MAE was 0.2328 and the RMSE was 0.3027, while for COF, the 
MAE was 0.0231 and the RMSE was 0.0300. These low error values demonstrate that the Random Forest 
model effectively minimized prediction errors, with particularly low values for COF. This discrepancy in error 

Fig. 10.  Residual diagnostics plots of SVM model.

 

Fig. 9.  Regression curves in SVM model for wear rate and coefficient of friction.
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magnitudes between wear rate and COF could be due to differences in data distribution or complexity, but the 
model’s low RMSE values indicate that even larger deviations were well-controlled, reinforcing its robustness in 
predicting both properties.

The residual diagnostics in Fig. 12 provide further insights into the Random Forest model’s performance. 
The residuals versus predicted plots show a random scatter around the zero line, suggesting that the model 
captured the underlying patterns accurately without introducing systematic biases. The autocorrelation plots 
exhibit minimal correlation across lags, indicating that the residuals are independent. Additionally, the QQ plots 
and residual histograms reveal that the residuals approximate a normal distribution, with symmetric spread 
around zero, further confirming that the Random Forest model provides an unbiased fit.

In summary, the Random Forest model’s performance metrics, combined with the visual analyses in Figs. 11 
and 12, highlight its effectiveness in predicting both wear rate and COF. The high R-squared values, low MAE 
and RMSE, and favorable residual distribution all indicate that the optimized Random Forest model provides 
accurate and reliable predictions, making it a strong choice for modeling wear behavior in Al/Kaoline composites.

Fig. 12.  Residual diagnostics plots of random forest model.

 

Fig. 11.  Regression curves in random forest model for wear rate and coefficient of friction.
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XG boost
The XGBoost model demonstrated exceptional performance in predicting the wear rate and coefficient of 
friction (COF) for the Al/Kaoline composite, as illustrated in Figs. 13 and 14. The regression curves in Fig. 9 
reveal a strong agreement between actual and predicted values, with data points clustering closely around the 
regression line for both wear rate and COF. The narrow confidence bands further emphasize the precision of 
the model. The R-squared values of 0.9433 for wear rate and 0.9462 for COF indicate that the XGBoost model 
successfully captured 94.33% and 94.62% of the variance in the respective target variables, showcasing its ability 
to model complex relationships effectively.

The residual diagnostics in Fig. 14 provide deeper insights into the reliability of the model. The residuals 
versus predicted plots exhibit a random scatter around the zero line for both outputs, confirming that the model 
captured the underlying data patterns without introducing systematic biases and missing significant non-linear 
relationships. The residual histograms further validate the model’s performance, showing a symmetric, near-

Fig. 14.  Residual diagnostics plots of XG Boost model.

 

Fig. 13.  Regression curves in XG Boost model for wear rate and coefficient of friction.
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normal distribution of residuals centered around zero. This suggests that prediction errors are random and 
unbiased. Additionally, the autocorrelation plots show minimal correlation across lags, indicating that residuals 
are independent. The QQ plots confirm this, as the residuals align well with the theoretical quantile line, 
demonstrating that the errors approximate a normal distribution with only minor deviations at the extremes.

The model’s predictive accuracy, as quantified by key error metrics, underscores its effectiveness. For wear 
rate, the Mean Absolute Error (MAE) was 0.1698, and the Root Mean Squared Error (RMSE) was 0.2284; for 
COF, the MAE was 0.0165, and the RMSE was 0.0220. These low error values highlight XGBoost’s ability to 
minimize prediction discrepancies. Notably, the lower RMSE values indicate that the model effectively reduced 
larger deviations from the actual values, further reinforcing its robustness.

The exceptional performance of XGBoost can be attributed to its gradient boosting framework, which 
iteratively combines weak learners (decision trees) to correct errors from previous iterations, reducing both 
bias and variance. The inclusion of regularization techniques, such as L1 and L2 penalties, prevents overfitting 
and ensures generalizability, as evidenced by the well-behaved residuals. XGBoost’s ability to handle non-linear 
relationships and complex interactions between input variables also played a critical role in its predictive success. 
Furthermore, hyperparameter optimization using GridSearchCV ensured that key parameters, such as learning 
rate, maximum depth, and the number of estimators, were finely tuned to maximize performance. The model’s 
feature importance capability likely enhanced its efficiency by focusing on the most relevant input variables for 
predicting wear rate and COF16,39.

K-nearest neighbours (KNN)
The performance of the K-Nearest Neighbors (KNN) model in predicting wear rate and coefficient of friction 
(COF) for the Al/Kaoline composite is represented in Figs. 15 and 16, showing the regression curves and residual 
diagnostics. These figures, along with the associated metrics, provide an in-depth view of the model’s predictive 
behavior and accuracy.

The regression plots illustrate a reasonably close alignment between the actual and predicted values for both 
wear rate and COF, with data points clustering around the regression line. However, compared to previously 
discussed models like XGBoost, the KNN regression curves show slightly more dispersion, particularly for 
wear rate, where deviations from the regression line are more pronounced. The confidence bands around the 
regression lines are relatively wider, indicating increased variance in the predictions. This behavior is expected, 
as KNN’s performance depends heavily on the distribution of data points and the selection of the optimal 
number of neighbors (k).

The residual diagnostics plots provide additional insights into the model’s predictive behavior and highlight 
areas of improvement: For both wear rate and COF, the residuals versus predicted plots display a somewhat 
random scatter around the zero line, indicating that the model captured the data patterns without systematic 
bias. However, a few noticeable deviations, especially for wear rate, suggest that the KNN model struggled with 
certain data points that may represent edge cases or regions of sparse data. The histograms of residuals show 
a near-normal distribution centered around zero for both wear rate and COF. This distribution indicates that 
prediction errors are relatively unbiased and randomly distributed, although there is slightly more spread in 
wear rate residuals compared to COF. The autocorrelation plots reveal minimal correlation for both wear rate 
and COF residuals, suggesting that the residuals are largely independent. This independence validates the KNN 
model’s ability to generalize well across the dataset. The QQ plots for both outputs demonstrate that the residuals 
closely follow a normal distribution, with only slight deviations at the extremes. These deviations may arise due 
to localized data sparsity, which can affect KNN’s performance.

The KNN model’s performance metrics further illuminate its predictive accuracy. The R-squared values were 
moderate, indicating that the model explained a substantial portion of the variance: 0.8750 for wear rate and 

Fig. 15.  Regression curves in KNN model for wear rate and coefficient of friction.
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0.8850 for COF. While these values are lower than those achieved by XGBoost and Random Forest, they still 
highlight the model’s ability to capture meaningful patterns within the data. The Mean Absolute Error (MAE) 
values were 0.2851 for wear rate and 0.0357 for COF, while the Root Mean Squared Error (RMSE) values were 
0.3563 and 0.0430, respectively. These error metrics suggest that the KNN model’s performance is more variable 
compared to ensemble-based models, especially for wear rate, where higher MAE and RMSE indicate increased 
prediction errors. The COF predictions, on the other hand, exhibit lower errors, likely due to the more linear and 
less complex relationships in the COF data. KNN’s performance is heavily influenced by its reliance on local data 
patterns. The model predicts an output by averaging the outcomes of the ‘k’ nearest neighbors, which makes it 
sensitive to the density and distribution of data points. In areas where data points are sparse, KNN may struggle, 
as reflected in the wider confidence bands and higher prediction errors for wear rate. The choice of the optimal 
‘k’ through hyperparameter tuning mitigated some of these issues, but the model’s reliance on local proximity 
inherently limits its ability to generalize for more complex or less uniform datasets33,40.

Artificial neural networks (ANN)
The Artificial Neural Network (ANN) model demonstrated strong predictive capabilities for both wear rate and 
coefficient of friction (COF) in the Al/Kaoline composite, as evidenced by the regression curves and residual 
diagnostics presented in Figs. 17 and 18. The regression plots in Fig. 17 highlight a high degree of alignment 
between the actual and predicted values, with data points clustering closely around the regression line for both 
wear rate and COF. The narrow confidence bands surrounding the regression lines reflect low variance in the 
predictions, reinforcing the reliability and accuracy of the model. These results indicate that the ANN model 
effectively captured both linear and non-linear relationships within the dataset, enabling accurate predictions.

The residual diagnostics, shown in Fig.  18, provide further validation of the model’s performance. The 
residuals versus predicted values plots display a random scatter around the zero line for both wear rate and COF, 
indicating that the model successfully captured the underlying trends in the data without introducing systematic 
biases. However, slight deviations in certain data points suggest areas where the model could further improve, 
particularly for wear rate predictions. The residual histograms show a near-symmetric bell-shaped distribution 
centered around zero, confirming that prediction errors are unbiased and evenly distributed. Furthermore, 
the autocorrelation plots reveal minimal correlation across different lags for both outputs, suggesting that the 
residuals are independent and supporting the robustness of the ANN model. The QQ plots further confirm that 
the residuals are approximately normally distributed, with minor deviations at the extremes, which is expected 
in complex datasets.

The performance metrics of the ANN model align well with the visual observations. The R-squared values of 
0.9298 for wear rate and 0.9215 for COF indicate that the model explained 92.98% and 92.15% of the variance in 
the respective target variables, highlighting its ability to generalize effectively. The Mean Absolute Error (MAE) 
values of 0.1815 for wear rate and 0.0213 for COF, along with the Root Mean Squared Error (RMSE) values of 
0.2418 and 0.0274, respectively, demonstrate the model’s accuracy in minimizing prediction errors. The slightly 

Fig. 16.  Residual diagnostics plots of KNN model.
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higher error values for wear rate suggest that this target variable may exhibit greater complexity or variability, 
which the ANN managed well but left some room for improvement.

The ANN model’s strong performance can be attributed to several key factors. Its ability to model non-
linear relationships through a multi-layered architecture enables it to capture complex interactions between 
input variables. The use of the backpropagation algorithm allowed for iterative weight adjustments, minimizing 
errors between actual and predicted values. Careful tuning of the model’s hyperparameters, such as the 
number of hidden layers, neurons per layer, activation functions, and learning rate, ensured a balance between 
underfitting and overfitting41,42. Additionally, the ANN model’s generalization ability, as evidenced by the 
residual independence and approximate normality of errors, demonstrates its reliability for predicting material 
properties in diverse datasets.

Fig. 18.  Residual diagnostics plots of ANN model.

 

Fig. 17.  Regression curves in ANN model for wear rate and coefficient of friction.
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Comparative analysis of ML models
The feature importance scores of the machine learning models, as illustrated in Fig. 19, provide a comprehensive 
understanding of how each input feature—Sod, Pressure, Angle, and Reinforcement (%)—contributed to 
predicting wear rate and coefficient of friction (COF). By analyzing these scores alongside the performance 
metrics, it becomes evident why certain models performed better than others and how specific features 
influenced their predictions.

For the SVM model (Fig.  19a), Sod was identified as the most significant feature for both wear rate 
(32.87%) and COF (31.38%), followed by Reinforcement (%) and Angle, while Pressure had a relatively lower 
contribution. SVM’s reliance on feature scaling and its ability to handle non-linear relationships allowed it to 
prioritize dominant features effectively. However, its slightly lower R2 value for COF (0.7262) compared to wear 
rate (0.9371) suggests that the model struggled to capture the more complex relationships influencing COF, 
highlighting its limitations in datasets with intricate feature interactions.

The Random Forest model (Fig. 19b) also identified Sod as the most critical feature for both outputs, with 
33.02% importance for wear rate and 32.89% for COF. Unlike SVM, Random Forest assigned substantial 
importance to Pressure (29.23% for wear rate and 29.36% for COF), demonstrating its ability to capture the 
combined effects of multiple features. This balanced feature contribution likely contributed to the model’s strong 
and consistent performance across both outputs, as reflected in its R2 values of 0.9006 for wear rate and 0.9020 
for COF. The ensemble nature of Random Forest, which averages predictions from multiple decision trees, 
enhanced its robustness and ability to handle feature redundancies, although its performance was slightly lower 
than XGBoost.

The XGBoost model (Fig. 19c) achieved the highest accuracy, with R2 values of 0.9433 for wear rate and 
0.9462 for COF, and the lowest error metrics among all models. Similar to other models, XGBoost identified Sod 
as the most influential feature (33.11% for wear rate and 32.87% for COF) but also highlighted the importance 
of Reinforcement (%) and Angle. The model’s ability to iteratively refine predictions through gradient boosting 
and optimize feature contributions played a key role in its superior performance. The slightly higher importance 
of Reinforcement (%) in XGBoost suggests that it captured subtle interactions between reinforcement content 
and other variables, which were critical for accurately predicting both outputs. Additionally, XGBoost’s use of 
regularization techniques to prevent overfitting further enhanced its predictive capability.

The ANN model (Fig. 19d) displayed a similar feature importance distribution, with Sod being the dominant 
feature for both wear rate (32.56%) and COF (32.88%), followed by Reinforcement (%), Angle, and Pressure. 
The ANN model’s ability to learn complex, multi-dimensional patterns enabled it to achieve high R2 values of 
0.9298 for wear rate and 0.9215 for COF. However, its slightly higher error metrics, particularly for wear rate, 
suggest that it was less effective in capturing subtle feature interactions compared to XGBoost. The relatively 
lower importance of Pressure in the ANN model may also explain its comparatively higher error rates, indicating 
that further tuning of the model’s architecture or incorporating additional data could enhance its performance. 
For good understanding purpose comparative analysis of similar works performed on aluminium composites 
are listed in Table 3.

In summary, the performance of each model was strongly influenced by its ability to utilize key features like 
Sod and Reinforcement (%), which consistently emerged as the most critical inputs. While Random Forest and 
ANN delivered robust and consistent results, XGBoost outperformed all models, achieving the highest R2 values 
and lowest error metrics. Its ability to effectively capture complex feature interactions, combined with iterative 
refinement and regularization, made it the most reliable model for predicting wear rate and COF in this dataset. 
The findings also underscore the importance of Sod and Reinforcement (%) as dominant features across all 
models, highlighting their critical role in predicting the target outputs.

Future scope
Future research can focus on expanding the dataset by incorporating a broader range of reinforcement 
compositions, sintering conditions, and wear test parameters to enhance model generalization. The inclusion 
of multi-source datasets from different fabrication methods and testing conditions would further improve 
predictive robustness. Additionally, data augmentation techniques, such as synthetic data generation using 
generative models, can be explored to address data scarcity issues in composite material studies. In terms of 
machine learning advancements, future work can investigate deep learning architectures such as convolutional 
neural networks (CNNs) and long short-term memory (LSTM) networks to capture complex nonlinear 
relationships in the dataset. Reinforcement learning approaches could also be explored to dynamically optimize 
process parameters for real-time wear rate prediction and adaptive manufacturing. Furthermore, ensemble 
learning techniques combining multiple models can be examined to further enhance prediction accuracy and 
model stability.

From an experimental standpoint, future research can focus on refining the microwave sintering process by 
optimizing power distribution, heating rates, and multi-mode cavity designs to achieve improved densification 
and mechanical performance. The integration of real-time monitoring systems using infrared thermography, 
acoustic emission analysis, and in-situ load monitoring could provide more comprehensive datasets, enabling 
better machine learning-driven insights into wear behavior. By addressing these aspects, future studies can 
further advance the predictive modeling of tribological behavior in metal matrix composites, leading to more 
reliable and high-performance material development.

Conclusions
In conclusion, this study successfully applied machine learning models to predict the wear rate and coefficient 
of friction (COF) for an Al/Kaoline composite using experimental data. Among the models evaluated—Support 
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Vector Machine (SVM), Random Forest, XGBoost, and Artificial Neural Network (ANN)—XGBoost emerged 
as the most reliable and accurate model. It achieved the highest R2 values of 0.9433 for wear rate and 0.9462 for 
COF, along with the lowest error metrics, including MAE and RMSE. The superior performance of XGBoost can 
be attributed to its ability to iteratively refine predictions through gradient boosting, effectively handle complex 
feature interactions, and optimize feature contributions through regularization techniques. While Random 
Forest and ANN also demonstrated strong predictive capabilities, their slightly lower accuracy highlights the 
importance of the advanced boosting mechanisms employed by XGBoost.

Fig. 19.  Feature importance scores of different ML models implemented in the current investigation.
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The feature importance analysis revealed that Sod consistently emerged as the most influential feature across 
all models for both wear rate and COF, followed by Reinforcement (%), Angle, and Pressure. This consistent 
ranking underscores the critical role of these parameters in determining the wear behavior of the composite. 
The ability of XGBoost to capture subtle interactions between these features contributed significantly to its 
superior performance. SVM, on the other hand, performed well for wear rate predictions but showed limitations 
in handling the non-linear relationships influencing COF, while ANN’s slightly higher error rates suggested the 
need for further architectural optimization or additional data for improved performance.

Overall, this work highlights the potential of machine learning models, particularly XGBoost, as powerful 
tools for predicting material properties based on experimental data. The findings provide valuable insights 
into the relative contributions of key input features and demonstrate the effectiveness of machine learning in 
modeling complex, multi-dimensional relationships in composite materials. These results pave the way for 
leveraging data-driven approaches to optimize material design and performance in industrial applications. The 

References Materials Method used Independent variables
Dependent 
variables Findings

43 Alumina-based 
composites

Novel dynamic grey wolf-
driven support vector 
machine (DGW-SVM)

Specific independent 
variables are not explicitly 
listed in the study

Wear
Friction 
qualities

The model demonstrates high accuracy with performance 
metrics including RMSE of 0.098, MAE of 0.114, and R2 of 
0.998

44 Al2219-SiCp Composite

A feed forward back 
propagation hierarchical 
neural network was 
utilized to develop the 
predictive model for 
wear characteristics of Al 
2219-SiCp composite

Weight fraction of the 
Reinforcement
Sintering temperature
Applied normal load on 
the pin
Disc speed

Wear 
characteristics

The results demonstrated a good prediction accuracy of 
approximately 85% for all wear characteristics, with the 
percentage error remaining within acceptable limits, indicating 
the effectiveness of the ANN model in predicting wear 
behaviour

45

AlMg1SiCu/Silicon 
Carbide/Molybdenum 
Disulphide Hybrid 
Composites

Adaptive Neuro-Fuzzy 
Inference System 
(ANFIS) back-
propagation algorithm

Weight fractions of self-
lubricant molybdenum 
disulphide (MoS2) 
particles, which were tested 
at 3%, 6%, and 9% in the 
AlMg1SiCu alloy hybrid 
composites
Sliding speed during the 
dry sliding wear tests

Weight loss
The coefficient 
of friction

The study found that the addition of molybdenum disulphide 
(MoS2) particles to the AlMg1SiCu alloy hybrid composites 
improved the wear resistance, as evidenced by a reduction in 
weight loss and coefficient of friction, particularly with 9% 
MoS2 at low sliding speeds due to the formation of a lubricated 
tribolayer

46 aluminium-fly ash 
composites

Developed a feed forward 
back propagation 
artificial neural networks 
(ANNs) model

Applied load (L),
Sliding speed (S),
Size of the fly ash
Percentage of 
reinforcement (P)

Wear rate
Coefficient of 
friction

Predicts the wear rate and coefficient of friction with an 
accuracy of up to 95%. The ANNs model was able to minimize 
the mean square error during training, achieving a maximum 
deviation of 6.41% for wear rate and 10.20% for coefficient of 
friction, indicating that the predicted values closely matched 
the experimental results

47 Al/Al2O3 metal matrix 
composites

artificial neural 
network (ANN) 
models: the multilayer 
perceptron (MLP) and 
the generalized radial 
basis function (GRBF) 
network architectures

Volume fraction
Density,
Hardness,
Applied pressure,
Sliding speed
Test temperature

Wear rates

Achieving a mean relative error (MRE) of 7.72%. In contrast, 
the generalized radial basis function (GRBF) network 
demonstrated significantly lower predictive performance with 
an MRE of 28.34%. MLP model is more effective for predicting 
wear rates

48 Aluminum-B4C (0, 2.5, 
5, and 7.5 wt%),

A Gated Recurrent Unit 
neural network was 
developed to predict the 
coefficient of friction 
(COF)

Weight percentage of B4C 
microparticles added to 
the Al10Cu composites, 
specifically at levels of 0, 
2.5, 5, and 7.5 wt%

Coefficient 
of friction 
(COF)

Achieved high accuracy with an R2 of 0.9965 for the test set 
and 0.9917 for the validation set for COF

49 AlSn6Cu–Al2O3 
composites

LSTM recurrent neural 
network model Varying loads

Coefficient 
of friction 
(COF)

The study found that the open-cell AlSn6Cu–Al2O3 composites 
exhibited significant improvements in wear resistance, with 
mass-wear reductions observed from 8.05 mg to 1.90 mg 
at a load of 50 N, and from 17.55 mg to 8.10 mg at 100 N, 
indicating the effectiveness of Al2O3 particles in enhancing 
wear performance under varying loads

50 AZ91/Gr/Al2O3 
composites

Decision tree (DT)
Random forest (RF)
Gradient boosting 
regression (GBR)

Reinforcement percentage
Load
Velocity
Sliding distance

Wear rate
Coefficient 
of friction 
(COF)

Among the machine learning models employed to predict 
wear rate (WR), the gradient boosting regression (GBR) model 
demonstrated the best performance, achieving a mean squared 
error (MSE) of 0.0398, root mean squared error (RMSE) of 
0.1996, mean absolute error (MAE) of 0.1673, and a coefficient 
of determination (R2) of 98.89

51 Hybrid aluminum metal 
matrix composites

genetic algorithm,
artificial neural network 
(ANN)
multiple linear regression 
analysis

Zirconium diboride (ZrB2) 
particles
Fly ash
Ambient and elevated 
temperatures

Wear behavior

The optimization of wear test parameters, coefficient of friction 
(COF), and wear rate is achieved through a genetic algorithm, 
while predictive modeling for wear is conducted using artificial 
neural networks (ANN) and multiple linear regression analysis
The ANN model demonstrates high accuracy, with predictions 
deviating only 0% to 1.39% from experimental values

52 pure Al-Si3N4/ZrO2

Analysis of Variance 
(ANOVA)
Artificial Neural Network 
(ANN) model with feed-
forward backpropagation

Weight percentage (wt%) of 
Si3N4 and ZrO2
Compaction pressure

Wear loss

An artificial neural network (ANN) model was developed 
using feed-forward backpropagation analysis, which 
demonstrated that the predicted wear loss results closely 
matched the experimental findings, indicating the effectiveness 
of the ANN in predicting wear performance in these 
composites

Table 3.  Comparative analysis of various works like present investigation.
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developed Al-Kaolin composite exhibits enhanced wear resistance and mechanical properties, making it highly 
suitable for applications in the automotive industry, particularly in the fabrication of automobile brake discs. 
The improved hardness and reduced wear rate contribute to the durability and performance of braking systems 
under high-friction conditions.

Data availability
The data will be available on request to the corresponding author.
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