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Fractional Brownian motion (fBm) exhibits both randomness and strong scale-free correlations, 
posing a challenge for generative artificial intelligence to replicate the underlying stochastic process. 
In this study, we evaluate the performance of diffusion-based inpainting methods on a specific 
dataset of corrupted images, which represent incomplete Euclidean distance matrices (EDMs) of 
fBm across various memory exponents (H). Our dataset reveals that, in the regime of low missing 
ratios, data imputation is unique, as the remaining partial graph is rigid, thus providing a reliable 
ground truth for inpainting. We find that conditional diffusion generation effectively reproduces 
the inherent correlations of fBm paths across different memory regimes, including sub-diffusion, 
Brownian motion, and super-diffusion trajectories, making it a robust tool for statistical imputation in 
cases with high missing ratios. Moreover, while recent studies have suggested that diffusion models 
memorize samples from the training dataset, our findings indicate that diffusion behaves qualitatively 
differently from simple database searches, allowing for generalization rather than mere memorization 
of the training data. As a biological application, we utilize our fBm-trained diffusion model to impute 
microscopy-derived distance matrices of chromosomal segments (FISH data), which are incomplete 
due to experimental imperfections. We demonstrate that our inpainting method outperforms standard 
bioinformatic methods, suggesting a novel physics-informed generative approach for the enrichment 
of high-throughput biological datasets.

Diffusion probabilistic models are gaining popularity in the field of generative machine learning due to their 
ability to synthesize diverse and high-quality images from the training distribution. The iterative denoising 
approach taken by diffusion1–3 outperforms in quality of generated samples the previously used schemes4, such as 
VAEs5,6 and GANs7–9, and has demonstrated a distinctive potential in scalability10. Recently, several conditional 
diffusion-based generation methods have been developed11–13, allowing for effective inpainting of masked 
images using the pre-trained unconditional diffusion model. Still, whether the diffusion-based inpainting can 
learn and reproduce the intrinsic non-local dependencies in the pixels of the image drawn from a particular 
statistical ensemble has remained unaddressed. Furtheremore, recent studies by14,15 suggest that modern text-
to-image generative diffusion models, such as Dalle-210, Imagen16, or StableDiffusion17, tend to recall samples 
from their training databases, raising questions about their generalization capabilities and bringing up the 
copyright infringement concerns during the diffusion training process.

In this paper we consider a dataset of incomplete EDMs and propose to approach the EDM completion 
problem as the image inpainting via conditioning of the Denoising Diffusion Probabilistic Model (DDPM). 
Importantly, the possibility of existence of the ground truth of the inpainting in the EDM dataset uniquely 
allows one to evaluate the quality of the conditional generation at the instance level. At high missing ratio, 
however, the solution of EDM completion does not exist and one has to rely on the ensemble-level metrics 
such as Fréchet Inception Distance (FID). Here we ask: can the diffusion model learn the intrinsic correlations 
between the entries of the matrix when an ensemble of such matrices is given and statistically reproduce them 
upon the inpainting? In order to explore the modern generative models at this novel angle we consider the 
pairwise distances between the points of a discrete fractional Brownian process (fBm), the simplest Gaussian 
generalization of a Brownian motion with strong scale-free correlations. The built-in memory in the fBm process 
can induce a non-Brownian exponent of the second moment (also known as the mean-squared displacement of 
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a particle undergoing the anomalous diffusion,18), which is translated into strong couplings between the pixels 
in the distance matrix.

Imputation of missing data has recently got a second wind with the development of high-throughput 
experimental techniques in chromosome biology. Diffusion models have been recently applied to generate and 
enhance protein and DNA datasets19–21. Hi-C and FISH experiments have provided significant new insights into 
the fractal (non-Brownian) folding of chromosomes22,23, despite the data being noisy and incomplete24,25. In 
particular, we and others have recently shown that the spatial organization of human chromosomes without loop-
extruding complexes (cohesin motors) statistically resembles the ensemble of fractal trajectories with the fractal 
dimension df = 322,26–30. Such an ensemble – leaving aside the biophysical principles of such organization – can 
be modelled as trajectories of a subdiffusive fBm particle with H = 1/327. This suggests an important statistical 
insight for the downstream data analysis31,32 (also relevant for the worm connectome datasets33).

FISH imaging experiments produce datasets that represent matrices of pairwise distances between 
chromosomal loci on single cells, which are obtained in multiplex microscopy. Thus each matrix corresponds to 
internal distances within a given chromosomal segment in a given cell. Occasionally, some data in the matrices 
is masked due to experimental imperfections (biochemistry of the protocol) posing a real challenge for the 
methods of the downstream analysis. In particular, inference of features of the 3D organization at the single 
cell level is notoriously obscured by the sparsity of the dataset at hand25; the reliable extraction of features from 
corresponding single-cell datasets poses a significant challenge for algorithms31,32,34 and is closely linked to the 
unique number-theoretic properties of sparse matrices35. Here we for the first time propose to use the modern 
generative AI for the inpainting of missing values and completion of experimentally-derived FISH matrices. For 
this aim we deploy the pre-trained fBm diffusion benchmark at H = 1/3, thus virtually taking into account the 
intrinsic correlations present in the fractal chromosome trajectories26,27.

The structure of this paper is as follows. In section Background we formulate the EDM completion problem as 
the image inpainting task, discuss some of classical results from discrete mathematics related to the existence and 
uniqueness of the EDM completion. In the following section (a) we demonstrate that the unconditional diffusion 
generation can learn and reproduce non-local correlations in the images (i.e., matrices) representing EDMs 
of fBm at various memory exponents H: for subdiffusion (H < 1/2), normal (H = 1/2) and superdiffusion 
(H > 1/2) in the single framework; (b) we apply the diffusion-based inpainting for the EDM completion 
problem showing that it results in low-rank solutions with the proper fBm-like statistics. We further demonstrate 
that the diffusion generation is qualitatively different from the database search, regardless of the database size, 
which is being in contrast with the most recent studies14,15. Finally, in the last section, we illustrate how the pre-
trained fBm diffusion model can be applied for the imputation of missing values in the chromosomal distance 
matrices derived from FISH experiments. We demonstrate superior performance of the diffusion-based inpaiting 
as compared to classical bioinformatics approaches. Our results pave the way for an accurate quantification of 
the cell-to-cell variability in the genome folding and, broadly, showcase the importance of generative AI in the 
omics data analysis.

Background
Euclidean distance matrices
In this paper we deal with n × n matrices A of squares of pairwise distances between n points x1, x2, ..., xn 
in the D-dimensional Euclidean space. For the purposes of this paper, we considered the case of D = 3. Such 
matrices A = {aij} satisfying

	 aij = ||xi − xj ||2, xi ∈ RD � (1)

are called Euclidean distance matrices (EDM). Clearly, A is a symmetric (aij = aji) and hollow (aii = 0) 
matrix with non-negative values, aij ≥ 0. As a distance matrix in Euclidean space it further satisfies the triangle 
inequality, √aij ≤ √

ain + √
anj . The latter constraint imposes essential non-linear relationships between the 

entries of an EDM, making its rank r independent of n for sufficiently large amount of points n in general 
position, i.e.

	 r = min(n, D + 2).� (2)

Any uncorrupted (complete, noise-less and labelled36) EDM A allows for the unique reconstruction of the original 
coordinates {xi} up to rigid transformations (translations, rotations and reflections). Such reconstructions are 
called realizations of A. Due to the straightforward relation between an EDM (see Eq. 1) and the corresponding 
Gram matrix gij = xT

i xj ,

	 aij = gii − 2gij + gjj ,� (3)

a realization of the distance matrix aij  consists of the origin (x1 = 0) and the principal square root of the 
(n − 1) × (n − 1) matrix g̃ij

	
g̃ij = 1

2(a1i − aij + a1j),� (4)

provided that g̃ij  is positive semidefinite with rank D (for points in general position). The latter is known as the 
Schoenberg criterion37,38. Other classical conditions for the existence of a realization of the complete EDM make 
use of the relations involving the Cayley-Menger determinants39 and allow to decide whether this realization 
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exists in the given space dimension D. Note that the general rank property of EDMs outlined above follows 
simply from Eq. 3: since the rank of Gram matrix gij  is D and the ranks of the other two terms in the equation is 
1, the rank of aij  cannot exceed D + 2. For other interesting properties of EDMs we refer the reader to classical 
textbooks on the topic40–42.

Noisy measurements of pairwise distances notably violate the properties of EDMs discussed above. In this 
case one is interested in the optimal embedding of the points in the space of desired dimension. For that low-
rank approximations by means of SVD or EVD of the Gram-like matrix g̃ij  from Eq. 4 are typically implemented 
in the spirit of the classical multidimensional scaling approach36,43.

Reconstruction of incomplete EDMs
A case of incomplete distance matrix, where a particular set of pairwise distances in Eq. 1 is unknown, is a 
prominent setting of EDM corruption that we study in this paper.

EDM completion problem. Let us specify m <
(

n
2

)
 missing pairwise distances between n points 

x1, x2, ..., xn of the D-dimensional Euclidean space by means of the symmetric mask matrix B = {bij} 
consisting of 2m + n zeros and n2 − n − 2m ones. By definition, bij = 0 if the distance between i and j is 
unknown or i = j, and bij = 1 otherwise. The matrix B is the adjacency matrix of the resulting partial graph. 
T﻿hat is, we have a matrix Ã = {ãij}:

	 ãij = aijb−1
ij for bij = 1,� (5)

while ãij  is undefined where bij = 0. The goal is, given an incomplete matrix Ã, defined by Eq.  5, restore (
n
2

)
− m missing pairwise distances, while preserving the known m distances. For approximate EDM 

completions, one seeks an EDM matrix A, such that the following Frobenius norm is minimized:

	 ||B ⊙ (A − Ã)||2F → min .� (6)

Here ⊙ is the Hadamard product of two matrices, i.e. a n × n matrix Zij = (X ⊙ Y )ij = XijYij . The condition 
Eq. 6 suggests that one is looking for an approximation A of the matrix Ã at the known entries such that A is an 
EDM matrix. For precise completions, if they exist, the norm Eq. 6 simply equals to zero.

Clearly, for the EDM completion to exist the matrix Ã must satisfy all the key properties of EDMs over the 
known entries, such as symmetricity, hollowness, non-negativity, as well as the triangle inequality at the known 
triples (i, j, k), s.t. bijbikbjk = 1. If these trivial conditions are satisfied, the matrix Ã is called a partial EDM 
(i.e. every fully specified principal submatrix of Ã is itself an EDM).

However, this condition is not sufficient. For instance, when graph B contains a cycle with at least four nodes 
that lacks a chord (an edge connecting two nodes within the cycle but not part of the cycle), one can select 
distances along the cycle such that the partial Euclidean distance matrix Ã cannot be completed. Graphs that do 
not have such cycles are referred to as chordal. The classical GJSW theorem44 states that a partial EDM Ã can be 
completed if the corresponding graph B is chordal, meaning it does not contain holes or cycles of length l ≥ 4 
without chords. Nevertheless, even when the conditions for completion are met, the solution may not be unique.

When is the completion unique?
In this paper we consider a specific case, when the incomplete matrix Ã is obtained from a full EDM matrix A by 
masking some (m) distances. Thus, the solution of EDM completion of Ã surely exists. A key relevant question 
for us, essential for proper interpretation of the diffusion predictions, is whether the solution of the matrix 
completion is unique.

In fact, uniqueness of the EDM completion is equivalent to uniqueness of the distance-preserving immersion 
{xi} of the partial graph B with the lengths of edges Ã into the metric space RD . The corresponding bar-and-
joint framework (B, {xi}) is called rigid (universally rigid), if all these configurations (in any space dimension 
D) are equivalent up to distance-preserving transformations45,46. There has been a series of classical results 
addressing sufficient conditions for the rigidity of frameworks through the stress and rigidity matrices (see45 for 
review), as well as by evoking semi-definiteness of A instead of the non-negativity47–49. Still, in practice testing 
for rigidity is known to be a NP-hard problem, unless the points are in general position46,50.

The more distances m missing in Ã, the more probable the solution of EDM completion is non-unique. Each 
ensemble of partial EDMs with exactly 2m missing entries can be characterized by the following missing ratio

	 µ = 2m/(n(n − 1)).� (7)

This number reflects the typical amount of constraints per each vertex (µn) in the partial graph. Though a useful 
intuitive measure, the missing ratio alone is not telling of the graph rigidity. In particular, in D dimensions it is 
not sufficient to have D constraints per vertex to ensure the graph rigidity (as a counterexample, imagine two 
cliques of size > D glued at a single vertex).

A greedy algorithm to check for the graph rigidity
Here we suggest the following greedy algorithm that checks for the rigidity of a given graph B. We describe it for 
D = 3, however, it can be simply generalized for an arbitrary D.

The algorithm sequentially chooses and adds vertices one by one to a subgraph, ensuring the growing 
subgraph at each step remains rigid. The key idea is that the coordinates of a new vertex in D dimensions can be 

Scientific Reports |        (2025) 15:19145 3| https://doi.org/10.1038/s41598-025-97893-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


uniquely determined, if it is connected to at least D + 1 = 4 vertices of the rigid subgraph. Following this idea, 
on the initial step (i) the algorithm identifies the maximal clique with not less than 4 vertices. As the clique has a 
complete EDM, there is the corresponding unique realization in the metric space (all cliques are rigid). Then, (ii) 
the algorithm seeks and adds a new external vertex, maximally connected with the rigid subgraph, but having 
not less than 4 edges. This process continues (iii-iv...) until all vertices are included to the subgraph, or none can 
be further added. If all the vertices are eventually included, the algorithm confirms that the given graph B is rigid 
and the EDM completion of Ã is unique. See Fig. S1 for the graphical sketch and Methods for the pseudo-code 
of the algorithm.

Fractional Brownian motion
Fractional Brownian motion is one the simplest generalizations of Brownian motion that preserves Gaussianity 
of the process, but introduces strong memory effects51. By definition, fBm is a Gaussian process BH(t) on the 
interval [0, T] that starts at the origin, B(0) = 0, and has the following first two moments:

	

⟨BH(t)⟩ = 0;

⟨BH(t)BH(t′)⟩ = 1
2

(
t2H + t′2H − |t − t′|2H

)� (8)

and 0 < H < 1 is the Hurst parameter (the memory exponent). As it remains Gaussian and ergodic18,52, the 
fBm model of anomalous diffusion often allows for analytical treatment. Clearly, the increments of fBm are not 
independent for H ̸= 1/2, at which it reduces to Brownian motion. The mean-squared displacement of fBm, 
⟨B2

H(t)⟩, describing how far the trajectory spreads from the origin at time t, can be obtained from Eq. 8:

	 ⟨B2
H(t)⟩ = t2H .� (9)

The parameter H physically characterizes fractality (“roughness”) of the trajectory. The autocorrelation of the 
fBm increments is given by the second derivative of Eq. 9:

	
⟨dBH(t)dBH(0)⟩ ∼ 2H(2H − 1)

t2−2H
, H = 1/2 ± ε.� (10)

Thus, normal diffusion (delta-functional correlations) is a particular case of fBm at H = 1/2, subdiffusion 
(negative power-law correlations between the increments) corresponds to H < 1/2, while superdiffusion 
(positive power-law correlations) corresponds to H > 1/2.

In this paper we consider a discrete-time process {xi}n
i=1 parameterized by {si}n

i=1 along the trajectory 
with the fBm statistics, Eq. 8 (x0 = 0 at s0 = 0). That is, the mean-squared displacement is ⟨r2(s)⟩ = a2s2H , 
where a is the typical displacement at a single “jump”; the pdf of the end-to-end vector r = xi − xj  between the 
points si and sj  of the trajectory depends only on the contour distance s = |si − sj | and reads

	
P (r|s) =

(
D

2πa2s2H

)D/2
exp

(
− Dr2

2a2s2H

)
.� (11)

Anomalous diffusion featuring strong memory effect can have different physical origins; examples include charge 
transport in semiconductors, cellular and nuclear motion etc. (see52,53 for a comprehensive review). Recently, an 
fBm model of chromosome folding has been proposed, where fractal chromosome conformations are modelled 
as trajectories of a subdiffusive fBm particle26–28.

In what follows, we train the diffusion model to generate complete EDM images A = {aij}n
i,j=1( see Eq. 1) 

of discrete fBm trajectories {xi}n
i=1 for different values of the Hurst exponent. The essential new competence of 

the diffusion generative model that we test is its ability to learn the power-law correlations in the fBm trajectories. 
This is crucial for the proper inpainting of the missing data in the distance matrix.

Diffusion-based generation of fBm trajectories
Diffusion generative models are renowned for their impressive capabilities to generate diverse natural images 
from a specified distribution. In essence, a Denoising Diffusion Probabilistic Model (DDPM, see Methods) 
produces data by reversing a forward noising process1,2; it takes a matrix of pure Gaussian noise (composed of 
independent normally distributed entries) as input and outputs a matrix that conforms to the target distribution 
(e.g., resembling a portrait of a human). Generation occurs through a series of sampling steps guided by the 
optimal gradient learned during the forward noising stage, facilitating a rich diversity of outputs. Thus, reversing 
the noise along the learned “pathway” enables the creation of a wide array of new samples from the original 
distribution. In the following subsection, we extend these concepts of (unconditional) generation to create a 
distinctive ensemble of Euclidean distance matrices (EDMs) with specific statistical characteristics. Subsequently, 
we apply the trained unconditional DDPM to address the problem of inpainting incomplete EDMs.

Unconditional generation
We aim to train DDPM to generate realistic ensembles of distance matrices with proper fBm statistics, see 
Figure 1(a)-(b). For the training set we synthesize M = 2 × 105 random fBm trajectories {xi}n

i=1 of length 
n = 64 in D = 3 using Davies-Harte algorithm54 for three values of the Hurst parameter: H = 1

3 ( subdiffusion), 
H = 1

2 ( normal diffusion) and H = 2
3 ( superdiffusion). Then we train the DDPM on the corresponding dataset 
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of complete EDMs A = {aij}n
i,j=1( see Eq. 1), obtained from the synthesized fBm trajectories (i.e., a separate 

round of training for each Hurst parameter). During each training round each of M matrices from the training 
ensemble is gradually transformed to white noise, while the mean reverse gradient is learned through training 
of a neural network. Finally, one initiates the denoising procedure and uses the learned gradients to transform a 
matrix of pure noise into a matrix from the original ensemble of Euclidean distance matrices (EDMs), preserving 
the statistical characteristics of the corresponding fractional Brownian motion (fBm).

Figure 2(a) demonstrates the generated distance matrices for the three representative values of H with the 
respective snapshots of trajectories. Qualitatively, with decrease of H trajectories turn to be more compact, 
enriching the distance matrices with local patterns. To ensure that the generated ensemble of Euclidean distance 
matrices (EDMs) accurately reflects the proper fractional Brownian motion (fBm) statistics, we compute the 
ensemble-averaged scaling of the mean end-to-end squared distance ⟨r2

H(s)⟩1/2 for segments of length s by 
averaging along the diagonal s in matrices from the generated ensemble. The log-log plot in Figure 2(b) illustrates 
that the DDPM model successfully reproduces the power-law scaling ∼ sH  of the distances for all s. Additionally, 
it accurately learns the correct memory exponent H in all the regimes within the statistical error. Some subtle 
deviations at small H can be attributed to insufficient training. Consequently, the generated EDM matrices exhibit 
trajectories with fractal properties analogous to those of the training ensemble. Next, we examine whether not 
only the scaling but also the entire distribution of pairwise distances is preserved in the generated matrices, see 
Figure 2(c). We find that the probability densities of the rescaled pairwise distance |r|/⟨r2

H(s)⟩1/2 collapse onto 
the Maxwell form 4πr2 × P (r|s), where P(r|s) is the standard Gaussian distribution. This behaviour occurs 
independently of the Hurst parameter and segment sizes s, in full agreement with Eq.11.

To assess whether the generated matrices closely approximate the target ensemble of Euclidean distance 
matrices (EDMs), we compute the similarity between a training sub-ensemble of matrices of size M/2 and the 
generated ensemble of the same size. We then compare this similarity to that between two training sub-ensembles 
of size M/2, as presented in Table 1. For the similarity measure, we utilize the Fréchet Inception Distance (FID), 
which is widely employed to evaluate the quality of images synthesized by generative models. Essentially, FID 
calculates the distance between the two distributions of high-level features extracted from the images processed 
through a convolutional neural network (Inception v3 architecture). A smaller FID value indicates that the 
two sets of images exhibit a similar diversity of features, signifying greater similarity between them. Table  1 
demonstrates that the FID score between the generated and the ground truth ensembles is higher than that 
between two ground truth sub-ensembles. Nonetheless, the score remains relatively low, with the corresponding 
noise level not exceeding 1.7%. This indicates that the diffusion process generates a statistically representative 
ensemble of Euclidean distance matrices (EDMs) with the specified Hurst parameter.

Additionally, we examine whether the matrix rank is accurately reproduced. As discussed in the first section, 
a set of points in general position in a space of dimension D would yield an EDM matrix of rank r = D + 2. The 

Fig. 1.  A pipeline of the diffusion-based inpainting scheme. (a) Synthesise of an ensemble of fBm trajectories 
{xi}n

i=1 of a certain length n and Hurst parameter H. Each trajectory is then converted into an EDM matrix 
{aij}n

i,j=1. (b) The Denoising Diffusion Probabilistic Model (unconditional DDPM, Algorithm 1 in Methods) 
is trained on the ensemble of EDM matrices. (c) The trained diffusion model is further used for the inpainting 
of masked values in incomplete EDMs (conditional generation, Algorithms 2–5 in Methods). Two examples of 
the input are shown: the masked entries are randomly dispersed in the EDM matrix (top) and entire rows and 
columns are masked (bottom). The latter example mimics the experimental FISH data.
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last column in Table 1, which displays the fraction of the first 5 singular values in the nuclear norm of the matrix, 
clearly indicates that the rank of the generated matrices is close to r = 5, as is expected for EDMs in D = 3.

All together, the unconditional generation of distance matrices by the pre-trained DDPM reproduces 
the statistical properties of the ensemble of EDM images corresponding to fBm trajectories, confirming that 
diffusion generative models are able to learn strong algebraic correlations in the training data (see Eq. 10).

Inpainting of incomplete EDMs
As the diffusion model fairly captures and reproduces the intrinsic correlations in fBm trajectories, we next ask 
whether the conditional generation (inpainting) of the pre-trained DDPM is able to optimally fill missing data in 
incomplete EDMs with memory. For the inpainting problem, we generate symmetric binary mask B with a given 
sparsity µ by sampling a Bernoulli random variable (Figure 1(c), input 1). The probability of getting a 0 is equal 
to the missing ratio µ for each element in the upper triangle of A. Then, the partially known distance matrices Ã 
are generated by multiplying the fully-known distance matrix A by the corruption mask, Ã = A ⊙ B( compare 

Fig. 2.  (a) Euclidean distance matrices and the corresponding fBm trajectories, generated by the unconditional 
diffusion model, for the three values of Hurst exponent: H = 1/3( subdiffusion), H = 1/2( normal 
diffusion) and H = 2/3( superdiffusion). The trajectories were obtained using gradient optimization of 
three-dimensional coordinates to match the generated distance matrices. The color changes from red to blue 
along the trajectory. (b) Scaling of the typical distances as a function of the contour length s for H = 1/3( 
red), H = 1/2( green) and H = 2/3( blue). EDM samples from the generated ensemble fill the grey intervals 
and thick color lines correspond to the ensemble-averaged curves. Black lines correspond to the training 
databases. (c) Collapsed probability densities of the diffusion-generated pairwise distances between two points 
on the trajectory separated by contour distance s. The black curve corresponds to the Maxwell distribution 
4πr2 × P (r|s), where P(r|s) is the standard Gaussian distribution.
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Figure  3(a) and (b)). Consequently, the inpainting task involves reconstructing A given the partially known 
matrix Ã and the mask B.

In this work, we test several diffusion-based methods such as DDPM, DDNM12, DDRM13, and RePaint11. 
These methods only need a pre-trained unconditional DDPM model as the generative prior, but we stress that 
DDNM, DDRM, and RePaint additionally require knowing the corruption operators at both training and 
generation. In our case, the corruption operator is a known corruption mask, which helps diffusion to inpaint. 
Methods DDNM and RePaint use a time-travel trick (also known as resampling in11) for better restoration 
quality, aimed at intense inpainting with a huge mask, but they can be adversarial at small missing ratio µ. It was 
shown in12 that DDNM generalizes DDRM and RePaint, but in our paper, we follow the convention that DDNM 
is a model with parameters, where the travel length and the repeat times are both set to 3, and for RePaint, we 
use a number of resamplings set to 10. We further discuss the differences between these methods in the Methods.

Alongside the (i) diffusion based methods DDPM, DDNM, DDRM, RePaint for inpainting1, we test other 
approaches. (ii) FISTA is the classical low-rank completion method that exactly recovers unknown distances in 
the case when such recovery is unique. (iii) Trajectory optimization relies on the direct gradient optimization of 
3D coordinates, incorporating a prior that the reconstruction A is an EDM with rank r = D + 2 = 5 in general 
configuration. (iv) The nearest neighbor (NN) method naively fills unknown matrix elements with the closest 
known distances in the matrix, assuming that close elements are similar. Finally, we also test the (v) database 
search approach, which fills unknown elements using the entries of the most similar EDM in a pre-generated 
database (see Methods for the details).

Visual inspection of the inpainted matrices shows remarkable results of the diffusion-based inpainting over 
classical EDM completion approaches at high sparsity µ( Figure 3, Figure S5). For systematic comparison of 
different methods, we measure RMSE and FID scores between exact distance matrices and reconstructed ones 
for 100 values of sparsity, equally spaced from µ = 0.01 to µ = 0.99, see Figure 4. To check for the uniqueness 
of the EDM completion, for each missing ratio µ we plot a fraction of uniquely recoverable EDMs that pass the 
rigidity test (see the previous section). We find that in the regime of small µ, where the solution is unique, RMSE 
of the reconstruction by FISTA is the smallest, and it converges to RMSE of diffusion-based inpainting when the 
uniqueness is effectively lost at µ ≈ 0.6 − 0.8. However, low FID values of the inpainting similar to the ones 
of FISTA indicate that the diffusion approach yields correct distributions of the matrices, while the intrinsic 
stochasticity of DDPM is the reason of the larger RMSE. We further find that the inpainting has a significantly 
smaller FID than the trajectory optimization (OPT) and outperforms in RMSE at small µ. Despite that OPT 
has the exact rank by construction, it fails to correctly reproduce the fBm-like statistics of the ensemble at small 
s (see Figure S2). Similar behaviour of the metrics is observed for H = 1/3 and H = 2/3( Figures S3,S4). 
Interestingly, among different diffusion-based inpainting schemes, DDRM has the smallest RMSE in a wide 
range of missing ratio µ, as can be seen in Figure S6 and Table 2. At some point DDRM performance decreases, 
while DDPM and DDNM generally better behave at very high missing ratios. Our numerical experiments thus 
demonstrate that DDRM method has the highest precision on the fBm benchmark in the wide range of sparsity.

Additionally, for the diffusion-inpainted matrices with Hurst exponents H = 1/2 and H = 1/3 we 
evaluated the physical characteristics of predicted versus ground-truth point clouds. First, we computed the 
gyration radius Rg2 of the cloud - a measure of the average pairwise distances between the points - for both 
the known/masked and inferred pairwise distances. This analysis was conducted at a sufficiently high sparsity 
level (µ = 0.9), ensuring that the unique solution for inpainting does not exist (Figure S7(a,c)). Despite the high 
fraction of unknown elements, our results show that diffusion inpainting accurately reproduces the physical 
size of the object within statistical error. Second, considering the “polymer nature” of the cloud, we analyzed the 
scaling relationship between physical distance and contour distance along the chain (Figure S7(b,d)). We found 
that the inferred scaling, derived from the predicted distances, closely aligns with the ground-truth scaling, 
further confirming the physical consistency of the inpainted matrices. These findings validate the robustness of 
the inpainting method in preserving key physical properties.

Hurst

Metric

FID DDPM FID reference FID ref. noised Equiv.noise, %

√∑5
i=1

λ2
i√∑64

i=1
λ2

i

H = 1/3 0.097 ± 0.012 0.033 ± 0.010 0.098 ± 0.013 1.68 ± 0.15 0.998 ± 0.001
H = 1/2 0.087 ± 0.013 0.037 ± 0.010 0.083 ± 0.011 0.356 ± 0.003 0.9997 ± 0.0003
H = 2/3 0.088 ± 0.023 0.044 ± 0.011 0.094 ± 0.015 0.102 ± 0.001 0.9997 ± 0.0003

Table 1.  DDPM unconditional generation. The FID is calculated between an ensemble of synthesized fBm 
distance matrices (the “ground truth”, the size M/2) and an ensemble of unconditional DDPM samples of the 
same size corresponding to three different values of the Hurst parameter. The dimension of the InceptionV3 
embedding used is 64. For the reference, we compute the FID between two independently synthesized 
ensembles of the same number of fBm distance matrices. The noised FID is then calculated between a ground 
truth fBm ensemble and a fBm ensemble with the multiplicative noise. The level of the multiplicative noise is 
determined to match the FID values of the DDPM model. The last column reflects the contribution of the first 
r = 5 singular values of the DDPM-generated matrices A in the nuclear norm.
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Fig. 4.  RMSE (a) and FID (b) plots as a function of missing ratio µ for different data imputation methods 
(H = 1/2). The fraction of rigid graphs is shown in the second axis (grey). (c) Log of FID of the matrices 
reconstructed via the database search as a function of the log of the database size M. Scatters for different 
values of sparsity µ = 0.05, 0.1, 0.15, 0.19, 0.24 are shown, corresponding to the regime where the unique 
EDM completion exists. The number of matrices used in the computation of the FID metrics on (b) is equal to 
2 ∗ 104.

 

Fig. 3.  Examples of EDM completion. (a) Complete EDM for a Brownian trajectory (H = 1/2). (b) A 
corrupted EDM obtained from (a) by masking distances at sparsity µ = 0.75. No exact solution exists at such 
a high sparsity. (c) The most similar matrix from the database search (the database size is M = 2 × 104). (d) 
The EDM completion obtained by the DDRM inpainting.
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The main experiments were conducted on matrices of size N = 64, which matches the matrix size used 
during training. Inpainting on larger matrices follows a principle similar to natural image restoration, where 
diffusion-based models are first trained on smaller resolutions and later fine-tuned for larger ones. However, 
increasing the matrix size significantly raises GPU memory requirements, limiting the maximum feasible size. 
In Figure S8(a), we demonstrate the application of our model, trained on 64×64 matrices (Hurst parameter 
H = 1/2), to a larger 256×256 matrix with µ = 0.9 sparsity. To evaluate the model’s generalization capability, 
we further applied it to even larger matrices, as shown in Figure S8(c) for µ = 0.25 sparsity. Our results indicate 
that the method performs well up to 1024×1024, though reconstruction quality depends on the sparsity level. 
Up to approximately µ = 0.9, our approach consistently outperforms nearest-neighbor interpolation (Figure 
S8(b)). Due to GPU memory constraints (30 GB), we limited our study to 1024×1024 matrices. For matrices 
exceeding GPU memory limits, a practical solution is to divide the large matrix into smaller, overlapping patches. 
These patches can be processed individually and reassembled to reconstruct the full matrix.

Diffusion vs Database search
A recent study has reported that diffusion can memorize and generate examples from the training dataset14,15. 
However, already for the unconditional generation and for various training database sizes we observe that the 
FID score between the matrices generated by diffusion and the train dataset is similar to the FID between the 
generated matrices and an independently synthesized set of distance matrices (Table  3). This suggests that 
DDPM is able to generalize rather than memorize the training examples.

Next, for the problem of conditional generation we find that different schemes of the diffusion inpainting 
significantly outperform the database search in all sparsity regimes, see Table  2 and Figure  4. Obviously, in 
contrast to the inpainting completion that has low rank, the matrix completed with the database would 
have essentially higher rank (lower fraction of the first 5 singular values, as shown in Table 2). Furthermore, 
Figure 4(a)-(b) importantly shows that for various database sizes M, the diffusion-based inpainting displays a 
different convexity of RMSE plots and different behaviour of FID. These results clearly suggest that generation by 
diffusion qualitatively differs from the database search, even for the largest database size M = 105, when Mn2 
approaches the number of parameters of the diffusion model (≈ 108).

We find that the FID of the database search generation weakly depends on the database size M. The respective 
slope of FID with M in the double-log scales (FID ∼ M−γ) seems to be independent of the missing ratio µ in the 
regime where the partial graph remains rigid, see Figure 4(c). By collapsing the plots for different µ together we 
find the power-law dependence of FID on µ, i.e. FID ∼ µa with a ≈ 1.41 ± 0.06. For the set of collapsed data 
at different µ we further estimate the optimal power-law exponent γ ≈ 0.026 ± 0.003( Figure S9).

	 FIDdatabase(M, µ) ∼ µaM−γ ; a ≈ 1.41, γ ≈ 0.026.� (12)

Methods DB 500 DB 1k DB 2k DB 5k DB 20k DB 200k

FID(train, gen) 0.90 ± 0.24 0.56 ± 0.04 0.341 ± 0.006 0.257 ± 0.008 0.248 ± 0.008 0.0875 ± 0.0005
FID(test, gen) 0.91 ± 0.23 0.53 ± 0.03 0.335 ± 0.008 0.257 ± 0.008 0.251 ± 0.002 0.0874 ± 0.0007

Table 3.  FID(train, generated) and FID(test, generated) for uncodnitional DDPM samples for diffusion 
trained on databases of different sizes.

 

Sparsity Metric

Method

RePaint DDRM DDNM DDPM Database search

µ = 0.25

RMSE↓ 0.49 ± 0.02 0.170 ± 0.017 0.211 ± 0.018 0.313 ± 0.023 1.12 ± 0.12
FID↓ 0.0446 ± 0.0026 0.013 ± 0.0017 0.027 ± 0.0015 0.0235 ± 0.0019 1.225 ± 0.009
Rank↑ 0.858 ± 0.025 0.853 ± 0.023 0.854 ± 0.022 0.849 ± 0.025 0.65 ± 0.05

µ = 0.5

RMSE↓ 0.54 ± 0.04 0.241 ± 0.027 0.325 ± 0.027 0.55 ± 0.05 1.61 ± 0.18
FID↓ 0.053 ± 0.003 0.018 ± 0.002 0.053 ± 0.002 0.0246 ± 0.0007 1.79 ± 0.01
Rank↑ 0.86 ± 0.025 0.854 ± 0.025 0.853 ± 0.025 0.843 ± 0.030 0.63 ± 0.05

µ = 0.75

RMSE↓ 0.68 ± 0.06 0.42 ± 0.04 0.56 ± 0.04 1.23 ± 0.18 1.97 ± 0.22
FID↓ 0.075 ± 0.003 0.034 ± 0.003 0.116 ± 0.002 0.096 ± 0.003 1.25 ± 0.011
Rank↑ 0.863 ± 0.025 0.854 ± 0.027 0.854 ± 0.027 0.82 ± 0.04 0.65 ± 0.05

Table 2.  Comparison of different inpainting methods in EDM completion. The FID is calculated between an 
ensemble of distance matrices, which are generated by the Davies-Harte algorithm, and reconstructed samples 
corresponding to three different sparsity values µ. The dimension of the InceptionV3 embedding used for FID 
is 64. The rank measures the contribution of the first r = 5 singular values of the reconstructed matrix in the 
nuclear norm. The number of matrices used in the computation of the FID metrics is equal to 105.
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Then we extrapolate the scaled FID to larger database sizes M to find the effective M∗ needed to reproduce the 
correct distribution of EDMs. Using the FID of the diffusion inpainting as a reference, we numerically obtain a 
range of magnitudes corresponding to the effective database size

	 log(M∗)|exp = 76.7 ± 10.3.� (13)

Such a giant size of the effective database M∗ as compared to the amount of parameters in the diffusion 
model is explained by the exponential dependence of M∗ on the trajectory length n. Indeed, for a single 
trial, the expected negative log-likelihood of a random variable x from a standard normal distribution is 
E[− ln(p(x))] = ln(

√
2π) + 1

2 . For the purpose of counting we assume the trajectories are drawn on the lattice 
with the fixed step size and fixed origin, then, the whole ensemble of distance matrices can be generated with 
∼ 2(n − 1) Gaussian random variables. Therefore, the total entropy of the ensemble, or the log of the effective 
database size, reads

	
log(M∗)|theory = 2(n − 1)

ln(10)

(
ln(

√
2π) + 1

2

)
≈ 78.89.� (14)

As a caveat, note that this theoretical result provides the upper bound for M∗, and it should be reduced upon 
taking into account the distance-preserving transformations. Nevertheless, comparing Eq. 13 with Eq. 14 we 
find a remarkable agreement.

Filling missing data in the FISH dataset using the fBm benchmark
As an application of the pre-trained fBm diffusion model, we briefly discuss the results of imputation of missing 
data in single cell matrices of pairwise distances between chromosomal segments (see Figure 5) obtained from 
microscopy experiments (Fluorescence In Situ Hybridization, FISH23). The corresponding public folder with 
the raw data is available at the Github page of the paper (https://github.com/BogdanBintu/ChromatinImaging). 
The dataset represents the 3D coordinates of 30kb segments on a human chromosome 21 (the human colon 
cancer cell line, HCT116) measured using the multiplex microscopy. Noticeably, some of the coordinates are 
missed (nan values in the data). For our purposes of the restoration of missed coordinates we used the data 
with auxin that supposedly corresponds to the condition with no cohesin-mediated loops. Indeed, in vivo data 
shows that without loops chromosomes exhibit fractal statistics, thus justifying the use of fBm trajectories in the 
training phase of our benchmark26,27. We take the 2Mb-long segment from 28Mb to 30Mb for the analysis, the 
corresponding file name is “HCT116_chr21-28-30Mb_6 h auxin.txt”.

First, using the raw data we reproduce the fractal scaling of chromosomal folding22,26,27, i.e. ⟨r2(s)⟩1/2 ∼ s1/3, 
see Figure S10. We stress that such a behaviour corresponding to the fractal dimension df = 3 is a result of 
depleted cohesin from the cell nucleus, which is known to extrude loops on chromosomes (see our previous 
works26,55,56 for the biophysical model showing how cohesin loops break the scale-invariance). Thus, to inpaint 
the missing data we decided to use the diffusion model trained on the fBm ensemble with H = 1/3( the fractal 
dimension is the inverse of the Hurst parameter). Figure 5 shows the resulting matrices obtained using various 
inpainting methods run on a particular FISH dataset (cell 343, see Tables S2-S3 for the data).

To measure the performance of the DDPM inpainting in comparison to other methods we chose 670 cells 
(out of 7380 cells) in the dataset that have exactly 15 missing rows and columns. This corresponds to sparsity 
µ′ = 0.29. In order to compute RMSE (Table 4) we additionally dropped 10 rows and columns from the matrices 
resulting in µ = 0.63. We then imputed the missing distances using the standard bioinformatics approaches 
(nearest neighbor, ensemble mean) and various diffusion-based inpainting methods (DDRM, DDNM, DDPM, 
RePaint). The nearest neighbor approach relies on filling the unknown distances with the nearest neighbour in 
the same matrix (cell). The ensemble mean approach fills the missing entry with the corresponding average over 
the cells where this element is known. The average RMSE was computed for each imputed cell over the known 
values in the dropped 10 columns and rows. Note that since the entire rows and columns are missing in FISH 
distance matrices, precise EDM completion algorithms such as FISTA or trajectory optimization (OPT) are not 
applicable here.

Consistently with numerical experiments, the Table 4 demonstrates that the DDRM inpainting trained on the 
fBm benchmark is superior over other diffusion-based and bioinformatics approaches. It should be noted that 
it has a comparable RMSE and rank with DDNM inpainting, while RePaint and DDPM behave slightly worse 
(the resulting RMSE is more than 10% larger). This is to be compared with other approaches, such as filling the 
missing distances using the nearest neighbor pixel from the same matrix (NN) or using the average over the 
cells where this matrix element is known (Ens. mean). These clearly naive approaches behave significantly worse 
both in the rank and RMSE. This observation highlights that the fBm benchmark for diffusion-based inpainting 
shows evidently better performance on a biological dataset than canonical bioinformatics approaches.

Conclusion
By treating the Euclidean distance matrices as images, in this paper we demonstrated that diffusion probabilistic 
model can learn the essential large-scale correlations in the distance matrices of the ensemble of fBm trajectories 
for various memory exponents H. Based on this observation, we apply the diffusion-based inpainting trained 
on the fBm benchmark for the problem of EDM completion, exploring diffusion inpainting methods at various 
sparsity parameters. Using our benchmark we observe that the diffusion behaves drastically different from 
the database search with the database size similar to the number of parameters of the diffusion model. We 
provide a theoretical argument for the effective database size explaining such a qualitative difference and verify 
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Methods Ens. mean NN DDPM RePaint DDNM DDRM

RMSE, nm 147.4 ± 5.2 111.4 ± 3.2 97.2 ± 2.5 98.3 ± 2.7 85.1 ± 2.8 84.2 ± 2.8

Rank 0.752 ± 0.025 0.79 ± 0.03 0.79 ± 0.04 0.82 ± 0.04 0.82 ± 0.03 0.82 ± 0.03

Table 4.  Reconstruction of chromatin (FISH) distance matrices. Average metrics over 670 single cells are 
shown.

 

Fig. 5.  Inpainting of chromosome distance matrices from a FISH experiment. (a) Original experimental 
matrix with 15 missing rows and columns. (b) Corrupted experimental matrix with 10 rows and columns 
additionally masked. The masking is needed in order to evaluate RMSE of various inpainting methods at the 
known (masked) values. The resulting sparsity is µ = 0.63. (c)-(h) Inpainting methods, as indicated. For the 
ensemble mean (d) the average value is taken over 670 single cell distance matrices, where the corresponding 
matrix element is known. Diffusion-based methods (e)-(h) exploit the pre-trained diffusion model with the 
Hurst parameter H = 1/3. The colorbars show the range of pairwise distances between chromosomal loci in 
nm. The data is shown for cell 343, see Tables S2-S3 in the Supplementary Information.
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it in numerical experiments. We further show that the diffusion-based inpainting not only learns the latent 
representation of the distance matrices, but also manages to properly reproduce the statistical features of the 
fBm ensemble (the memory exponent). Application of the pre-trained fBm benchmark for the microscopy-
derived dataset of pairwise spatial distances between chromosomal segments demonstrates its superiority in 
reconstructing the missing distances over the standard approaches widely used in bioinformatics. We thus 
expect that other chromosomal datasets obtained in high-throughput experiments (such as Hi-C) that can be 
represented as matrices would benefit from the proposed fBm benchmark.

It should be noted that instance-based metrics for evaluating inpainting quality, such as RMSE, PSNR, and 
SSIM, are valid only when the inpainting ground truth exists (as is the case with the EDM dataset at low µ). In 
image domains, however, masking even a small area can yield multiple plausible inpainting results. For example, 
masking facial features such as eyes can result in various natural facial variations (e.g., differing eye colors). 
Therefore, conventional image datasets, such as CIFAR-10, ImageNet, or LAION, present ill-posed inpainting 
problems. In contrast, the EDM dataset we proposed uniquely facilitates studying the performance of generative 
models at the instance level. Additionally, it allows systematic comparisons between diffusion inpainting and 
database search results, highlighting the fundamental generalization capabilities of the diffusion models.

As the main limitation of our fBm benchmark, we stress out that it is not directly applicable to noisy EDMs, 
i.e. we assume that the known pairwise distances are exact. This should be seriously taken into account upon 
application of the benchmark to real datasets. Also the wild type chromosomes (with cohesin present in the cell) 
show a distinctively non-fractal statistics, thus requiring an adequate modification of the benchmark for the 
purposes of the data imputation. Other caveats are discussed in the flow of the paper.

Methods
We conducted all experiments on a workstation equipped with two NVIDIA RTX 4090 graphics cards and 256 
GB of RAM. The DDPM model was parameterized using the UNet2DModel from the Diffusers library, and we 
trained the model for 100 epochs on datasets of generated fBm trajectories for dataset sizes ranging from 500 
to 200,000 distance matrices (500, 1000, 2000, 5000, 20000 and 200000), see Table 3. For other experiments we 
used the diffusion model trained on the dataset of 200k distance matrices. For the inpaitning experiments we 
used 200 generation steps. The source code for the experiments is available at ​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​a​l​o​b​a​​s​h​e​v​/​​f​b ​
m​-​i​n​​p​a​i​n​t​i​​n​g​-​b​e​n​​c​h​m​a​r​k.

DDPM unconditional generation
Denoising Diffusion Probabilistic Models (DDPM) generate data by reversing a forward noising process1,2. The 
forward process incrementally adds Gaussian noise to an initial sample x0 ∼ pdata from the distribution pdata 
over a sequence of T ≫ 1 steps, following a variance schedule denoted by β0 = 0; 0 < β1, β2, ..., βT < 1. When 
the schedule is properly configured and T is sufficiently large, the final noised sample becomes indistinguishable 
from pure Gaussian noise N (0, I). Thus, reversing the noise following the learned “pathway” enables the 
generation of a diverse array of new samples from the same distribution.

The forward process of the sequential noising can be characterized by the following sequence of conditional 
probability distributions:

	
q(xt|xt−1) = N (xt;

√
1 − βtxt−1, βtI), q(x1:T |x0) =

T∏
t=1

q(xt|xt−1).� (15)

Here q(xt|xt−1) represents the conditional probability of the next sample xt for the previous sample xt−1. 
At each step the mean of the sample is attenuated by a factor of 

√
1 − βt < 1, bringing it closer to zero. The 

independence of the noising steps enables one to write down a closed-form expression for sampling at an 
arbitrary timestep t:

	 q(xt|x0) = N
(
xt;

√
ᾱtx0, (1 − ᾱt)I

)
,� (16)

where we define αt = 1 − βt and the cumulative product ᾱt =
∏t

i=1 αi. The reverse process gradually 
denoises samples starting from xT ∼ p(xT ) through a learned Markov chain:

	
pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt), p(xT ) = N (xT ; 0, I).� (17)

During the reverse process at each step we utilize a Gaussian probability distribution pθ(xt−1|t) characterized 
by the learned mean value µθ(xt, t) and a fixed variance

	 pθ(xt−1|xt) = N
(
xt−1; µθ(xt, t), σ2

t I
)

, σ2
t = βt.� (18)

Thus, the fundamental concept of learning during the noising stage is to numerically derive a sequence of mean 
values µθ(xt, t); t = T, T − 1, ..., 1 – an optimal path that connects a sample from the Gaussian distribution 
to a sample from the target distribution.

The training objective aims to minimize the variational lower bound (VLB) by utilizing the posterior 
distribution
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	 q(xt−1|xt, x0) = N
(
xt−1; µ̃t(xt, x0), β̃tI

)
,� (19)

where µ̃t =
√

ᾱt−1βt

1−ᾱt
x0 +

√
αt(1−ᾱt−1)

1−ᾱt
xt and β̃t = 1−ᾱt−1

1−ᾱt
βt. Reparameterizing xt =

√
ᾱtx0 +

√
1 − ᾱtϵ 

leads to a simplified objective. We aim to approximate the noise addition at each step by defining a parametrized 
network Zθ

	 L = Ex0,ϵ,t

[
∥ϵ − Zθ(xt, t)∥2]

,� (20)

where ϵ ∼ N (0, I) and t is uniformly sampled from {1, ..., T }. Once the network Zθ  is trained (i.e. the optimal 
parameters θ are found), the mean of the reverse process is computed as follows

	
µθ(xt, t) = 1√

αt

(
xt − βt√

1 − ᾱt

Zθ(xt, t)
)

.� (21)

In other words, the trained network Zθ(xt, t) at each step t provides the optimal direction for the shift relative 
to the sample xt. The resulting vector µθ(xt, t) provides the mean for the subsequent sample xt−1 during the 
iterative generation process

	 xt−1 = µθ(xt, t) + σtε where ε ∼ N (0, I).� (22)

In practice, we aim for faster sampling with fewer steps than those required for training (T). When shortening 
the Markov chain and utilizing only a subsequence Si of the diffusion steps, the original schedule of variances 
must be adjusted to ensure that the marginal distributions remain equivalent, such that qnew(xi) = q(xSi ). 
From this condition, we can derive the betas for the new (shorter) diffusion process as follows

	
βnew

i = 1 − ᾱSi

ᾱSi−1 .
� (23)

The sampling process remains unchanged; it only necessitates a modification of the pretrained ϵ inputs to 
ϵ(xi, Si), where Si corresponds to the respective timestep in the original chain. For all our experiments, we set 
the number of sampling iterations to 150.

Algorithm 1.  Reverse Diffusion Process of DDPM Unconditional Generation

 Also note that in the reverse diffusion process, the noise term ϵ is sampled from the normal distribution 
N (0, I) for t > 1. However, for the final step (t = 1), the noise term is set to 0 to ensure deterministic sampling 
at the end of the process.

DDPM conditional generation (inpainting)
Given the mask B and the initial image x0, the pre-trained DDPM allows us to address the inpainting problem 
in the following manner

	 xunknown
t−1 ∼ N (µθ(xt, t), Σθ(xt, t)) � (24)

	 xknown
t−1 ∼ N (

√
ᾱt−1x0, (1 − ᾱt−1)I) � (25)

	 xt−1 = B ⊙ xknown
t−1 + (I − B) ⊙ xunknown

t−1 . � (26)

At each step the known pixels are obtained from the initial image y = B ⊙ x0, noised at the corresponding 
level ᾱt−1. The unknown pixels are sampled from the previous iteration xt using the pre-trained unconditional 
model µθ(xt, t). The two results are then merged to form the new image xt−1.
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Algorithm 2.  Reverse Diffusion Process of DDPM Inpainting

RePaint
The DDPM inpainting has recently been adapted into various variants, one of which is known as Repaint11. This 
variant employs a “back and forward” strategy to refine the inpainting results. Unlike the traditional DDPM 
approach, which progresses through a single pass of forward and backward steps (effectively a single loop), 
Repaint utilizes a method in which the reverse diffusion process is executed multiple times (nt), or in “loops,” 
to achieve higher fidelity results.

Algorithm 3.  Reverse Diffusion Process of RePaint

In principle, nt can vary depending on the denoising step, t. It is important to note that DDPM is equivalent 
to RePaint when the number of loops is set to one, i.e. nt = 1.

DDRM
The forward diffusion process defined by DDRM13 is

	 xt = x0 + σtϵ, ϵ ∼ N (0, I)� (27)

The original reverse diffusion process of DDRM is based on DDIM57, which is

	
xt−1 = x0 +

√
1 − η2σt−1

xt − x0

σt
+ ησt−1ϵ� (28)
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Algorithm 4.  Reverse Diffusion Process of DDRM

DDNM

The forward and backward process in DDNM12 is similar to the DDRM. 

Algorithm 5.  Reverse Diffusion Process of DDNM

The DDNM adjustment ensures that the predicted image x0|t respects the null space of the degradation 
operator B. To incorporate the Repaint-like steps, a time schedule is introduced as an array of tuples, where 
each tuple represents a pair of timesteps. This iterative process alternates between forward and backward steps, 
refining the image while preserving the known regions defined by B. 
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Algorithm 6.  Reverse Diffusion Process of DDNM with Repaint-like Iteration

Database Search for Inpainting
Existence of the ground truth of the reconstruction and the respective threshold, below which the solution is 
unique, allows us to directly compare the reconstruction error of a generative diffusion model with the other 
methods. In particular, in what follows, we will test the performance of the database search, i.e. where the 
missing distances are extracted from the most similar matrix from the database evaluated at known distances.

It has been demonstrated that modern text-to-image diffusion models, such as StableDiffusion17, partially 
memorize samples from the training dataset14,15. This leads to the question of whether diffusion models could 
function as an approximate database search.

In the context of inpainting, the database search approach leverages a pre-existing database of distance 
matrices of ensemble of trajectories. The error εi, characterizing the discrepancies between the corrupted matrix 
and each matrix i in the database, is computed as

	 εi = ||B ⊙ (A(DB)
i − Ã)||

2
F ,� (29)

where Ã is the partially known distance matrix, B is the binary mask of known distances, and A(DB)
i  is an 

ensemble of complete EDMs of real trajectories from the database.
Let us denote the index of the matrix from the database that provides the minimum to the error Eq. 29 by 

i∗ = argmin(εi). Then the reconstruction Â is obtained by integrating information from the original corrupted 
matrix and the closest match from the database and is given by

	 Â = B ⊙ Ã + (1 − B) ⊙ A
(DB)
i∗ .� (30)

Note, that if Ã belongs to the database A(DB) then this procedure would would give a reconstruction with zero 
error (if the EDM completion is unique). In other words, this inpainting procedure ideally over-fits the training 
data.

FISTA for low-rank distance matrix completion
Another approach to fill the unknown distances is to apply convex relaxation, by combining the minimization 
objective ||B ⊙ (A − Ã)||2F  with the L1 norm on X’s nuclear norm. This makes matrix completion a regularized 
least square problem

	
min

A
||B ⊙ (A − Ã)||2F + β||A||∗� (31)

where Ã is a partially known distance matrix, B is a binary mask which represents known distance matrix 
entities, and A is the matrix to be reconstructed, β is the regularization coefficient, and ||A||∗ is the nuclear norm 
of the matrix A, equivalent to the sum of all A’s eigenvalues.

There were proposed several methods to solve this problem, one of them is the Fast Iterative Shrinkage-
Thresholding Algorithm (FISTA)58. FISTA operates by iteratively updating the solution via a proximal gradient 
method and employs Nesterov’s acceleration to enhance the rate of convergence. FISTA serves as ground truth 
method for the solution of the low rank matrix completion problem in cases where solution is unique, i.e. when 
the partial graph defined by the mask B is rigid.

Define the singular value soft-thresholding operator as:

	 Dβ(A) = U(Σ − βI)+V T � (32)
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where A = UΣV T  is the singular value decomposition of A and (x)+ := max(x, 0). Then the FISTA update 
rule is given by:

	
tk+1 =

1 +
√

1 + 4t2
k

2
� (33)

	
Zk+1 = Ak+1 + tk − 1

tk+1
(Ak+1 − Ak)� (34)

	 Ak+1 = Dβ(Ã ⊙ B + (1 − B) ⊙ Zk+1)� (35)

and the initial approximation A0 is the matrix Ã with unknown elements filled with zeros. The stopping criterion 
for the iterative process is based on the ratio of the loss from Eq. 31 over two consecutive iterations.

Inpainting using trajectory optimization
The EDM completion problem can be tackled from the trajectory optimization perspective. The objective 
function to be minimized is the mean squared error (MSE) between the original and reconstructed distance 
matrices, computed over the known elements of the corrupted distance matrix. The loss function L over the 
trajectory x = {x}i=1,...,N  can be defined as:

	 L(x) = ||B ⊙ (A(x) − Ã)||2F =� (36)

	

=
∑

||xi−xj || known

(aij(x) − ãij)2.� (37)

The optimization process is carried out in n steps. At each step, a reconstructed distance matrix A is obtained 
by calculating the pairwise Euclidean distance between the points in the current trajectory. The trajectory x is 
updated iteratively via the Adam optimizer to minimize the loss function L. The final output is the reconstructed 
distance matrix

	 Â = A(x∗), x∗ = arg min L(x),� (38)

which is expected to approximate the original distance matrix Ã under the given constraints.

A greedy algorithm for the graph rigidity
To better understand the idea of the algorithm, see Figure S1. At the first step we identify the largest clique (red 
nodes). For the clique we can reconstruct the full set of coordinates, as all cliques are universally rigid. At the next 
step we are looking for a vertex outside of the clique that has the maximum number of links to the clique, but not 
less than 4 (the blue node in Figure S1). If there is no such a vertex, the algorithm terminates and we conclude 
that the graph is not rigid. If it exists, we can determine the 3D coordinates of this vertex given the known 
coordinates of the vertices in the clique. In this case, we effectively know all the pairwise distances between the 
new blue vertex and all the red vertices in the clique, i.e. the number of vertices in the clique effectively increases 
by 1. We continue adding new vertices to the growing clique (green, orange) by repeating these steps, until all 
graph vertices join the clique. If the algorithm terminates before that, the graph is said to be not rigid.

In the following listing we provide the pseudo-code of the algorithm checking for the rigidity of any given 
graph. If the graph passes this check, it is rigid and allows for the unique immersion in the 3D metric space up 
to the distance-preserving transformations. 
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Algorithm 7.  Rigidity test

Data availability
The source code for the experiments is available at ​h​t​t​p​s​:​​​/​​/​g​i​t​h​u​​b​.​c​o​​m​/​a​l​o​b​​a​s​h​​e​v​​/​f​​b​ m​-​​i​n​p​a​i​n​​t​​i​n​g​-​​b​e​n​c​h​m​a​r​k.
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