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Superb microvascular flow signals in joints are important indicators for evaluating inflammation 
in arthritis diagnosis. Super Microvascular Imaging (SMI), a musculoskeletal ultrasound technique, 
captures microvascular signals with enhanced resolution, enabling improved quantitative analysis of 
joint superb microvascular flow. However, existing musculoskeletal ultrasound imaging predominantly 
relies on static observations for analyzing these signals, which are heavily influenced by subjective 
factors, thereby limiting diagnostic accuracy for arthritis. This study introduces a novel quantitative 
and automated grading method utilizing dynamic analysis through an optical flow model. Real-
time dynamic quantification of superb microvascular flow signals is achieved via motion estimation 
and skeleton extraction based on the optical flow model. The Kappa consistency test evaluates the 
agreement between the automated grading system and physician assessments, with differences 
between the two methods analyzed. A total of 47 patient samples were included, comprising 20 
males and 27 females (p = 0.307 > 0.05, χ2=1.042). The agreement between the automated grading 
system and physician assessments reached 70.2%, with a Kappa value of 0.627 (p < 0.001), indicating 
good consistency. Nonetheless, the system displayed a tendency to high-grade cases of moderate 
inflammation. The proposed quantitative and automated grading method for superb microvascular 
flow, based on dynamic analysis through an optical flow model, improves the objectivity and 
consistency of superb microvascular flow grading and demonstrates significant clinical potential. The 
method shows strong anti-interference performance in noisy signal environments, representing a 
promising advancement for non-invasive arthritis diagnosis.
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Superb Microvascular Imaging (SMI), a novel ultrasound imaging technique, enhances tissue motion detection 
by effectively minimizing image artifacts arising from weak blood flow signals and motion interference. This 
advancement enables the clear visualization of microvascular flow in ultrasound images1,2. In comparison to 
traditional blood flow imaging methods such as color Doppler and power Doppler, SMI provides superior 
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detection of low-velocity blood flow with enhanced spatial and temporal resolution, particularly for visualizing 
blood flow within microvessels3,4. Synovial blood flow signals serve as critical markers for diagnosing joint 
inflammation, and SMI-based microvascular flow analysis delivers more precise quantitative assessments 
than traditional methods5. Research has established the superiority of SMI over power Doppler in detecting 
low-grade synovial inflammation, with significant correlations observed between SMI findings, radiographic 
features, and MRI findings6,7. This capability has proven particularly valuable in diagnosing rheumatoid arthritis, 
osteoarthritis, and other inflammatory arthropathies, where SMI demonstrates high clinical value8,9.

Despite these advancements, challenges persist in the application of traditional microvascular imaging 
techniques, especially in quantitative analysis and automated grading of blood flow signals. Current quantification 
methods frequently utilize semi-quantitative grading systems, such as the Szkudlarek semi-quantitative grading 
system10. This approach classifies microvascular flow signals into grades 0 to 3, predominantly based on 
subjective assessments by physicians, introducing variability and reducing consistency and reproducibility in 
the results11,12. Additionally, the dynamic variations in joint microvascular flow, often influenced by arterial 
and venous pulsations, are challenging to capture through static image analysis, potentially compromising the 
accuracy of flow quantification13,14.

To address these limitations, dynamic blood flow quantification methods utilizing motion estimation and 
optical flow analysis have gained significant attention in recent years. Optical flow models, which are motion 
estimation techniques based on image sequences, effectively capture temporal changes in blood flow over 
time15,16. By calculating the optical flow field within images, these methods extract motion information from 
blood flow, enabling real-time dynamic quantification of microvascular flow signals17,18. Optical flow analysis 
enhances flow quantification accuracy and mitigates noise and artifact interference, particularly in low signal-to-
noise ratio conditions, demonstrating excellent anti-interference capabilities19,20. While machine learning and 
deep learning techniques have made strides in automated grading of osteoarthritis by integrating ultrasound 
imaging features with clinical data21,22, traditional optical flow models remain indispensable for motion 
estimation and dynamic blood flow analysis23. These models provide precise measurements of microvascular 
flow dynamics and generate quantitative indicators crucial for inflammation grading. Additionally, metrics 
such as elasticity and motion, derived from optical flow analysis, remain underexplored in current research24,25. 
Compared to machine learning approaches, traditional optical flow models exhibit significant advantages in 
noise suppression, processing efficiency, stability, and real-time performance, making them particularly suitable 
for clinical settings26,27.

This study proposes a dynamic analysis method that integrates optical flow models for estimating optical 
flow fields, quantifying motion, and extracting skeleton structures from microvascular flow signals. The method 
facilitates real-time tracking of dynamic blood flow changes and automated grading. By comparing with expert 
ratings and validating the consistency between the automated grading system and manual assessments using 
the Kappa statistic, the proposed method demonstrates high agreement28,29. Furthermore, the dynamic analysis 
based on optical flow enhances the precision of blood flow quantification and reduces operator and reviewer 
subjectivity, offering a reliable and objective tool for the non-invasive diagnosis of osteoarthritis and other joint 
inflammatory diseases30,31.

Data and methods
Data collection
Ultrasound microvascular imaging data were collected from patients with joint pain who attended the hospital 
between June and September 2024. Inclusion criteria included patients who experienced joint pain for at least 
one day within the preceding month and exhibited visible blood flow signals under ultrasound microvascular 
imaging mode. Patients with a history of joint replacement surgery were excluded from the study. A total of 47 
patients were included, comprising 20 males and 27 females.

The Canon Aplio i800, a high-resolution ultrasound imaging system, was employed for this study due to its 
advanced real-time dynamic imaging capabilities, particularly for microvascular and vascular imaging. The SMI 
technology incorporated in the Canon Aplio i800 enhances the detection of microvascular signals, rendering it 
highly suitable for assessing arthritis and synovial lesions.

All ultrasound examinations were conducted using the Canon Aplio i800 system with an L15-3WU linear 
probe operating at a frequency of 15 MHz. Patients were positioned based on the site of pain, either seated or 
with the affected limb placed on a foam pad to ensure optimal exposure of the examination area. A conventional 
ultrasound scan of the affected joint was initially performed to observe general characteristics. For patients 
presenting with multiple lesions, the largest lesion was selected for detailed examination.

When the most vascularized plane of inflammatory blood flow signals was identified using the color Doppler 
flow imaging mode, the system was switched to the color superb microvascular imaging mode. The settings were 
configured with a blood flow velocity scale of 3 cm/s, a color frequency of 4 MHz, and a frame rate of 30 Hz. Gain 
adjustments were performed to achieve optimal imaging quality, and both static images and dynamic videos 
were recorded.

To enhance the sensitivity of blood flow measurements, the region of interest (ROI) was minimized while 
ensuring it encompassed the area of interest. All imaging data were stored for subsequent dynamic evaluations 
of microvascular flow. To maintain consistency in baseline flow measurements during quantification, ROIs with 
identical areas were selected for analysis throughout the study.

Methods
Overall framework
This study presents a systematic approach based on the dynamic analysis of microvascular flow signals for 
quantifying and evaluating joint microvascular flow. The proposed framework includes four key components: 
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microvascular morphology extraction, dynamic analysis of microvascular flow, development of blood flow 
signal evaluation metrics, and clinical validation.

Initially, regions of interest (ROIs) are extracted from preprocessed microvascular imaging sequences to 
improve signal quality and measurement accuracy. Subsequently, dynamic analysis of microvascular flow 
within the ROIs is conducted, which includes microvascular flow quantification, optical flow field estimation, 
and the integration of microvascular morphological features. Based on the outcomes of the dynamic analysis, 
two primary metrics are introduced and quantified: motion density of microvascular flow and elasticity density 
of microvascular structures. These metrics serve as essential parameters for evaluating blood flow signals and 
facilitating automated grading. Finally, the method undergoes clinical validation, and an automated grading 
system is developed using imaging features. The overall technical framework of the proposed method is depicted 
in Fig. 1.

Microvascular morphology extraction
The collected ultrasound microvascular imaging data served as raw input, decoded into image sequences using 
frame rate recording and preprocessed to ensure sufficient quality for subsequent analysis. The process begins 
with the original image sequence, which is then subjected to moderate enhancement to improve the quality of 
the visual features. Subsequently, grayscale thresholds are adjusted to optimize contrast, and finally, the image is 
binarized to facilitate further analysis (Fig. 2).

Segmentation and clustering optimization techniques were applied to the binarized images to enhance image 
coherence and accurately represent blood flow features. These techniques effectively removed weak, noise-
induced blood flow signals, which might otherwise interfere with the analysis, ensuring that only significant and 
reliable flow data were retained for further assessment (Fig. 3).

Morphological characteristics of microvascular structures were further refined through the application of 
edge detection and skeleton extraction methods across consecutive frames, with vessel continuity improved 
using curve fitting techniques (Fig. 4). This approach facilitates the precise representation of both morphological 
and dynamic microvascular features, providing a robust foundation for calculating elasticity-related metrics 

Fig. 2.  Frame-by-frame grayscale conversion and binarization.

 

Fig. 1.  Framework of this paper for the quantification and evaluation of joint microvascular flow signals. 
The framework comprises four key modules: (1) Extraction of microvascular morphology from preprocessed 
regions of interest (ROIs); (2) Dynamic analysis of microvascular flow, including flow quantification and 
optical flow field estimation; (3) Construction of evaluation metrics for microvascular motion density and 
elasticity density; and (4) Clinical validation and development of an automated grading system.
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using the optical flow model. The area of boundary detection will be incorporated into the measurements of 
motion density and elastic density. The direction of the skeleton will be considered in relation to the motion 
direction.

Blood flow signal segmentation and clustering
The process of blood flow region segmentation and clustering is detailed in Tables 1 and 2. Initially, segmentation 
of blood flow regions is performed using Algorithm 1, which functions by iteratively analyzing each pixel in 
the image. Pixels with a value of 1 are identified as targets and added to a queue. The Breadth-First Search 
(BFS) algorithm is subsequently applied to examine the 8-neighborhood pixels surrounding each target 
pixel. Neighboring pixels with a value of 1 that have not yet been marked are also added to the queue. This 
neighborhood segmentation search method is depicted in Fig. 5.

The algorithm continues until the queue is empty, ensuring that all connected pixels are grouped and stored 
as distinct blood flow regions. This segmentation process is repeated across the entire image until all target pixels 
are identified and classified into unique blood flow regions. The step-by-step algorithm is detailed in Table 1.

Subsequently, Algorithm 2 is utilized to perform clustering on the segmented blood flow regions which is 
detailed in Table 2. The algorithm starts by calculating the distance between each pair of regions and evaluates 
whether adjacent regions meet the criteria for merging, based on a predefined distance threshold. Regions 
satisfying the distance criterion are merged into a single cluster. This iterative process continues until no 
additional regions meet the merging criteria, resulting in a final set of clustered blood flow regions prepared for 
subsequent analysis.

The clustering combination process integrates clustering results from two consecutive frames, as the 
optical flow method requires sequential image pairs for analysis. This step involves identifying similar regions 
between the clustered results of the two frames and grouping them into the same cluster, facilitating optical flow 
computation.

Fig. 4.  Edge Detection, Skeleton Extraction, and Curve Fitting.

 

Fig. 3.  Image segmentation and clustering optimization.
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Skeleton extraction
The skeleton extraction algorithm isolates the core structure of the image through edge detection and erosion 
operations, capturing essential skeleton features suitable for curve fitting. The process begins with initializing the 
input image I and determining its dimensions m × n. The algorithm iteratively examines each pixel in the image. 
When a pixel with a value of 1 is detected, a variable sum is initialized to 0. The algorithm then evaluates the 
8-neighborhood of the pixel, summing the values of the neighboring pixels. If sum = 8, indicating that the pixel 
is completely surrounded, the pixel value is set to 0 (erosion). This erosion process is repeated iteratively across 
the image until only the skeleton structure remains.

The resulting skeleton image I retains the primary morphological features of blood flow, making it suitable 
for subsequent curve fitting analysis. The step-by-step algorithm is detailed in Table 3.

Motion estimation based on optical flow
Given the low quality of ultrasound images and the inherent characteristics of microvascular flow dynamics, this 
study applies the optical flow method for motion estimation, enabling the extraction of dynamic vessel features 
and facilitating high-resolution computation of the motion field. Optical flow is a visual analysis method32 that 
represents the relative motion velocity of pixels corresponding to a moving object within the imaging plane. It 
utilizes temporal variations in image intensity to establish the relationship between object motion and scene 
structure33.

To reduce noise in ultrasound images and enhance the accuracy of motion estimation, the motion field 
reconstruction model incorporates assumptions regarding dynamic intensity changes, gradient stability, 

Table 2.  Algorithm 2 Blood Flow Clustering Pseudo Code.

 

Table 1.  Algorithm 1 Blood Flow Segmentation Pseudo Code.
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and optical flow field smoothness, supplemented by multiresolution analysis techniques20. Based on these 
assumptions—constant intensity, constant gradient, and optical flow field smoothness—a deviation penalty 
function is formulated to derive the optical flow energy function.

The energy functions for intensity and gradient are directly associated with the image data and are classified 
as data terms within the total energy function. Additionally, the assumption of optical flow field smoothness 
introduces a corresponding smoothness term. Consequently, the total energy function consists of both data 
terms and a smoothness term for the optical flow field, as expressed in Eq. (1).

	 E (u, v) = EData + αESmooth� (1)

Here, α is the regularization parameter, and EData and ESmooth represent the data term and smoothness term, 
respectively, as expressed in Eq. (2):

	




EData (u, v) =
∫

Ω
ψ

(
|I (x + w) − I (x)|2 + γ |∇I (x + w) − ∇I (x)|2

)
dx

ESmooth (u, v) =
∫

Ω
ψ

(
|∇u|2 + |∇v|2

)
dx

� (2)

Table 3.  Algorithm 3 Skeleton Extraction with Edge Detection and Erosion.

 

Fig. 5.  Neighborhood Segmentation Search.
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where I represents the image sequence; X = (x,y) denotes the coordinate vector; w = (u,v) is the displacement vector 
at X; ∇ = (∂x, ∂y) is the spatial gradient operator; γ indicates the weight between the intensity assumption and 
the gradient assumption; ψ

(
s2)

=
√

s2 + ε2 is a concave function, which enhances the penalty on outliers by 
implementing quadratic strengthening and improves the robustness of the algorithm. ε is a constant used in 
numerical computations.

Based on the coverage domain of the binary image and the optical flow method, the influence of noise 
background is removed, and the optical flow of blood flow is determined. The model extracts vascular elasticity 
based on SMI blood flow signals. The optical flow model captures both the motion changes and direction of blood 
flow, thereby augmenting traditional blood flow signals with directional movement and unit flow quantification. 
Through matrix calculations, we further quantify the relaxation direction (elasticity) of vascular signals and their 
motion density characteristics.

The directional blood flow optical flow obtained through the optical flow method, combined with 
vascular morphological features from skeleton extraction, was divided into Microvascular Elastic Density and 
Microvascular Flow Motion Density.

Dynamic analysis metrics for microvascular flow
The dynamic analysis metrics for microvascular flow, referred to as Superb Microvascular Imaging Dynamic 
Parameters (SMI-DP), include the blood flow motion density metric and the vascular elasticity density metric.

	(1)	 Microvascular Flow Motion Density

The motion density of microvascular flow, termed SMI Motion Density (SMI-MD), is defined as the ratio of the 
optical flow motion of all pixels along the skeleton of the blood flow signal between two consecutive frames to the 
total microvascular flow. This metric is computed for each frame, and a fluctuation curve of SMI-MD over time is 
generated. SMI-MD reflects the overall dynamic characteristics of blood flow by measuring motion distribution 
density along the vascular skeleton across adjacent frames. It accounts for blood flow velocity, direction, and 
motion consistency within the blood flow region, providing a quantitative measure of microvascular motion 
density. The specific formulation is expressed in Eq. (3).

	
SMI - MD =

∑
i∈P arallel to the pixels on the blood flow skeleton

ϕ
∥
i(x,y)

Nvessel

� (3)

where ϕ∥
i  represents the motion distribution of pixel i(x, y) along the vascular skeleton in consecutive frames, 

and it is typically calculated using the optical flow method. Nvessel denotes the total number of pixels in the 
vascular region (i.e., the number of pixels within the region of interest) and is used to normalize the dynamic 
intensity for cumulative analysis.

	(2)	 Microvascular Elastic Density

Given the extremely small cross-sectional area of microvessels, this study uses the variation in the width of 
microvascular flow in the cross-section to characterize the elastic properties of blood vessels. The microvascular 
elastic density, referred to as SMI Elastic Density (SMI-ED), for a given frame is defined as the ratio of the 
motion magnitude of the optical flow components perpendicular to the blood flow signal skeleton across all 
pixels in two consecutive frames to the total microvascular flow. A fluctuation curve of SMI-ED over time can 
be plotted based on these calculations. This metric describes the distribution of vascular elastic density during 
dynamic blood flow changes, providing a quantitative characterization of the dynamic elastic properties of blood 
f﻿low signals. The specific formulation is expressed in Eq. (4).

	
SMI - ED =

∑
i∈P erpendicular to the pixels on the blood flow skeleton

ϕ⊥
i(x,y)

Nvessel
� (4)

where ϕ⊥
i  represents the optical flow component perpendicular to the blood flow skeleton at the i-th pixel. The 

elasticity of the blood vessels is derived from the contraction and calculation of the blood flow signals in the 
vertical motion direction.The measurement of volume and the extent of vascular contraction indirectly reflect 
changes in vascular elasticity, specifically characterized by optical flow changes in the vertical direction of the 
skeletal orientation.These parameters provide critical support for subsequent pathological diagnosis and the 
evaluation of joint inflammation.

Automatic grading standard
An automated grading method for joint microvascular flow signals is proposed based on the dynamic analysis of 
musculoskeletal ultrasound microvascular imaging (SMI-DP). This method employs motion density (SMI-MD) 
and elasticity density (SMI-ED) as primary metrics to quantify the dynamic properties of blood flow signals, 
facilitating a multidimensional and precise evaluation and grading of microvascular flow within joint regions.

In this approach, Vave represents the average value of the fluctuation curve, while Vmax indicates its maximum 
value. Ranges for these metrics are defined to establish a grading system based on dynamic characteristics. 
During automated grading, both metrics must strictly conform to the specified standards for each grade. The 
grading criteria are outlined as follows:
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Grade 0: No significant fluctuations in microvascular flow signals, with consistently low motion and 
elasticity density. Grade 1: Mild fluctuations in blood flow signals, with slight increases in motion and elasticity 
density. Grade 2: Significant fluctuations in blood flow signals, with moderate levels of motion and elasticity 
density. Grade 3: Highly significant fluctuations in blood flow signals, with both motion and elasticity density 
reaching high levels.

If inconsistencies arise between the grades of the two metrics, the higher grade is adopted as the final result 
to enhance sensitivity to abnormalities in blood flow signals. The specific grading criteria are detailed in Table 4.

Statistical methods
Statistical analyses were conducted using SPSS version 26.0. Descriptive statistics and the Chi-square test were 
employed to determine p-values. The primary method for assessing the consistency between automated grading 
of synovial joints and physician evaluations was the Kappa consistency test.

The methodology involved calculating observed agreement (OA) and expected agreement (EA). Observed 
agreement was derived from the sum of the diagonal elements in the confusion matrix, while expected agreement 
was estimated using the marginal totals of the rows and columns. The formula for computing the Kappa value 
is presented in Eq. (5).

	
κ = po − pe

1 − pe
� (5)

where po represents the observed agreement, and pe represents the expected agreement. The Kappa value ranges 
between –1 and 1, with higher values approaching 1 signifying stronger agreement. Typically, a Kappa value 
exceeding 0.6 indicates good agreement, while values below 0 imply substantial disagreement. The statistical 
significance of the p-value associated with the Kappa test was also computed to confirm the reliability of the 
consistency between grading levels.

Results
Description of joint microvascular flow grading
Figure  6 displays ultrasound images (A–E) of five patients with varying pathological conditions, with green 
rectangular boxes identifying the target regions. These images highlight the distribution of blood flow across 
different anatomical sites and their pathological features. Grading was performed based on blood flow signal 
density, synovial characteristics, joint effusion, and the severity of soft tissue lesions, revealing a progressive 
trend from mild to severe (A as grade 0, B as grade 1, C as grade 2, and D and E as grade 3).

Figure 6A illustrates effusion within the suprapatellar bursa and medial and lateral joint spaces of the left knee 
(measuring 2.33 × 0.48 cm, 1.66 × 0.38 cm, and 1.36 × 0.38 cm, respectively). Synovial thickening and reduced 
echogenicity suggest mild inflammatory changes in the synovium. The absence of significant blood flow signals 
indicates minimal vascular proliferation and mild osteoarthritis. Furthermore, thickening of the lateral collateral 
ligament with blurred fibrous structures suggests potential ligament injury. This case is classified as grade 0.

Figure  6B reveals effusion within the suprapatellar bursa (0.61 × 0.17  cm) and medial (0.84 × 0.30  cm) 
and lateral (0.58 × 0.34  cm) joint spaces of the left knee, along with synovial thickening and heterogeneous 
echogenicity, indicative of inflammatory changes. The presence of minimal blood flow signals suggests early 
active inflammation, with a noticeable increase in vascular activity compared to Fig. 6A. This case is assigned a 
grade of 1.

Figure  6C shows a hypoechoic region at the proximal attachment of the right gastrocnemius muscle, 
accompanied by a substantial presence of blood flow signals, indicative of localized strain. Blurred fibrous 
structures suggest mechanical damage coupled with localized inflammatory responses. The pronounced increase 
in blood flow signals reflects heightened dynamic inflammatory activity. Despite the localized nature of the 
lesion, the significant enhancement of blood flow signals justifies a grade of 2.

Figure 6D depicts effusion in the joint cavity and medial and lateral joint spaces of the left knee (0.98 × 0.23 cm, 
0.81 × 0.38  cm, and 2.86 × 0.59  cm, respectively). Marked synovial thickening and reduced echogenicity are 
evident, indicative of osteoarthritic inflammatory changes. Edema in the soft tissue beneath the patellar edge, 
coupled with abundant and blurred blood flow signals, suggests notable alterations in synovial and soft tissue 
vascular supply. The extensive nature of the lesion and the active inflammatory response are consistent with a 
grade of 3.

Figure 6E demonstrates thickening and hypoechoic areas (3.03 × 0.88 cm) in the prepatellar fat layer of the 
right knee, accompanied by abundant blood flow signals. Effusion is observed in the suprapatellar bursa and 
medial and lateral joint spaces (1.76 × 0.32  cm, 1.23 × 0.28  cm, and 0.74 × 0.28  cm, respectively). The dense 
distribution of blood flow signals indicates pronounced inflammatory changes in the synovium and soft tissues, 

Grade SMI-MD SMI-ED

0 0 < Vave ≤ 0.50,0.50 < Vmax ≤ 1.50 0 < Vave ≤ 0.20,0.20 < Vmax ≤ 0.50

1 0.50 < Vave ≤ 1.00,1.00 < Vmax ≤ 2.50 0.20 < Vave ≤ 0.40,0.40 < Vmax ≤ 1.00

2 1.00 < Vave ≤ 1.50,1.50 < Vmax ≤ 3.50 0.40 < Vave ≤ 1.50,0.5 < Vmax ≤ 2.50

3 Vave > 1.50,Vmax > 2.00 Vave > 1.50,Vmax > 2.00

Table 4.  Automated Grading Criteria for Joint Microvascular Flow Signals Based on SMI-DP.
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as well as joint cavity effusion, showing activity levels comparable to those in Fig. 6D. This case is classified as 
grade 3.

Dynamic analysis metrics for microvascular flow
Microvascular flow motion density
Figure 7 illustrates the fluctuation curves of microvascular flow motion density (SMI-MD) over time, divided 
into five subplots (A–E). Each subplot includes four curves representing distinct thresholds (0.75, 0.80, 0.85, and 
0.90). The threshold values are denoted by different colors: gray (0.75), blue (0.80), pink (0.85), and cyan (0.90). 
The legend located in the bottom-right corner clarifies the corresponding threshold for each curve.

These curves represent the dynamic variations in SMI-MD over time under various threshold conditions. At 
lower thresholds, such as 0.75, the curves exhibit greater fluctuation amplitudes, indicating more pronounced 
temporal changes. Conversely, at higher thresholds, such as 0.90, the fluctuations are smaller, and the curves 
appear smoother and more stable. The distinct fluctuation patterns observed across subplots emphasize the 
variability in SMI-MD under different temporal and threshold conditions.

Microvascular elastic density
Figure 8 displays five subplots (A-E) showing the fluctuation curves of microvascular elastic density (SMI-ED) 
over time. Each subplot includes SMI-ED curves corresponding to four thresholds (0.75, 0.80, 0.85, and 0.90). 
The thresholds are represented by the following colors: gray (0.75), blue (0.80), pink (0.85), and cyan (0.90), with 
a legend in the bottom-right corner providing identification for each threshold.

These curves illustrate the dynamic trends of SMI-ED over time. Larger fluctuations are observed at lower 
thresholds, such as 0.75, reflecting a higher sensitivity to temporal changes. In contrast, higher thresholds, 

Fig. 6.  Blood Flow Signal Grading in Patients with Different Pathological Conditions (A) Ultrasound image of 
a patient graded as SMI level 0; (B) Ultrasound image of a patient graded as SMI level 1; (C) Ultrasound image 
of a patient graded as SMI level 2; (D and E) Ultrasound images of patients graded as SMI level 3.
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such as 0.90, result in smoother curves with reduced fluctuation amplitudes. The distinct patterns observed 
under different thresholds highlight the variability of microvascular elastic density over time and across varying 
threshold conditions.

Differences, similarities, and severity assessment
All cases depicted in Fig.  6 display osteoarthritic characteristics, including synovial thickening, reduced 
echogenicity, and joint effusion, with varying degrees of enhanced blood flow signals correlating to different 
levels of inflammatory activity. Soft tissue abnormalities are also evident, such as ligament thickening in Fig. 6A, 
strain in Fig. 6C, and edema beneath the patellar margin in Fig. 6D, underscoring the link between osteoarthritis 
and soft tissue lesions. The primary variations are observed in the distribution and density of blood flow signals: 

Fig. 7.  Fluctuation Curves of SMI-MD Over Time (A-E).
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Grade 0 (Fig. 6A) exhibits no detectable blood flow signals, indicating minimal inflammatory response; Grade 
1 (Fig.  6B) reveals sparse blood flow signals, signifying early active inflammation; Grade 2 (Fig.  6C) shows 
localized but abundant blood flow signals; and Grade 3 (Fig.  6D and E) demonstrates densely concentrated 
blood flow signals, reflecting extensive active inflammation. Progression from Fig.  6A to Fig.  6E reveals a 
marked escalation in lesion severity, with synovial thickening expanding from localized to widespread areas, 
blood flow signal density increasing significantly, and inflammatory activity intensifying from mild to severe. 
Grade 0 represents static synovial inflammation, Grades 1 and 2 indicate progressively active inflammatory 
states, and Grade 3 corresponds to the most advanced inflammatory phase, characterized by significant vascular 
proliferation and associated tissue changes. This grading system effectively illustrates the dynamic progression 
of osteoarthritis, providing a robust framework for quantifying blood flow and advancing automated grading 
methodologies based on the optical flow model. Additionally, as blood flow signal grades increase, the patterns 

Fig. 8.  Fluctuation Curves of SMI-ED Over Time (A-E).
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of SMI Motion Density (SMI-MD) and SMI Elastic Density (SMI-ED) curves become more distinct and exhibit 
consistent trends, further validating the grading system’s reliability.

Clinical validation
The consistency between the automated grading of synovial blood flow and physician ratings was assessed 
using the Kappa consistency test. Based on the confusion matrix (Table 5), the study included 47 participants, 
consisting of 20 males and 27 females (p = 0.307 > 0.05, χ2 = 1.042), indicating no statistically significant difference 
in gender distribution. The participants’ ages ranged from 30 to 65 years, with a mean age of 45.3 years, reflecting 
the primary high-risk demographic for osteoarthritis. The observed agreement between automated grading 
and physician ratings was 70.2%, demonstrating substantial consistency. The calculated Kappa value of 0.627 
indicates good agreement (Kappa > 0.6), while a Kappa value below 0 would denote significant disagreement. 
Additionally, the observed agreement (70.2%) was notably higher than the expected agreement (51.2%). The 
statistical significance test revealed p < 0.001, providing strong evidence for the reliability and robustness of the 
consistency between the automated and physician-assessed grading results.

Further analysis found that the automatic rating system was more inclined to give higher grade results when 
the physician rating was level 2, which may be related to the noise in the blood flow signal or the threshold setting 
of the middle grade by the blood flow signal classification algorithm.These findings suggest that the automated 
system requires further optimization to enhance its accuracy in identifying moderate cases of osteoarthritis. 
Nonetheless, the results validate the overall effectiveness of the automated grading system for osteoarthritis 
classification while emphasizing the need for algorithmic refinement in specific contexts.

Discussion
This study successfully implemented automated grading of joint superb microvascular flow signals through 
dynamic analysis using the optical flow model, demonstrating the potential of dynamic blood flow evaluation 
for the quantitative assessment of osteoarthritis. The findings showed substantial consistency between the 
automated grading system and physician ratings, as evidenced by a Kappa value of 0.627 (p < 0.001), with 
observed agreement significantly exceeding expected agreement (70.2% vs. 51.2%). These results affirm the 
efficacy of the proposed method for the quantitative analysis of superb microvascular flow signals, highlighting 
its promise in supporting clinical evaluation and grading of osteoarthritis.

Compared to traditional grading methods for osteoarthritis, the proposed approach offers substantial 
advantages in analytical depth and objectivity of results. Traditional methods, such as the semi-quantitative 
grading system introduced by Szkudlarek et al.34, rely on subjective evaluation of static ultrasound images, which 
is highly influenced by operator expertise, equipment parameters, and image quality, leading to inconsistent 
outcomes. Recent advancements in deep-learning-based automated grading methods have improved accuracy 
and consistency by extracting features from static images35,36. Traditional methods, such as Singular Value 
Decomposition (SVD), are effective in distinguishing tissue from blood flow. The SVD enables the separation 
of blood flow and tissue in each frame, it does not account for the directionality of blood flow37,38. However, 
these approaches are limited by their inability to capture the dynamic characteristics of blood flow signals. 
Our approach addresses this limitation by incorporating directional information for each blood flow pixel. 
Compared to SVD, our model more accurately reflects the movement of blood flow, as it operates within the 
framework of dynamic analysis. By utilizing dynamic analysis through the optical flow model, this study is the 
first to quantify changes in superb microvascular flow signals over time, significantly enhancing the objectivity 
and clinical relevance of grading results.

This study also revealed a consistent tendency for the automated grading system to underestimate ratings 
when physician evaluations were at Grade 2. This challenge may be linked to the intricate dynamic behavior 
of blood flow signals in cases of moderate inflammation, where characteristics of both low-grade and high-
grade inflammation are present, complicating classification. Moreover, the threshold parameters for motion 
characteristics in the optical flow algorithm may require refinement to improve the differentiation of 
intermediate-grade osteoarthritis. Similarly, prior research has noted that machine learning-based grading 
methods often exhibit reduced performance for intermediate levels compared to clearly defined lower or higher-
grade lesions39. These findings underscore the importance of further optimizing the algorithm to address the 
complexities of moderate osteoarthritis classification.

While this study highlights the potential of an optical flow model-based dynamic analysis system for 
quantitative osteoarthritis grading, several limitations must be acknowledged. First, the relatively small sample 

Physician Ratings

Automated Grading

TotalGrade 0 Grade 1 Grade 2 Grade 3

Grade 0 8 1 1 0 10

Grade 1 2 8 1 1 12

Grade 2 1 0 7 5 13

Grade 3 1 0 1 10 12

Total 12 9 10 16 47

Table 5.  Comparison Between Automated Grading and Physician Ratings for Joint Microvascular Flow 
(N = 47).
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size may constrain the generalizability of the algorithm across a broader spectrum of lesion ranges and severity 
levels. Second, the study focused solely on osteoarthritis, leaving its applicability to other joint pathologies, 
such as rheumatoid arthritis or osteoarthropathy, unexplored. Furthermore, the algorithm’s adaptability in 
complex clinical scenarios, such as synovitis combined with soft tissue injuries or multiple lesions, has not been 
fully assessed. Ultrasound propagation in blood or tissue can be influenced by factors such as motion, posture, 
and noise, which may affect the accuracy of flow measurements. To mitigate the uncertainty caused by high-
frequency signals, we employed an optical flow model for dynamic analysis and motion estimation, allowing for 
more accurate tracking of blood flow changes and improved measurement stability. During image processing, 
we used distance-based clustering to remove incidental weak signals. However, occasional misclassification of 
strong signals remains. Additionally, discontinuities in edge detection and skeleton extraction may introduce 
uncertainty in the quantification process. To address this, we excluded smaller discontinuous flow signals during 
clustering using a predefined threshold. However, determining the exact size of discontinuous signals remains 
an area for future research. In dynamic analysis, signal discontinuities or missing segments may introduce 
uncertainty in quantification, particularly when dealing with complex or subtle inflammatory cases. Noise 
interference can cause significant fluctuations in blood flow signals, but we have mitigated this effect using 
smoothing techniques. Despite this, the optical flow model is capable of compensating for some of these missing 
signals, reducing their impact on diagnostic results.

Future research could address these limitations by incorporating larger, multicenter datasets to improve the 
algorithm’s ability to extract features, especially for intermediate-grade classifications. The integration of deep 
learning techniques with optical flow model dynamic analysis may allow for the identification of more nuanced 
blood flow signal characteristics, enhancing the accuracy and robustness of grading. These advancements could 
establish the proposed method as a valuable tool for non-invasive diagnosis and dynamic monitoring of synovial 
lesions. Such improvements would facilitate comprehensive support for early diagnosis, treatment evaluation, 
and disease management of arthritis, broadening its clinical utility.

Conclusion
This study successfully implemented an automated grading system for joint superb microvascular flow signals 
using dynamic analysis based on the optical flow model, demonstrating its effectiveness in the quantitative 
evaluation of osteoarthritis. The findings showed substantial consistency between the automated system and 
physician ratings, with agreement levels significantly exceeding expectations. These results underscore the 
method’s ability to minimize subjective influence and improve grading Aobjectivity. By incorporating dynamic 
analysis, the study quantified motion characteristics of blood flow signals, addressing the limitations of traditional 
static image-based grading methods. This novel technical approach offers a promising tool for non-invasive 
diagnosis and dynamic monitoring of osteoarthritis, while providing a foundation for the further refinement of 
algorithm performance and the exploration of broader clinical applications.

Data availability
The datasets generated and analyzed during the current study are not publicly available due to ethical restrictions 
and institutional policies. However, anonymized data can be made available from the corresponding author on 
reasonable request and with approval from the Human Research Ethics Committee of the Fourth Affiliated Hos-
pital, Zhejiang University School of Medicine.
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