www.nature.com/scientificreports

scientific reports

W) Check for updates

OPEN A method for quantifying

and automatic grading of
musculoskeletal ultrasound superb
microvascular imaging based on
dynamic analysis of optical flow
model

Shanna Liu®, Bo Shang*®, Junliang Yan3, Zenghua Zhu*, Yuanhao Ding?, Qingli Zhou?,
Chengjing Wei®, Yugiang Shen'* & Xinjian Zhuy***

Superb microvascular flow signals in joints are important indicators for evaluating inflammation

in arthritis diagnosis. Super Microvascular Imaging (SMI), a musculoskeletal ultrasound technique,
captures microvascular signals with enhanced resolution, enabling improved quantitative analysis of
joint superb microvascular flow. However, existing musculoskeletal ultrasound imaging predominantly
relies on static observations for analyzing these signals, which are heavily influenced by subjective
factors, thereby limiting diagnostic accuracy for arthritis. This study introduces a novel quantitative
and automated grading method utilizing dynamic analysis through an optical flow model. Real-

time dynamic quantification of superb microvascular flow signals is achieved via motion estimation
and skeleton extraction based on the optical flow model. The Kappa consistency test evaluates the
agreement between the automated grading system and physician assessments, with differences
between the two methods analyzed. A total of 47 patient samples were included, comprising 20
males and 27 females (p=0.307 >0.05, x?>=1.042). The agreement between the automated grading
system and physician assessments reached 70.2%, with a Kappa value of 0.627 (p<0.001), indicating
good consistency. Nonetheless, the system displayed a tendency to high-grade cases of moderate
inflammation. The proposed quantitative and automated grading method for superb microvascular
flow, based on dynamic analysis through an optical flow model, improves the objectivity and
consistency of superb microvascular flow grading and demonstrates significant clinical potential. The
method shows strong anti-interference performance in noisy signal environments, representing a
promising advancement for non-invasive arthritis diagnosis.

Keywords Optical flow model, Microvascular flow, Superb microvascular imaging, Quantification,
Automated grading

Superb Microvascular Imaging (SMI), a novel ultrasound imaging technique, enhances tissue motion detection
by effectively minimizing image artifacts arising from weak blood flow signals and motion interference. This
advancement enables the clear visualization of microvascular flow in ultrasound images!?. In comparison to
traditional blood flow imaging methods such as color Doppler and power Doppler, SMI provides superior
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detection of low-velocity blood flow with enhanced spatial and temporal resolution, particularly for visualizing
blood flow within microvessels>*. Synovial blood flow signals serve as critical markers for diagnosing joint
inflammation, and SMI-based microvascular flow analysis delivers more precise quantitative assessments
than traditional methods’. Research has established the superiority of SMI over power Doppler in detecting
low-grade synovial inflammation, with significant correlations observed between SMI findings, radiographic
features, and MRI findings®’. This capability has proven particularly valuable in diagnosing rheumatoid arthritis,
osteoarthritis, and other inflammatory arthropathies, where SMI demonstrates high clinical value®’.

Despite these advancements, challenges persist in the application of traditional microvascular imaging
techniques, especially in quantitative analysis and automated grading of blood flow signals. Current quantification
methods frequently utilize semi-quantitative grading systems, such as the Szkudlarek semi-quantitative grading
system!?. This approach classifies microvascular flow signals into grades 0 to 3, predominantly based on
subjective assessments by physicians, introducing variability and reducing consistency and reproducibility in
the results'"!2. Additionally, the dynamic variations in joint microvascular flow, often influenced by arterial
and venous pulsations, are challenging to capture through static image analysis, potentially compromising the
accuracy of flow quantification!>!4,

To address these limitations, dynamic blood flow quantification methods utilizing motion estimation and
optical flow analysis have gained significant attention in recent years. Optical flow models, which are motion
estimation techniques based on image sequences, effectively capture temporal changes in blood flow over
time!>!°. By calculating the optical flow field within images, these methods extract motion information from
blood flow, enabling real-time dynamic quantification of microvascular flow signals'”!8. Optical flow analysis
enhances flow quantification accuracy and mitigates noise and artifact interference, particularly in low signal-to-
noise ratio conditions, demonstrating excellent anti-interference capabilities'*?’. While machine learning and
deep learning techniques have made strides in automated grading of osteoarthritis by integrating ultrasound
imaging features with clinical data?"??, traditional optical flow models remain indispensable for motion
estimation and dynamic blood flow analysis?’. These models provide precise measurements of microvascular
flow dynamics and generate quantitative indicators crucial for inflammation grading. Additionally, metrics
such as elasticity and motion, derived from optical flow analysis, remain underexplored in current research?%°,
Compared to machine learning approaches, traditional optical flow models exhibit significant advantages in
noise suppression, processing efficiency, stability, and real-time performance, making them particularly suitable
for clinical settings®®?’.

This study proposes a dynamic analysis method that integrates optical flow models for estimating optical
flow fields, quantifying motion, and extracting skeleton structures from microvascular flow signals. The method
facilitates real-time tracking of dynamic blood flow changes and automated grading. By comparing with expert
ratings and validating the consistency between the automated grading system and manual assessments using
the Kappa statistic, the proposed method demonstrates high agreement?®?°. Furthermore, the dynamic analysis
based on optical flow enhances the precision of blood flow quantification and reduces operator and reviewer
subjectivity, offering a reliable and objective tool for the non-invasive diagnosis of osteoarthritis and other joint
inflammatory diseases®®3!.

Data and methods

Data collection

Ultrasound microvascular imaging data were collected from patients with joint pain who attended the hospital
between June and September 2024. Inclusion criteria included patients who experienced joint pain for at least
one day within the preceding month and exhibited visible blood flow signals under ultrasound microvascular
imaging mode. Patients with a history of joint replacement surgery were excluded from the study. A total of 47
patients were included, comprising 20 males and 27 females.

The Canon Aplio i800, a high-resolution ultrasound imaging system, was employed for this study due to its
advanced real-time dynamic imaging capabilities, particularly for microvascular and vascular imaging. The SMI
technology incorporated in the Canon Aplio i800 enhances the detection of microvascular signals, rendering it
highly suitable for assessing arthritis and synovial lesions.

All ultrasound examinations were conducted using the Canon Aplio i800 system with an L15-3WU linear
probe operating at a frequency of 15 MHz. Patients were positioned based on the site of pain, either seated or
with the affected limb placed on a foam pad to ensure optimal exposure of the examination area. A conventional
ultrasound scan of the affected joint was initially performed to observe general characteristics. For patients
presenting with multiple lesions, the largest lesion was selected for detailed examination.

When the most vascularized plane of inflammatory blood flow signals was identified using the color Doppler
flow imaging mode, the system was switched to the color superb microvascular imaging mode. The settings were
configured with a blood flow velocity scale of 3 cm/s, a color frequency of 4 MHz, and a frame rate of 30 Hz. Gain
adjustments were performed to achieve optimal imaging quality, and both static images and dynamic videos
were recorded.

To enhance the sensitivity of blood flow measurements, the region of interest (ROI) was minimized while
ensuring it encompassed the area of interest. All imaging data were stored for subsequent dynamic evaluations
of microvascular flow. To maintain consistency in baseline flow measurements during quantification, ROIs with
identical areas were selected for analysis throughout the study.

Methods

Overall framework

This study presents a systematic approach based on the dynamic analysis of microvascular flow signals for
quantifying and evaluating joint microvascular flow. The proposed framework includes four key components:
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Fig. 1. Framework of this paper for the quantification and evaluation of joint microvascular flow signals.
The framework comprises four key modules: (1) Extraction of microvascular morphology from preprocessed
regions of interest (ROIs); (2) Dynamic analysis of microvascular flow, including flow quantification and
optical flow field estimation; (3) Construction of evaluation metrics for microvascular motion density and
elasticity density; and (4) Clinical validation and development of an automated grading system.
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Fig. 2. Frame-by-frame grayscale conversion and binarization.

microvascular morphology extraction, dynamic analysis of microvascular flow, development of blood flow
signal evaluation metrics, and clinical validation.

Initially, regions of interest (ROIs) are extracted from preprocessed microvascular imaging sequences to
improve signal quality and measurement accuracy. Subsequently, dynamic analysis of microvascular flow
within the ROIs is conducted, which includes microvascular flow quantification, optical flow field estimation,
and the integration of microvascular morphological features. Based on the outcomes of the dynamic analysis,
two primary metrics are introduced and quantified: motion density of microvascular flow and elasticity density
of microvascular structures. These metrics serve as essential parameters for evaluating blood flow signals and
facilitating automated grading. Finally, the method undergoes clinical validation, and an automated grading
system is developed using imaging features. The overall technical framework of the proposed method is depicted
in Fig. 1.

Microvascular morphology extraction

The collected ultrasound microvascular imaging data served as raw input, decoded into image sequences using
frame rate recording and preprocessed to ensure sufficient quality for subsequent analysis. The process begins
with the original image sequence, which is then subjected to moderate enhancement to improve the quality of
the visual features. Subsequently, grayscale thresholds are adjusted to optimize contrast, and finally, the image is
binarized to facilitate further analysis (Fig. 2).

Segmentation and clustering optimization techniques were applied to the binarized images to enhance image
coherence and accurately represent blood flow features. These techniques effectively removed weak, noise-
induced blood flow signals, which might otherwise interfere with the analysis, ensuring that only significant and
reliable flow data were retained for further assessment (Fig. 3).

Morphological characteristics of microvascular structures were further refined through the application of
edge detection and skeleton extraction methods across consecutive frames, with vessel continuity improved
using curve fitting techniques (Fig. 4). This approach facilitates the precise representation of both morphological
and dynamic microvascular features, providing a robust foundation for calculating elasticity-related metrics
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Fig. 4. Edge Detection, Skeleton Extraction, and Curve Fitting.

using the optical flow model. The area of boundary detection will be incorporated into the measurements of
motion density and elastic density. The direction of the skeleton will be considered in relation to the motion
direction.

Blood flow signal segmentation and clustering

The process of blood flow region segmentation and clustering is detailed in Tables 1 and 2. Initially, segmentation
of blood flow regions is performed using Algorithm 1, which functions by iteratively analyzing each pixel in
the image. Pixels with a value of 1 are identified as targets and added to a queue. The Breadth-First Search
(BFS) algorithm is subsequently applied to examine the 8-neighborhood pixels surrounding each target
pixel. Neighboring pixels with a value of 1 that have not yet been marked are also added to the queue. This
neighborhood segmentation search method is depicted in Fig. 5.

The algorithm continues until the queue is empty, ensuring that all connected pixels are grouped and stored
as distinct blood flow regions. This segmentation process is repeated across the entire image until all target pixels
are identified and classified into unique blood flow regions. The step-by-step algorithm is detailed in Table 1.

Subsequently, Algorithm 2 is utilized to perform clustering on the segmented blood flow regions which is
detailed in Table 2. The algorithm starts by calculating the distance between each pair of regions and evaluates
whether adjacent regions meet the criteria for merging, based on a predefined distance threshold. Regions
satisfying the distance criterion are merged into a single cluster. This iterative process continues until no
additional regions meet the merging criteria, resulting in a final set of clustered blood flow regions prepared for
subsequent analysis.

The clustering combination process integrates clustering results from two consecutive frames, as the
optical flow method requires sequential image pairs for analysis. This step involves identifying similar regions
between the clustered results of the two frames and grouping them into the same cluster, facilitating optical flow
computation.
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Algorithm 1 Blood Flow Segmentation Pseudo Code

1 Initialization: Initialize queue and derive necessary variables.
2 Search Target Pixel: For each pixel in the image, if its value is 1, mark as target pixel.
3 Add to Queue: Add the target pixel coordinates to the queue.
4 While queue is not empty do
4.1 Pop from Queue: Remove the first element and assign it as the current pixel.
4.2 8-Neighbor Check: For each 8-neighbor of the current pixel do
4.2.1 If neighbor value is 1 and not in queue, add it to the queue.
End for
End while
Store Cluster: Store the isolated cluster of connected pixels as an independent blood
flow region.

6 Repeat steps 2-5 for all target pixels.

Table 1. Algorithm 1 Blood Flow Segmentation Pseudo Code.

Algorithm 2 Blood Flow Clustering Pseudo Code

1 Initialization: Initialize a list of isolated clusters from Algorithm 1.
2 Distance Calculation: For each pair of clusters, calculate the distance between them.
3 While merging is possible do
3.1 Threshold Check: If the distance between clusters is less than a threshold, merge them.
3.2 Update Clusters: Replace the merged clusters with a single combined cluster.
End while

4 Return Final Clusters: Return the final set of merged blood flow clusters.

Table 2. Algorithm 2 Blood Flow Clustering Pseudo Code.

Skeleton extraction
The skeleton extraction algorithm isolates the core structure of the image through edge detection and erosion
operations, capturing essential skeleton features suitable for curve fitting. The process begins with initializing the
input image I and determining its dimensions m x n. The algorithm iteratively examines each pixel in the image.
When a pixel with a value of 1 is detected, a variable sum is initialized to 0. The algorithm then evaluates the
8-neighborhood of the pixel, summing the values of the neighboring pixels. If sum =8, indicating that the pixel
is completely surrounded, the pixel value is set to 0 (erosion). This erosion process is repeated iteratively across
the image until only the skeleton structure remains.

The resulting skeleton image I retains the primary morphological features of blood flow, making it suitable
for subsequent curve fitting analysis. The step-by-step algorithm is detailed in Table 3.

Motion estimation based on optical flow
Given the low quality of ultrasound images and the inherent characteristics of microvascular flow dynamics, this
study applies the optical flow method for motion estimation, enabling the extraction of dynamic vessel features
and facilitating high-resolution computation of the motion field. Optical flow is a visual analysis method?? that
represents the relative motion velocity of pixels corresponding to a moving object within the imaging plane. It
utilizes temporal variations in image intensity to establish the relationship between object motion and scene
structure®.

To reduce noise in ultrasound images and enhance the accuracy of motion estimation, the motion field
reconstruction model incorporates assumptions regarding dynamic intensity changes, gradient stability,
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Fig. 5. Neighborhood Segmentation Search.

Algorithm 3 Skeleton Extraction with Edge Detection and Erosion

1 SetI=image, and retrieve image dimensions m and n.
2 For each pixel (i, j) in I:
2.1 If1(i, j) == 1, set sum = 0.
2.2 For each 8-neighbor (i + di, j + dj) of (i, j) except itself:
2.2.1 Add I(i + di, j + dj) to sum.
3 Ifsum == 8§, set I(i, j) = 0 (erode pixel if fully surrounded).
4 Repeat steps 2-3 until no changes in 1.

5 Return I as the skeleton image.

Table 3. Algorithm 3 Skeleton Extraction with Edge Detection and Erosion.

and optical flow field smoothness, supplemented by multiresolution analysis techniques?’. Based on these
assumptions—constant intensity, constant gradient, and optical flow field smoothness—a deviation penalty
function is formulated to derive the optical flow energy function.

The energy functions for intensity and gradient are directly associated with the image data and are classified
as data terms within the total energy function. Additionally, the assumption of optical flow field smoothness
introduces a corresponding smoothness term. Consequently, the total energy function consists of both data
terms and a smoothness term for the optical flow field, as expressed in Eq. (1).

E (u7 U) = EDa,ta + aES’mooth (1)

Here, « is the regularization parameter, and E and E

Data , represent the data term and smoothness term,
respectively, as expressed in Eq. (2):

Smoot]

Ebata (u,v) = / ¥ (I x+w) = I &) +7|VI(x+w) = VI (x)]*) dx

¢ )

ES'mooth (U7 U) = / 1/} (‘VU|2 + |V’U|2) dx
Q
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where I represents the image sequence; X = (x,y) denotes the coordinate vector; w = (1,v) is the displacement vector
atX; V = (9z, Oy) is the spatial gradient operator; y indicates the weight between the intensity assumption and
the gradient assumption; (52) = /52 4 €2 is a concave function, which enhances the penalty on outliers by

implementing quadratic strengthening and improves the robustness of the algorithm. ¢ is a constant used in
numerical computations.

Based on the coverage domain of the binary image and the optical flow method, the influence of noise
background is removed, and the optical flow of blood flow is determined. The model extracts vascular elasticity
based on SMI blood flow signals. The optical flow model captures both the motion changes and direction of blood
flow, thereby augmenting traditional blood flow signals with directional movement and unit flow quantification.
Through matrix calculations, we further quantify the relaxation direction (elasticity) of vascular signals and their
motion density characteristics.

The directional blood flow optical flow obtained through the optical flow method, combined with
vascular morphological features from skeleton extraction, was divided into Microvascular Elastic Density and
Microvascular Flow Motion Density.

Dynamic analysis metrics for microvascular flow
The dynamic analysis metrics for microvascular flow, referred to as Superb Microvascular Imaging Dynamic
Parameters (SMI-DP), include the blood flow motion density metric and the vascular elasticity density metric.

(1) Microvascular Flow Motion Density

The motion density of microvascular flow, termed SMI Motion Density (SMI-MD), is defined as the ratio of the
optical flow motion of all pixels along the skeleton of the blood flow signal between two consecutive frames to the
total microvascular flow. This metric is computed for each frame, and a fluctuation curve of SMI-MD over time is
generated. SMI-MD reflects the overall dynamic characteristics of blood flow by measuring motion distribution
density along the vascular skeleton across adjacent frames. It accounts for blood flow velocity, direction, and
motion consistency within the blood flow region, providing a quantitative measure of microvascular motion
density. The specific formulation is expressed in Eq. (3).

I
SMI - MD — Zieparallel to the pizels on the blood flow skeleton ¢1(Ty) (3)

Nvessel

where d)il represents the motion distribution of pixel i(x, y) along the vascular skeleton in consecutive frames,
and it is typically calculated using the optical flow method. Nyessel denotes the total number of pixels in the
vascular region (i.e., the number of pixels within the region of interest) and is used to normalize the dynamic
intensity for camulative analysis.

(2) Microvascular Elastic Density

Given the extremely small cross-sectional area of microvessels, this study uses the variation in the width of
microvascular flow in the cross-section to characterize the elastic properties of blood vessels. The microvascular
elastic density, referred to as SMI Elastic Density (SMI-ED), for a given frame is defined as the ratio of the
motion magnitude of the optical flow components perpendicular to the blood flow signal skeleton across all
pixels in two consecutive frames to the total microvascular flow. A fluctuation curve of SMI-ED over time can
be plotted based on these calculations. This metric describes the distribution of vascular elastic density during
dynamic blood flow changes, providing a quantitative characterization of the dynamic elastic properties of blood
flow signals. The specific formulation is expressed in Eq. (4).

L
SMI - ED — EiGPeTpendicula'r tothe pizels on the blood flow skeleton (bz(z,y) (4)
Nvessel

where ¢7- represents the optical flow component perpendicular to the blood flow skeleton at the i-th pixel. The
elasticity of the blood vessels is derived from the contraction and calculation of the blood flow signals in the
vertical motion direction.The measurement of volume and the extent of vascular contraction indirectly reflect
changes in vascular elasticity, specifically characterized by optical flow changes in the vertical direction of the
skeletal orientation.These parameters provide critical support for subsequent pathological diagnosis and the
evaluation of joint inflammation.

Automatic grading standard
An automated grading method for joint microvascular flow signals is proposed based on the dynamic analysis of
musculoskeletal ultrasound microvascular imaging (SMI-DP). This method employs motion density (SMI-MD)
and elasticity density (SMI-ED) as primary metrics to quantify the dynamic properties of blood flow signals,
facilitating a multidimensional and precise evaluation and grading of microvascular flow within joint regions.
In this approach, V,__ represents the average value of the fluctuation curve, while V___indicates its maximum
value. Ranges for these metrics are defined to establish a grading system based on dynamic characteristics.
During automated grading, both metrics must strictly conform to the specified standards for each grade. The
grading criteria are outlined as follows:
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Grade 0: No significant fluctuations in microvascular flow signals, with consistently low motion and
elasticity density. Grade 1: Mild fluctuations in blood flow signals, with slight increases in motion and elasticity
density. Grade 2: Significant fluctuations in blood flow signals, with moderate levels of motion and elasticity
density. Grade 3: Highly significant fluctuations in blood flow signals, with both motion and elasticity density
reaching high levels.

If inconsistencies arise between the grades of the two metrics, the higher grade is adopted as the final result
to enhance sensitivity to abnormalities in blood flow signals. The specific grading criteria are detailed in Table 4.

Statistical methods

Statistical analyses were conducted using SPSS version 26.0. Descriptive statistics and the Chi-square test were
employed to determine p-values. The primary method for assessing the consistency between automated grading
of synovial joints and physician evaluations was the Kappa consistency test.

The methodology involved calculating observed agreement (OA) and expected agreement (EA). Observed
agreement was derived from the sum of the diagonal elements in the confusion matrix, while expected agreement
was estimated using the marginal totals of the rows and columns. The formula for computing the Kappa value
is presented in Eq. (5).

_po_pe
LA (5)

where p, represents the observed agreement, and p. represents the expected agreement. The Kappa value ranges
between -1 and 1, with higher values approaching 1 signifying stronger agreement. Typically, a Kappa value
exceeding 0.6 indicates good agreement, while values below 0 imply substantial disagreement. The statistical
significance of the p-value associated with the Kappa test was also computed to confirm the reliability of the
consistency between grading levels.

Results

Description of joint microvascular flow grading

Figure 6 displays ultrasound images (A-E) of five patients with varying pathological conditions, with green
rectangular boxes identifying the target regions. These images highlight the distribution of blood flow across
different anatomical sites and their pathological features. Grading was performed based on blood flow signal
density, synovial characteristics, joint effusion, and the severity of soft tissue lesions, revealing a progressive
trend from mild to severe (A as grade 0, B as grade 1, C as grade 2, and D and E as grade 3).

Figure 6A illustrates effusion within the suprapatellar bursa and medial and lateral joint spaces of the left knee
(measuring 2.33x0.48 cm, 1.66x0.38 cm, and 1.36 % 0.38 cm, respectively). Synovial thickening and reduced
echogenicity suggest mild inflammatory changes in the synovium. The absence of significant blood flow signals
indicates minimal vascular proliferation and mild osteoarthritis. Furthermore, thickening of the lateral collateral
ligament with blurred fibrous structures suggests potential ligament injury. This case is classified as grade 0.

Figure 6B reveals effusion within the suprapatellar bursa (0.61x0.17 cm) and medial (0.84x0.30 cm)
and lateral (0.58x0.34 cm) joint spaces of the left knee, along with synovial thickening and heterogeneous
echogenicity, indicative of inflammatory changes. The presence of minimal blood flow signals suggests early
active inflammation, with a noticeable increase in vascular activity compared to Fig. 6A. This case is assigned a
grade of 1.

Figure 6C shows a hypoechoic region at the proximal attachment of the right gastrocnemius muscle,
accompanied by a substantial presence of blood flow signals, indicative of localized strain. Blurred fibrous
structures suggest mechanical damage coupled with localized inflammatory responses. The pronounced increase
in blood flow signals reflects heightened dynamic inflammatory activity. Despite the localized nature of the
lesion, the significant enhancement of blood flow signals justifies a grade of 2.

Figure 6D depicts effusion in the joint cavity and medial and lateral joint spaces of the left knee (0.98 x 0.23 cm,
0.81x0.38 cm, and 2.86x0.59 cm, respectively). Marked synovial thickening and reduced echogenicity are
evident, indicative of osteoarthritic inflammatory changes. Edema in the soft tissue beneath the patellar edge,
coupled with abundant and blurred blood flow signals, suggests notable alterations in synovial and soft tissue
vascular supply. The extensive nature of the lesion and the active inflammatory response are consistent with a
grade of 3.

Figure 6E demonstrates thickening and hypoechoic areas (3.03 x0.88 cm) in the prepatellar fat layer of the
right knee, accompanied by abundant blood flow signals. Effusion is observed in the suprapatellar bursa and
medial and lateral joint spaces (1.76x0.32 cm, 1.23x0.28 cm, and 0.74x0.28 cm, respectively). The dense
distribution of blood flow signals indicates pronounced inflammatory changes in the synovium and soft tissues,

Grade | SMI-MD SMI-ED
0 0<V_ <0.50,0.50<V__ <1.50 0<V <0.20,0.20<V__ <0.50
ave max ave max
1 0.50<V_ <1.00,1.00<V__ <250 | 0.20<V__<0.40,0.40<V__ <1.00
ave max ave max
2 1.00<V,  <1.50,1.50<V, <3.50 | 0.40<V, <1.50,0.5<V, <2.50
3 V. _>150,V__>2.00 V. _>150,V__>2.00
ave max ave max

Table 4. Automated Grading Criteria for Joint Microvascular Flow Signals Based on SMI-DP.
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Fig. 6. Blood Flow Signal Grading in Patients with Different Pathological Conditions (A) Ultrasound image of
a patient graded as SMI level 0; (B) Ultrasound image of a patient graded as SMI level 1; (C) Ultrasound image
of a patient graded as SMI level 2; (D and E) Ultrasound images of patients graded as SMI level 3.

as well as joint cavity effusion, showing activity levels comparable to those in Fig. 6D. This case is classified as
grade 3.

Dynamic analysis metrics for microvascular flow

Microvascular flow motion density

Figure 7 illustrates the fluctuation curves of microvascular flow motion density (SMI-MD) over time, divided
into five subplots (A-E). Each subplot includes four curves representing distinct thresholds (0.75, 0.80, 0.85, and
0.90). The threshold values are denoted by different colors: gray (0.75), blue (0.80), pink (0.85), and cyan (0.90).
The legend located in the bottom-right corner clarifies the corresponding threshold for each curve.

These curves represent the dynamic variations in SMI-MD over time under various threshold conditions. At
lower thresholds, such as 0.75, the curves exhibit greater fluctuation amplitudes, indicating more pronounced
temporal changes. Conversely, at higher thresholds, such as 0.90, the fluctuations are smaller, and the curves
appear smoother and more stable. The distinct fluctuation patterns observed across subplots emphasize the
variability in SMI-MD under different temporal and threshold conditions.

Microvascular elastic density
Figure 8 displays five subplots (A-E) showing the fluctuation curves of microvascular elastic density (SMI-ED)
over time. Each subplot includes SMI-ED curves corresponding to four thresholds (0.75, 0.80, 0.85, and 0.90).
The thresholds are represented by the following colors: gray (0.75), blue (0.80), pink (0.85), and cyan (0.90), with
alegend in the bottom-right corner providing identification for each threshold.

These curves illustrate the dynamic trends of SMI-ED over time. Larger fluctuations are observed at lower
thresholds, such as 0.75, reflecting a higher sensitivity to temporal changes. In contrast, higher thresholds,
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Fig. 7. Fluctuation Curves of SMI-MD Over Time (A-E).

such as 0.90, result in smoother curves with reduced fluctuation amplitudes. The distinct patterns observed
under different thresholds highlight the variability of microvascular elastic density over time and across varying
threshold conditions.

Differences, similarities, and severity assessment

All cases depicted in Fig. 6 display osteoarthritic characteristics, including synovial thickening, reduced
echogenicity, and joint effusion, with varying degrees of enhanced blood flow signals correlating to different
levels of inflammatory activity. Soft tissue abnormalities are also evident, such as ligament thickening in Fig. 6A,
strain in Fig. 6C, and edema beneath the patellar margin in Fig. 6D, underscoring the link between osteoarthritis
and soft tissue lesions. The primary variations are observed in the distribution and density of blood flow signals:
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Grade 0 (Fig. 6A) exhibits no detectable blood flow signals, indicating minimal inflammatory response; Grade
1 (Fig. 6B) reveals sparse blood flow signals, signifying early active inflammation; Grade 2 (Fig. 6C) shows
localized but abundant blood flow signals; and Grade 3 (Fig. 6D and E) demonstrates densely concentrated
blood flow signals, reflecting extensive active inflammation. Progression from Fig. 6A to Fig. 6E reveals a
marked escalation in lesion severity, with synovial thickening expanding from localized to widespread areas,
blood flow signal density increasing significantly, and inflammatory activity intensifying from mild to severe.
Grade 0 represents static synovial inflammation, Grades 1 and 2 indicate progressively active inflammatory
states, and Grade 3 corresponds to the most advanced inflammatory phase, characterized by significant vascular
proliferation and associated tissue changes. This grading system effectively illustrates the dynamic progression
of osteoarthritis, providing a robust framework for quantifying blood flow and advancing automated grading
methodologies based on the optical flow model. Additionally, as blood flow signal grades increase, the patterns
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Automated Grading
Physician Ratings | Grade 0 | Grade 1 | Grade 2 | Grade 3 | Total
Grade 0 8 1 1 0 10
Grade 1 2 8 1 1 12
Grade 2 1 0 7 5 13
Grade 3 1 0 1 10 12
Total 12 9 10 16 47

Table 5. Comparison Between Automated Grading and Physician Ratings for Joint Microvascular Flow
(N=47).

of SMI Motion Density (SMI-MD) and SMI Elastic Density (SMI-ED) curves become more distinct and exhibit
consistent trends, further validating the grading system’s reliability.

Clinical validation

The consistency between the automated grading of synovial blood flow and physician ratings was assessed
using the Kappa consistency test. Based on the confusion matrix (Table 5), the study included 47 participants,
consisting of 20 males and 27 females (p =0.307 > 0.05, x> = 1.042), indicating no statistically significant difference
in gender distribution. The participants’ ages ranged from 30 to 65 years, with a mean age of 45.3 years, reflecting
the primary high-risk demographic for osteoarthritis. The observed agreement between automated grading
and physician ratings was 70.2%, demonstrating substantial consistency. The calculated Kappa value of 0.627
indicates good agreement (Kappa>0.6), while a Kappa value below 0 would denote significant disagreement.
Additionally, the observed agreement (70.2%) was notably higher than the expected agreement (51.2%). The
statistical significance test revealed p <0.001, providing strong evidence for the reliability and robustness of the
consistency between the automated and physician-assessed grading results.

Further analysis found that the automatic rating system was more inclined to give higher grade results when
the physician rating was level 2, which may be related to the noise in the blood flow signal or the threshold setting
of the middle grade by the blood flow signal classification algorithm.These findings suggest that the automated
system requires further optimization to enhance its accuracy in identifying moderate cases of osteoarthritis.
Nonetheless, the results validate the overall effectiveness of the automated grading system for osteoarthritis
classification while emphasizing the need for algorithmic refinement in specific contexts.

Discussion

This study successfully implemented automated grading of joint superb microvascular flow signals through
dynamic analysis using the optical flow model, demonstrating the potential of dynamic blood flow evaluation
for the quantitative assessment of osteoarthritis. The findings showed substantial consistency between the
automated grading system and physician ratings, as evidenced by a Kappa value of 0.627 (p<0.001), with
observed agreement significantly exceeding expected agreement (70.2% vs. 51.2%). These results affirm the
efficacy of the proposed method for the quantitative analysis of superb microvascular flow signals, highlighting
its promise in supporting clinical evaluation and grading of osteoarthritis.

Compared to traditional grading methods for osteoarthritis, the proposed approach offers substantial
advantages in analytical depth and objectivity of results. Traditional methods, such as the semi-quantitative
grading system introduced by Szkudlarek et al.*, rely on subjective evaluation of static ultrasound images, which
is highly influenced by operator expertise, equipment parameters, and image quality, leading to inconsistent
outcomes. Recent advancements in deep-learning-based automated grading methods have improved accuracy
and consistency by extracting features from static images®*®. Traditional methods, such as Singular Value
Decomposition (SVD), are effective in distinguishing tissue from blood flow. The SVD enables the separation
of blood flow and tissue in each frame, it does not account for the directionality of blood flow3”38, However,
these approaches are limited by their inability to capture the dynamic characteristics of blood flow signals.
Our approach addresses this limitation by incorporating directional information for each blood flow pixel.
Compared to SVD, our model more accurately reflects the movement of blood flow, as it operates within the
framework of dynamic analysis. By utilizing dynamic analysis through the optical flow model, this study is the
first to quantify changes in superb microvascular flow signals over time, significantly enhancing the objectivity
and clinical relevance of grading results.

This study also revealed a consistent tendency for the automated grading system to underestimate ratings
when physician evaluations were at Grade 2. This challenge may be linked to the intricate dynamic behavior
of blood flow signals in cases of moderate inflammation, where characteristics of both low-grade and high-
grade inflammation are present, complicating classification. Moreover, the threshold parameters for motion
characteristics in the optical flow algorithm may require refinement to improve the differentiation of
intermediate-grade osteoarthritis. Similarly, prior research has noted that machine learning-based grading
methods often exhibit reduced performance for intermediate levels compared to clearly defined lower or higher-
grade lesions®. These findings underscore the importance of further optimizing the algorithm to address the
complexities of moderate osteoarthritis classification.

While this study highlights the potential of an optical flow model-based dynamic analysis system for
quantitative osteoarthritis grading, several limitations must be acknowledged. First, the relatively small sample
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size may constrain the generalizability of the algorithm across a broader spectrum of lesion ranges and severity
levels. Second, the study focused solely on osteoarthritis, leaving its applicability to other joint pathologies,
such as rheumatoid arthritis or osteoarthropathy, unexplored. Furthermore, the algorithm’s adaptability in
complex clinical scenarios, such as synovitis combined with soft tissue injuries or multiple lesions, has not been
fully assessed. Ultrasound propagation in blood or tissue can be influenced by factors such as motion, posture,
and noise, which may affect the accuracy of flow measurements. To mitigate the uncertainty caused by high-
frequency signals, we employed an optical flow model for dynamic analysis and motion estimation, allowing for
more accurate tracking of blood flow changes and improved measurement stability. During image processing,
we used distance-based clustering to remove incidental weak signals. However, occasional misclassification of
strong signals remains. Additionally, discontinuities in edge detection and skeleton extraction may introduce
uncertainty in the quantification process. To address this, we excluded smaller discontinuous flow signals during
clustering using a predefined threshold. However, determining the exact size of discontinuous signals remains
an area for future research. In dynamic analysis, signal discontinuities or missing segments may introduce
uncertainty in quantification, particularly when dealing with complex or subtle inflammatory cases. Noise
interference can cause significant fluctuations in blood flow signals, but we have mitigated this effect using
smoothing techniques. Despite this, the optical flow model is capable of compensating for some of these missing
signals, reducing their impact on diagnostic results.

Future research could address these limitations by incorporating larger, multicenter datasets to improve the
algorithm’s ability to extract features, especially for intermediate-grade classifications. The integration of deep
learning techniques with optical flow model dynamic analysis may allow for the identification of more nuanced
blood flow signal characteristics, enhancing the accuracy and robustness of grading. These advancements could
establish the proposed method as a valuable tool for non-invasive diagnosis and dynamic monitoring of synovial
lesions. Such improvements would facilitate comprehensive support for early diagnosis, treatment evaluation,
and disease management of arthritis, broadening its clinical utility.

Conclusion

This study successfully implemented an automated grading system for joint superb microvascular flow signals
using dynamic analysis based on the optical flow model, demonstrating its effectiveness in the quantitative
evaluation of osteoarthritis. The findings showed substantial consistency between the automated system and
physician ratings, with agreement levels significantly exceeding expectations. These results underscore the
method’s ability to minimize subjective influence and improve grading Aobjectivity. By incorporating dynamic
analysis, the study quantified motion characteristics of blood flow signals, addressing the limitations of traditional
static image-based grading methods. This novel technical approach offers a promising tool for non-invasive
diagnosis and dynamic monitoring of osteoarthritis, while providing a foundation for the further refinement of
algorithm performance and the exploration of broader clinical applications.
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