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The purpose of point cloud registration is to determine the transformation parameters among 
multiple partially overlapping point clouds, and it plays an important role in various scenarios such as 
simultaneous localization and mapping (SLAM), scene reconstruction, industrial manufacturing and 
so on. However, due to the unordered and irregular nature of point clouds, accurately establishing 
correspondences poses a significant challenge. Coarse-to-fine methods, consisting of coarse and 
fine matching stages, have become popular in point cloud registration due to their effectiveness in 
handling repeatable keypoints. However, these methods are highly sensitive to the correspondences 
generated during the coarse-matching stage, where low-quality correspondences can lead to complete 
registration failure. Furthermore, the hard matching approach employed in coarse and fine matching 
stages often introduces a large number of outliers into the established correspondences. To overcome 
these challenges, this study introduces HarSoNet, a two-stage Hard-to-Soft Network designed for end-
to-end point cloud registration. In the hard matching stage, the model incorporates a hybrid similarity 
fusion module, which combines similarity scores obtained from different algorithms to establish 
superpoint correspondences. These superpoint correspondences, along with their neighboring points, 
are then grouped into fuzzy patch correspondences. In the soft matching stage, patch correspondences 
are refined into point correspondences by calculating and adjusting the similarity matrix for each fuzzy 
patch. Finally, all local point correspondences are aggregated into global correspondences, and the 
transformation parameters are computed using the weighted singular value decomposition (SVD) 
algorithm. Experimental results demonstrate that HarSoNet achieves Error(R) = 1.376 and Error(t) = 
0.015 on noisy, partially overlapping point clouds, demonstrating high registration accuracy and strong 
generalization performance.
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Point cloud registration enables the alignment of point clouds from different data sources or acquisition 
perspectives, providing critical data support for decision-making, design, and research in fields such as 
industrial manufacturing, autonomous driving, and robotic navigation1,2. In particular, laser manufacturing 
systems require multiple scans of large and complex components from various directions, followed by precise 
alignment of these point clouds to construct a 3D surface model of the components3,4. Nevertheless, point cloud 
registration presents a multitude of challenges and difficulties. On one hand, the sparsity and noise interference 
in point cloud data make it challenging to accurately identify corresponding points. On the other hand, existing 
methods often exhibit low efficiency and struggle to ensure accuracy when processing complex scenes and large-
scale point cloud data.

Traditional point cloud registration methods, such as ICP5, NDT6, and FGR7, perform registration by 
iteratively optimizing an error metric. These methods are simple to implement and widely applicable but may 
suffer from slow convergence and a tendency to fall into local minima under poor initial registration or partial 
overlap. In recent years, numerous learning-based point cloud registration methods8–16 have utilized rotation-
invariant features to establish correspondences between two point clouds, eliminate outlier matches, and apply 
robust estimator to compute the optimal transformation parameters, thus achieving accurate point cloud 
registration. It is noteworthy that establishing accurate correspondences constitutes the critical determinant 
of registration success, whose quality fundamentally governs both the stability of subsequent transformation 
estimation and the ultimate registration precision.
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Soft matching correspondence-based approaches permit each point to establish multiple potential 
correspondences, each associated with a probability or weighting factor. DCP10determines soft correspondences 
by calculating similarity scores between point-wise features of two point clouds. Since not every point is 
repeatable, RPM-NET12assigns weights to each soft matching correspondence to select the final match. ROP-
NET13refines the similarity matrix iteratively to achieve high-quality soft matching correspondences. However, 
these methods perform poorly in large-scale real-world tests and fail to resolve the low-overlap registration 
problem. Hard matching methods require a unique match for each point in the source point cloud. D3 
Feat11employs a density-invariant keypoint selection strategy to identify repeatable keypoints between two point 
clouds for registration. Predator14 achieves robust registration results for low-overlap problems by predicting 
the overlap region of two point clouds and selecting correspondences with high matching scores within that 
region. However, these approaches face challenges in identifying accurate correspondences when encountering 
substantial deformations or notable local geometric variations.

Inspired by the coarse-to-fine strategy in image matching17–19, CoFiNet15establishes correspondences 
between two point clouds using a two-stage matching process. In the coarse matching stage, the input point 
cloud is downsampled to generate superpoints by introducing sparsity. The similarity matrix, constructed from 
the superpoint features, is iteratively refined using Sinkhorn to determine hard matching correspondences. In 
the fine matching stage, superpoint correspondences are combined with neighboring points to form fuzzy patch 
correspondences. Finally, meaningless entries in the similarity matrix, constructed from block correspondences, 
are masked by the density-adaptive matching module to obtain final point correspondences. This coarse-
to-fine matching mechanism mitigates the risk of losing correspondences due to downsampling, enhancing 
the efficiency and robustness of the identified correspondences. However, this approach relies heavily on the 
accuracy of the superpoint correspondences obtained during the coarse-matching stage. GeoTrans16 employs 
a Transformer model to learn rotation-invariant geometric features for superpoint matching, improving the 
quality of superpoint correspondences. However, as both matching stages are based on hard matching, other 
potential relationships between points are overlooked, leading to final correspondences that are still not 
sufficiently accurate or robust.

This paper addresses the shortcomings of existing two-stage matching methods, such as the presence of 
numerous outliers, by proposing a network model that combines soft and hard matching. In the hard matching 
stage, a hybrid similarity fusion module is employed to assess feature similarity by combining scaled dot product 
and pairwise distance similarity results, thereby obtaining superpoint correspondences. In the soft matching 
stage, each point in the two slices of the point cloud is assigned to the nearest superpoint in geometric space 
to form fuzzy patch correspondences. As shown in Fig. 1, points of the same color in the two point clouds 
form the patch correspondences. By restricting the estimated soft assignments between the two point clouds 
to the range of patch correspondences, the probability of false matches is effectively reduced. The final point 
correspondences are then obtained by calculating and adjusting the similarity matrix for each patch. Finally, 
all local point correspondences are combined into global point correspondences, and the final transformation 
parameters are computed using weighted SVD.

The main contributions of this paper are as follows: 

	1)	 A combined soft and hard matching approach is proposed, where high-quality superpoint correspondences 
from the hard matching stage provide a clear search direction for soft matching, which assigns multiple 
potential matching probabilities to each point along that direction. The robust point correspondences estab-
lished by the combination of two-stage soft and hard matching lead to fast and reliable matching.

	2)	 A hybrid similarity fusion module is designed, where distance-based similarity captures the spatial dis-
tribution and local similarity of features, while matrix multiplication-based similarity captures the global 
structure of the point cloud and feature interactions. The combination of both methods allows for a more 
comprehensive evaluation of feature similarity.

Fig. 1.  Patch correspondences in the soft matching stage.
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Related work
Most point cloud registration algorithms can be broadly divided into four key steps: feature extraction, 
correspondence search, outlier filtering, and transformation parameter estimation.

Feature extraction methods
Many algorithms utilize unique feature descriptors to determine point cloud correspondences, resulting in more 
accurate registration results16,20–25. SpinNet21voxelizes point clouds into spherical representations and leverages 
meticulously designed cylindrical convolutions to extract rich local features, demonstrating strong generalization 
capability in unseen scenarios. However, its voxel representation incurs significant computational overhead. 
GeoTrans16encodes rotation-invariant features, such as angles and distances between superpoints, and improves 
feature representation by capturing global relationships via the Transformer. Nevertheless, these methods fail to 
account for the fact that rotationally isovariant features retain the orientation information of the point cloud. 
YOHO23and RoReg25simultaneously encode both rotationally invariant and isovariant features, enabling fast 
and robust registration. Recent research on adversarial attacks in 3D point clouds26 has shown that manifold-
constrained methods can enhance robustness to local geometric deformations by limiting perturbations in the 
feature space.

Correspondence search methods
In the presence of noise interference and partial overlap, constructing robust point cloud correspondences poses 
significant challenges. Reference27introduces the concept of hardening soft-assignment, dynamically adjusting 
the strictness of matching through Gaussian kernels and an annealing strategy. This approach encourages 
the model to prioritize high-confidence correspondences during inference, effectively suppressing noise and 
outliers. MCSVR28, building on the coarse-to-fine framework of CoFiNet15, innovatively employs a region-
level Gaussian mixture model to represent the geometric distribution of point clouds. This method quickly 
filters potential matching regions and establishes precise hard correspondences within local areas by balancing 
local geometric details and global distribution characteristics. Unlike these existing approaches, the proposed 
algorithm first establishes hard correspondences between superpoints, forming region-level correspondences 
through Euclidean neighborhood aggregation. Then, within a constrained search space, soft assignment is 
applied to allocate multiple matching weights to each point based on feature similarity. This “hard-matching-
guided, soft-assignment-refined” mechanism maintains the determinacy of hard matching while leveraging the 
fault tolerance of soft assignment, thereby enhancing the robustness of point cloud registration.

Outlier filtering methods
Existing learning-based methods29–31first filter initial correspondences using deep feature similarity and then rely 
on RANSAC or regression networks to estimate transformation parameters. However, these approaches neither 
fully exploit spatial information in geometric transformations nor consider the overall spatial relationships 
among inliers. Spatial compatibility-based methods32–34incorporate spatial consistency constraints during 
feature extraction and outlier filtering. Nevertheless, they still depend on coarse correspondences as input and 
cannot achieve end-to-end point cloud registration. Notably, SymAttack35 introduces a novel symmetry-aware 
attack framework that generates perturbations while preserving the symmetry of the point cloud. The outliers 
produced by such perturbations are highly inconspicuous-not only are they subtle, but they also maintain 
the original shape’s symmetry. This characteristic makes traditional geometry-based outlier filtering methods 
ineffective in detecting these perturbations, posing new challenges to the robustness of the registration process.

Transformation parameter estimation methods
The coupling between the rotation matrix and translation vector complicates the estimation of rigid 
transformation parameters. This occurs because variations in one parameter (either in the rotation matrix or 
translation vectors) may influence the estimation of the other, potentially causing bias or errors in the final 
registration result. To address the problem of parameter interference, DetarNet36separates the estimation of 
rotation and translation into two stages. Once the interference from translation vectors is removed, the rotation 
parameters are determined using singular value decomposition (SVD). FINet37 employs a two-branch structure 
to encourage the model to separately extract features for the two parameters and then applies a regression 
network to predict the final transformation. However, these methods often fail to fully exploit the local geometric 
structure of the point cloud, leading to a significant number of outliers in the established correspondences.

Methodology
Problem description
Let the source point cloud be P = {p1, p2, . . . , pn} and the reference point cloud be Q = {q1, q2, . . . , qm} 
representing the point sets of two point clouds to be aligned, where n and m represent the number of points in P 
and Q, respectively. The goal of the point cloud registration is to find an optimal rigid transformation T = (R, t) 
that best aligns the source point cloud P with the reference point cloud Q, where R ∈ SO(3) is the rotation 
matrix (the special orthogonal group) and t ∈ R3 is the translation vector. The optimal rigid transformation T 
is obtained by minimizing the distance between the real corresponding points (p∗

i , q∗
j ):

	
min
R,t

∑ (
p∗

i
,q∗

j

)
∈C∗ ||R · p∗

i + t − q∗
j ||22� (1)
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C∗ is the set of real correspondences between the two point clouds. The method proposed in this paper leverages 
the speed of hard matching and the robustness of soft matching by combining two-stage soft and hard matching, 
ensuring the entire matching process produces robust correspondences while maintaining efficiency.

Network architecture
The overall architecture of the proposed method is depicted in Fig. 2. The backbone network performs 
a downsampling of the input point clouds P and Q while simultaneously extracting their features. The hard 
matching stage establishes hard correspondences between the superpoints by computing the similarity of 
superpoint features using the hybrid similarity fusion module. The superpoint correspondences are extended 
to patch correspondences by combining their neighboring points. The soft matching stage refines these patch 
correspondences into point correspondences by computing and adjusting the similarity matrix of the patches. 
Finally, all local point correspondences are pooled into global correspondences, and the final transformation 
parameters are computed using the weighted SVD algorithm.

Point cloud preprocessing
Point clouds typically contain a large number of points, and high point cloud density can lead to significant 
computational costs when calculating distances or performing feature matching. Reducing the number of points 
through downsampling effectively reduces computational complexity, thereby improving registration efficiency. 
In this paper, we use the KPConv-FPN backbone network38,39 to downsample the original point clouds P and 
Q, extracting their corresponding features. Through the first level of downsampling, we derive the dense point 
sets P̃  and Q̃, along with their feature representations F̃ P ∈ R|P̃ |×d̃ and F̃ Q ∈ R|Q̃|×d̃. At the final level of 
downsampling, we obtain the superpoint sets P̂  and Q̂, as well as their feature representations F̂ P ∈ R|P̂ |×d̂ 
and F̂ Q ∈ R|Q̂|×d̂. Here, |P̃ | and |Q̃| denote the number of dense points, while d̃ represents the dimensionality 
of the dense point features. Similarly, |P̂ | and |Q̂| indicate the number of superpoints, with d̂ denoting the 
dimensionality of the superpoint features. Each point p̃ in the dense point P̃  is mapped to the nearest superpoint 
in geometric space, forming a local patch MP

i :

	 MP
i =

{
p̃ ∈ P̃

∣∣i = arg minj

(
∥p̃ − p̂j∥2

)
, p̂j ∈ P̂

}
� (2)

The feature F P
i  of patch MP

i  is composed of the features F̃ p̃ of the points p̃ within MP
i  :

	 F P
i =

{
F̃ p̃ ∈ F̃ P

∣∣i = arg minj

(
∥p̃ − p̂j∥2

)
, p̂j ∈ P̂

}
� (3)

Similarly, the local patch MQ
i  of point cloud Q and its corresponding feature F Q

i  are computed using Eq. (2) 
and Eq. (3).

Hard matching stage
In this paper, we establish hard correspondences between superpoints by encoding their rotation invariant 
embedding and applying the proposed hybrid similarity fusion module. The framework of the hard matching 
stage is illustrated in Fig. 3. First, rotation invariant embedding are encoded for superpoints P̂  and Q̂, 
respectively. Next, these features, along with those extracted by the backbone network F̂ P  and F̂ Q, are fed 
into the Transformer. This process, comprising rotation invariant embedding and Transformer, is defined as the 
Rotation Invariant Transformer Embedding. Finally, hard correspondences between superpoints are obtained 
using the hybrid similarity fusion module.

Rotation invariant transformer embedding
Most previous directly input the features extracted by neural networks into the Transformer, where some 
information may be redundant or unnecessary, reducing the geometric distinctiveness of the model. Studies13,16,40 
have shown that incorporating geometric features, such as point cloud rotational invariance, into the Transformer 
enhances its focus on critical alignment features, thereby reducing ambiguities, mitigating outlier matches, and 
improving registration efficiency and performance.

Fig. 2.  HarSoNet network architecture.
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In this paper, we apply pair-wise distance embedding and triplet-wise angular embedding16 for superpoints. 
The core idea is to extract rotation-invariant embedding (angles and distances), which remain constant under 
rigid transformations. Theoretically, these features ensure a stable representation of the same spatial entity’s 
geometric properties across different viewpoints.

Given two superpoints p̂i, p̂j ∈ P̂ , the pair-wise distance embedding rD
i,j ∈ Rf  between them, with even-

dimensional feature rD
i,j,2r  and odd-dimensional feature rD

i,j,2r+1, can be expressed as:

	




rD
i,j,2r = sin

(
di,j

/
σd

104·2r/f

)

rD
i,j,2r+1 = cos

(
di,j

/
σd

104·2r/f

) � (4)

where r denotes the index of the current dimension, f is the dimension of the feature, di,j = ||p̂i − p̂j ||2 is the 
Euclidean distance between the superpoints p̂i and p̂j . σd is a hyperparameter that adjusts distance scaling. Eq. 
(4) represents the spatial distribution pattern of superpoints. As the dimension r increases, different frequency 
encodings are generated using sine and cosine functions. High-frequency components capture subtle distance 
variations, while low-frequency components encode large-scale distance patterns, enabling adaptive perception 
of multi-scale geometric structures.

Assuming p̂c(1 ≤ c ≤ k) represents the k nearest points in the neighbourhood of superpoint p̂i, we define 
∆i,j = p̂i − p̂j . For each p̂c, αA

i,j,c = ∠(∆c,j , ∆j,i), which denotes the angle between vector ∆c,j  and ∆j,i. 
The triplet-wise angular embedding rA

i,j,c between superpoint p̂i, its neighbourhood point p̂c, and superpoint p̂j  
can be represented by the even-dimensional feature rA

i,j,c,2l and the odd-dimensional feature rA
i,j,c,2l+1:

	




rA
i,j,c,2l = sin

(
αA

i,j,c

/
σa

104·2l/f

)

rA
i,j,c,2l+1 = cos

(
αA

i,j,c

/
σa

104·2l/f

) � (5)

l denotes the index of the current dimension, and σd is a hyperparameter that adjusts for angular changes. 
Eq. (5) captures the local geometric morphology of superpoints. Similar to pair-wise distance embedding, it 
employs sine and cosine functions to generate multi-frequency scale coverage as the dimension l increases. 
High-frequency components distinguish subtle angular variations, while low-frequency components encode 
macroscopic geometric patterns. Compared to traditional linear projection methods, the nonlinear mapping of 
sine and cosine functions better adapts to complex geometric structures.

Finally, the rotation invariant embedding between the superpoint p̂i and p̂j  can be expressed as:

	 ri,j = rD
i,jW

D + maxc

{
rA

i,j,cW
A

}
� (6)

Here, ri,j ∈ RP̂ , WD  and WA ∈ Rf×f , are projection matrices for distance and angle encoding, f is the 
feature dimension, and maxc denotes the largest ternary angular embedding rA

i,j,c in the neighbourhood of 
the superpoint p̂i. Pair-wise distance embedding characterizes the proximity between point pairs, while triplet-
wise angular embedding captures local shape information. By employing a learnable projection matrix, these 
distinct geometric features are mapped into a unified space, providing a comprehensive representation of the 
superpoint’s geometric structure. This unified representation also facilitates subsequent processing by attention 
mechanisms.

In point cloud P, the rotation invariant embedding between each superpoint and other superpoints is denoted 
as RP̂ . Then, RP̂  is concatenated with the superpoint feature F̂ P  extracted by the backbone network:

	 F P̂ = RP̂ ⊕ F̂ P � (7)

Fig. 3.  Hard matching stage.
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where ⊕ denotes concatenation along the feature dimension. The same operation is applied to point cloud Q. 
The concatenated features F P̂ ∈ R|P̂ |×d and F Q̂ ∈ R|Q̂|×d are then fed into a Transformer composed of self-
attention and cross-attention layers for further encoding. In the Transformer, the attention mechanism is defined 
as:

	 MHAtten (Q, K, V) = (head1 ⊕ . . . ⊕ headH) WO � (8)

	 headh = Atten
(
QWQ

h , KWK
h , VWV

h

)
� (9)

where ⊕ denotes concatenation along the channel dimension, and WQ
h , WK

h , WV
h ∈ Rd×dhead  as well as 

WO ∈ RHdhead×d are learnable projection matrices. The number of attention heads is set to H = 4, with 
dhead = d

/
H . The feature interaction in each projection space is computed using the scaled dot-product 

attention:

	
Atten (Q, K, V) = softmax

(
QKT

√
dhead

)
V� (10)

In the self-attention layer, the query, key, and value matrices are set as Q = K = V =F P̂ . Each superpoint 
updates its feature representation based on its relationship with other superpoints, enabling intra-superpoint 
feature interaction and information propagation. In the cross-attention layer, the query is set as Q =F P̂

, K = V =F Q̂. This cross-attention mechanism facilitates feature interaction between the two point clouds, 
thereby enhancing their alignment and registration. Finally, the features of the two point clouds after the self-
attention and cross-attention layers of the Transformer are represented as ϕP̂ ∈ R|P̂ |×d and ϕQ̂ ∈ R|Q̂|×d, 
respectively.

Hybrid similarity fusion module
Previous methods for calculating similarity often fail to consider interactions between features or overlook 
similarity within local regions of the point cloud. The HarSoNet network architecture evaluates the similarity 
between superpoint features using the proposed hybrid similarity fusion module. As shown in Fig. 4, the 
similarity between two superpoint features is initially calculated using Scaled Dot-Product Similarity (SDPS) 
and Pairwise Distance Similarity (PDS). The two similarity results are then combined using a 1 × 1 convolution. 
Scaled Dot-Product Similarity captures the global structure and feature interactions within the point cloud, while 
Pairwise Distance Similarity effectively describes spatial distribution and local feature similarities. Combining 
both methods provides a holistic understanding of the point cloud, enabling a more comprehensive assessment 
of feature similarity from local to global levels.

SDPS ∈ R|P̂ |×|Q̂| can be expressed as follows:

	 SDPS = e

(
−

ϕP̂ ·
(

ϕQ̂
)⊤

√
d

)
� (11)

Fig. 4.  Hybrid similarity fusion module.
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where ⊤ denotes the transpose of the matrix. Similar to the attention mechanism in Transformer, SDPS computes 
the dot product between two feature vectors. The denominator 

√
d is used to scale the dot product, preventing 

similarity values from becoming excessively large when dealing with high-dimensional feature vectors. Since 
SDPS is based on the dot product operation, it effectively captures the global structure of the point cloud and 
facilitates feature interactions, enhancing the overall registration process. PDS ∈ R|P̂ |×|Q̂| can be expressed as 
follows:

	 PDS = e

(
−

∥∥ϕP̂ −ϕQ̂
∥∥2

2

)
� (12)

PDS computes the squared Euclidean distance between two feature vectors and transforms it into a similarity 
measure using an exponential function. This approach effectively captures the spatial distribution of features, 
emphasizing how features are positioned relative to each other in the embedding space. By leveraging Euclidean 
distance, PDS provides a more geometrically intuitive similarity measure compared to SDPS. After stacking the 
two similarity results, a hybrid similarity matrix Ci,:,: ∈ R2×|P̂ |×|Q̂| can be expressed as:

	
Ci,:,: =

{
SDPS,i = 0
PDS, i = 1 � (13)

The similarity matrices from different channels of Ci,:,: are fused using a convolutional neural network, resulting 
in the final output S u p e r M ∈ R|P̂ |×|Q̂|:

	 SuperM = µθ (Ci,:,:)� (14)

where µθ  denotes a two-dimensional convolutional layer. The combined similarity result leverages the advantages 
of SDPS, which is sensitive to the global structure of the point cloud, and PDS, which captures distance 
relationships. By integrating these two complementary measures, the final similarity computation becomes more 
robust, effectively balancing structural awareness and spatial sensitivity to improve matching accuracy in point 
cloud registration. Then, we apply double normalization to the SuperMmatrix19 for suppressing anomalous 
matching:

	
SuperMi,j = SuperMi,j∑|Q̂|

k=1 SuperMi,k

· SuperMi,j∑|P̂ |
k=1 SuperMk,j

� (15)

where S u p e r M i,j  is an element of the SuperM matrix. By applying dual normalization, ambiguous matches 
are suppressed, and mutually consistent reliable correspondences are selected, enhancing the distinctiveness of 
the matching process. The top Nc elements S u p e r Mx,y  in the normalized matrix SuperM are selected as 
the hard matching correspondences between the superpoints:

	 Ĉ =
{

(p̂xi , q̂yi ) | (xi, yi) ∈ topkx,y(SuperMx,y)
}

� (16)

Using Eq. (16), we obtain the set of correspondences between superpoints, denoted as Ĉ . Each correspondence 
(p̂xi , q̂yi ) represents a matched pair of superpoints, while (xi, yi) denote the indices of S u p e r Mx,y.

Soft matching stage
The superpoint correspondences established in the hard matching stage provide crucial initial information 
and constraints for the soft matching stage. This enables the soft matching process to focus its search within a 
targeted region rather than the entire point cloud space, resulting in faster and more robust matching.

As shown in Fig. 5, each superpoint corresponds Ĉi = (p̂xi , q̂yi ) aggregates nearby dense points using Eq. 
(2) and Eq. (3) to form the patch correspondences (MP

xi
, MQ

yi
) and their corresponding features (F P

xi
, F Q

yi
). The 

similarity matrix for each patch correspondence, denoted as P o i n t Mi, can be expressed as:

	
PointMi=FP

xi

(
FQ

yi

)⊤
/√

d̃� (17)

Here, ⊤ denotes the matrix transpose, and d̃ represents the feature dimension of the patch. Each element in 
P o i n t Mi represents the similarity between each dense point p̃ in the local patch MP

xi
 and each dense point 

q̃ in the local patch MQ
yi

.

Sort-regenerate
Next, adjustments are made to P o i n t Mi and MP

xi
. Each row of the similarity matrix P o i n t Mi represents 

the similarity between each dense point p̃ in the patch MP
xi

 and each dense point q̃ in the patch MQ
yi

. First, the 
maximum value in each row is selected, representing the similarity of each p̃ to its most similar q̃. Based on these 
results, the order of P o i n t Mi and MP

xi
 is adjusted to obtain the new similarity matrix S o r t P o i n t Mi 

and the reordered source point cloud matrix SortMP
xi

, facilitating optimal correspondence matching with the 
target point cloud:
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SortPointMi=PointM i

[
argsort(max

k
(PointMi)j,k)

]
� (18)

	
SortMP

xi
= MP

xi

[
argsort(max

k
(PointMi)j,k)

]
� (19)

Corr-point computing
Finally, for each reordered source point cloud matrix SortMP

xi
, the corresponding reference point cloud matrix 

M̄Q
yi

 can be expressed as:

	 M̄Q
yi

=
(
SortMP

xi

)⊤
SortPointMi� (20)

The top-k correspondences with the highest confidence scores from (SortMP
xi

, M̄Q
yi

) are chosen as the final 
selected point correspondences C̃i:

	 C̃i = topk
(
SortMP

xi
, M̄Q

yi

)
� (21)

Estimation of transformation parameters
All local point correspondences C̃i are aggregated into the global point correspondences C̃  using (17), where Nc 
represents the number of patch correspondences. The rigid transformation T is computed using (18), where the 
similarity scores from each soft matching correspondence (p̃xj , q̃yj ) serve as the weights wj :

	 C̃ = Concat(C̃i, i = 1, 2, · · · , Nc)� (22)

	
R,t = min

R,t

∑(
p̃xj

,q̃yj

)
∈C̃

wj

∥∥R · p̃xj + t − q̃yj

∥∥2
2� (23)

Loss function
The loss function L = Loa + Lrt in this paper comprises two components: the superpoint matching loss Loa 
and the transformation parameters loss Lrt.

The superpoint matching process is supervised using the overlapping perceptual circle loss. A set of anchor 
patches Λ is defined with the local patch MP

i  of the source point cloud P and MQ
i  of the reference point cloud 

Q. Patches are categorised as positive pairs if they are repeatable; otherwise, they are classified as negative pairs. 
For each MP

i ∈ Λ, the sets of positive and negative patches in Q are denoted as ωi
t  and ωi

f , respectively. The 
overlapping perceptual circle loss on the source point cloud P is expressed as:

	

LP
oa = 1

|Λ|
∑

MP
i

∈Λ

log


1 +

∑
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Q
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t
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j
i

δ
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j
i

−∆t) ·
∑

M
Q
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f

eδ
i,k
f

(∆f −dk
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
� (24)

where dj
i = ||ϕP̂

i − ϕQ̂
j ||2 is the Euclidean distance between the superpoint features, and λj

i = (oj
i )1/2 represents 

the overlap rate between the patches MP
i  and MQ

j ; futher details are provided in16. The hyperparameters 
∆t = 0.1, ∆f = 1.4, and the weights of the positive and negative patch sets are defined as δi,j

t = γ(dj
i − ∆t) 

and δi,k
f = γ(∆f − dk

i ), representing the non-negative results of (dj
i − ∆t) and (∆f − dk

i ). The total 
superpoint matching loss is the average of the losses from point clouds P and Q: Loa = (LP

oa + LQ
oa)/2.

To optimize rotation and translation parameters, reducing registration errors, the following loss function 
calculates the deviation between predicted and true transformation parameters:

	 Lrt = λ(
∥∥RT · R̂ − I

∥∥2 +
∥∥t − t̂

∥∥2)� (25)

Fig. 5.  Soft matching stage.
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where R̂ and ̂t are the true transformation parameters, R and t are the predicted transformation parameters, and 
λ is a balancing weight for the loss components.

Experiments
Implementation details
The experiments in this study were conducted on a system equipped with a 12-vCPU Intel® Xeon® Platinum 
8352 V CPU running at 2.10 GHz and an NVIDIA RTX 3090 GPU. The computation framework is implemented 
using PyTorch, with 200 training rounds on the ModelNet40 dataset and 60 rounds on the 3DMatch dataset. The 
Adam optimizer is used for parameter updates. The batch size was set to 1. The initial learning rate was 0.0001, 
with a decay rate of 0.000001. During training, Ng = 128 real superpoint correspondences were used. In the 
testing phase, Nc = 256 estimated superpoint correspondences were employed.

ModelNet40 dataset
ModelNet40 comprises 40 categories of 3D CAD models. Eight symmetric categories (e.g., cups, vases) were 
excluded from both training and testing. The remaining categories were split into training (4,194 models), 
validation (1,002 models), and test (1,146 models) sets. Following12, all points were randomly projected, and 70% 
(p = 0.7) were retained to create partially overlapping source and reference point clouds. The source point cloud 
was subjected to a rotational transformation within the range [0, r = 45] and a translational transformation 
within [−0.5, 0.5]. The point cloud was then sampled twice: data from the first sampling was denoted as OS, and 
data from the second as TS.

To validate the performance of the proposed algorithm, we compare it with traditional methods, including 
ICP (point-to-point) and RANSAC, as well as learning-based methods such as DCP10, RPM-NET12, OMNet41, 
and GeoTrans16on Unseen Shape, Unseen Categories and Gaussian Noises. We employ the implementations of 
ICP and RANSAC from Intel Open3D42and utilize (Fast Point Feature Histogram)FPFH43 for feature matching. 
Three metrics were used to evaluate the transformation parameters: root mean square error (RMSE), mean 
absolute error (MAE), and isotropic error (Error).

Unseen shapes
In this study, we initially trained the model using full-class data and tested it on unseen OS and TS datasets. The 
results in Table 1 indicate that traditional algorithms perform worse across all metrics compared to learning-
based methods, demonstrating the strong generalization ability and adaptability of learning-based approaches. 
The proposed HarSoNet outperforms other methods across all metrics. The Error(R) and Error(t) values are 
0.846 and 0.007 for OS, and 1.575 and 0.011 for TS, respectively. Fig. 6 presents a qualitative comparison of 
learning-based methods on OS, where HarSoNet achieves the most accurate registration results, closely matching 
the ground truth.

Unseen categories
To assess the model’s generalization ability, we trained it on the first 14 categories and tested it on the remaining 
unseen categories. The results are presented in Table 2. In this part of the experiment, the results of learning-based 
methods were generally inferior to their performance on Unseen Shape. Traditional algorithms demonstrated 
a certain level of robustness. HarSoNet achieved the best results on all OS data, with RMSE(R) and MAE(R) 
reaching 0.751 and 0.637, respectively. On TSdata, its performance was second only to GeoTrans16. HarSoNet 
demonstrated strong robustness on unseen categories point cloud data. Fig. 7 presents a qualitative comparison 
of learning-based methods on OS.

Gaussian noise
To assess the models’ robustness to noise, Gaussian noise of N(0, 0.012) was added to the Unseen Categories, 
and each point was clipped to the range [−0.05, 0.05]. The experimental results, presented in Table 3, indicate 
that after adding Gaussian noise, all models exhibited some robustness. The proposed method achieved the 
best results across all OS metrics, with Error(R) reaching 1.376 and Error(t) 0.015, demonstrating strong noise 
resilience. Fig. 8 presents a qualitative comparison of learning-based methods on OS.

Method

RMSE(R) MAE(R) RMSE(t) MAE(t) Error(R) Error(t)

OS TS OS TS OS TS OS TS OS TS OS TS

RANSAC+FPFH 42.802 45.731 17.015 19.402 0.352 0.352 0.100 0.169 27.51 31.42 0.319 0.358

ICP 23.196 24.298 10.512 11.160 0.328 0.331 0.155 0.152 20.964 22.452 0.314 0.345

DCP 6.980 8.441 5.430 8.006 0.064 0.078 0.049 0.047 12.135 12.790 0.112 0.135

RPMNET 1.138 1.556 0.929 1.255 0.014 0.015 0.013 0.014 2.266 2.467 0.024 0.025

OMNet 0.857 1.261 0.781 1.142  0.007  0.011  0.006  0.009 1.454 2.066  0.012  0.018

GeoTrans  0.507  1.008  0.433  0.862  0.007  0.011  0.006  0.009  0.855  1.697  0.012  0.018

Ours 0.489 0.909 0.427 0.581 0.004 0.007 0.004 0.006 0.846 1.575 0.007 0.011

Table 1.  Comparison of registration results on Unseen Shapes. Boldfaced numbers highlight the best and the 
second best are underlined.
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Large rotation
In this part of the experiment, OS samples in the Gaussian Noise experiment were set to ModelNet with p = 0.7 
and ModelLoNet with p = 0.5. The maximum rotation angle r between the two point clouds was set to 180◦. 
Due to this setup, algorithms such as ICP and DCP10did not produce reasonable results; therefore, their outcomes 
are omitted from this paper. Meanwhile, Predator14and CoFiNet15, which use similar correspondence-based 
methods, were included in the comparison experiments. The results of Predator14and CoFiNet15were refined 

Method

RMSE(R) MAE(R) RMSE(t) MAE(t) Error(R) Error(t)

OS TS OS TS OS TS OS TS OS TS OS TS

RANSAC+FPFH 53.256 58.853 25.511 30.034 0.442 0.494 0.228 0.251 42.220 49.126 0.478 0.557

ICP 24.242 25.196 11.000 12.154 0.315 0.342 0.152 0.177 22.144 24.225 0.334 0.361

DCP 9.201 11.316 8.354 8.675 0.109 0.117 0.087 0.100 15.761 19.400 0.189 0.202

RPMNET 4.675 8.821 4.199 7.034 0.055 0.104 0.050 0.085 8.108 15.276 0.095 0.180

OMNet 4.143 4.570 3.905 4.328 0.030 0.037 0.023 0.029 6.464 6.672 0.052 0.064

GeoTrans  1.030 1.152  0.879 0.991  0.011 0.013  0.009 0.011  1.736 1.940  0.019 0.022

Ours 0.820  2.139 0.705  1.835 0.009  0.024 0.007  0.020 1.376  3.527 0.015  0.042

Table 3.  Comparison of registration results on Gaussian Noise. Boldfaced numbers highlight the best and the 
second best are underlined.

 

Fig. 7.  Qualitative examples of different network models on Unseen Categories. (a) input. (b) Ground-
truth(GT). (c)-(g) The qualitative examples with different network models.

 

Method

RMSE(R) MAE(R) RMSE(t) MAE(t) Error(R) Error(t)

OS TS OS TS OS TS OS TS OS TS OS TS

RANSAC+FPFH 46.115 50.650 19.472 23.166 0.388 0.412 0.174 0.191 31.903 37.610 0.362 0.416

ICP 23.376 24.545 10.702 11.702 0.325 0.336 0.154 0.168 21.113 23.288 0.338 0.341

DCP 9.582 10.403 7.650 8.399 0.088 0.104 0.060 0.103 16.290 17.981 0.153 0.180

RPMNET 4.055 7.036 3.942 5.381 0.018 0.030 0.017 0.024 7.421 12.236 0.032 0.052

OMNet 3.816 4.021 3.380 3.852 0.018 0.027 0.017 0.023 6.653 6.890 0.031 0.048

GeoTrans  0.972 1.152  0.826 0.984  0.010 0.012  0.008 0.010  1.631 1.939  0.017 0.021

Ours 0.751  1.909 0.637  1.639 0.008  0.023 0.007  0.018 1.253  3.187 0.014  0.039

Table 2.  Comparison of registration results on Unseen Categories. Boldfaced numbers highlight the best and 
the second best are underlined.

 

Fig. 6.  Qualitative examples of different network models on Unseen Shapes. (a) input. (b) Ground-truth(GT). 
(c)-(g) The qualitative examples with different network models.
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using RANSAC estimation. To clearly and intuitively evaluate differences in transformation parameters, the 
relative rotation error (RRE), the relative translation error (RTE), and corrected Chamfer Distance (CD)12 were 
used. Table 4 presents the experimental results. The performance of all methods decreases when the initial 
poses of the two point clouds differ significantly. Performance further declines when dealing with point clouds 
that have low overlap. However, because hard-to-soft matching enhances the soft matching search space and 
establishes accurate correspondences, the proposed method outperforms others on most metrics.

3DMatch dataset
The 3DMatch dataset, comprising 62 3D scans of indoor scenes, is widely used for research in point cloud 
alignment, scene reconstruction, and robot navigation. The dataset includes 46 scenes for training, 8 for 
validation, and 8 for testing. Following the pre-processing protocol of Predator14, the data are categorized into 
3DMatch (overlap>30%) and 3DLoMatch (overlap between 10% and 30%).

To validate the performance of the proposed algorithms, comparisons were conducted with D3 Feat11, 
SpinNet21, Predator14, YOHO23, GeoTrans16, and REGTR40on the 3DMatch and 3DLoMatch datasets. 
Registration Recall (RR) was used as the evaluation metric, and the inference time of all methods was recorded. 
Given the limited point correspondences generated by soft matching, the proposed algorithms were evaluated 
directly on all points, following the sparse matching approach of REGTR40. As shown in Table 5, the proposed 
algorithm achieves a RR of 91.8% on the 3DMatch dataset, ranking second only to GEGTR40. On the 3DLoMatch 
dataset, which has a low overlap rate, the algorithm attains a 67.5% RR, second only to GeoTrans16. Notably, the 
algorithm demonstrates the fastest runtime among all methods while maintaining sub-optimal RR, highlighting 
the efficiency of the two-stage combined soft and hard matching approach. Fig. 9 illustrates the registration 
results achieved by the proposed algorithm on the 3DMatch and 3DLoMatch datasets.

#Samples

3DMatch 3DLoMatch Average

5000 2500 1000 500 250 5000 2500 1000 500 250 Times(s)

D3 Feat 85.3 84.5 82.6 81.8 77.9 43.4 42.6 46.6 43.5 39.1 0.289

SpinNet 87.5 86.2 85.1 82.7 70.2 55.4 54.2 47.8 40.6 26.8 90.804

Predator 90.6 89.3 89.9 88.7 86.6 62.8 61.4 61.2 60.5 58.1 0.759

YOHO 90.8 90.3 89.1 88.6 84.5 65.2 65.2 63.2 56.5 48.0 13.529

GeoTrans 92.0 91.8 91.8 91.5 91.2 75.2 75.0 74.7 74.3 73.5 0.192

REGTR 92.0 64.8 0.382

Ours 91.8 67.5 0.143

Table 5.  RR for each method across different numbers of correspondences. Boldfaced numbers highlight the 
best and the second best are underlined.

 

Method

ModelNet ModelLoNet

RRE RTE CD RRE RTE CD

RPMNET 31.682 0.211 0.01277 52.243 0.353 0.02048

Predator 20.524 0.152 0.01142 41.575 0.346 0.04896

CoFiNet 10.367 0.081 0.00316 32.899 0.234 0.02354

GeoTrans  6.218  0.043  0.00125  23.138 0.145  0.01192

Ours 5.849 0.041 0.00104 22.822  0.148 0.01189

Table 4.  Comparison of registration results on Large Rotation. Boldfaced numbers highlight the best and the 
second best are underlined.

 

Fig. 8.  Qualitative examples of different network models on Gaussian Noise. (a) input. (b) Ground-truth(GT). 
(c)-(g) The qualitative examples with different network models.
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Private data
Fig. 10 presents the point cloud data for a launch vehicle engine diaphragm featuring a pressure-sensitive 
structure. The data contains approximately 200 million points. The point distributions are as follows: X-axis: 
[1.855, 82.325], Y-axis: [0.005, 89.995], and Z-axis: [0.355, 2.046].

In this part of the experiment, the original point cloud data is first scaled by a factor of 0.05. Following12, all 
points are randomly projected, and points with a retention probability of p = 1.0 are kept to generate FullData, 
which represents the fully overlapping source and reference point clouds. Points with a retention probability 
of p = 0.7 are kept to generate LoData, representing partially overlapping source and reference point clouds. 
Then, FullData and LoData are randomly downsampled to retain approximately 35,000 points. Finally, rotation 
transformations within the range of [0, r = 45] and translation transformations within the range of [−0.5, 0.5] 
are applied to the reference point cloud in both experimental settings.

To evaluate the efficacy of our method, comparative benchmarking was conducted against conventional 
approaches, including ICP and RANSAC, as well as learning-based end-to-end methods such as RPM-
NET12and GeoTrans16, with experimental validation performed on FullData and LoData. All methods used 
training weights from the ModelNet40 dataset. Root Mean Square Error (RMSE), Mean Absolute Error (MAE), 
and Isotropic Error (Error) served as evaluation metrics. The results, shown in Table 6 and visualized in Fig. 
11, indicate that the proposed algorithm outperforms others across all metrics. The suboptimal performance of 

Fig. 9.  Registration visualization on 3DMatch and 3DLoMatch.
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conventional point cloud registration approaches can be primarily attributed to the computational challenges 
posed by the sheer volume of data requiring alignment. A secondary contributing factor emerges in RANSAC-
based implementations, where the absence of surface normal information in raw point clouds necessitates 
normal estimation during FPFH computation, introducing additional computational uncertainties that may 
propagate through subsequent registration stages. The visualization results show that the proposed algorithm 
aligns the diaphragm incision accurately, highlighting the method’s effectiveness. Overall, these results highlight 
the algorithm’s strong generalization ability on unseen data.

Fig. 11.  Registration visualization on FullData and LoData. The left shows the visualization results of FullData, 
and the right shows the visualization results of LoData.

 

Method RMSE(R) MAE(R) RMSE(t) MAE(t) Error(R) Error(t)

FullData

RANSAC+FPFH 39.826 5.502 0.168 0.348 10.134 0.710

ICP 28.728 4.484 0.036 0.158 8.915 0.331

RPM-NET 0.898 0.743 0.018 0.015 6.074 0.031

GeoTrans  0.254  0.194 0.011 0.008  0.421 0.019

Ours 0.118 0.088 0.001 0.001 0.194 0.002

LoData

RANSAC+FPFH 58.265 7.401 0.113 0.288 11.360 0.582

ICP 52.180 6.070 0.535 0.488 12.522 1.267

RPM-NET 0.920 0.842 0.015 0.011 6.308 0.027

GeoTrans  0.287  0.193 0.012 0.008  0.497 0.020

Ours 0.157 0.106 0.008 0.006 0.274 0.014

Table 6.  Comparison of registration results on FullData and LoData. Boldfaced numbers highlight the best 
and the second best are underlined.

 

Fig. 10.  Point cloud data of the original diaphragm.
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Ablation studies
To assess the effectiveness of each module in the proposed model, we conducted experiments to evaluate different 
configurations, as summarized in Table 7. The experiment was conducted on the ModelNet40 dataset, following 
the data settings in Gaussian Noise, and using isotropic errors Error(R) and Error(t) for evaluation.

Calculation of similarity
This paper verifies the effectiveness of the proposed hybrid similarity fusion module. As shown in rows 1) and 2) 
of Table 7, using only scaled dot product similarity or pairwise distance similarity results in the worst registration 
performance. In contrast, combining both methods, as demonstrated in rows 3) and 4) of Table 7, achieves the 
best performance. Specifically, under the two-stage Hard-to-Hard (HTH) structure, Error(R) reaches 1.736 and 
Error(t) 0.019. In the Hard-to-Soft (HTS) structure, Error(R) improves to 1.376, and Error(t) reduces to 0.015.

Two-stage network structure
The hard-to-soft matching method forms the core structure of the proposed model. When compared with the 
two-stage hard matching method used in CoFiNet15and GeoTrans16, results in rows 3) and 4) of Table 7 show 
that the HTS structure yields the lowest error. This indicates that the proposed hard and soft matching approach 
effectively reduces anomalous matches, thereby enhancing matching accuracy.

Conclusion
This paper proposes an end-to-end point cloud registration model that integrates two-stage hard and soft 
matching. In the hard matching phase, initial correspondences are quickly established through localization and 
coarse matching, while the hybrid similarity fusion module reduces anomalous matches and enhances reliability. 
The soft matching phase refines these correspondences, optimizing the coarse matches into more accurate point 
registrations and improving overall stability. By leveraging the speed of hard matching and the robustness of 
soft matching, the combined approach ensures efficient and reliable correspondences. Experimental results 
demonstrate that the proposed method is noise-robust and generalizes well to point clouds with unknown 
categories and shapes.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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