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Pterygium is a prevalent ocular disease characterized by abnormal conjunctival tissue proliferation, 
significantly impacting patients’ quality of life. However, the underlying molecular mechanisms 
driving pterygium pathogenesis remain inadequately understood. This study aimed to investigate 
gene expression changes following pterygium excision and their association with immune cell 
infiltration. Clinical samples of pterygium and adjacent relaxed conjunctival tissue were collected for 
transcriptomic analysis using RNA sequencing combined with bioinformatics approaches. Machine 
learning algorithms, including LASSO, SVM-RFE, and Random Forest, were employed to identify 
potential diagnostic biomarkers. GO, KEGG, GSEA, and GSVA were utilized for enrichment analysis. 
Single-sample GSEA was employed to analyze immune infiltration. The GSE2513 and GSE51995 
datasets from the GEO database, along with clinical samples, were selected for validation analysis. 
Differentially expressed genes (DEGs) were identified from the PRJNA1147595 and GSE2513 datasets, 
revealing 2437 DEGs and 172 differentially regulated genes (DRGs), respectively. There were 52 co-
DEGs shared by both datasets, and four candidate biomarkers (FN1, SPRR1B, SERPINB13, EGR2) with 
potential diagnostic value were identified through machine learning algorithms. Single-sample GSEA 
demonstrated increased Th2 cell infiltration and decreased CD8 + T cell presence in pterygium tissues, 
suggesting a crucial role of the immune microenvironment in pterygium pathogenesis. Analysis of the 
GSE51995 dataset and qPCR results revealed significantly higher expression levels of FN1 and SPRR1B 
in pterygium tissues compared to conjunctival tissues, but SERPINB13 and EGR2 expression levels were 
not statistically significant. Furthermore, we identified four candidate drugs targeting the two feature 
genes FN1 and SPRR1B. This study provides valuable insights into the molecular characteristics and 
immune microenvironment of pterygium. The identification of potential biomarkers FN1 and SPRR1B 
highlights their significance in pterygium pathogenesis and lays a foundation for further exploration 
aimed at integrating these findings into clinical practice.
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Pterygium, a prevalent corneal conjunctival disease in subtropical and tropical regions with a global publication 
rate of approximately 12%, is characterized by the proliferation of conjunctival epithelial cells and fascial 
fibrovascular tissue invading the cornea1–3. Extensive research has demonstrated significant associations 
between pterygium occurrence and development and factors such as long-term UV exposure, exposure to 
environmental pollutants (including dust, PM2.5, PM10, ozone, nitrogen dioxide, and sulfur dioxide), dry air, 
geographical location and genetic predispositions4–6. Pterygium often leads to ocular discomfort and blurred 
vision, significantly impacting patient’s quality of life and exhibiting a high recurrence rate, which poses 
additional economic burdens on patients and healthcare systems7,8. Current treatment primarily involves 
surgical excision. However, postoperative challenges such as recurrence, dry eye, irreversible corneal astigmatism 
and corneal scarring remain significant clinical obstacles9,10. These limitations highlight the urgent need for 
novel biomarkers and therapeutic strategies to improve patient outcomes and reduce morbidity. Despite its 
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common occurrence, the underlying molecular mechanisms driving pterygium pathogenesis are inadequately 
understood. Prior studies have suggested a close relationship between pterygium development and factors 
like inflammatory responses, cellular proliferation and immune dysfunction7,11. However, comprehensive 
investigations elucidating the molecular characteristics of pterygium and the immune microenvironment are 
still limited12. A deeper understanding of these molecular features and the identification of key genes involved 
in pterygium pathogenesis could provide new insights into potential preventative and therapeutic approaches.

In this study, we aim to explore transcriptomic alterations following pterygium excision and their 
correlation with immune cell infiltration. Pterygium tissue serves as the experimental group, with adjacent 
relaxed conjunctival tissue acting as a control. By employing transcriptomic sequencing methods, we analyze 
gene expression changes and characterize the immune landscape associated with pterygium. This approach 
combines both our clinical samples and publicly available datasets from the Gene Expression Omnibus (GEO) to 
identify differentially expressed genes (DEGs) and their functional enrichment. Additionally, machine learning 
algorithms are utilized to screen for candidate biomarkers, enabling a robust evaluation of gene expression 
alterations. The integration of these methodologies is anticipated to provide a comprehensive assessment of the 
molecular underpinnings of pterygium. Our research objectives are to identify potential biomarkers associated 
with pterygium and to conduct immune infiltration analysis on our dataset. Through profiling the immune 
microenvironment, we aim to elucidate the role of immune cell subpopulations in pterygium progression, 
offering novel insights into its diagnosis. Investigating these molecular dynamics is crucial for enhancing our 
understanding of pterygium pathogenesis. Figure 1 depicts our research protocol.

In summary, exploring gene expression changes and immune cell infiltration in pterygium constitutes a 
significant step towards elucidating its complex biological landscape. By integrating transcriptomic analyses 
and machine learning approaches, this study aspires to uncover the molecular characteristics and immune 
interactions contributing to pterygium development and recurrence, paving the way for innovative diagnostic 
and therapeutic interventions.

Fig. 1.  Research design flow chart.
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Materials and methods
Datasets acquisition
The research protocol was approved by the Ethics Review Committee of the Affiliated Hospital of Yunnan 
University (approval number: 2022198), and all study participants provided written informed consent. The 
study adhered to the Declaration of Helsinki. This study used pterygium tissue specimens collected using a 
non-random method, without blinding. The inclusion criteria for this study were as follows: (1) Patients with 
primary nasal pterygium tissue that had invaded the cornea and a disease duration of over six months; (2) 
Patients presenting with evident symptoms of congestion and eye irritation necessitating surgical intervention; 
(3) Patients with no prior history of other ocular diseases or surgeries; (4) Patients who were fully informed and 
provided consent for the examination of their pterygium tissue. During the surgical procedure, both pterygium 
tissue and normal conjunctival tissue were harvested for RNA extraction and subsequent sequencing analysis.

All surgical procedures were performed under local anesthesia by the same surgeon. The cohort comprised 
thirty-four patients undergoing elective pterygium surgery, with a gender distribution of 5 males and 29 females. 
The mean age was 56.8 years, and the average duration of illness was 4.19 years. Based on literature reports13, 
pterygium is divided into three levels. Our study includes 5 cases of Grade 1 pterygium, 18 cases of Grade 2 
pterygium, and 11 cases of Grade 3 pterygium. During the operation, the diseased pterygium tissue was excised, 
along with the excess loose conjunctiva surrounding the pterygium. The experimental design mainly focused 
on the “pterygium tissue sample” and its “corresponding normal conjunctiva of adjacent tissues”. This control 
design was designed to minimize the possible impact of background individual differences, allowing for a greater 
focus on differences in the molecular characteristics of tumors and adjacent tissues. Total RNA extracted from 
pterygium and bulbar conjunctiva samples was assessed for integrity using an Agilent 2100 bioanalyzer, rRNA 
was removed from total RNA to obtain sample mRNA, which was then randomly fragmented using divalent 
cations in NEB Fragmentation Buffer. This was followed by chain-specific fragmentation for mRNA construction. 
Library quantification was initially performed using a Qubit2.0 Fluorometer, after which the library was diluted 
to 1.5ng/ul. The insert size of the library was measured using an Agilent 2100 bioanalyzer, and QRT-PCR was 
employed for precise quantification of the library’s effective concentration, which was required to be higher 
than 2nM. Following genomic DNA quality inspection, the DNA was fragmented via mechanical interruption 
(ultrasound). The fragmented DNA was then purified, end-repaired, 3′ end adenylated, ligated to a sequencing 
adapter, and size-selected using agarose gel electrophoresis. The polymerase chain reaction (PCR) product was 
amplified to create the sequencing library. Sequencing was performed on the Illumina NovaSeq 6000 platform, 
with a read length of 150 bp. The data discussed in this publication have been deposited in NCBI’s Sequence 
Read Archive (SRA) database (accession number: PRJNA1147595,URL: ​h​t​t​p​s​:​​/​/​d​a​t​a​​v​i​e​w​.​n​​c​b​i​.​n​l​​m​.​n​i​h​​.​g​o​v​/​o​​b​j​
e​c​t​/​​P​R​J​N​A​1​​1​4​7​5​9​​5​?​r​e​v​i​​e​w​e​r​=​3​​k​3​n​n​r​6​​6​j​k​e​5​3​q​o​7​7​l​a​1​s​b​t​9​1​b). Additional datasets are available in NCBI’s Gene 
Expression Omnibus (GEO) (accession numbers: GSE2513 and GSE51995, URL: ​h​t​t​p​s​:​/​/​w​w​w​.​n​c​b​i​.​n​l​m​.​n​i​h​.​g​o​
v​/​g​e​o​/​​​​​)​. GSE2513 comprises four conjunctival samples and eight pairs of pterygium and control conjunctival 
samples14. GSE51995 includes four conjunctival samples and four pairs of pterygium and control conjunctival 
samples15.

Identification of differentially expressed genes (DEGs) and functional analysis
The xiantao tool (https://www.xiantao.love/) is a valuable bioinformatics analysis web tool utilized for 
visualization. DEGs in PRJNA1147595 and GSE2513 were identified using R programming, meeting the criteria 
of p ≤ 0.05 and |log2FC| ≥ 1 (conjunctiva vs. pterygium). The final determination of DEGs involved a Benjamini–
Hochberg FDR (false discovery rate) multiple testing correction, with a p value analysis to correct false-positive 
results, where p ≤ 0.05 and |log2FC| ≥ 1 served as the threshold. Heat maps and volcano maps were generated 
to visualize the DEGs. Both datasets were normalized, and a cross-comparable evaluation was visualized using 
boxplots. Additionally, gene set enrichment analysis (GSEA) was conducted on all genes (previously ranked 
based on their log2FC between analyzed groups) using the cluster profiler package. Enrichment was considered 
significant if the nominal false discovery rate (FDR) was < 0.25 and the P-value was < 0.05, referencing the 
‘c2.cp.all.v2022.1.Hs.symbols.gmt’ gene set. By utilizing the gene set variation analysis (GSVA) package and 
referencing the ‘h.all.v2023.2.Hs.symbols.gmt’ gene set16, the gene expression matrix data were subjected to 
GSVA. Differential pathways were filtered based on an p value < 0.05 and |log2FC| > 0.2.

Gene ontology (GO) terms and Kyoto encyclopedia of genes and genomes (KEGG) pathway 
enrichment analysis
The Database for Annotation, Visualization, and Integrated Discovery (DAVID) Functional Annotation Tool 
(accessible at https://david.ncifcrf.gov/summary.jsp) was utilized to conduct GO term and KEGG pathway 
enrichment analysis on the common differentially expressed genes (co-DEGs)17,18. The R language package was 
employed to execute and visualize the enrichment analysis outcomes, applying thresholds of p value < 0.05 and 
a minimum enrichment gene count of 2. Both a bar graph and a bubble plot were generated for representation.

Identification of candidate diagnostic biomarkers by three machine-learning algorithms
Three distinct machine-learning algorithms, namely least absolute shrinkage and selection operator (LASSO) 
logistic regression, support vector machine-recursive feature elimination (SVM-RFE), and random forests 
(RF), were employed to identify potential novel biomarkers for pterygium19,20. The machine learning models 
RF (Random Forest) and SVM (Support Vector Machine) were trained with a random seed set to 2024, and the 
random processes were automatically generated using R project. Furthermore, the random forest method was 
executed using the ‘random Forest’ R package in R. LASSO logistic regression analysis was conducted using the 
‘glmnet’ R package, with the minimum lambda value being considered optimal. The ‘e1071’ R package was utilized 
for SVM-RFE, and it was also used to split the data into train and test sets with a ratio of 80:20, incorporating 
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10-fold cross-validation. The partial likelihood deviation was maintained below 5%, and parameter selection for 
optimization was cross-verified by a factor of 10. Subsequently, the genes that exhibited characteristics consistent 
with all three aforementioned classification schemes were selected for further investigation. Specifically, the top 
15 genes sharing these characteristics were chosen for deeper exploration.

Verification of candidate diagnostic biomarkers
The receiver operating characteristic (ROC) curves of the hub genes were plotted using the R program. The area 
under the curve (AUC) of the corresponding ROC curves of the hub genes was used to assess the discriminative 
effects between pterygium tissues and conjunctiva tissues.

Infiltration analysis of immune cells and functions
The infiltrating scores of 24 immune cell types in the conjunctiva and pterygium groups were calculated using 
single-sample gene set enrichment analysis (ssGSEA) via the ‘gsva’ R package and visualized through a heatmap 
generated by the ‘Complex Heatmap’ package in the PRJNA1147595 dataset21. Point plots were utilized to 
compare and visualize the ssGSEA scores of infiltrated immune cells between the conjunctiva and pterygium 
samples, employing the ‘ggplot2’ R package. Additionally, a correlation heatmap was created using the ‘ggplot2’ 
R package to reveal the relationships among the 24 types of immune cells. To identify hub genes with diagnostic 
potential, we analyzed the correlation between four hub genes and immune cells using Spearman’s correlation 
analysis via the ‘ggplot2’ R package.

Histology analysis
The morphology of conjunctiva and pterygium tissues was observed using haematoxylin staining, masson’s 
trichrome staining, and vimentin immunohistochemical methods. Conjunctival and pterygium samples were 
collected from patients undergoing surgery, with informed consent and ethical approval obtained. The samples 
were immediately fixed with 4% paraformaldehyde at 4 °C for 48 h and then embedded in paraffin. The fixed 
tissues were processed through a graded series of alcohols (70%, 80%, 95%, and 100% ethanol) for dehydration, 
cleared in xylene, and embedded in paraffin wax. The paraffin blocks were cut into 5 μm thick sections using a 
microtome. For HE staining, the sections were deparaffinized by immersing them in xylene for 5 min, repeated 
twice, and then rehydrated through a graded series of ethanol (100%, 95%, 80%, 70%) for 5 min each, followed 
by distilled water. The sections were stained with Harris’ hematoxylin for 5 min to visualize the nuclei, rinsed 
under running tap water for 5 min, differentiated with 1% acid alcohol for a few seconds, rinsed again, and then 
blued with 0.6% ammonia water or Scott’s tap water substitute for 2 min. The sections were counterstained with 
eosin Y for 2 min to visualize the cytoplasm. For Masson’s trichrome staining, the same steps were followed 
as for HE staining, with the exception of staining the sections with Weigert’s iron hematoxylin for 5 min to 
visualize the nuclei and collagen, differentiating with acid alcohol, bluing with lithium carbonate or weak 
ammonia water, staining with Masson’s trichrome solution for 5 min, differentiating with 1% phosphotungstic 
acid or 2% acetic acid, and counterstaining with aniline blue for 5 min to enhance collagen visualization. For 
vimentin immunohistochemical staining, the same steps were followed as for HE staining, with additional steps 
of heat-induced antigen retrieval, blocking endogenous peroxidase activity, applying a protein blocking solution, 
applying the primary antibody against vimentin at an appropriate dilution, incubating, rinsing, applying a 
biotinylated secondary antibody or a polymer-based detection system, incubating again, and finally examining 
the stained sections under a light microscope to assess the morphology and vimentin expression pattern.

Quantitative real time PCR
Human conjunctival and pterygium tissues were homogenized and lysed using TRIzol reagent (Thermo Fisher) 
in liquid nitrogen. Total RNA was extracted from these tissues utilizing a total RNA extraction kit (Vazyme, 
Nanjing, China). Following this, cDNA was synthesized via reverse transcription using a cDNA first strand 
reverse transcription synthesis kit (TaKaRa, Beijing, China). RT-qPCR was conducted to assess the expression 
levels of four genes: FN1, SPRR1B, SERPINB13 and EGR2, employing TB Green Fast qPCR Mix (TaKaRa, 
Beijing, China). Gene expression was quantified relative to GAPDH using the 2 − ΔΔCt method.

Identification of potential drug candidates
The important potential drug candidates were identified with the aid of the DSigDB database. Access to both the 
DSigDB databases was granted via the Enrichr platform (http://amp.pharm.mssm.edu/Enrichr/).

Statistical analysis
Statistical analysis was conducted using R software (version 4.2.1) and SPSS (version 23.0). Continuous variables 
were expressed as mean ± SD or median (interquartile range). The student’s t-test and Mann–Whitney U test 
was used to analyze continuous variables with or without normal distribution, respectively. Categorical variables 
were presented as numbers (percentages) and analyzed using the chi-square test. Statistical significance was set 
at P < 0.05 (two-sided).

Results
Identification of DEGs
Using the R tool with criteria of p ≤ 0.05 and |log2FC| ≥ 1, we identified 2437 differentially expressed genes 
(DEGs) in the PRJNA1147595 dataset and 172 differentially regulated genes (DRGs) in the GSE2513 dataset. 
Subsequently, cluster analysis was performed on these DEGs. The top 20 up-regulated and down-regulated 
DEGs in the PRJNA1147595 and GSE2513 datasets were prioritized, respectively. Volcano plots and heat maps 
were generated based on the cluster analysis of PRJNA1147595 (Fig. 2A, C) and GSE2513 (Fig. 2B, D). The heat 
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Fig. 2.  The volcano plots and heat maps of PRJNA1147595 and GSE2513 datasets. (A) The volcano plot 
illustrates the PRJNA1147595 dataset, where the x-axis represents log2 (Fold Change) and the y-axis represents 
-log10 (p-value). Red dots signify up-regulated genes, while blue dots indicate down-regulated genes. (B) The 
volcano plot displays the GSE2513 dataset. (C) The heat map shows the PRJNA1147595 dataset, with each 
line representing a gene and each column a sample. Red color denotes a high-expression level, and blue color 
indicates a low-expression level. (D) The heat map represents the GSE2513 dataset. (E) This depicts the cross-
comparability evaluation of the PRJNA1147595 dataset. (F) The cross-comparability evaluation of the GSE2513 
dataset is shown.
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maps demonstrated high confidence in sample clustering. After normalization and cross-comparable evaluation 
(Fig. 2E for PRJNA1147595 dataset and Fig. 2F for GSE2513), it was evident that the data distribution of both 
sample sets met the standard criteria, indicating high quality and cross-comparability of the microarray data.

GSEA and GSVA analysis
Our reference gene set was ‘c2.cp.all.v2022.1.Hs.symbols.gmt’. Both datasets underwent GSEA enrichment 
analysis to identify significant enrichment based on the criteria of FDR < 0.25 and P < 0.05. The GSEA analysis 
revealed significant enrichment in upregulated pathways, including PID_INTEGRIN1_PATHWAY and MET_
ACTIVATES_PTK2_SIGNALING, in both datasets (Fig. 3A-D). Additionally, it showed significant enrichment 
in downregulated pathways, such as PID_MAPK_TRK_PATHWAY and FCERI_MEDIATED_MAPK_
ACTIVATION, among others. GSVA enrichment analysis was conducted on the PRJNA1147595 and GSE2513 
datasets, revealing distinct pathways. The differential pathways in the PRJNA1147595 dataset encompassed 
HALLMARK_TNFA_SIGNALING_VIA_NFKB, HALLMARK_OXIDATIVE_PHOSPHORYLATION, 
HALLMARK_MYC_TARGETS_V1, HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION, and 
HALLMARK_ANGIOGENESIS, among others (Fig. 3E). These outcomes aligned with those of the GSE2513 
dataset’s GSVA differential pathways, specifically HALLMARK_ANGIOGENESIS and HALLMARK_TNFA_
SIGNALING_VIA_NFKB (Fig. 3F).

Enrichment analysis of DEGs
A Venn diagram was created to illustrate the common DEGs between the two datasets (Fig. 3G). There were 
52 co-DEGs shared by both datasets. GO and KEGG pathway enrichment analyses were conducted to assess 
the function of these 52 co-DEGs (Fig. 3G). The GO terms were categorized into BP (biological process), CC 
(cellular component), and MF (molecular function). The top 6 BP, 2 CC, and 4 MF terms with the lowest p-values 
in each category were selected and visualized using bubble plots (Fig. 3H). The co-DEGs were primarily enriched 
in GO terms such as ‘peptide cross-linking’, ‘cellular response to metal ion’, ‘response to extracellular stimulus’, 
‘skeletal muscle organ development’, ‘ERK1 and ERK2 cascade’, and ‘response to metal ion’. They were also 
enriched in CC terms like ‘collagen-containing extracellular matrix’ and ‘intrinsic component of the external 
side of the plasma membrane’. Additionally, the co-DEGs were enriched in MF terms including ‘extracellular 
matrix structural constituent’, ‘DNA-binding transcription activator activity, RNA polymerase II-specific’, ‘DNA-
binding transcription activator activity’, and ‘peptidase regulator activity’. The KEGG pathway enrichment 
analysis identified 12 pathways with lower p-values, which were visualized using bubble plots (Fig. 3I). The co-
DEGs were mainly enriched in KEGG pathways such as ‘Estrogen signaling pathway’, ‘IL-17 signaling pathway’, 
‘Vascular smooth muscle contraction’, ‘C-type lectin receptor signaling pathway’, ‘GnRH signaling pathway’, 
‘Toll-like receptor signaling pathway’, ‘TNF signaling pathway’, ‘Fluid shear stress and atherosclerosis’, and 
‘Regulation of lipolysis in adipocytes’, among others22–24.

Selection of candidate diagnostic biomarkers using machine learning
Among the 52 differentially expressed genes (DEGs), LASSO regression analysis pinpointed 15 genes with the 
minimal binomial deviation (Fig. 4A-B). Subsequently, the random forest approach ranked the DEGs by gene 
significance score and selected 15 candidates (Fig. 4C-D). For pterygium, the SVM-RFE method, after 10-fold 
validation, identified 15 genes with the lowest error rate and highest accuracy (Fig.  4E). Ultimately, a Venn 
diagram illustrated the overlap of FN1, SPRR1B, SERPINB13, and EGR2 as DEGs when the three methodologies 
were employed concomitantly (Fig. 4F).

Prognostic value of the candidate diagnostic biomarkers
PRJNA1147595 and GSE2513 were utilized as validation datasets. The ROC curves for the four hub genes were 
plotted based on their expression levels in both datasets to assess the discriminative effect on pterygium versus 
pairs conjunctiva (Fig. 5A-H).

Infiltration analysis of immune cells and 4 features genes relationship
To further investigate the infiltration and functional differences of immune cells between the conjunctiva and 
pterygium groups, we assessed the enrichment scores of distinct immune cell subpopulations using ssGSEA. The 
results were visualized through a heatmap (Fig. 6A) and point plots (Fig. 6B). The pterygium groups exhibited 
elevated levels of Th2 cells, but decreased levels of CD8 T cells, cytotoxic cells, eosinophils, neutrophils, T 
cells, Th1 cells, and Th17 cells. Correlation analysis of 24 immune cell types revealed that cytotoxic cells were 
positively correlated with CD8 T cells (r = 0.9), eosinophils (r = 0.76), and neutrophils (r = 0.78), while Th17 cells 
were negatively correlated with pDC (r = -0.62) and NK cells (r = -0.51). Additionally, Th2 cells were negatively 
correlated with NK cells (r = -0.45) and Tem (r = -0.41) (Fig. 6C). To identify potential diagnostic biomarkers for 
pterygium, we analyzed the association of four hub genes (FN1, SPRR1B, SERPINB13, and EGR2) with immune 
cells and functions in the PRJNA1147595 dataset using ssGSEA, examining possible relationships between these 
genes and the 24 immune cell types (Fig. 6D).

Verification through clinical sample and GSE51995
Notable differences and characteristics emerge from the results of HE staining, Masson staining, and vimentin 
immunohistochemical staining between conjunctival tissue and pterygium tissue. HE staining reveals distinct 
cellular morphologies and tissue architectures, with pterygium often displaying more prominent fibrous 
proliferation and cellular density. Masson staining accentuates the collagen fibers, which appear predominantly 
blue in both tissues, but pterygium may exhibit a denser and more irregular collagen fiber arrangement. 
Vimentin immunohistochemical staining highlights the intermediate filaments, showing widespread and intense 
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Fig. 3.  GSEA, GSVA, bubble plots of GO and KEGG pathway enrichment analysis results. (A-B) Analysis 
of upregulated pathways of differential genes in the PRJNA1147595 dataset. (C-D) Analysis of upregulated 
pathways of differential genes in the GSE2513 dataset. (E) Identification of differentially enriched pathways in 
the PRJNA1147595 dataset. (F) Identification of differentially enriched pathways in the GSE2513 dataset. (G) 
Venn diagram illustrating common Differentially Expressed Genes (DEGs) in both the PRJNA1147595 and 
GSE2513 datasets. (H) Bubble plots visualize the Gene Ontology (GO) enrichment analysis results of common 
DEGs (co-DEGs). The varying depths of node colors represent different adjusted p-values, while the different 
sizes of the nodes indicate the varying number of genes. (I) Bubble plots visualize the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analysis results of common DEGs (co-DEGs).
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Fig. 4.  Selection of candidate diagnostic biomarkers of pterygium with machine learning approaches. (A-B) 
LASSO regression analysis was employed to identify diagnostic biomarkers. (C) Diagnostic errors associated 
with the conjunctiva, pterygium, and total groups were visualized using the random forest model. (D) A 
column displaying the top 15 DEGs ranked according to their importance scores derived from the random 
forest analysis. (E) The DEGs with the lowest error rate and highest accuracy after 10-fold cross-validation 
were selected as the most suitable candidates through the SVM-RFE algorithm. (F) The intersection of the 
results from the three machine learning algorithms was illustrated using a Venn diagram tool.

 

Scientific Reports |        (2025) 15:13352 8| https://doi.org/10.1038/s41598-025-98042-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


positivity in pterygium cells, indicating higher vimentin expression compared to the conjunctiva, where the 
staining pattern may be more focal and less intense. These staining characteristics reflect the unique pathological 
features and compositional differences between pterygium and conjunctival tissues (Fig. 7A). Analysis of dataset 
GSE51995 reveals significantly higher expression levels of FN1 and SPRR1B in pterygium tissues compared to 
conjunctival tissues (p < 0.05) (Fig. 7B-C). Although SERPINB13 expression is elevated in pterygium relative to 
conjunctiva, the difference is not statistically significant (p = 0.15) (Fig. 7D). Conversely, EGR2 shows a trend of 
higher expression in conjunctiva compared to pterygium, but this difference is also not statistically significant 
(p = 0.57) (Fig. 7E). qPCR results confirm the significant increase in FN1 and SPRR1B expression in pterygium 
tissues compared to conjunctival tissues (p < 0.05) (Fig. 7F-G). Despite non-significant p-values for SERPINB13 
and EGR2, their expression trends align with previous findings reported in PRJNA1147595, GSE2513, and 
GSE51995 (Fig. 7H-I).

Identification of potential drug candidates
To pinpoint potential drug candidates that target the two identified feature genes, we conducted a comprehensive 
analysis using data sourced from the DSigDB databases. We undertook an extensive screening to identify the 
top 6 drug molecules, guided by an adjusted P value < 0.05 as per the DSigDB database (illustrated in Fig. 8A-
B). Among these, alitretinoin CTD 00003402 and phorbol 12-myristate 13-acetate CTD 00006852 emerged as a 
prominent candidate, demonstrating interactions with all two feature genes and achieving a notable combined 
score of 360,083 and 290,763. The remaining drug candidates exhibited interactions with FN1 and SPRR1B, 
offering valuable insights for the advancement of pterygium treatment research and development.

Discussion
Pterygium, an ocular condition characterized by abnormal conjunctival tissue proliferation, poses significant 
challenges due to associated discomfort and potential visual impairment10. This prevalent disease often leads 
to a diminished quality of life for patients, compounded by a high recurrence rate following surgical excision8. 
Additionally, complications such as dry eye syndrome, irreversible corneal astigmatism, and corneal scarring 
present ongoing clinical challenges9,10. Surgical resection remains the primary treatment modality. However, 
the limited efficacy of existing therapeutic approaches underscores the urgent need for novel biomarkers and 
treatment strategies to mitigate recurrence and improve patient outcomes25,26.

The analysis of differentially expressed genes (DEGs) revealed substantial alterations, notably in the 
PRJNA1147595 dataset, where 2,437 DEGs were identified. Applying stringent selection criteria (p ≤ 0.05 and 
|log2FC| ≥ 1) ensured the robustness of these findings, visually corroborated by volcano plots and heatmaps 
displaying distinct sample clustering. The biological implications of these DEGs extend beyond mere 
identification, paving the way for a deeper understanding of the molecular mechanisms underlying pterygium 

Fig. 5.  Hub genes ROC curves. (A-D) ROC curve analysis of hub genes including FN1, SPRR1B, SERPINB13 
and EGR2 in the PRJNA1147595 dataset. (E-H) ROC curve analysis hub genes of FN1, SPRR1B, SERPINB13 
and EGR2 in the GSE2513 dataset.
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development. In our study, we identified 52 co-differentially expressed genes (co-DEGs) in the PRJNA1147595 
and GSE2513 datasets. Through the application of machine learning algorithms, four genes—FN1, SPRR1B, 
SERPINB13, and EGR2—were ultimately pinpointed as key biomarkers for pterygium. These candidates 
demonstrated significant diagnostic potential, as evaluated by ROC curve analysis. This approach underscores 
the effectiveness of combining computational methods with biological data to uncover novel biomarkers that 
may enhance early diagnosis and prognostic evaluation of pterygium. The robustness of these biomarkers across 
various datasets emphasizes their relevance and potential utility in clinical practice. Additionally, a comparative 
analysis of diverse machine learning techniques, including LASSO, SVM-FRE and Random Forests, highlights 
the reliability and consistency of our findings, indicating a converging consensus on the crucial role of these 
biomarkers in pterygium27,28. As research progresses, validating these biomarkers through rigorous clinical 
trials will be essential for establishing their role in routine diagnostic protocols and facilitating personalized 
management strategies for patients with this condition.

Notably, genes such as FN1 and SPRR1B, consistently upregulated across three distinct datasets and clinical 
samples, imply a central role in pterygium pathogenesis and its inflammatory environment. The FN1 gene 
encodes for fibronectin, a large glycoprotein that is a major component of the extracellular matrix (ECM) and 
basement membranes. Fibronectin plays a crucial role in cell adhesion, migration, growth, and differentiation. 
It acts as a bridge between cells and the ECM, mediating cell-matrix interactions that are essential for tissue 
organization, wound healing, and embryonic development. Fibronectin also participates in signaling pathways 

Fig. 6.  Differentially infiltrated immune cells and genes relationship in conjunctiva and pterygium samples. 
(A) Heatmap of differential immune cells in conjunctiva and pterygium. (B) The ssGSEA scores of 24 immune 
cells. (C) Correlation matrix of 24 immune cells. (D) Heatmap of correlation among 4 hub genes with immune 
cells. Scatter diagram of the correlation between FN1,  SPRR1B, SERPINB13 and EGR2.
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that regulate cell proliferation, survival, and gene expression. Additionally, it plays a role in immune responses 
and can modulate the activity of growth factors and cytokines29,30. The SPRR1B gene belongs to the small proline-
rich protein (SPRR) gene family and encodes for a small proline-rich protein 1B. These proteins are primarily 
expressed in epithelial cells, particularly in the skin and cornea. SPRR1B proteins are involved in the formation 
and maintenance of the cornified envelope, a structure that provides mechanical strength and barrier function 

Fig. 7.  Verification hub genes expression level through clinical sample and GSE51995. (A) HE staining, 
masson staining, and vimentin immunohistochemical staining of conjunctiva tissues and pterygium tissues. 
Scale bar: 200 μm. (40×). (B-E) The expression levels of FN1, SPRR1B, SERPINB13 and EGR2 among 
conjunctiva tissues and pterygium tissues in GSE51995 dataset. (F-I) RT-qPCR results of FN1, SPRR1B, 
SERPINB13 and EGR2 in conjunctiva tissues and pterygium tissues.
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to the epidermis and other stratified epithelia. They contribute to the cross-linking of proteins and lipids in the 
cornified envelope, enhancing its structural integrity31,32. Moreover, exploring the functional roles of these co-
DEGs may reveal their contributions to the underlying pathophysiological processes, potentially identifying new 
therapeutic targets to reduce recurrence rates after surgical intervention33.

Gene expression analysis provides important insights into the molecular mechanisms of diseases and has 
aided in defining new therapeutic targets across various pathologies. In the present study, RNA sequencing 
is applied to gain detailed insights into the underlying molecular mechanisms of pterygium. Notably, this is 
the first study to use bioinformatic ssGSEA analysis to decipher the cellular microenvironment of pterygium. 
Thus far, only a limited number of studies have applied RNA sequencing to pterygium, including two studies 
utilizing cultured pterygium cells34,35 and recently published studies based on surgically removed pterygium 
tissue7,12,36,37. In this study, we investigate gene expression alterations following pterygium excision and their 
correlation with immune cell infiltration. By utilizing transcriptomic analyses and bioinformatics tools, we aim to 
identify key molecular features and pathways involved in pterygium pathogenesis. Our findings reveal significant 
upregulation of specific genes, including FN1 and SPRR1B, across multiple datasets, indicating their potential 
as biomarkers. Furthermore, the observed immune microenvironment suggests a pivotal role for immune 
responses in pterygium development, paving the way for innovative diagnostic and therapeutic strategies38,39. 
Our immune infiltration analysis revealed a significant increase in Th2 cell infiltration within pterygium 
tissue, contrasting with a notable reduction in cytotoxic CD8 + T cells and other immune cell types. This shift 
indicates a potential Th2-skewed immune environment, which is implicated in various chronic inflammatory 
conditions. The presence of increased Th2 cells may facilitate the secretion of cytokines promoting fibrosis and 
tissue remodeling, thereby contributing to pterygium pathogenesis. This immune landscape aligns with findings 
from other studies suggesting similar Th2 polarization in inflammatory diseases, prompting considerations 
for immune-modulating therapies in pterygium management. Furthermore, exploring interactions between 
different immune cell types is crucial, as they may elucidate mechanisms of immune evasion and disease 
persistence. Future research should focus on characterizing these interactions to fully understand their impact 
on disease progression and response to potential immunotherapies.

Pathway analysis conducted using GSEA and GSVA revealed critical signaling pathways enriched in 
pterygium, notably the PID_INTEGRIN1_PATHWAY and MET_ACTIVATES_PTK2_SIGNALING pathways. 
The identification of these pathways offers valuable insights into the biological processes involved, especially 
regarding cellular communication and modulation of the immune response. Upregulation of integrin signaling 
suggests enhanced cell adhesion and migration, aligning with the proliferative nature of pterygium tissue. 
Conversely, downregulation of pathways like PID_MAPK_TRK_PATHWAY may indicate dysregulation 
of cellular proliferation and survival mechanisms. Comprehending these pathways not only contributes to 
elucidating the pathogenesis of pterygium but also lays the groundwork for developing targeted therapies. For 
example, inhibiting integrin signaling could represent a novel therapeutic approach for managing pterygium 
recurrence40. Such targeted interventions could ultimately transform the clinical management of pterygium, 
enhancing patient outcomes through personalized therapies. We also find alitretinoin CTD 00003402, phorbol 
12-myristate 13-acetate CTD 00006852, 8-Bromo-cAMP, Na CTD 00007044 and vitinoin CTD 00007069 
emerged as a prominent candidate, demonstrating interactions with two feature genes FN1 and SPRR1B.

Emerging evidence highlights distinct molecular profiles between primary and recurrent pterygia. Studies 
have demonstrated that interleukin-10 (IL-10) expression is significantly upregulated in primary pterygium 
tissues compared to recurrent lesions, whereas transforming growth factor-beta 1 (TGF-β1) levels are markedly 
elevated in recurrent pterygia relative to their primary counterparts. This differential expression suggests 
that TGF-β1 overexpression may contribute to pterygium recurrence, potentially through its pro-fibrotic and 
inflammatory effects41. Furthermore, comparative analyses reveal that tumor suppressor protein p53, anti-
apoptotic marker Bcl-2, and proliferation antigen Ki-67 are expressed at higher levels in primary pterygium 
tissues than in normal conjunctival tissues. Intriguingly, recurrent pterygia exhibit a statistically significant 
increase in Bcl-2 expression compared to primary lesions, indicating that Bcl-2-mediated inhibition of apoptosis 
may play a critical role in disease recurrence. These findings collectively underscore the dynamic interplay 

Fig. 8.  Drug-gene network construction. (A-B) Candidate drug molecules targeting 2 feature genes.
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between apoptosis regulation, cellular proliferation, and fibrogenic signaling in pterygium pathogenesis and 
recurrence mechanisms33. Study has compared biomarkers among atrophic, hypertrophic, and intermediate 
pterygium subtypes, revealing that YKL-40 expression levels were significantly elevated in all three pterygium 
types compared to normal conjunctival tissues. However, no statistically significant differences in YKL-40 
expression were observed between the three pterygium subtypes. This suggests that while YKL-40 may serve 
as a biomarker distinguishing pathological pterygium tissue from normal conjunctiva, it does not exhibit 
differential expression patterns among the clinically classified pterygium subtypes. Pseudopterygium arises from 
damage to limbal stem cells and/or their niche microenvironment, leading to limbal stem cell deficiency42. This 
triggers conjunctival tissue proliferation invading the cornea, while the limbal stem cell population remains 
deficient43. Currently, there is a notable lack of transcriptomic studies investigating molecular differences among 
pseudopterygium, atrophic pterygium, fleshy pterygium, and normal conjunctival tissues. Addressing this gap 
could advance our understanding of their distinct pathogenesis and inform targeted therapeutic strategies.

The limitations of this study necessitate careful consideration. Firstly, while the sample size is adequate for 
preliminary insights, it may not fully capture the heterogeneity of pterygium cases, potentially impacting the 
generalizability of our findings. Furthermore, the lack of extensive clinical validation constrains the robustness 
of the identified biomarkers and pathways, highlighting the need for larger, prospective studies to confirm 
these results. Additionally, the reliance on bioinformatics methods, despite their power, may overlook intricate 
biological interactions that could be revealed through wet lab experiments. Moreover, potential batch effects 
across different datasets could introduce variability in the differential expression analysis, influencing the 
identification of consistent biomarkers. Addressing these limitations is crucial for enhancing the credibility and 
applicability of our findings in clinical settings.

Conclusions
This study provides valuable insights into the molecular characteristics and immune microenvironment of 
pterygium, emphasizing key biomarkers and signaling pathways that may guide future diagnostic and therapeutic 
strategies. The identification of potential biomarkers, such as FN1 and SPRR1B, highlights their significance 
in pterygium pathogenesis and offers a foundation for further exploration aimed at integrating these findings 
into clinical practice. By bridging the gap between bioinformatics and clinical application, our research lays 
the groundwork for improved patient management and the development of innovative therapeutic approaches, 
ultimately enhancing the quality of care for individuals affected by pterygium.

Data availability
Our RNA-seq data have been deposited in Sequence Read Archive (SRA ​h​t​t​p​s​:​​/​/​d​a​t​a​​v​i​e​w​.​n​​c​b​i​.​n​​l​m​.​n​i​h​.​g​o​v​/​o​b​
j​e​c​t​/​P​R​J​N​A​1​1​4​7​5​9​5​?​r​e​v​i​e​w​e​r​=​3​k​3​n​n​r​6​6​j​k​e​5​3​q​o​7​7​l​a​1​s​b​t​9​1​b​) with accession numbers PRJNA1147595 and the 
Gene Expression Omnibus (GEO https://www.ncbi.nlm.nih.gov/geo/) with accession numbers GSE2513 and 
GSE51995.
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