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To enhance bearing fault diagnosis performance under various operating conditions, this paper 
proposes a hybrid approach based on generative adversarial networks (GANs), transfer learning, 
wavelet transform time-frequency representations, asymmetric convolutional networks, and the 
multi-head attention mechanism (MAC-MHA). Firstly, GANs are utilized to generate new bearing fault 
data to meet the model’s training requirements. Then, wavelet transform is applied to convert the 
bearing vibration signals into time-frequency representations, capturing the temporal evolution of 
frequency components. Next, an improved asymmetric convolutional network (MAC-MHA), combined 
with the multi-head attention mechanism, is employed to enhance the focus on key time-frequency 
features, further improving fault diagnosis accuracy. Considering the differences in operating 
conditions, transfer learning techniques are applied to facilitate knowledge transfer from the source 
domain to the target domain, thereby enhancing the model’s generalization ability. Experimental 
results demonstrate the effectiveness and robustness of the proposed method under various operating 
conditions. Finally, the proposed hybrid fault diagnosis approach is validated using the PADERBORN 
and CWRU datasets.
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With the growing complexity of large industrial equipment, intelligent fault diagnosis has become essential 
for ensuring the safety and reliability of industrial systems1,2,3. Achieving accurate fault diagnosis is crucial for 
maintaining operational efficiency and minimizing downtime4–8.

Rotating machinery systems are vital components in industrial applications. Bearings, as critical elements 
of these systems, play an indispensable role in ensuring the proper functioning of machinery9. Fault diagnosis 
methods for these systems are typically classified into model-based and data-driven approaches10. Model-based 
methods require extensive prior knowledge to develop fault mechanism models, which can be challenging due 
to the diverse operating conditions and complex working environments of rotating machinery11,12 . In contrast, 
data-driven methods, which do not require prior fault knowledge, enable timely fault diagnosis by analyzing 
sensor data13,14 . In recent years, learning-based approaches, such as deep learning and reinforcement learning, 
have gained widespread application in fault diagnosis15,16,17,18

Representation learning, an important subset of learning algorithms, includes methods such as convolutional 
neural networks (CNNs)19,20, generative adversarial networks (GANs)21,22, transfer learning23, and manifold 
learning24. This approach transforms raw features into formats that machines can effectively process, offering 
enhanced reliability and interpretability. Representation learning establishes a link between the vast sensory 
data generated by industrial equipment and the valuable features required for fault diagnosis. This connection 
presents opportunities for uncovering hidden patterns in large-scale data. In recent years, representation 
learning has gained increasing attention in the field of intelligent bearing fault diagnosis.

To tackle the challenges of insufficient training samples and the high cost of parameter tuning for bearing 
fault diagnosis under various operational conditions, Song et al.25 proposed an integrated method combining 
optimized convolutional neural networks (CNNs) with bidirectional long short-term memory networks 
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(BiLSTM). This approach enhances training efficiency by optimizing hyperparameters through an improved 
particle swarm optimization algorithm and utilizes transfer learning to boost fault diagnosis accuracy. Dong 
et al.26 addressed the non-stationary and non-linear nature of rolling bearing fault signals by introducing an 
intelligent fault diagnosis framework that integrates empirical wavelet transform (EWT) and one-dimensional 
self-attention-enhanced CNNs (1D-ISACNN). This framework significantly improves fault classification 
accuracy and robustness. Ruan et al.27 proposed a physics-guided CNN parameter design method to overcome the 
lack of theoretical guidance and inefficiency in setting CNN parameters for bearing fault diagnosis. By analyzing 
the periodicity and attenuation characteristics of bearing fault signals, this method optimizes the input size and 
convolution kernel size of CNNs, enhancing both diagnostic accuracy and efficiency. Jia et al.28 introduced a 
Gram time-frequency enhancement CNN (GTFE-Net) combined with a Gram noise reduction (GNR) strategy 
to address the interference of irrelevant noise in vibration signals. This method improves the accuracy and 
robustness of fault feature extraction in bearing fault diagnosis. Wang et al.29 proposed an attention-guided joint 
learning CNN (JL-CNN) to address vibration signal denoising and fault diagnosis in mechanical systems. By 
integrating fault diagnosis (FD-Task) and signal denoising tasks (SD-Task) into an end-to-end architecture, this 
model demonstrates excellent noise robustness under challenging and unknown noise conditions. Wang et al.30 
addressed the limitations of single-mode signals in bearing fault diagnosis by proposing a fusion-based method 
utilizing vibration-acoustic data and 1D-CNNs. This approach, which combines accelerometer and microphone 
sensor signals, enhances both the accuracy and robustness of fault diagnosis. Chen et al.31 introduced an 
automatic feature learning model, based on multi-scale CNNs and long short-term memory networks (MCNN-
LSTM), to overcome the challenges of expert knowledge dependence, time consumption, and noise interference 
in feature extraction. The model directly extracts features from raw vibration signals, improving diagnostic 
accuracy and robustness. Zhao et al.32 addressed data imbalance and variable working conditions in intelligent 
rolling bearing fault diagnosis by proposing a solution based on normalized CNNs. Wang et al.33 developed 
a novel intelligent fault diagnosis method using symmetric point graph (SDP) representations and squeeze-
excitation CNNs (SE-CNN), aiming to enhance the visualization and automatic feature extraction capabilities 
in bearing fault diagnosis. Peng et al.34 proposed an improved method called Statistical Matrix Form (SMF) to 
reduce traffic overhead in unstructured peer-to-peer networks. This method selectively sends query messages 
based on the capabilities of neighboring nodes, improving search efficiency and reducing traffic overhead. To 
address the intelligent fault diagnosis of high-speed train wheelset bearings under variable load, speed, and 
noisy environments, Peng et al.35 introduced a novel deep one-dimensional CNN (Der-1DCNN) model. This 
model enhances fault feature extraction and network generalization performance through residual learning and 
wide convolution kernels. Eren et al.36 proposed a universal intelligent fault diagnosis system for high-speed 
train wheelset bearings in noisy environments. This system, based on a compact adaptive 1D CNN classifier, 
automatically extracts features from raw sensor data and performs efficient classification.

This paper presents a novel method that integrates signal processing and deep learning techniques, overcoming 
some limitations of traditional convolutional neural networks (CNNs) in practical applications. The proposed 
approach combines Generative Adversarial Networks (GANs), Transfer Learning, and Empirical Wavelet 
Transform (EWT) Empirical Wavelet Transform (EWT) with an enhanced multi-head attention mechanism 
and asymmetric convolutional networks, thereby improving model performance and training efficiency. The 
main contributions of this work are as follows:

	(a)	 The time-frequency representations obtained through continuous wavelet transform effectively capture the 
local features of the signal in both the time and frequency domains, facilitating the analysis of instantane-
ous frequency variations and fault characteristics of non-stationary signals.

	(b) 	 A new Multi-Head Attention Asymmetric Convolutional Network (MAC-MHA) is introduced, which em-
ploys asymmetric convolution blocks for feature extraction. After the convolution layers, a multi-head 
attention mechanism is incorporated, enabling the model to focus on key areas of the image and capture 
both local and global relationships across different representational spaces.

	 (c) 	 A Generative Adversarial Network (GAN) is employed to generate synthetic bearing fault data, enhancing 
the sample size for bearing fault categories and addressing the data imbalance issue.

	(d)	 The bearing fault diagnosis across varying working conditions is facilitated through transfer learning. By 
transferring a model pre-trained on the source domain, fault diagnosis for different bearing types can be 
achieved in multiple target domains. The model is fine-tuned using a small subset (10%) of data from the 
target domain, allowing it to adapt effectively to the specific fault conditions of the target domain. This ap-
proach reduces the dependence on large datasets and enables effective fault diagnosis with limited sample 
sizes.

Proposed integrated fault diagnosis scheme based on representation learning
Overview
The framework of the proposed ensemble multi-task intelligent bearing fault diagnosis scheme, based on 
representation learning under imbalanced sample conditions, is illustrated in the Fig. 1. In the context of bearing 
fault diagnosis in the source domain using the Modified Asymmetric Convolutional Network with Multiple 
Attention Mechanisms (MACN-MHA), the process can be divided into two main stages: offline training and 
online detection.

During offline training, the original bearing data is first used to train a Generative Adversarial Network 
(GAN), which generates new bearing fault data. This newly generated data is combined with 70% of the original 
data to form the training set. Continuous wavelet transform is then applied to convert the vibration signals into 
time-frequency representations, which are used for offline training. For online diagnosis, real-time operational 
data is transformed into time-frequency representations through continuous wavelet transform and subsequently 
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input into the pre-trained MACN-MHA network. In the case of bearing fault diagnosis under varying operating 
conditions, the model trained on the source domain is transferred to the target environment. Fine-tuning 
the model with a small amount of target data enables it to adapt to the features of the target environment. 
Consequently, the model trained on bearing operational data is successfully transferred, and fault diagnosis 
under different operating conditions can be performed using only a small sample (10%).The overall architecture 
of the proposed model is shown in Fig. 1

 MACN-MHA network based on representation learning
Asymmetric Convolutional (AC) networks are a type of convolutional neural network designed with asymmetric 
convolution blocks. In the AC network, each convolutional layer consists of three asymmetric convolution blocks 
(ACBs) with kernel sizes of 3 × 3, 1 × 3, and 3 × 1, with their outputs combined through summation37–39. To 
mitigate the impact of noise signals, the multi-head attention mechanism is employed to weight and aggregate 
features from different regions40. This ensemble approach introduces an enhanced non-stacked asymmetric 
convolutional neural network, which incorporates a asymmetric convolutional layer and a multi-head attention 

Fig. 1.  Entire structure.
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mechanism (MACN-MHA). Drawing inspiration from asymmetric convolution networks in image processing, 
the proposed MACN-MHA offers three key improvements:

Wavelet transform is applied to the bearing data for initial noise reduction, facilitating the more accurate 
identification of distinct events and anomalies in the signal.

The multi-head attention mechanism is integrated into the asymmetric convolutional layer neurons, enabling 
stronger inter-layer relationships and promoting feature fusion across layers.

Dropout layers are incorporated between the connection layers, effectively preventing overfitting during 
model training.

The structure of the MAC-MHA model is illustrated in Fig.  2. MAC-MHA consists of wavelet layers, 
asymmetric convolutional layers, pooling layers, multi-head attention (MHA) layers, dropout layers, and fully 
connected layers. The detailed description of each component is as follows:

Continuous wavelet transform layer
The Asymmetric convolutional structure of Asymmetric Convolutional Neural Networks (ACNs) is typically 
designed to process 2-D or 3-D input data. In contrast, the diagnostic performance of ACNs on one-dimensional 
inputs is suboptimal. Therefore, it is necessary to convert 1-D vibration signals into 2-D or even higher-
dimensional representations for ACNs. As a time-frequency domain transformation technique, the Continuous 
Wavelet Transform (CWT) effectively converts 1-D vibration signals into 2-D time-frequency spectrograms, 
which can then be directly utilized by the asymmetric convolutional layers. For a 1-D vibration signal sequence 
x(t), the CWT of these signals is expressed as follows:

	
CWT(x(t), s) =

∫ ∞

−∞
x(t) · 1√

s
ψ

(
t − τ

s

)
dτ � (1)

	 ψ(t) = π− 1
4 eiω0te− t2

2 � (2)

In the Eq. 1, x(t) represents the input signal, denoting the signal value at time t.The parameters is the scale factor, 
which controls the width of the wavelet. A larger s corresponds to a lower frequency (wider time window), while 
a smaller s corresponds to a higher frequency (narrower time window). The parameter τ  is the translation factor, 
indicating the position of the wavelet along the time axis. The term 1√

s
 is the normalization factor, ensuring that 

the energy of the wavelet transform remains invariant across different scales. ψ(t) is the mother wavelet (basis 
function), where ψ denotes the wavelet function used for local feature extraction from the signal. The differential 
element dτ  represents the integration over the time translation parameter τ . The wavelet function selected in 
this study is the complex Gaussian wavelet, which is expressed in Eq. 2 . In this equation, ψ(t) is the complex 
Gaussian wavelet basis function, representing the mother wavelet at timet. The parameter ω0 denotes the center 
frequency of the wavelet, determining its frequency characteristics. This parameter is commonly used to control 
the high-frequency components of the wavelet and is typically set as a constant. The variable t represents time, 
indicating the position of the wavelet along the time axis. The term eiω0t represents the complex sinusoidal 
component, which governs the oscillatory behavior of the wavelet. The factor e− t2

2  is the Gaussian window 
function, which defines the localization properties of the wavelet, ensuring that it is finite and concentrated in 
the time domain.

 Asymmetric convolution Kernel
In this study, we propose the use of an asymmetric convolution kernel to replace the traditional symmetric 
convolution kernel in the convolutional layer. This novel asymmetric design enables the model to more flexibly 
capture feature information from different directions. Compared to symmetric kernels, asymmetric convolution 
kernels can achieve equivalent or even superior performance with fewer computations.

Focusing on the commonly used 3 × 3 convolution in modern CNN architectures, we substitute each 3 × 3 
convolutional layer (and the associated batch normalization layer, if present) with an Asymmetric Convolution 
Block (ACB). The ACB consists of three parallel layers with kernel sizes of 3 × 3, 1 × 3, and 3 × 1. Following 
standard practices in CNNs, batch normalization is applied to each layer in the ACB branches, and the outputs of 

Fig. 2.  MAC-MHA.
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these branches are summed to form the final output. Notably, ACNet can be trained with the same configuration 
as the original model, without the need for additional hyperparameter adjustments.

	 Square Conv(x) = Conv(x, Wsq, bsq)� (3)

	 Horizontal Conv(x) = Conv(x, Whor, bhor)� (4)

	 Vertical Conv(x) = Conv(x, Wver, bver)� (5)

	 Output(x) = Square Conv(x) + Vertical Conv(x) + Horizontal Conv(x)� (6)

where Wsq ∈ RK×K is the square convolution kernel, and bsq is the bias term. where Whor ∈ R1×K  is the 
horizontal convolution kernel, and bhor  is the bias term. where Wver ∈ RK×1 is the vertical convolution kernel, 
and bver  is the bias term.

Pooling layer
The pooling layer serves the function of downsampling, which reduces data dimensionality and computational 
complexity while preserving essential feature information. Pooling is generally categorized into max pooling 
and average pooling. In max pooling, downsampling is achieved by selecting the maximum value within a local 
region, whereas in average pooling, the average value within a local region is selected.

The computation formula for max pooling is:

	
Yi,j,d = max

m,n∈P
Xi+m−1,j+n−1,d� (7)

P is the size of the pooling window (e.g., 2 × 2) ). X is the input data, where Xi,j,d represents the pixel value 
of the (i, j) input channel at position d. Y is the output pooled feature map, where Yi,j,d denotes the pooling 
result at position d in the (i, j)output channel.

Multi-head attention mechanism
The multi-head attention mechanism is an extension of the attention mechanism, primarily designed for natural 
language processing (NLP) and sequence data analysis. It extracts diverse feature information by utilizing 
multiple parallel attention heads. Each attention head computes the relationships between the query (Q), key 
(K), and value (V) to capture crucial information. By enabling parallel computation across multiple heads, the 
model can simultaneously focus on different segments of the sequence.

	
Attention(Q, K, V ) = softmax

(
QKT

√
dk

)
V � (8)

	 MHA(Q, K, V ) = Concat(head1, . . . , headh)W O � (9)

	 headi = Attention(QW Q
i , KW K

i , V W V
i )� (10)

Q is the query matrix, K is the key matrix, and V is the value matrix. ·dk  is the dimension of the keys. softmax 
is the normalization function used to compute the attention weights. Equation 10 represents the multi-head 
attention mechanism, while Eq. 11 defines the calculation formula for each head.  W Q

i , W K
i , W V

i  are the 
weight matrices for the query, key, and value in the iii-th head, respectively.  W O  is the weight matrix for the 
linear transformation of the concatenated output

Dropout layer
The dropout layer serves the purpose of randomly “dropping” a subset of neurons during training to mitigate 
overfitting. By reducing the dependence between nodes in the network, dropout enhances the model’s 
generalization ability, thereby fostering more robust learning.

	 ĥ = h · r� (11)

where ris a binary random vector, with ri ∈ {0, 1}, and E[ri] = p takes the value 0 with probability pand the 
value 1 with probability 11 − p).

The fully connected (FC) layer
The fully connected (FC) layer connects all outputs from the previous layer to each neuron in the current layer, 
performing a linear transformation to generate the final output. It is commonly employed as the final layer in 
classification or regression tasks, where it transforms features from preceding layers into target labels.

The computation for a fully connected layer is expressed as follows:

	 y = Wx + b� (12)

where:
·W ∈ Rm×n is the weight matrix.
 b ∈ Rm is the bias vector.
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 Small-sample bearing fault diagnosis based on generative adversarial networks
On this basis, the mixed data generated by the GAN model from the source domain’s initial dataset serves as the 
source domain, while different datasets are used as the target domain. At the same time, generative adversarial 
networks (GANs) are also an important representation learning method. Through adversarial training between 
the generator and discriminator, GANs can generate samples that match the distribution of real data.41

In the practical application of bearing monitoring, vibration signal data may be incomplete or missing due to 
sensor faults, sampling issues, or other factors. GANs can be used to supplement this missing data, enabling the 
model to use more information during training and avoid performance degradation caused by missing data.42 In 
this context, the mixed data generated by the GAN model from the source domain’s initial dataset serves as the 
source domain, while different datasets are used as the target domain. Generative adversarial networks (GANs) 
are a significant method for representation learning. Through adversarial training between the generator and 
discriminator, GANs can generate samples that align with the distribution of real data41. In the practical 
application of bearing monitoring, vibration signal data may be incomplete or missing due to sensor faults, 
sampling errors, or other factors. GANs can help supplement the missing data, allowing the model to utilize more 
information during training and prevent performance degradation caused by incomplete data42. Additionally, 
dimensionality reduction techniques such as t-SNE and PCA were employed to visualize the generated data and 
real data in a low-dimensional space, providing an intuitive demonstration of the distribution overlap between 
the two. Experimental results indicate that the synthetic data exhibits high similarity to real data across most 
features, thus providing effective support for data augmentation.43

While GANs help address data imbalance, excessive or low-quality synthetic data can cause overfitting. To 
mitigate this, we assessed data similarity using statistical analysis (e.g., t−SNE, PCA) and applied regularization 
techniques (L2, Dropout, early stopping) to improve generalization.44–46 Additionally, we used incremental 
learning to gradually introduce synthetic data, preventing premature reliance. Future work includes enhancing 
generative models with adversarial regularization and diversity-improving techniques. These strategies effectively 
reduce overfitting and improve real−data generalization47,48.

The formula for the GAN model is defined as follows: Generator’s Loss Function: The generator’s objective 
is to produce fake data that maximizes the discriminator’s probability of classifying it as “real.” The loss function 
for the generator is given by:

	 L G = −Ez ∼ pz(z)[log D(G(z))]� (13)

where z represents random noise sampled from the noise distribution pz(z)), G(z) is the fake data generated 
by the generator, and D(x) is the output of the discriminator, denoting the probability that the data x is real. 
The generator seeks to minimize this loss, thereby increasing the likelihood that the discriminator classifies the 
generated data as “real.” Discriminator’s Loss Function: The discriminator’s objective is to accurately classify 
both real and fake data. The loss function for the discriminator is defined as:

	 L D = −Ex ∼ pdata(x)[log D(x)] − Ez∼pz(z)[log(1 − D(G(z)))]� (14)

The first term represents the loss for classifying real data, while the second term accounts for the loss for 
classifying fake data. The discriminator aims to maximize this loss function, aiming to classify real data as real 
(D(x) close to 1) and fake data as fake (D(G(z)) close to 0).The issue of insufficient training data can be addressed 
by generating new samples to augment the dataset.

Bearing fault diagnosis under different operating conditions based on transfer learning
Transfer learning, a key method in representation learning, involves transferring a model trained on a source 
task to a target task to enhance the generalization ability of the trained model49–51. The model-based approach 
to transfer learning is a subfield of transfer learning, where source and target tasks share similar feature 
representations. This method transfers a model pre-trained on the source task to the target task, enabling the 
sharing of model parameters and thereby improving the model’s performance.52–54

To further validate the effectiveness of transfer learning, we also compared it with existing domain adaptation 
methods, such as the Maximum Mean Discrepancy (MMD) alignment approach. These methods reduce the 
discrepancy between the source and target domains by aligning their feature distributions, thereby improving 
the model’s performance on the target domain55,56. We compared the transfer learning method with traditional 
machine learning models and existing domain adaptation methods. Specifically, we conducted experiments 
using the source domain (e.g., the PADERBORN dataset) and the target domain (e.g., the CWRU dataset). The 
base model for transfer learning was trained on the source domain, followed by fine-tuning with target domain 
data to adapt to the specific distribution of the target domain. During fine-tuning, we employed a strategy where 
the lower-layer feature extractors were frozen and only the higher-layer classifiers were fine-tuned57, to reduce 
the reliance on target domain data. Through a comparative analysis of the experimental results, the transfer 
learning method significantly outperformed traditional machine learning and standard deep learning models. 
On the target domain data, the transfer learning approach achieved notable improvements across multiple 
metrics, such as accuracy and F1 score, especially in scenarios with data imbalance and substantial domain 
discrepancies, where its advantages were particularly pronounced58. Moreover, compared to existing domain 
adaptation methods, the transfer learning approach also demonstrated clear benefits in terms of reduced training 
time and enhanced model generalization.

The formulas for the transfer model are shown in Table 1.
Let M source denote the source model. The function f represents the model function, typically a neural 

network or machine learning model. Dsource refers to the dataset from the source domain, used for training 
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the source model, while θsource represents the parameters of the source model. Similarly, M target denotes the 
target model, and Dtarget refers to the dataset from the target domain, used for training the target model. The 
parameters of the target model, denoted as θtarget, are initially set to θsource from the source model.

The cross-entropy loss function is denoted by L CE, and N is the number of samples. The parameters 
being fine-tuned are represented by θfinetune(t), with the gradient of the loss with respect to these parameters 
denoted as ∇θfinetuneL . The parameters of the frozen layers are represented by θfrozen, and θ(t)

target denotes the 
current value of the target model parameters.

The loss function for the target task is represented as L target, while C target and C source denote the 
convolutional layer weights of the target and source models, respectively. The newly initialized output layer 
parameters of the target model are denoted by θtarget(new). Finally, ŷ represents the predicted value of the 
target model, and Y denotes the true label of the target model.

In this paper, we use transfer learning to address limited target domain data. A base model is trained on 
source domain data and fine-tuned on 10% of the target domain data. This choice is based on the high feature 
similarity between the source (e.g., PADERBORN dataset) and target domains (e.g., CWRU dataset), which 
allows effective transfer. Previous research shows that fine-tuning with small amounts of target domain data can 
enhance performance when domain similarity is high51. Fine-tuning 10% of the target domain data is a reasonable 
choice that avoids overfitting while ensuring sufficient domain adaptation. Given the scarcity of fault data in 
industrial applications, fine-tuning with a small percentage reduces data needs and improves computational 
efficiency. To validate this, we compared model performance across different target domain data ratios (5%, 
10%, 15%, 20%, 25%, 30%). Results show that 10% fine-tuning significantly enhances performance, with further 
increases having minimal effect. The experimental results, as shown in Fig. 3. This supports the 10% fine-tuning 
ratio as both effective and efficient. We also explored transfer learning adaptability by testing different strategies, 
including freezing layers and fine-tuning all layers. Freezing early layers and fine-tuning higher-level classifiers 
provided good adaptation with faster training. Fine-tuning all layers improved performance but increased 
training time and computational cost. In data-scarce scenarios, fine-tuning higher layers offers a good balance 
between performance and efficiency.

Although transfer learning can effectively transfer knowledge from the source domain to the target domain, 
thereby reducing the reliance on large amounts of labeled data in the target domain, it may encounter certain 
limitations when applied to entirely new datasets beyond PADERBORN and CWRU. These new datasets may 
exhibit significant differences from PADERBORN and CWRU in terms of signal noise, sampling frequency, 
sensor configuration, data quality, and preprocessing requirements, which can result in reduced model 
adaptability in the new environment, thereby affecting feature extraction and overall model performance. 
For instance, the new dataset may contain different types of noise (such as environmental noise, electrical 
interference, etc.) that were not sufficiently present in the source domain data, which could lead to the extracted 
features no longer being representative for the new dataset. Moreover, differences in sampling frequency could 
affect the model’s ability to capture time-domain features, particularly when performing time-frequency 
analysis on vibration signals. Variations in sensor configurations and data acquisition methods may lead to 
changes in the signal’s dynamic range and frequency response, thus impacting feature stability and the model’s 
generalization capability. Therefore, although transfer learning can expedite the model’s adaptation process in 
the target domain, additional domain adaptation techniques or target domain fine-tuning strategies may be 
required to overcome these challenges when dealing with new datasets exhibiting significant differences.

Selection and motivation of the proposed techniques
The combination of Generative Adversarial Networks (GANs), transfer learning, wavelet transform, Asymmetric 
Convolutional Networks (AC-Net), and Multi-Head Attention Mechanism (MAC-MHA) proposed in this paper 
is based on their effectiveness in fault diagnosis tasks, as well as their proven theoretical and experimental benefits. 
Firstly, Generative Adversarial Networks (GANs) have been widely used to address the small sample problem, 
particularly in industrial fault diagnosis. GANs enhance the model’s generalization ability by generating synthetic 

Step Formula

Source model training Msource = f(Dsource, θsource)

Target model initialization Mtarget = f(Dtarget, θtarget = θsource)

Loss function (target task) LCE = −
∑N

i=1
yi log(ŷi)

Gradient update (target task) θ
(t+1)
i

= θ
(t)
i

− η∇θi
L

Fine-tuning (full fine-tuning) θ
(t+1)
finetune = θ

(t)
finetune − η∇θfinetuneL

Fine-tuning (freezing layers) ∂L
∂θfrozen

= 0

Gradient update for target model fine-tuning θ
(t+1)
target = θ

(t)
target − η∇θtargetLtarget

Weight transfer (convolutional layers, etc.) Ctarget = Csource

Output layer initialization and training θ
(new)
target = Initialize randomly or based on prior knowledge

Final optimization of the target model Ltarget = LCE(ŷ, y)

Table 1.  Computation in transfer learning models.
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samples, thereby improving classification performance59. Secondly, transfer learning has been demonstrated to 
effectively address cross-domain data issues, particularly in fault diagnosis under varying operating conditions. 
By transferring existing knowledge, transfer learning reduces the data requirements of the target domain and 
improves the accuracy of diagnostic models60,61. Furthermore, wavelet transform, due to its ability to extract 
multi-scale features from signals, is extensively applied in vibration signal analysis and is especially effective 
for detecting various types of faults62. Asymmetric Convolutional Networks (AC-Net), through the design 
of asymmetric convolution structures, effectively extract local features and improve diagnostic capabilities 
in complex fault scenarios63. Lastly, the Multi-Head Attention Mechanism (MAC-MHA) has demonstrated 
outstanding ability in handling complex sequential data. It captures multi-level feature dependencies, enhancing 
the model’s discriminative power across multiple fault modes64. Therefore, the selection of these techniques in 
this paper is aimed at integrating their respective advantages to construct an efficient model capable of addressing 
fault diagnosis challenges under different operating conditions.

Case study I: PADERBORN
Dataset description
The dataset used to validate the proposed model was provided by the Chair of Design and Drive Technology, 
Paderborn University, Germany. As shown in Fig.  4, the test rig comprises an electric motor, a torque-
measurement shaft, a rolling bearing test module, a flywheel, and a load motor. A piezoelectric accelerometer 
(model PCB 336C04) is mounted on the rolling bearing module, and a current transducer (model LEM CKSR 
15-NP) is placed between the motor and the inverter externally65. An A/D converter is employed to collect the 
vibration and current signals during the test. A total of 32 bearing sets were tested, each exhibiting different 

Fig. 4.  PADERBORN.

 

Fig. 3.  The experimental results under different target domain data proportions.
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damage types and fault levels, which were classified into four states: inner ring fault, outer ring fault,Inner ring 
outer ring compound failure, and healthy65. The experiments were conducted under three distinct conditions, 
labeled A, B, and C, as listed in Table 1. Condition A had a speed of 1500 rpm, a load torque of 0.7 N.m, and 
a radial force of 1000 N, while the other two conditions involved reducing the load torque to 0.1 N.m and the 
radial force to 400 N, respectively. For each condition, the test was repeated 20 times, and the current and 
vibration signals were recorded at a sampling rate of 64 kHz for 4 seconds per trial.

In summary, the key characteristics of this dataset are as follows: it synchronously records high-resolution, 
high-sampling-rate motor current and vibration signals for 26 damaged bearing conditions and 6 healthy (non-
damaged) states. The measurements include data on rotational speed, torque, radial load, and temperature, 
across four distinct operating conditions. Each setting consists of 20 measurements, each lasting 4 seconds, with 
the data stored in MATLAB files. The filenames include the codes for the operating conditions and a four-digit 
bearing code (e.g., N15M07F10KA011.mat). A standardized fact table, as outlined in Section 2 (for classification 
- bearing damage classification), is used to systematically describe the bearing damage states.

Feature extraction
To address the Imbalanced Sample Condition, the extracted data is fed into a Generative Adversarial Network 
(GAN). Through adversarial training between the generator and discriminator, new data is generated and mixed 
with 70% of the original domain data to create the model’s training dataset. To better represent the status of the 
bearing during operation, feature extraction is performed from the time-frequency domain. The Continuous 
Wavelet Transform (CWT), a tool for decomposing non-stationary signals, is used to convert vibration data into 
time-frequency spectrograms. By convolving the signal with the wavelet, the response of the signal at various 
time instances and scales is captured.

In this study, vibration data is analyzed from the time, frequency, and time-frequency domains for feature 
extraction. The maximum and minimum values in the time domain, along with other time-domain features, are 
used to describe the bearing’s health condition. Additionally, when a bearing fault occurs, the energy in specific 
frequency bands associated with the fault may exhibit significant changes. As a result, the Fast Fourier Transform 
(FFT) method66 is applied to extract frequency domain features. In total, seven features are extracted from the 
time and frequency domains to characterize the bearing vibration data, as shown in the feature calculation 
formula Table 2.

Where L denotes the length of the vibration signal, xi is the amplitude of the signal at the i-th time instant, 
K is the length of the frequency spectrum, nsj  represents the amplitude of the signal’s spectrum after FFT, and 
fj  is the corresponding frequency.

Regarding time-frequency domain features, Continuous Wavelet Transform (CWT) is utilized as a tool for 
decomposing non-stationary signals. It transforms vibration data into a time-frequency representation, enabling 
the analysis of the signal’s response at different time instances and scales through convolution with the signal. 
In this study, the complex Gaussian wavelet is chosen as the mother wavelet, and the db3 wavelet is used to 
decompose the vibration data into three wavelet packets, yielding 8 sub-signals within different frequency 
bands.67,68 Furthermore, eight time-frequency features are extracted based on the wavelet transform coefficients. 
In summary, a total of 22 features are extracted across the aforementioned three domains (time, frequency, and 
time-frequency) to characterize the health status of the bearing in all directions of vibration. It should be noted 
that the sampling frequency is 12,000 Hz, and the signal duration is 60 seconds. A bearing vibration sample of 
0.125 seconds duration is used as a single sample, with each sample containing 1,024 data points. Afterward, the 
data is transformed into a time-frequency representation .

Time domain features Frequency domain features

T F1 = 1
L

∑L

i=1
|xi|

F F1 =

∑n

j=1
sj

K

T F2 =
√

1
L

∑L

i=1
(xi − x̄)2

F F2 =

∑K

j=1
(sj −F F1)2

K

T F3 =
√

1
L

∑L

i=1
(xi)2 F F3 =

∑K

j=1
fj ·sj∑K

j=1
sj

T F4 = T F3
T F1 F F4 =

√∑K

j=1
(fj −F F3)2·sj

K

T F5 = | min {xi | i = 1, 2, ..., L} | F F5 = F F4
F F3

T F6 = | max {xi | i = 1, 2, ..., L} |
F F6 =

√∑K

j=1
s2

j

K

T F7 = T F6 − T F5 F F7 =
1
K

∑K

j=1
(sj −F F1)4

[
1
K

∑K

j=1
(sj −F F1)2

]2

Table 2.  Calculations of time domain and frequency domain features.
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 Experimental result
Fault detection based on MAC-MHA
During the offline training phase, 70% of the bearing fault data is combined with data generated by the Generative 
Adversarial Network (GAN) to serve as input for training the MAC-MHA model. The bearing operates under 
three different rotational speed conditions, with each condition containing 480 samples, resulting in a total of 
1,440 data samples.

The hyperparameter configurations for MAC−MHA are summarized in Table 3. To validate the rationale 
behind the selection of hyperparameters, we conducted ablation experiments by adjusting the values of 
embeddim, numheads, and learningrates, and evaluated their impact on the model’s performance. These 
experiments were carried out using standard benchmark datasets, such as PADERBORN and CWRU, with 
the validation loss curves serving as the evaluation metric. By comparing the performance under different 
hyperparameter configurations, we found that the configuration with embeddim=16 and numheads=4 achieved 
the best performance in addressing complex fault diagnosis tasks. Specifically, the configuration of embeddim

=16 and numheads=4 offered a balance between maintaining relatively low computational cost and significantly 
enhancing the model’s accuracy and robustness. The experimental results are presented in Fig. 5.

One advantage of this method is that it enables the assignment of varying weights to the neurons in the 
bottleneck layer, thereby enhancing reconstruction performance. For the 1,440 training samples, to demonstrate 
the interpretability of this representation learning approach, Fig. 6a and b show a comparison of the weight 
visualizations in the fully connected layer, with and without the Multi-Head Attention (MHA), as presented 
in Fig.  6. To better represent the experimental results, maximum-minimum normalization is applied. It can 
be observed that the introduction of MHA alters the data distribution of the fully connected layer neurons, 
concentrating the weights at significant positions. The visualization of intermediate layers is a key contribution 
to interpretable representation learning. Consequently, the performance of the unsupervised fault detection 
model for each fault category is validated with a total of 1,440 samples across three different rotational speed 
conditions. The experimental results for the bearing fault detection task based on MAC-MHA are presented in 
Fig. 7.

Specifically, Fig. 7a–d present the results for noramal , outer race failure,inner race failure, and combined 
failure, respectively. Detection accuracy serves as the evaluation metric, where higher accuracy indicates better 
detection performance. The accuracy test results are summarized in Table 4. From both Table 4 and Fig. 7, it is 
evident that the MAC-MHA, as part of the proposed integrated approach, demonstrates strong fault detection 
performance under supervised conditions.

Few-shot bearing fault classification based on generative adversarial networks (GANs)
For fault classification in the integrated approach, the hyperparameter configuration of the fully connected 
network is provided in Table 5. Given the limited availability of fault samples in practical scenarios, a Generative 
Adversarial Network (GAN) is employed to generate synthetic bearing fault data, which is then combined with 
70% of the original samples for training. Specifically, 3910 Time-frequency representation(TFR) samples are 
used for training, while 563 samples TFR are used for validation. The confusion matrix and t-SNE visualization 
for healthy operation and the three fault classifications is shown. As illustrated in Figs. 8 and 9, the proposed 
CWT-MAC-MHA-NN approach effectively classifies different types of few-shot faults. For clarity, Fault 1 
through Fault 4 represent inner race fault, ball fault, outer race fault, and combined fault, respectively.

Table 6 presents a comparative analysis of fault classification results using various machine learning and 
deep learning methods, including Convolutional Neural Networks (CNN), CNN with Attention Mechanism 
(CNN-Attention), 1D Convolutional Neural Networks combined with Long Short-Term Memory Networks 
(TCN−LSTM), Convolutional Recurrent Networks combined with Long Short−Term Memory Networks 
(CNN−LSTM), and CNN on the RDER dataset. It is noteworthy that all methods were trained using 10% of the 
total sample.

Bearing fault detection and diagnosis under different operating conditions based on transfer learning
The mixed dataset, comprising data generated through Generative Adversarial Network (GAN) training and the 
original PADERBORN dataset, serves as the source domain, while datasets(CWRU) from different operating 
conditions are used as the target domain. Initially, the MAC-MHA model is trained on the source domain and 
subsequently transferred to the target domain. Fine-tuning is performed using 10% of the target domain data to 
adapt the model to the target environment’s features. The results of bearing fault detection and diagnosis under 
varying operating conditions through transfer learning are presented in Figs. 10 and 11 Features 1-5 correspond 

Hyperparameter Configuration

Number of hidden layers 5

Number of multiheadattention 4,4

Epoch 100

Batch size 64

Learning rate 0.0001

Loss function CrossEntropyloss

Optimizer Adam

Table 3.  Hyperparameter configuration of the MAC-MHA.
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to the following fault types: rolling element fault, inner race fault, outer race fault in the relative direction, outer 
race fault in the orthogonal direction, and outer race fault in the central direction. As shown in these figures, the 
proposed integrated approach effectively identifies fault data across different operating conditions. Specifically, 
after fine-tuning the transfer model, the accuracy of bearing fault diagnosis under diverse conditions reaches 
97.52%. The ability to perform fault diagnosis under various conditions using transfer learning is notable and has 
been relatively underexplored in existing research. In this context, the proposed integrated approach introduces 
a representation learning-based recognition method with high accuracy.

Case study II: CWRU bearing dataset
Dataset description and feature extraction
The practical bearing data provided by Case Western Reserve University (CWRU) is utilized to validate the 
proposed approach. The experimental setup consists of a driven motor, a load motor, an accelerometer, a torque 
transducer, and a bearing seat, as shown in Fig. 12. The bearings used in the experiment are deep groove ball 
bearings, specifically the 6205-2RS JEM and 6203-2RS JEM models. Notably, the faults are induced in the 
bearings using electrical discharge machining (EDM). The faults are classified based on their location as follows: 
inner race fault, ball fault, centered outer race fault, orthogonal outer race fault, and opposite outer race fault. 

Fig. 5.  Comparison of experiments with different hyperparameter configurations for MAC-MHA.
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The healthy bearing data and the faulty data with a 0.007-inch diameter defect imposed on the 12 k drive end are 
used to demonstrate the effectiveness of the proposed method.

Due to the two measurement channels for the bearing data, vibration signals in two directions can be 
obtained. A large amount of data is generated by the test rig when the bearing is in a healthy state, with a 
sampling frequency of 12,000 Hz. Each sample consists of 512 data points. Therefore, a total of 928 fault samples 
are obtained under four different loading conditions. For each direction, 22 features are extracted, including 
time-domain, frequency-domain, and time-frequency-domain features. Consequently, a total of 44 features are 
obtained from the two measurement channels.

Hyperparameter Configuration

Number of hidden nodes 16.32.64.128

Learning hidden nodes 240

Epoch 100

Batch size 64

Loss function CrossEntropyloss

Optimizer Adam

Table 5.  Hyperparameter configuration of the network.

 

Conditions Detection accruacy

Health 99.34%

Inner race fault 100.00%

outer race fault 100.00%

Inner and outer race combined fault 100.00%

Table 4.  Detection accuracy results of PADERBORN dataset.

 

Fig. 7.  MAC-MHAC fault detection results of PADERBORN dataset.

 

Fig. 6.  Visualization of fully connected layer weights (a) without MHAC, (b) with MHAC.
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Experimental result
Fault detection based on generative adversarial networks (GAN) and CWT-MAC-MHAC:
During the offline training phase, the input to the CWT-MAC-MHAC network consists of 928 samples 
generated by the GAN and 70% of the original data, totaling 4599 Time-frequency representation(TFR) fault 
samples.Correspondingly, for each fault type, there are a total of 1149 TFR samples under four different load 
conditions used to validate the performance of the unsupervised fault detection model. On this basis, the 
experimental results of the bearing fault detection task based on MACB-MHA are shown in Fig. 13. In detail, the 
sub-graphs(a-e) show the results for inner ball fault,race fault, , centered outer race fault, orthogonal outer race 
fault, and opposite outer race fault,inner race fault respectively.The testing results of accuracy are summarized 
in Table  7. As shown in Table  7 and Fig.  13, the proposed CWT-MACB-MHA demonstrates excellent fault 
detection performance.

Approaches Classification

CNN 68.75%

TCN-LSTM 78.56%

CNN-attention 95.09%

CNN-LSTM 96.43%

LSTM-attention 96.88%

MAC-MHA-Net 97.52%

Table 6.  Comparison of classification accuracy of PADERBORN dataset.

 

Fig. 9.  CWT-MAC-MHAC fault classification T-SNE visualization for the PADERBORN dataset.

 

Fig. 8.  CWT-MAC-MHAC fault classification results for the PADERBORN dataset.
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Fault classification based on data generated by generative adversarial networks (GAN)
The hyperparameter configuration of the neural network in this section largely aligns with that presented in 
Table 5. Given that the CWRU dataset encompasses six operational conditions, the number of neurons in the 
final layer is set to six. For each operational condition, both the generated and 70% of the original samples are 
used for training. Specifically, 4599 TFR samples are used for training, and 810 TFR samples are used for testing. 
Figures 14 and 15 presents the confusion matrix and t-SNE visualization for the five fault classifications. For 
clarity, Faults 1 through 5 correspond to the following conditions: inner race fault, ball fault, central outer race 
fault, orthogonal outer race fault, and opposite outer race fault, respectively.

Fig. 12.  CWRU.

 

Fig. 11.  CWT-MAC-MHAC fault classification T-SNE visualization after transfer learning on PADERBORN 
dataset.

 

Fig. 10.  CWT-MAC-MHAC fault classification results after transfer learning on PADERBORN dataset.
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The CWT-MACB-MHA-NN model effectively classifies different faults. Furthermore, Table 8 compares 
several machine learning and deep learning methods applied to the CWRU dataset. As shown in Table 8, the 
proposed CWT-MACN-MHA-C model demonstrates high accuracy under few-shot learning conditions.

Bearing fault diagnosis under different operating conditions based on transfer learning
For bearing fault diagnosis under varying operating conditions, transfer learning enables the model trained 
on the source domain task to be transferred to the target domain task, thereby improving the generalization 
ability of the trained model. The fault diagnosis results under different operating conditions, after transferring 
the model, are presented in Figs. 16 and 17. As shown in Figs. 16 and 17, the proposed integrated approach 
effectively identifies fault data across different operating conditions. These experimental results have important 
implications for bearing fault recognition under diverse operational scenarios.

Conclusion
This paper proposes a bearing fault diagnosis framework that integrates an Asymmetric Convolutional Network 
(AC-Net) with a multi-head attention mechanism (MHA), leveraging Transfer Learning (TL) and Generative 
Adversarial Networks (GANs) to generate fault data, while utilizing Continuous Wavelet Transform (CWT) for 
time-frequency representation. This method enables high-accuracy fault diagnosis of rolling bearings under 

Fig. 14.  CWT-MAC-MHAC fault classification results for the CWRU dataset.

 

Conditions Detection accruacy

Inner race fault 99.42%

Ball fault 100.00%

Centered outer race fault 100.00%

Orthogonal outer race fault 100.00%

Opposite outer race fault 100.00%

Table 7.  Detection accuracy results of CWRU dataset.

 

Fig. 13.  Caption.
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Fig. 16.  CWT-MAC-MHAC fault classification results after transfer learning on PADERBORN dataset.

 

Approaches Classififcation accuray

SVC 69.52%

RFC 71.20%

EMD-GA-ANFIS(R) 77.15%

XGBoost 84.04%

SOM 86.40%

F-ANFIS 87.70%

MF-SVMs 88.90%

LightGBM 89.09%

DPSON 90.60%

EMD-GA-ANFIS(S) 91.33%

Compact 1DCNN 93.20%

CNN 93.54%

DNN 94.40%

SAE 94.40%

Proposd CWT-MCA-MHAC 97.52%

Table 8.  Testing results of classification accuracy of CWRU dataset.

 

Fig. 15.  CWT-MAC-MHAC fault classification T-SNE visualization for the CWRU dataset.
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multiple operating conditions, even with limited sample data from the target domain. The main contributions of 
this work are summarized as follows:

(1) The integrated approach presents a hybrid method combining generative adversarial networks (GANs), 
transfer learning (TL), wavelet transform time-frequency representation (VWT), asymmetric convolutional 
network (AC-Net), and multi-head attention mechanism (MHA), abbreviated as GAN-VWT-TL-ACN-MHA. 
(2)To achieve accurate small-sample fault classification and detection, the integrated approach includes a fault 
classification method based on GANs. (3) The Continuous Wavelet Transform (CWT) is applied to convert 
bearing vibration signals into time-frequency representations, capturing the temporal evolution of frequency 
components and performing threshold-based denoising. (4) Building on fault detection in the source domain, 
transfer learning is employed to recognize bearing faults under different operating conditions, using only 10% of 
the target domain data for fine-tuning. This approach enables effective fault diagnosis across varying operating 
conditions, an area that has been underexplored in previous works. The fault detection results of the proposed 
MAC-MHA model on the PADERBORN and CWRU datasets are shown in Figs. 7 and 13. Furthermore, the 
bearing fault classification results for both datasets using CWT-MACN-MHA are presented in Figs. 9and 15. 
Finally, the fault recognition results across different operating conditions for both datasets are shown in Figs. 17 
and 11. These results demonstrate that the proposed integrated approach effectively captures the commonalities 
between bearing fault detection, classification, and recognition tasks, thereby enabling intelligent bearing 
fault diagnosis. The computational complexity of each module is summarized as follows: the total number of 
parameters for the entire model during the inference phase is approximately 2.58 million, and the total FLOPS 
is approximately 759,557,508. Based on theoretical estimates, the model is expected to run in approximately 
0.15 milliseconds on a CPU platform. Despite the overall complexity of the model, certain modules, such as the 
GAN, are used solely for offline data augmentation. Real-time inference primarily relies on the ACN and MHA 
modules, whose computational load has been optimized through asymmetric design and efficient attention 
mechanisms. Therefore, this approach demonstrates high feasibility for real-time fault diagnosis in industrial 
field applications.

Discussion
Deep learning-based fault diagnosis methods require substantial labeled data for effective training. However, 
obtaining such data in industrial settings is expensive and challenging69. While data augmentation techniques 
like GANs help address data imbalance, synthetic data may not fully capture real-world complexities, potentially 
reducing model generalization. Moreover, the quality of synthetic data remains a challenge, potentially 
introducing biases during training70. Despite deep learning models’ strong performance, their “black-box” 
nature hinders interpretability, which is critical in high-risk domains like fault diagnosis. The current model, 
incorporating convolutional layers and multi-head attention mechanisms, enhances performance but offers 
limited interpretability improvements. Future research could explore Explainable AI (XAI) techniques to 
boost transparency and model trustworthiness in industrial applications. Deep learning methods also demand 
significant computational resources, especially during inference. As model complexity grows, so do inference 
latency and computational cost, potentially limiting deployment in resource-constrained environments like edge 
computing71. Although GPU-based inference was used, model optimization techniques such as compression, 
quantization, and pruning may be needed to reduce costs and improve real-time performance in practical 
settings Although the current experimental results demonstrate the success of the proposed method in both 
theoretical and empirical validations, its performance in real-world deployment may be affected by factors 
such as environmental noise and equipment malfunctions, leading to fluctuations in model performance. 
Future research could focus on enhancing the model’s robustness by incorporating techniques such as online 
learning and transfer learning, enabling the model to continuously adapt to varying operational conditions and 
environmental changes post-deployment.

Fig. 17.  CWT-MAC-MHAC fault classification T-SNE visualization after transfer learning on PADERBORN 
dataset.
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Data availability
 The datasets used and analysed during the current study available from the corresponding author on reasonable 
request.
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