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Despite the ecological and socioeconomic importance of agro-pastoral ecotones, changes in land 
use and land cover (LULC) and their driving mechanisms are not comprehensively understood. In 
this study, a systematic framework for LULC assessment covering comprehensive timeframes was 
constructed for the Tabu watershed. Results demonstrated that a new process of LULC changes began 
in 1998, with a significant increase in farmland and decrease in grassland. The increase in dynamic 
degrees and structural variation coefficients indicated intensive and frequent changes in LULC. 
Conversion ratios between grassland and farmland exceeded 95%, and construction land encroached 
upon grassland. Grassland changes were driven mainly by natural factors based on the random forest 
regression, as well as changes in farmland and construction land. The influence of anthropogenic 
drivers on LULC became significant. Under the sustainable development scenario, the increase in 
grassland with a high fractional vegetation cover in 2034 was the most significant, the area of bare 
land decreased, the area of construction land steadily increased, and the reduction in farmland area 
was under control. Under this scenario, both socioeconomic development and ecosystem stability 
can be achieved. This study provides insights into regional land dynamics and provides systematic 
guidance for sustainable land management.
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Land use is a critical manifestation of human activities1, and humans obtain food and other materials for living 
and production by utilizing and exploiting land resources. Notably, land use and land cover (LULC) changes 
affect the global climate, water circulation, carbon cycle and biodiversity2,3. To achieve sustainable development 
and ecological resilience, comprehending the intricacies of LULC is imperative4.

The beginning of LULC research was tracked back to Agenda 21, which was proposed by the United Nations 
in 1992, and early research focused mainly on the classification and spatial mapping of land use types (LUTs)5. 
Since the beginning of the 21st century, more attention has been given to the spatiotemporal changes in LULC 
and the associated driving mechanisms, with administrative units with significant LULC changes used as the 
study areas. Zheng et al.6found that stringent land management was conducive for controlling LULC conversion 
by analyzing the spatiotemporal changes in LULC over the 1990–2015 period. Meng and Si7noted that the urban 
lands in Yangzhou city quickly expanded from 2005 to 2018, which was caused mainly by increases in fixed–
asset investment, the urban population and farmland. Land use conflicts between agriculture, construction, 
and ecology are more serious than they were before, and these conflicts could be mitigated by dividing spatial 
control zones8,9. Dammag et al.10analyzed the spatiotemporal characteristics of LULC in 1990, 2005 and 2020 in 

1Yinshanbeilu Grassland Eco-Hydrology National Observation and Research Station, China Institute of Water 
Resources and Hydropower Research (MWR), Beijing 100038, China. 2Collaborative Innovation Center for Grassland 
Ecological Security (Jointly Supported by the Ministry of Education of China and Inner Mongolia Autonomous 
Region), Hohhot 010021, China. 3Institute of Pastoral Hydraulic Research, MWR, Hohhot 010021, China. 4Hebei 
University of Engineering, Handan 056000, China. email: jinjingmwr@163.com

OPEN

Scientific Reports |        (2025) 15:14120 1| https://doi.org/10.1038/s41598-025-98263-x

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-98263-x&domain=pdf&date_stamp=2025-4-22


Ibb city, Yemen, and emphasized the importance of planning and managing sustainable land use via a cellular 
automate (CA)–Markov model. On the basis of the analysis of LULC changes in the agro-pastoral ecotone 
of Gansu Province from 2000 to 2020 via the Geo-detector, Li and Yan reported that socioeconomic factors 
had a strong explanatory power for LULC changes11. Through future scenario simulations, policies related to 
farmland protection and ecological priorities can improve land use efficiency and sustainable development4,8. 
With the advancement of the LULC Change Project and Global Land Project, various disciplines (ecology, 
socioeconomics, geography and others) have been integrated with LULC research, which has contributed to 
the sustained interest in studying LULC10–13. Therefore, LULC datasets have been taken as the basis for studying 
ecosystem services in recent years3,14, and it has been demonstrated that LULC changes play significant roles in 
hydrological balance15, carbon storage16, habitat quality17, etc.

Research on LULC has widely developed in various fields, such as spatiotemporal evolution, driving 
mechanisms, and ecosystem services2,10,16. However, these studies are mainly based on a specific temporal span 
or predefined time intervals, such as five-year or ten-year periods11,18–20. Nevertheless, both natural and human 
factors play a role in influencing LULC changes2,11,21. Among them, human factors possess a certain degree of 
subjectivity and randomness. Therefore, human activities may be guided by different development goals during 
different periods, leading to corresponding different changes in LULC2,22. Regrettably, previous studies have 
often overlooked this crucial aspect. Overall analysis or the analysis based on artificially defined periods may 
not accurately reflect the phased characteristics of LULC changes, affecting the quantitative assessment of the 
driving mechanisms of LULC changes and even posing a risk to simulation accuracy.

Technological advancements in remote sensing provide powerful tools for LULC research2. The Environmental 
Systems Research Institute (ESRI) of the United States, Google, the National Geomatics Center of China and some 
famous universities (such as Tsinghua University and Wuhan University) offer high-precision LULC datasets 
with diverse resolutions20,23. Leveraging these datasets significantly facilitates the study of LULC simulations. The 
main methods for simulating LULC changes include the Markov model, CA model, future land use simulation 
(FLUS) model and patch–generating land use Simulation (PLUS) model. Each method has advantages and 
disadvantages. The Markov model can quantitatively predict future change trends, but it has difficulty reflecting 
spatial changes24. Owing to the lack of a module to regulate the transformation of cellular states, the CA model 
is confined to a special LUT25. The FLUS model has high execution efficiency because it couples the system 
dynamics, CA and neural network models together, but it falls short in clearly reflecting the spatial differences 
among different LUTs20. In the PLUS model, the land expansion analysis strategy (LEAS) is combined with the 
CA model based on multitype random patch seeds (CARS), thereby achieving higher simulation accuracy14,26,27. 
Improving the reliability of LULC simulation is still a hot but challenging topic of future research14,16,34, and the 
integration of multiple methods will be conducive to achieving scientific simulation results.

The evaluation of an object’s evolution and its relevant policies and measures are always based on a temporal 
framework. Spatiotemporal analysis of LULC changes is helpful for understanding LUT changes, gauging the 
degree of utilization, and determining the critical milestones in LULC evolution2,4. Unraveling the driving 
mechanism is conducive to identifying favorable and unfavorable factors, thereby guiding humans to strategically 
capitalize on beneficial factors and mitigate the impact of detrimental factors when utilizing land resources7,11. 
According to LULC simulations, the accessibility of LULC development goals under different scenarios and 
the effectiveness of policies and implementation measures can be scientifically evaluated13,24,28. Given the 
circumstances of land use conflicts and sustainable development, there is an urgent need for a comprehensive 
framework that incorporates the aforementioned aspects. This framework enables systematic analysis from 
change assessment to driver identification, and to scenario simulation, which will greatly promote in-depth 
LULC theoretical research toward practical application.

Within agro-pastoral ecotones, both agriculture and stock farming are well developed, resulting in various 
LUTs that undergo frequent conversions5. Compared with urban and agricultural areas, these ecotones present 
distinctive characteristics across ecological, economic and sociocultural domains5,11. Using these areas to 
conduct LULC research is beneficial for revealing the evolutionary characteristics of both artificial and natural 
landscapes, as well as the relationships between them. The Tabu watershed, an agro-pastoral ecotone undergoing 
frequent LULC changes, plays an important role in protecting the ecological health of northern China. Its 
multifaceted significance renders it an ideal site for LULC research. However, there is currently a gap in LULC 
research.

To fill these gaps, this study aims to establish a systematic framework for studying LULC evolution covering 
comprehensive timeframes, and the Tabu watershed was taken as a case study. The research objectives were to (1) 
analyze LULC changes from spatial and temporal perspectives, (2) identify new LULC process and quantitatively 
analyze the driving factors, and (3) simulate future LULC changes under three scenarios by using the Markov–
PLUS model. This study is expected to deepen the understanding of LULC dynamics over time and provide 
scientific basis for policymakers and land managers to develop land use conservation strategies and sustainable 
development initiatives for these critical ecosystems.

Materials and methods
Study area
The study area is nestled in the northern Yinshan Mountain, Inner Mongolia, China (41°2′–42°51’N, 110°33′–
112°10’ E). It covers an area of 10,370 km2 (Fig. 1), and grassland and farmland cover more than 90% of the 
area. The terrain gently slopes from south to north, with the elevation lowering from 2167 to 948 m. Along with 
the terrain, the landforms transition from hills, mountains, and high plains to alluvial–proluvial plains. The 
Tabu River, one of the four major inland rivers in Inner Mongolia flowing from south to north, has transitioned 
from a perennial river to an intermittent river over the past two decades. Human settlements and cultivated 
land are distributed mainly in the southern area along the riverbank, and grassland is widely distributed in the 
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central and northern areas. Grassland, known as the Earth’s skin, plays a vital role as an ecologically protective 
screen and in the pastoral development sector in northern China. Characterized by a typical arid to semiarid 
continental monsoon climate, the region experiences an average annual temperature of 3.36 °C and a mean 
annual precipitation of 311.2 mm, with most rainfall occurring from July to September.

Data collection and preprocessing
LULC data with a spatial resolution of 30 m were obtained from the annual China Land Cover Dataset (CLCD) 
from 1985 to 2022. The overall accuracy of the dataset reaches 79.31%, which is higher than those of other 
datasets, such as MCA12Q1, EASCCI_LC, and GlobalLand3023. The LUTs within the study area were reclassified 
into six types: farmland, shrubland, grassland, water bodies, construction land, and bare land. Considering 
spatial variability, comprehensiveness, and accessibility, fourteen factors were selected as potential drivers of 
LULC evolution, reflecting both natural and anthropogenic influences. Details of the data sources are listed in 
Table 1.

Owing to the requirements of the PLUS model, all datasets necessitated preprocessing to ensure the 
uniformity of the coordinate system, area size, and spatial resolution. With the aid of the defined projection 
tool, the coordinate systems of all the data were unified to WGS_1984_Albers. The spatial resolutions of these 
datasets were subsequently adjusted to match those of the LULC dataset (30 m × 30 m) via the resampling tool. 
Finally, all the data were processed to retain the same size of 7095 rows by 4884 columns via the mask extraction 
tool. When identifying the driving factors in a certain period, only one set of driving data is needed. Taking 
the average values of sequential data is a common method9,26,27. For example, the average precipitation was 
calculated on the basis of the precipitation database from 1998 to 2010 via the raster calculator, and the average 
data was input into the random forest regression (RFR) module to analyze its driving contribution. The data for 
gross domestic product (GDP) and population were not continuous, but the datasets at five-year intervals (2000, 
2005, 2010, 2015 and 2020) were accessible. Similarly, the averages of these data of the years 2000, 2005 and 2010 
were calculated to analyze their driving contributions.

Grassland constitutes more than 80% of the study area, and external factors have different impacts on the 
fractional vegetation cover (FVC) of grassland29. To more clearly elucidate the driving mechanism and LULC 
simulation under future scenarios, grassland was subdivided into three types based on the FVC: low–FVC 
grassland (L–FVC, ≤ 0.2), medium–FVC grassland (M-FVC, 0.2–0.5), and high–FVC grassland (H–FVC, ≥ 0.5).

Fig. 1.  LULC in 2022 (a), digital elevation model (DEM) (b) and location of the study area (c).
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Methodology
In this study, a comprehensive framework of LULC analysis was developed based on the LULC maps of the agro-
pastoral ecotone from 1985 to 2022. First, the spatial and temporal characteristics of LULC were investigated via 
geostatistical analysis, the dynamic degree and the land use conversion matrix over a long timescale30. Second, 
the key year was identified based on the Mann–Kendall (M–K) mutation test and the accumulative anomaly 
method31, and it was considered as the beginning of a new LULC process. Third, the contributions of the driving 
factors to LULC changes were quantitatively evaluated by employing the RFR32,33. Finally, the LULC changes 
under future scenarios were simulated based on the Markov–PLUS model14,24.

(1) Dynamic degrees of LULC and structural variation coefficient (Ct).
The dynamic degrees (Ds and Dc) can reflect the changes in the quantity of LUTs11,19. Ds is the single dynamic 

degree which is used to reflect the changing rate and amplitude of a special LUT during a certain period. Dc is 
the comprehensive dynamic degree and can reflect the general changes in all LUTs by considering the conversion 
among different LUTs. The equations are as follows:
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where Ua and Ub denote the quantities of a specific LUT at the beginning and end of the period, respectively; Ui 
denotes the quantity of a certain LUT; ΔUij is the absolute value of the conversion of LUT i into LUT j during a 
given period (i ≠ j); and T is the study duration from year a to year b. If the value of Ds is greater than 0, the area 
of the LUT increases; otherwise, the area of the LUT decreases. The higher the values of Ds and Dc are, the more 
obvious the changes in the specific LUT and all LUTs.

The Ct value is used to measure the LULC variations between two time points in the study area; the higher 
the Ct value is, the greater the difference is. Ctis based on the Euclidean distance and can be calculated by the 
following equation11:

	
Ct =

√∑
n
i=1(Pbi − Pai)2� (3)

where i denotes LUT i; t denotes the study period; and Pbi and Pa.i. denote the proportions of LUT i at the 
beginning and end of the study period, respectively. The Ct values can be classified into three levels: minor 
variation (0 < Ct ≤ 0.25), moderate variation (0.25 < Ct ≤ 0.50), and significant variation (Ct> 0.5)6.

(2) RFR.
Principal component analysis (PCA), multiple linear regression and analytic hierarchy process (AHP) are 

widely used in analyzing driving factors. PCA achieves dimensionality reduction by extracting the principal 
components, which may lead to ambiguous definitions of the principal components34. Multiple linear regression 
is simple and easy to implement, but its result is confined by the linear assumption and influenced by the 

Data
Original resolution/
proportion scale Data source and preprocessing

LULC data (1985–2022) 30 m×30 m China Land Cover Dataset (CLCD) of Wuhan University ​(​​​h​t​t​p​s​:​/​/​e​s​s​d​.​c​o​p​e​r​n​i​c​u​
s​.​o​r​g​/​a​r​t​i​c​l​e​s​/​1​3​/​3​9​0​7​/​2​0​2​1​/​​​​​)​​

Enhanced Vegetation Index
(EVI, 1998–2022) 250 m×250 m Earth data (https://search.earthdata.nasa.gov/). The data were converted to TIFF 

format by using MODIS Reprojection Tools.

FVC (1998–2022) 250 m×250 m FVC was calculated by using the dimidiate pixel model based on EVI29.

Driver

GDP (2000, 2005, 2010, 2015 and 2020)

1 km×1 km

Resource and environment science and data center ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​r​e​s​d​c​.​c​n​/​D​e​f​a​
u​l​t​.​a​s​p​x​​​​​)​​Population (2000, 2005, 2010, 2015 and 2020)

Precipitation (1998–2022)
National Earth System Science Data Center, National Science & Technology 
Infrastructure of China (http://www.geodata.cn)Temperature (1998–2022)

Evaporation (1998–2022)

Soil texture 1:1000000 Harmonized World Soil Database version (HWSD) (​h​t​t​p​s​:​​​/​​/​w​w​​w​.​f​a​​o​.​o​​r​g​/​s​o​​i​​l​s​-​p​​o​
r​​t​a​l​/​​s​​o​i​l​-​​s​u​​r​v​e​​y​/​​s​o​i​l​​-​m​a​p​​s​-​a​n​d​-​d​a​t​a​b​a​s​e​s​/ ​h​a​r​m​o​n​i​z​e​d​-​w​o​r​l​d​-​s​o​i​l​-​d​a​t​a​b​a​s​e​-​v​1​2​)​​

Elevation 30 m×30 m Geographic data cloud (https://www.gscloud.cn/home)

Slope 30 m×30 m By using the Slope tools, the slope data was obtained based on the elevation data.

Distance from river (DR)

1:1000000
National catalogue service for geographic information ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​w​e​b​m​a​p​.​c​n​
/​m​a​i​n​.​d​o​? method=index). These distances were subsequently calculated by the 
Euclidean distance function based on the raster data.

Distance from residential site (DRS)

Distance from highway (DH)

Distance from first grade road (DFR)

Distance from secondary road (DSR)

Distance from tertiary road (DTR)

Table 1.  Details regarding the dataset of LULC and drivers.
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multicollinearity issue24. The AHP has poor applicability when dealing with many factors35. RFR is an ensemble 
learning algorithm based on decision trees which can handle large amounts of high-dimensional data9,26,32. This 
method has a strong ability to handle nonlinear relationships and can avoid the excessive influence of outliers on 
driving analysis33. Moreover, RFR can perform feature selection and anomaly detection26. Based on the above 
advantages, RFR was employed to analyze the contributions of driving factors to LULC changes quantitatively.

The PLUS model has an RFR module to obtain the contribution ratios of factors driving LULC changes and 
the development potential of LUTs under the driving mechanisms. Referring to studies proposed by Liang et 
al.26, who developed the PLUS model, the number of regression trees was set to 50, the sampling rate was set to 
0.1 to obtain more precise accuracy, and the mTry value was set to 14 which is the number of driving factors. The 
smaller the root mean square error (RMSE) is, the higher the accuracy is36. The RMSE results were all less than 
0.09, so the analysis results based on RFR were considered to be reliable.

(3) Markov-PLUS model.
The PLUS model integrates the LEAS and CARS modules to improve simulation accuracy9. The LEAS 

module can extract the expansion parts of every LUT between two-time nodes and then obtain the development 
probabilities of the LUTs based on the quantitative analysis of the driving mechanism. The CARS module is used 
to achieve scenario simulation based on the development probabilities and LULC conversion matrices, which 
effectively improves the operating stability. This model overcomes several problems, such as the complexity of 
traditional conversion rules and the lack of a period concept when analyzing LULC patterns. Owing to these 
advantages, the PLUS model has been widely used in simulating LULC changes in recent years9,14,27.

The PLUS model is based on the following two assumptions26,27: (1) an inertia assumption of historical 
development, that is, the future LULC will unfold in accordance with the historical development patterns, and 
(2) an assumption of the stability of the driving mechanism, indicating that the influences of the driving factors 
on the current LULC changes remained relatively constant over time. However, the development needs of various 
LUTs differ under different scenarios, so it is necessary to preset the quantities and scales of LUTs on the basis 
of future development goals. The Markov model provides an effective way to predict LUT changes by using the 
matrices of the conversion probabilities according to the LULC datasets8,10. The integration of the Markov and 
PLUS models effectively improves the simulation accuracy both in terms of quantity and spatial distribution9,24. 
The primary framework of the Markov-PLUS model is shown in Fig. 2.

The overall accuracy (OA), kappa coefficient, and figure of merit (FoM) were used to validate the precision 
and accuracy of the simulation results of the Markov-PLUS model. The OA and kappa coefficient were employed 
to assess the simulation accuracy from an overall perspective, while the FoM was used to objectively evaluate 
changes in the number of cells27. Generally, a kappa coefficient greater than 0.6 and an FoM greater than 0.2 
indicate satisfactory simulation consistency8,24.

Scenario simulation settings
Scientific LULC simulations and predictions not only help to elucidate development trends and changes but 
also enable the verification of whether the current socioeconomic development model can effectively guide the 
rational utilization of future land resources and enhance regional ecosystem functions19,20. The future LULC in 
the target year (2034) was simulated under different scenarios based on historical LULC change trends (1998–
2022) and future developmental goals.

(1) Natural development scenario (NDS).
Under this scenario, the historical development potential, LULC expansion capabilities, neighborhood 

weights, and other parameters are applied to the model26, and the Markov model was employed to predict the 
quantities of LUTs in 2034. The other scenarios are based on the NDS.

(2) Urban development scenario (UDS).
In accordance with the social development strategy, the plan of Never Crossing the Red Line for the Protection 

of Cultivated Land was adopted and for sustainability purposes, the society and economy in the study area would 
continue to steadily develop, and full consideration would be given to farmland protection. In this scenario, 
construction land would continuously increase, and the areas of permanent and high-quality farmlands would 
remain stable28. Thus, under the UDS, the conversion probabilities of shrubland, grassland, and bare land to 
construction land increase by 30%, whereas the permanent and high-quality farmlands are not converted to 
other LUTs due to farmland protection policies.

(3) Sustainable development scenario (SDS).
Sustainable development, which considers both socioeconomic development and ecological protection, is 

significant for national survival and development. According to the political tasks for constructing an ecological 
barrier in northern China, a series of measures (afforestation, grassland restoration, and ecological water 
replenishment for contracting lakes and rivers) should be implemented to improve the ecological environment. 
Under the SDS, the conversion probabilities of shrubland and grassland to construction land and farmland 
decrease by 40%, the conversion probabilities of lower FVC grassland to higher FVC grassland increase by 40%, 
and the conversion probabilities of bare land to shrubland and grassland increase by 20%. To ensure agricultural 
development within the agro-pastoral ecotone and food security, it was imperative to constrain the rapid decline 
in farmland under the SDS compared with that under the NDS. As a result, not only were the areas of permanent 
and high-quality farmlands constrained to be stable19, but the conversion probabilities of farmland to other 
LUTs were also assumed to decrease by 40%. Water bodies are restored, and the areas of water bodies serve as 
constraints in the Markov–PLUS model, limiting their conversion into other LUTs.

The conversion matrix was constructed for the three scenarios to illustrate the conversion relationships 
among different LUTs. In the matrix (Table  2), “1” indicates that a particular LUT could be converted into 
another, whereas “0” signifies that such a conversion was not possible between the two LUTs. Based on 
previous studies20,37, the possibility of construction land being converted into other LUTs is relatively low with 

Scientific Reports |        (2025) 15:14120 5| https://doi.org/10.1038/s41598-025-98263-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 2.  Framework of the Markov–PLUS model.
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socioeconomic development. Thus, the conversion coefficient for construction land was set to 0. The conversion 
coefficients of the other LUTs were set based on the development goals of the different scenarios8.

Results
Changes in LULC from 1985 to 2022
Grassland covered more than 80% of the study area and were extensively distributed in the central and 
northern areas (Figs. 1a and 3a). Farmland accounted for approximately 13.86–19.87% of the total area and was 
concentrated mainly in the south. The area of construction land was relatively small, urban areas were clustered 

Fig. 3.  Changes in LULC (a) and expansion of construction land (b) from 1985–2022.

 

Future scenario LULC Farmland Shrubland L–FVC grassland M–FVC grassland H–FVC grassland Waterbodies
Bare
land Construction land

NDS

Farmland 1 1 1 1 1 1 1 1

Shrubland 1 1 1 1 1 1 1 1

L–FVC grassland 1 1 1 1 1 1 1 1

M–FVC grassland 1 1 1 1 1 1 1 1

H–FVC grassland 1 1 1 1 1 1 1 1

Water bodies 1 1 1 1 1 1 1 1

Bare land 1 1 1 1 1 1 1 1

Construction land 0 0 0 0 0 0 0 1

UDS

Farmland 1 1 1 1 1 1 1 1

Shrubland 1 1 1 1 1 1 1 1

L–FVC grassland 1 1 1 1 1 1 1 1

M–FVC grassland 1 1 1 1 1 1 1 1

H–FVC grassland 1 1 1 1 1 1 1 1

Water bodies 1 1 1 1 1 1 1 1

Bare land 1 1 1 1 1 1 1 1

Construction land 0 0 0 0 0 0 0 1

SDS

Farmland 1 1 1 1 1 1 1 1

Shrubland 1 1 1 1 1 1 1 1

L–FVC grassland 1 1 1 1 1 1 1 1

M–FVC grassland 1 1 1 1 1 1 1 1

H–FVC grassland 1 1 1 1 1 1 1 1

Water bodies 0 0 0 0 0 1 0 0

Bare land 1 0 0 0 0 1 1 1

Construction land 0 0 0 0 0 0 0 1

Table 2.  Conversion matrix settings for the UDS, UDS and SDS scenarios.
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in the southeast, while rural areas were dispersedly distributed across the study area. Shrubland was sparsely 
distributed and accounted for less than 0.02% of the total area. Water resources were scarce, and water bodies 
accounted for only approximately 0.01% of the total area, with surface water existing in the form of seasonal 
rivers and small ponds. Bare land covered less than 0.4% of the total area and was primarily concentrated in the 
northern part where precipitation was less than 150 mm and the deserted grassland with low FVC were widely 
distributed.

From a temporal perspective (Fig. 3a), the grassland area exhibited an increasing trend spanning from 1985 
to 2022, which contrasted with the decreasing trend in the farmland area. This indicated a reciprocal relationship 
between grassland and farmland. There were notable declines in grassland during the 1995–2020 and 2010–2015 
periods. Grassland loss was caused mainly by urban expansion, agricultural activities (e.g. land cultivation), 
and afforestation initiatives. Water bodies initially increased, peaked in 2005, and then decreased. Shrubland 
exhibited a significant increase, expanding from 0.12 km² in 1985 to 11.63 km² in 2022. The area of bare land 
progressively increased overall, with the area in 2022 increasing by 42% compared with that in 1985. The area of 
construction land has consistently increased from 1985 to 2022, especially over the past two decades, indicating 
the intensive expansion of urban and rural areas (Fig. 3b).

According to the Ds values (Table  3), the changes in farmland, shrubland, and bare land were relatively 
notable compared with those in the other LUTs. The dynamic changes in grassland were relatively small, but the 
changes in its area were significant. For instance, the Ds value of shrubland was 27.85%, and there was only an 
annual increase in area of 2.57 km² during the period from 2020 to 2022. Conversely, grassland exhibited a Ds 
value of only 0.49%, with an average annual expansion area of 43.38 km² in the 2020–2022 period. The Dc and Ct 
values were relatively low from 1985 to 1990. Both the Dc and Ct values subsequently increased, reaching peaks 
from both 1995–2000 and 2015–2020, indicating significant changes in LUTs during these periods.

New LULC process
The study area is a typical agro-pastoral ecotone, with grassland representing the natural landscape and farmland 
representing the artificial landscape. Therefore, the changes in the two LUTs were further analyzed to identify new 
LULC process. According to the M–K mutation test and the accumulative anomaly method, there was a notable 
upward trend in farmland and a notable downward trend in grassland since 1998 (Fig. 4). In the early 1990 s, 
China implemented a series of ecological protection projects, such as the returning of farmland to forest37. As a 
result, the area of farmland in that phase significantly decreased, whereas the area of grassland increased. By the 
end of the 1990 s, policies related to food security, including agricultural taxes reduction and exemption, as well 
as land consolidation promotion, had been implemented, leading to an increase in farmland and a decrease in 
grassland. Since 2017, the area of farmland began to decrease, whereas that of grassland increased. This occurred 
because the regional government carried out strict irrigation water management and advanced the Three-North 
Shelter Forest Program. These measures forced some farmland without irrigation to be converted to meadow for 
water conservation to some extent38. However, the mutation point (2017) identified by the M–K mutation test 
did not coincide with the inflection point (2021) of the cumulative anomaly curve. If the year 2017 was taken as 
a time node, the study period only spanned five years from 2017 to 2022, which was too short to proceed with 
a comprehensive study, and the simulation based on the short timescale may led to large errors25. Therefore, 
considering 2017 as the key year was inappropriate, let al.one holding the same prospect for 2021. As shown in 
Table 3, the values of Ds, Dc and Ct during the 1995–2000 period significantly increased compared with those 
during the 1990–1995 period, indicating that significant changes in LULC began. Thus, 1998 was a mutation 
time for LULC evolution, indicating a new process of land utilization.

LULC changes are influenced by the development goals of human society to a certain extent9. Since 1998, 
people have pursued rapid socioeconomic development, resulting in significant expansion of construction land 
and farmland. Accompanying the awareness of environmental protection, efforts have been made to strike a 
balance between socioeconomic development and ecological health, leading to the recovery of ecological 
landscapes. Therefore, with distinctive characteristics of human societal development at different stages, 
LULC also exhibited phased transformations, as depicted in Fig.  4. Identifying new process is beneficial for 
studying LULC evolution. Moreover, when the evolutionary characteristics of new process are applied in future 

Period

Ds (%)

Dc CtFarmlands Shrubland Grassland Water bodies Bare land Construction land

1985–1990 −0.34 −2.21 + 0.08 −2.85 −0.26 + 0.18 0.06 0.0045

1990–1995 −2.35 + 4.79 + 0.53 + 22.28 + 1.50 + 3.11 0.44 0.0308

1995–2000 + 4.12 + 17.73 −0.86 + 6.92 + 13.11 + 3.05 0.71 0.0492

2000–2005 −1.15 + 4.73 + 0.34 + 0.13 −11.24 + 6.97 0.27 0.0179

2005–2010 −1.84 −0.74 + 0.38 −7.41 + 14.42 + 15.20 0.35 0.0232

2010–2015 + 3.42 + 34.42 −0.74 −2.12 + 6.62 + 5.79 0.61 0.0420

2015–2020 −5.19 + 2.16 + 1.30 −6.91 −2.47 + 5.55 1.04 0.0731

2020–2022 −2.90 + 27.85 + 0.49 −4.45 −4.05 + 12.87 0.44 0.0120

Table 3.  Dynamic degree (Ds and Dc) and Ct values of LULC. With respect to Ds, “+” denotes an increase in 
area, whereas “−” denotes a decrease in area. The units of Ds and Dc were %.
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simulations, the results could more accurately align with recent development trends. For these reasons, the 
following analysis of LULC was focused on the 1998–2022 period.

Land conversion
According to Fig. 5, it was demonstrated that the conversions between grassland and farmland were relatively 
significant. From 1998 to 2010, 514.35 km² of other LUTs were converted into farmland, of which 513.85 km² 
was derived from grassland, with a contribution of 99.90%. From 2010 to 2022, 238.91 km² of other LUTs were 
converted into farmland, with grassland accounting for 238.82 km², with a contribution of 99.96%. During the 
1998–2010 period, 549.75 km² of other LUTs were converted into grassland, and the contribution of farmland 
reached 95.58%. From 2010 to 2022, 574.31 km² of other LUTs were converted into grassland, with farmland 
accounting for 97.51% of this conversion. Construction land increased by 6.38 km² and 11.38 km² during the 
1998–2010 and 2010–2022 periods, respectively. The increased area of construction land was converted mainly 
from grassland, contributing up to 84.42% and 85.79% in the two periods, respectively. There were frequent 
conversions among farmland, grassland, water bodies and bare land (Table 4), and the conversion contributions 
of grassland to bare land were greater than 95%. Compared with that in 2010, the area of bare land in 2022 
increased by 2.33 km2, which was caused mainly by a large amount of grassland being converted into bare 
land. These finding indicate that the grassland has degraded to a certain extent. The increase in shrubland was 
attributed primarily to the conversion of grassland, along with a small portion of conversion from farmland.

Identification of the drivers of LULC changes
Fourteen factors were selected as potential drivers of LULC changes, seven of which were natural and seven of 
which were anthropogenic. According to the RFR results (Fig. 6), all the RMSE values were less than 0.09, and 
even the RMSE of shrubland was only 0.002. These low RMSE values indicate that the results are reliable and can 
be used for in-depth analysis of the driving mechanism36.

As shown in Fig. 6, population and elevation were the primary drivers of farmland, and evaporation and 
DH were the main drivers of shrubland. The distribution of L–FVC grassland was strongly driven by elevation 
and distances from roads (DH and DFR), while the distributions of M–FVC and H–FVC grassland were driven 
mainly by precipitation, temperature and elevation. The most significant driver of water bodies changed from 
slope to precipitation from 1998 to 2022, and the contributions of the two drivers were 74.31% and 38.22%, 
respectively. Slope, temperature and elevation played significant roles in the conversion of bare land. The 
expansion of construction land was significantly driven by DFR and slope.

Fig. 4.  UF and UB curves of farmland (a) and grassland (b) based on the M-K mutation test; and the 
accumulative anomaly curves of farmland (c) and grassland (d). The intersection points of the UF and UK 
curves and the inflection points of the accumulative anomaly curves were considered as the time nodes, which 
indicated that significant changes occurred. The changes in the LUT area were judged on the basis of the UF 
and accumulative anomaly curves.
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A comparison of the driving contributions during the two periods revealed that anthropogenic drivers, such 
as distances from roads (DH, DFR, DSR and DTR), contributed more to the changes in farmland, shrubland, 
grassland and water bodies in the 2010–2022 period than they did in the 1998–2010 period. In particular, the 
contribution of DH to shrubland increased the most significantly, and the contribution in the later period 
increased by 13 times compared with that in the previous period. For bare land, the contribution of slope 
increased to 28.51% and became to the most significant driver from 2010 to 2022, while the contribution of 
population also increased, and the contributions of other anthropogenic drivers decreased. The primary driver 
of construction land changed from DFR with a 22.48% contributing rate to slope with a contributing rate of 
19.01%. This occurred because steeper slopes amplified the cost of land development and imposed greater 
restrictions on construction land expansion28. The influences of GDP, population and distances from roads 
(DH, DFR and DSR) on construction land decreased in the later period. On the contrary, natural factors such 
as rainfall, temperature, evaporation and the DEM increased. Given that construction land is an artificial LUT, 
these changes in the contributions of its drivers signaled alterations in policies and an increased emphasis by 
humans on creating livable environments.

Scenario simulations
Comparing the simulated LULC result for 2022 with the ground truth data, the simulation accuracy of the 
Markov–PLUS model was high, with the OA of 0.84, a kappa coefficient of 0.71, and an FoM of 0.48. This 
indicated that the model was favorably configured and produced reliable simulations24. Thus, the LULC 
simulations under the three scenarios (NDS, UDS and SDS) were achieved and are shown in Fig. 7; Table 5.

Under the NDS (Fig. 6a; Table 5), the areas of farmland and L–FVC grassland in 2034 decreased by 166.33 
km² and 62.93 km², respectively, compared with those in 2022, with corresponding reduction ratios of −11.57% 
and − 0.95%, respectively. The areas of shrubland, M–FVC grassland, H–FVC grassland, water bodies, bare land 

Periods

Other LUTs converted into bare land Bare land converted into other LUTs

Direction: ——> Conversion area Direction: ——> Conversion area

1998–2010

Farmland

Bare land

0.24

Bare land

Farmland 0.01

Grassland 12.71 Grassland 23.48

Water bodies 0.07 Construction land 0.10

2010–2022

Farmland

Bare land

0.03

Bare land

Farmland 0.04

Grassland 16.05 Grassland 13.44

Water bodies 0.25 Construction land 0.50

Table 4.  Conversion between other LUTs and bare land. The LUTs that are not listed in the table indicate that 
no conversion occurred between them and bare land. The unit of the conversion area was km2.

 

Fig. 5.  Sankey diagram of the conversions among different LUTs from 1998 to 2010 and up to 2022. The 
numerical values following the LUTs represented the area of the LUTs at the specific time, expressed in km2.
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and construction land all exhibited increases compared with those in 2022, with the most significant increase 
being observed in H–FVC grassland. The LULC changes under the NDS were similar to those during the 2010–
2022 period.

Under the UDS (Fig.  6b; Table  5), more attention was given to construction land, and its area markedly 
increased by 23.97% compared with that in 2022, and it was primarily concentrated near the town. The increasing 
ratios of M–FVC and H–FVC grassland were lower than those under NDS, whereas the increasing ratio of bare 
land increased from 3.69 to 9.11%. Considering of the protection of permanent and high-quality farmland, the 
reduction ratio of farmland decreased from 11.57% under the NDS to 9.50% under the UDS.

Under the SDS (Fig.  6c; Table  5), the increase in H–FVC grassland in 2034 was the most significant, 
with an increasing ratio of + 49.85% compared with that in 2022. The areas of other natural LUTs (M–FVC 
grassland, water bodies and shrubland) all showed increasing trends. The area of bare land decreased by 1.20% 
compared with that in 2022, which was unattainable under the other scenarios. L–FVC grassland experienced 
a notable reduction of 146.66 km2, which was converted into M–FVC grassland. In other words, the degree of 
desertification was under control and showed signs of improvement under the SDS. The area of construction 
land increased by 15.68%, which was intermediate between those under the NDS and UDS. These findings 
indicate that the study area could achieve stable development. Under this scenario, more measures of farmland 

Fig. 6.  Contributions of the natural and anthropogenic drivers to LUTs during the periods 1998–2010 and 
2010–2022.
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Fig. 7.  Simulated LULC results for 2034 under the different scenarios: NDS (a), UDS (b), and SDS (c). The 
spatial distributions of LULC near the town under the three scenarios are shown in a-1, b-1 and c-1, while the 
respective proportions of each LUT are shown in a-2, b-2 and c-2.
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protection were formulated, so the reduction ratio of farmland decreased to 6.60%. Compared with the ratios 
under the historical trend and the NDS and UDS scenarios, the significant declining trend of farmland was 
effectively controlled under the SDS.

Discussion
In the process of LULC evolution in the study area, notable conversion occurred between grassland and farmland, 
and the expansion of construction land encroached upon grassland. These findings demonstrated an inherent 
competitive relationship among various LUTs in the agro-pastoral ecotone5,11. Land use conflicts are inevitable 
in the development of human society, and maintaining a balance in the reasonable distribution of farmlands 
and construction lands while ensuring the normal ecological functions of grassland ecology poses a significant 
challenge for future land management strategies8,28.

Under the NDS, the changes in LULC aligned with the historical trends from 2010 to 2022, which were 
manifested by a substantial decrease in farmland, a significant increase in grassland, and a continuous increase 
in construction land. The significant increase in grassland area was attributed mainly to the implementation 
of ecological protection measures, such as strict water resource management and the Three–North Shelter 
Forest Program39, especially after 2017. The restrictions on irrigation water, to some extent, indirectly led to 
the conversion of some non-irrigated farmland into meadows for water conservation purposes. The continuous 
substantial reduction in farmland may pose a threat to food security. Under the UDS, urban development and 
population increases were accompanied by a rising demand for food. Although the areas of permanent and high-
quality farmland were formulated be stable, the rapid decline in farmland remained uncontrolled, which was 
inconsistent with the rapid development of construction land. What was worse, the increase rates of M–FVC and 
H–FVC grassland slowed, and the area of bare land increased. All of these might impede regional development.

Under the SDS, the conversion probabilities from bare land and lower FVC grassland to higher FVC grassland 
increased from the perspective of ecological protection, while the conversion probabilities from farmland to 
other LUTs decreased from the perspectives of agricultural and pastoral development as well as food security. In 
fact, many ecological production measures such as afforestation, grassland restoration, eco-water replenishment, 
and the control of livestock quantities have been carried out in the study area39–41. Meanwhile, the regional 
government actively encourages the development of bare land and saline–alkali land for plants, and prohibits 
construction land from encroaching on permanent and high-quality farmland42. These measures indicate that 
people have recognized the importance of balancing ecological protection and socioeconomic development. 
The SDS represents the optimal scenario for the development of the agro-pastoral ecotone. The abovementioned 
measures should be implemented in the long term. Additionally, in-depth studies on the carry capacity of 
grassland, farmland and water resources should be integrated into LULC planning. Under this scenario, the 
win–win goal of socioeconomic development and ecosystem stability can be achieved.

Farmland and construction land are typical anthropogenic landscapes, yet they are also influenced by natural 
factors, such as precipitation and slope. This finding fully reflects that humans adhere to natural laws during 
the process of land utilization43. As human development progresses, anthropogenic drivers, such as distances 
from roads (DH, DFR, DSR and DTR), contribute more to changes in farmland, shrubland, grassland and water 
bodies. This finding confirmed that land use was the result of various natural and anthropogenic factors44, which 
was consistent with studies by Dammag10and Shi20 et al. It also reaffirmed that sustainable development is based 
on complying with natural laws and the orderly development of human activities.

Compared with previous studies, this study presented several advantages: (1) the new process of LULC 
was identified to analyze the recent spatiotemporal evolution characteristics of LUTs, which was conducive to 
improving the reliability and accuracy of LULC simulation; (2) the integration of the Markov–PLUS model 
effectively improved the simulation accuracy both in terms of quantity and spatial distribution; and (3) under 
the UDS and SDS, the incorporation of farmland protection policies was considered, which made the scenarios 
setting more realistic and practical, and the simulated LULC was more precise and provided more insightful 
guidance for land use and management.

However, certain shortcomings were also present. (1) The resolutions of the raster data were inconsistent; 
for example, the LULC resolution was 30 m ×30 m, but the original resolutions of the precipitation, GDP and 
population data were relatively low (1 km×1 km), and such low resolutions might obscure some information 

Changes 
in area
(2022–
2034) Farmland Shrubland L–FVC grassland M–FVC grassland H–FVC grassland Water bodies Bare land Construction land

NDS
km2 –166.33 + 0.12 −62.93 + 154.71 + 70.46 + 0.0153 + 1.28 + 2.68

% −11.57 + 8.22 −0.95 + 7.40 + 48.17 + 1.54 + 3.69 + 12.17

UDS
km2 −136.54 −0.15 −17.93 + 91.90 + 54.26 + 0.0144 + 3.17 + 5.27

% −9.50 −10.87 −0.27 + 4.40 + 37.09 + 1.45 + 9.11 + 23.97

EDS
km2 −94.81 + 0.02 −146.66 + 165.52 + 72.89 + 0.01 −0.42 + 3.45

% −6.60 + 1.71 −2.21 + 7.92 + 49.83 + 1.18 −1.20 + 15.68

Table 5.  Changes in the areas of the different LUTs under the different scenarios. The unit of the changing area 
is km²; the relative change rate compared with that in 2022 is expressed in %; “+” denotes an increase in area; 
and “−” denotes a decrease in area.
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that affects the analysis of relationships and driving mechanisms. (2) Scenarios were formulated by artificially 
defining the development goals and conversion probabilities. Various measures, such as afforestation, grassland 
restoration, and the exploitation of bare land and saline–alkali land are being implemented. However, owing 
to the uncontrollability of natural factors and the implementation effect, there may be a deviation between 
the simulation results and real LULC changes. (3) Land use conflict is inevitable in the agro–pastoral ecotone, 
and the carrying capacities of construction land, farmland and grassland areas should be further studied and 
integrated into LULC simulations.

Conclusion
In this study, a systematic framework for LULC assessment covering comprehensive timeframes was constructed 
within an agro-pastoral ecotone. 1998 was identified as the beginning of a new LULC process, with a significant 
increase in farmland and a significant decrease in grassland. There was notable conversion between farmland 
and grassland, with conversion rates exceeding 95%, and construction land primarily encroached on grassland. 
Compared with that in 2010, the area of bare land in 2022 increased by 2.33 km2, which was caused mainly by a 
large amount of grassland being converted into bare land. Grassland was influenced primarily by precipitation, 
temperature and other natural factors. Although farmland and construction land were anthropogenic landscapes, 
they are also influenced by natural factors, such as precipitation and slope. As human development progressed, 
anthropogenic drivers contributed more to the changes in farmland, shrubland, grassland and water bodies. 
According to the analysis of the LULC simulations under the three scenarios, the SDS was optimal for LULC 
development in the agro-pastoral ecotone. Under this scenario, the increase in H–FVC grassland in 2034 was the 
most significant with an increasing ratio of + 49.85% compared with that in 2022. The area of bare land decreased 
by 1.20% compared with that in 2022, which was unattainable under the other scenarios. The reduction ratio 
of farmland decreased to 6.60% and the area of construction land continuously increased, and these changes 
were conducive to the socioeconomic development and food security. The SDS would achieve a win–win goal 
of socioeconomic development and ecosystem stability, which could provide meaningful guidance for efficient 
land utilization.

Limited by the inconsistency in the data resolution and subjectivity of human activities, the simulations may 
deviate from reality to some extent. Further research should focus on the acquisition of high-precision data and 
the carrying capacities of LUTs to more accurately simulate LULC changes under future scenarios.

Data availability
Data publicly available in a repository.(1) LULC datasets can be obtained from Earth System Science Data 
(https://essd.copernicus.org/articles/13/3907/2021/. (2) The data of GDP, population are available as open data 
via Resource and environment science and data center (https://www.resdc.cn/Default.aspx). (3) The data of ​p​r​e​c​
i​p​i​t​a​t​i​o​n​, temperature and evaporation data were available as open data via National Earth System Science Data 
Center, National Science & Technology Infrastructure of China (http://www.geodata.cn). (4) The soil texture 
data can be obtained from Harmonized World Soil Database version (HWSD) (​h​t​t​p​s​:​​/​/​w​w​w​.​​f​a​o​.​o​r​​g​/​s​o​i​l​​s​-​p​o​r​​t​a​l​/​
s​o​​i​l​-​s​u​r​​v​e​y​/​s​o​​i​l​-​m​a​​p​s​-​a​n​d​​-​d​a​t​a​b​​a​s​e​s​/​h​​a​r​m​o​n​​i​z​e​d​-​w​​o​r​l​d​-​s​​o​i​l​-​d​a​​t​a​b​a​s​e​-​v​1​2). (5) The elevation data are available 
in Geographic data cloud (https://www.gscloud.cn/home), and the slope data can be obtained by processing the 
elevation data with the Slope tool. (7) The raster data of first grade road, secondary road, tertiary road, highway, 
residential site and river are obtained from National catalogue service for geographic information ​(​​​h​t​t​p​s​:​/​/​w​w​
w​.​w​e​b​m​a​p​.​c​n​/​m​a​i​n​.​d​o​?​m​e​t​h​o​d​=​i​n​d​e​x​​​​​)​. These distances (DFR, DSR, DTR, DH, DRS, DR) are subsequently ​c​a​
l​c​u​l​a​t​e​d by the Euclidean distance function based on the raster data. (8) The Enhanced Vegetation Index (EVI) 
dataset is obtained from Earth data (https://search.earthdata.nasa.gov/), and then the fractional vegetation cover 
(FVC) data are calculated by using the dimidiate pixel model based on EVI.
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