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To improve the accuracy and real-time performance of detection algorithms in Advanced Driver 
Assistance Systems (ADAS) under foggy conditions, this paper introduces HR-YOLO, an improved 
YOLO-based model specifically designed for vehicle and pedestrian detection. To enhance detection 
performance under complex meteorological conditions, several critical modules have been optimized. 
First, the Efficient High-Precision Defogging Network (EHPD-Net) is introduced to strengthen 
feature extraction. Inspired by the Global Attention Mechanism (GAM), the Enhanced Global-Spatial 
Attention (EGSA) module is incorporated to effectively improve the detection of small targets in foggy 
conditions. Second, the Depth-Normalized Defogging Network (DND-Net) is applied to enhance 
image quality. Additionally, the Dynamic Sample (DySample) module is integrated into the neck 
network, complemented by optimizations to the convolution and C2f modules, which significantly 
improve feature fusion efficiency. Furthermore, The Wise Intersection over Union (WIoU) loss function 
is introduced to enhance target localization accuracy. The robustness and accuracy of HR-YOLO 
were validated through experiments on two foggy weather datasets: RTTS and Foggy Cityscapes. 
The results indicate that HR-YOLO achieved a mean Average Precision (mAP) of 79.8% on the RTTS 
dataset, surpassing the baseline by 5.9%. On the Foggy Cityscapes dataset, it achieved an mAP 
of 49.5%, representing a 9.7% improvement over the baseline. This model serves as an effective 
solution for target detection tasks under foggy conditions and establishes a foundation for future 
advancements in this field.

Keywords  Object detection, Advanced driver assistance systems (ADAS), Foggy conditions, Image 
enhancement, Dehazing networks

With the rapid development of autonomous driving, ADAS have become essential technologies for improving 
road safety and supporting drivers. ADAS employs various sensing technologies, including cameras and radars, 
to monitor the surrounding environment in real-time and assist drivers in identifying potential hazards1.
The visual perception module, particularly camera-based object detection algorithms, plays a pivotal role in 
ADAS. By leveraging these algorithms, ADAS can identify vehicles, pedestrians, and other traffic obstacles from 
captured images, enabling timely responses in dynamic traffic scenarios2.

However, existing object detection algorithms face significant limitations in terms of accuracy and 
robustness3–5. Their real-time applicability in complex traffic scenarios remains suboptimal, particularly under 
adverse environmental conditions such as fog6–8. Fog significantly reduces visibility and degrades image quality, 
hindering conventional object detection algorithms from accurately capturing target features. As a result, key 
targets, including vehicles and pedestrians, are often misidentified or missed9–11. In high-speed driving scenarios, 
such inaccuracies can directly compromise traffic safety and potentially lead to accidents12,13. Traditional 
approaches mainly rely on image defogging techniques to mitigate fog-induced image degradation14. However, 
these methods typically require substantial computational resources and often underperform in dynamically 
changing traffic environments15.Therefore, developing an object detection algorithm that can effectively address 
adverse weather conditions while simultaneously achieving high detection accuracy and real-time performance 
has become a critical focus and ongoing challenge in ADAS research.

To tackle the challenges of object detection under foggy conditions, this paper presents HR-YOLO, an 
innovative model specifically designed for foggy-weather object detection. The model integrates a novel backbone 
network, EHPD-Net, and a lightweight unsupervised defogging network, DND-Net, significantly enhancing 
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detection performance in foggy environments. Compared to traditional YOLO-based algorithms, HR-YOLO 
achieves superior accuracy under adverse weather conditions while maintaining high detection efficiency.

The contributions of this paper are summarized as follows:
(1) We propose an innovative haze weather target detection backbone network EHPD-Net, which combines 

Swin Transformer, DWConv and EGSA modules. Compared with the current mainstream defog detection 
framework, this framework can still improve the feature extraction capability of the backbone network under 
low-quality pictures while maintaining a small computing overhead.

(2) Inspired by AOD-Net, we proposed a new lightweight unsupervised defogging network DND-Net and 
applied it in the preprocessing process. By efficiently integrating important features at different scales, we provide 
higher quality feature details to the modeling part of the network.

(3) We propose a more efficient neck detection network and introduce DySample module, DWConv module 
and C2 module. This combination method can better utilize multi-scale features when dealing with haze weather 
detection tasks, avoid interference from redundant information, and optimize identification efficiency.

(4) The WIoU loss function is introduced, combined with the dynamic non-monotonic focusing mechanism, 
to accurately deal with the target positioning problems in haze images, and significantly improve detection 
accuracy and robustness.

The rest of this paper is organized as follows. “Related Work” reviews the state-of-the-art object detection 
methods in foggy environments and discusses related advancements. “Methodology” provides a detailed 
description of the proposed HR-YOLO model. “Experiments and Analysis” validates the model’s effectiveness 
and robustness through experimental evaluations. Finally, “Conclusion” concludes the work and outlines 
directions for future research.

Related work
Development of image defogging methods
Object detection and recognition in foggy environments have long been a focal point in visual measurement, 
particularly in both civilian and military applications16–18. Prior to the emergence of deep learning algorithms19–27, 
much of the research focused on traditional image processing techniques, such as image enhancement and 
restoration methods, to recover fog-degraded images. Guo et al.28 proposed a lightweight deep network that 
restores low-light images by adjusting their dynamic range. Zhang et al.29 introduced a multi-level fusion module 
that utilizes complementary relationships between low-level and high-level features, enabling the restoration of 
fog-free images without the need for estimating atmospheric light intensity. Balla et al.30 developed a 14-layer 
residual convolutional neural network that extracts features indicative of fog intensity to restore fog-free images. 
Xiao et al.31 proposed a dehazing algorithm that directly learns the residual haze image through an end-to-end 
approach, effectively removing haze from blurred images. Zhang et al.32, leveraging the concept of the dark 
channel prior, employed an approximate method to estimate atmospheric light and transmission, improving 
dehazing performance while significantly enhancing computational efficiency.

Although these methods can partially restore image clarity, they often require manual parameter adjustment 
for different scenarios. Moreover, their robustness is still insufficient, particularly in dynamic traffic environments 
with low visibility and strong background noise.

Advances in deep learning-based object detection algorithms
With the rapid advancement of deep learning, object detection algorithms have been categorized into two main 
types: two-stage and one-stage detection methods. Two-stage algorithms, exemplified by R-CNN33, Fast R-CNN34, 
and Faster R-CNN35, extract object information by generating region proposals followed by precise classification 
and localization. These methods demonstrate high detection accuracy across diverse environments. However, 
their inherent complexity often results in slower processing speeds and higher computational requirements, 
posing significant challenges for real-time applications of ADAS.

To address these limitations, one-stage object detection algorithms emerged, with You Only Look Once 
(YOLO)36standing out as one of the most prominent approaches. YOLO redefines object detection as a regression 
task, simultaneously predicting object locations and categories in a single forward pass. This paradigm shift 
has led to substantial improvements in detection speed. Subsequent iterations of YOLO, including YOLOv237, 
YOLOv338, YOLOv439, and YOLOv540, have achieved notable advancements in real-time performance and 
computational efficiency. As a result, these methods have become widely adopted in fields such as video 
surveillance, intelligent transportation, and autonomous driving41.

Despite these successes, applying YOLO to object detection tasks under foggy conditions has proven 
challenging. The presence of fog often obscures or blurs target features, compromising YOLO’s ability to 
accurately detect objects. Consequently, its performance in such adverse weather conditions remains suboptimal, 
necessitating further advancements to improve robustness and accuracy in foggy environments.

Integrated methods combining dehazing and object detection
To overcome the challenges associated with object detection in foggy weather, researchers have increasingly 
explored integrating dehazing techniques with deep learning-based object detection algorithms. By incorporating 
an image dehazing module, these methods aim to enhance the accuracy and robustness of object detection 
under adverse weather conditions.Wang et al.42 proposed a framework specifically tailored for YOLO, which 
integrates a Quasi-Translation Network (QTNet) and a Feature Calibration Network (FCNet). This framework 
adapts object detection models to adverse weather domains by bridging the gap between normal and adverse 
weather conditions. Zhang et al.43 introduced a multi-class object detection approach that jointly trains visibility 
enhancement, object classification, and object localization tasks within a dehazing network. Unlike traditional 
standalone dehazing methods, this end-to-end learning paradigm significantly improves detection accuracy 
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and demonstrates robust adaptability in complex traffic environments. Li et al.44 developed a Stepwise Domain 
Adaptive YOLO (S-DAYOLO) framework, which bridges domain discrepancies through the construction of 
an auxiliary domain. This approach incrementally learns domain transitions, thereby enhancing the detection 
accuracy and robustness of YOLO under foggy conditions. Despite its effectiveness, this method imposes 
significant computational demands and requires highly curated datasets, which may hinder its practicality in 
real-world applications.

In contrast to these existing methods, our approach not only employs an enhanced dehazing module for 
preprocessing but also incorporates a highly efficient backbone network and redesigned neck network to further 
improve detection capabilities. Moreover, by leveraging both natural fog and synthetic fog datasets, our method 
achieves significant improvements in detection accuracy, offering robust performance across diverse foggy 
conditions.

Methodology
HR-YOLO network architecture
This study introduces HR-YOLO, a high-precision object detection network specifically tailored for driving 
scenarios under foggy conditions. Built upon YOLOv845, the HR-YOLO architecture is depicted in Fig. 1. The 
preprocessing stage is managed by DND-Net, which enhances the visual quality of foggy images by restoring 
them to a clarity comparable to fog-free conditions. These preprocessed images are then passed to the backbone 
network.

The backbone EHPD-Net, incorporates DWConv, EGSA, and Swin Transformer modules. This network 
is designed to extract multi-scale features efficiently, perform down-sampling, and adjust channels, ensuring 
robust feature representation. The extracted features are subsequently forwarded to the neck network for further 
refinement. In the neck network, feature fusion strategies are employed to emphasize relevant target features in 
foggy conditions. By integrating the DySample up-sampling module, the DWConv module, and the C2f module, 
the network significantly enhances its ability to extract features from small objects. Finally, the detection head 
generates the classification confidence scores and location regression results of the detected objects. Within 
ADAS, HR-YOLO facilitates real-time decision-making by generating actionable commands based on detection 
outcomes. This approach not only improves driving safety but also optimizes overall driving efficiency.

EHPD-Net design
In foggy weather, reduced visibility poses significant challenges to extracting background targets, necessitating 
a backbone network with robust feature extraction capabilities for object detection algorithms. For HR-YOLO, 
the backbone network is required to efficiently capture sufficient global information within a limited time frame 
to ensure accurate target identification under foggy conditions, while simultaneously retaining detailed local 
features for precise classification.

Traditional Convolutional Neural Network (CNN) are inherently constrained in their ability to 
comprehensively extract contextual information, especially under adverse weather conditions46. To address 
these limitations, we designed EHPD-Net, a backbone network optimized for feature extraction in foggy 
environments. EHPD-Net leverages a combination of key modules to achieve its superior performance. The 

Fig. 1.  HR-YOLO Architecture.
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DWConv module is introduced to enhance detection speed, while EGSA module significantly improves detection 
accuracy. Additionally, the Swin Transformer module is utilized to capture global key feature points, ensuring 
high-quality feature representations without increasing computational overhead. The synergistic integration of 
these modules enables EHPD-Net to deliver enhanced feature extraction capabilities compared to conventional 
backbone networks. This design demonstrates superior performance in foggy conditions, making it a robust 
solution for high-precision object detection tasks.

a. DWConv Block.
To accelerate the recognition speed of the backbone network, this study introduces an optimized and 

reallocated DWConv module. The primary advantage of DWConv lies in its unique convolution kernel design, 
as depicted in Fig. 2. For the three channels of an input feature map, each convolution kernel operates exclusively 
on a single channel. This design ensures that the number of output channels remains consistent with the input 
channels, thereby contributing to a streamlined computational pipeline.

The reallocation strategy of the DWConv module enhances feature extraction efficiency by minimizing 
interactions among redundant information across channels. Compared to traditional convolutional methods, 
DWConv significantly reduces both computational complexity and parameter count, achieving superior 
computational efficiency. Furthermore, this method maintains high recognition accuracy even under the 
challenging conditions of foggy environments, demonstrating its robustness and effectiveness.

b. EGSA Module.
In foggy weather, targets in images often exhibit low pixel intensities, which poses significant challenges for 

feature extraction. As EHPD-Net processes deeper layers, there is a risk of neglecting or losing the features of 
small-scale targets. Attention mechanisms effectively mitigate this issue by dynamically assigning higher weights 
to critical target features while suppressing irrelevant background information.

The Global Attention Mechanism (GAM) integrates channel and spatial attention strategies, enhancing 
the representational power of deep neural networks by emphasizing globally relevant features47. Inspired by 
GAM, we propose the EGSA module to replace the original C2f module, as illustrated in Fig. 3. The EGSA 
module’s core innovation lies in iteratively refining feature weights to facilitate meaningful interaction between 
feature representations. Specifically, one-dimensional convolution (Conv 1D) operations are employed to update 
weights across feature channels and spatial dimensions.

The input feature map F ∈ RC× H× Wis first fed into GAM, where feature interactions occur to produce 
an updated feature map with the same dimensions. This refined feature map is then forwarded to the next stage, 
which utilizes two-dimensional convolution (Conv 2D) for further processing. By minimizing information 

Fig. 3.  Network architecture of the GAM attention mechanism.

 

Fig. 2.  Convolution kernel design of DWConv.
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loss and enhancing global feature interactions, the GAM attention mechanism enables the model to prioritize 
channel-specific information more effectively. The output of the GAM attention mechanism, given an input 
feature map, is formally defined by Eqs. (1) and (2).

	 Fc = Wc (F ) ⊗ F � (1) 

	 Fs = Ws (Fc) ⊗ Fc � (2) 

Where ⊗  denotes element-wise multiplication, Fc represents the output of the channel attention submodule, 
and Fs represents the output of the spatial attention submodule.

As shown in Fig. 4, the channel attention submodule preserves the three-dimensional structure of the features 
through a carefully arranged three-dimensional representation. Initially, the feature map F ∈ RC× H× W  
undergoes a dimensional transformation, resulting in a new feature map with dimensions [C, H, W], where 
C, H, and W denote the number of channels, height, and width, respectively. This transformed feature map is 
subsequently processed by a Multi-Layer Perceptron (MLP). The MLP employs a sigmoid activation function 
to calculate the channel-wise attention weights, thereby refining the feature representation and enhancing the 
discriminative power of the relevant channels.

As illustrated in Fig.  5, the spatial attention submodule is designed to emphasize spatial information by 
employing two convolutional layers for spatial feature fusion. First, a convolution operation with a kernel size of 
7 is applied to the input feature map, reducing computational complexity and transforming its dimensions from 
[C, H, W] to [ C

r , H, W]. Next, an additional convolution operation increases the number of channels, ensuring 
that the output channel dimensions remain consistent with the input. Finally, the refined feature map undergoes 
a sigmoid activation function, which computes spatial attention weights to prioritize spatially significant regions 
in the feature map.

To visually demonstrate the effectiveness of the EGSA module, we generated heatmaps on Foggy Cityspaces 
dataset, as depicted in Fig. 6. Figure 6(b) presents the heatmap of the C2f module’s output, which reflects the 
network’s initial focus on the target features. In contrast, Fig. 6(c) displays the heatmap of the EGSA module’s 
output, where red regions denote areas of highestf significance, highlighting the regions where the model 
concentrates most during decision-making. Notably, after incorporating the EGSA module, critical target 
information becomes more pronounced in the heatmap. This observation underscores the EGSA module’s ability 
to effectively enhance the network’s attention to essential features. By integrating the EGSA module, the EHPD-
Net achieves a more precise focus on feature map information across various channels and spatial dimensions, 
thereby significantly improving the detection accuracy of small objects under foggy weather conditions.

c. Swin Transformer Block.
Under haze weather conditions, the traditional CNN architecture adopted by YOLOv8 expands the 

receptive field by stacking convolutional layers, but because it relies on local operations, redundant features 
(such as background noise) are often extracted, and key features such as target edges are insufficiently captured, 
resulting in an increase in the false detection rate. To this end, HR-YOLO introduces a Transformer structure 
to enhance global modeling capabilities. Swin Transformer48 has become an ideal choice because its sliding 
window mechanism reduces the computational complexity while strengthening target context information 
extraction through interaction between windows. We replaced the Transformer part of EHPD-Net with Swin 

Fig. 5.  Spatial Attention Submodule.

 

Fig. 4.  Channel attention submodule.
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Transformer to achieve more efficient and accurate feature extraction in haze scenarios, significantly improving 
the robustness of target detection.

Swin Transformer adopts a hierarchical pyramid architecture, and its core innovation lies in the ability to 
model dynamic feature interactions based on the self-attention mechanism of local windows and cross-windows 
interactions. As shown in Fig. 7, the model dynamically generates an attention weight matrix when performing 
standard self-attention calculations within each window to adaptively adjust feature response intensity according 
to semantic content. This method of attention calculation in local window breaks the limitations of traditional 
Transformers, and significantly improves computing efficiency while maintaining global modeling capabilities. 
In order to further break the window boundary limitation, the model introduces a shift window division 
strategy. By alternately using the SW-MSA module of the regular window and the offset window, a two-layer 
cross-window feature interaction mechanism is built, so that the feature information of adjacent windows can 
be dynamically flowed and semantic fusion deep. In terms of hierarchical structure, Swin Transformer performs 
multi-scale aggregation of shallow local features and deep global semantics, ultimately forming a hierarchical 
feature representation that takes into account both fine-grained details and high-level semantics.

Based on this sliding window strategy, the construction of the Swin Transformer can be formalized as Eqs. 
(3)–(6):

	 ẑl = W − SMA
(
LN

(
zl−1))

+ zl−1 � (3) 

	 zl = MLP
(
LN

(
ẑl

))
+ ẑl � (4) 

	 ẑl+1 = W − SMA
(
LN

(
zl

))
+ zl � (5) 

	 zl+1 = MLP
(
LN

(
ẑl+1))

+ ẑl+1 � (6) 

Here, ẑland zldenotes the output of the Multi-Head Self-Attention (MSA) module, and MLP  refers to the 
output of the MLP module.

Fig. 7.  Swin Transformer architecture with sliding window attention.

 

Fig. 6.  Heatmaps of outputs from the C2f and EGSA modules.

 

Scientific Reports |        (2025) 15:13067 6| https://doi.org/10.1038/s41598-025-98286-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


This sliding window mechanism captures the feature information of adjacent windows and indirectly 
constructs and characterizes global features, thus making up for the limitations of information in local windows, 
effectively solving the long-distance information attenuation problem caused by traditional CNNs due to the 
number of stacked layers. During the gradual merger of features in each stage, the receptive field continues to 
expand, and ultimately achieves the effect of approximate global attention. In haze weather, this slip mechanism 
can obtain higher quality feature points in the same time compared to the baseline model, while using less 
computational overhead, significantly enhancing its performance in haze weather.

Depth-Normalized defogging module design
Under foggy weather conditions, raw images are frequently compromised by substantial noise, significantly 
obstructing the extraction of critical features by object detection algorithms. To overcome this challenge, we 
propose the incorporation of a defogging module as a preprocessing step to restore high-quality, clear images.

Following a comprehensive evaluation of various techniques, including image denoising49–51, shadow 
remova52–55, and image restoration56–58, we developed the Depth-Normalized Defogging Network (DND-Net) 
as the preprocessing module for HR-YOLO. Building upon the atmospheric scattering model and inspired by the 
lightweight, end-to-end trainable defogging model AOD-Net59, DND-Net introduces enhancements that enable 
the generation of high-quality fog-free images in a single forward pass, thereby achieving superior processing 
efficiency.

The atmospheric scattering model, which forms the theoretical foundation of DND-Net, is represented in 
Eq. (7):

	 I (x) = J (x) t (x) + A (1 − t (x)) � (7) 

In this model, x denotes the pixel intensity in the input feature map, I (x) represents the observed pixel value, 
J (x)corresponds to the true scene radiance, A signifies the global atmospheric light intensity, and t (x) denotes 

the transmission matrix. Within the framework of the atmospheric scattering model, accurately computing the 
transmission rate and global atmospheric light intensity enables the estimation of the original scene’s radiance 
and illumination conditions, thereby significantly alleviating the degradation effects caused by fog in the image.

DND-Net consists of three primary modules: the Efficient Estimation Module, the Positional Normalization 
Module (PONO)60, and the Clear Image Generation Module. The overall architecture of DND-Net is depicted in 
Fig. 8. Among these, the Efficient Estimation Module serves as the core component, tasked with estimating image 
depth and relative fog density. This module comprises an input layer, multiple Depthwise separable convolution 
(DSConv)61 layers operating at different scales, and intermediate connections. The input layer receives foggy 
images and forwards them for processing. The DSConv layers perform the color mapping of the input image 
F ∈ CR× G× B , as mathematically expressed in Eqs. (8)–(11):

	 F C
1a = W1 ∗ IC + B1, C ∈ [R, G, B] � (8) 

	 F1b = W2 ∗ F1a + B2 � (9) 

	 F1a = [F R
1a, F G

1a, F B
1a] � (10) 

Fig. 8.  Architecture of the DND-Net defogging network.
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	 F1 = max (0 , F1b ) � (11) 

Initially, the input feature map undergoes a primary convolution operation to compute the weight coefficient 
matrix ( W1) and bias matrix ( B1), where ( IC) represents the input image’s color matrix, and W1 and B1 
denote the weight and bias parameters of the convolution layer, respectively. This step is followed by fusing 
color channels to produce the pixel value matrix ( FC

1a). Subsequently, a secondary convolution operation is 
performed using k -filters of size 1 × 1, which yields updated weight and bias matrices ( W2) and ( B2). 
Finally, a modified ReLU activation function is applied in the activation layer to introduce non-linear regression, 
enabling the extraction of the final output feature map.

The Efficient Estimation Module leverages five DSConv layers and integrates filters of varying sizes to construct 
multi-scale feature representations. This design enables the network to effectively capture salient image features 
across different scales. Additionally, the use of intermediate connections compensates for potential information 
loss during convolution, thereby maximizing the suppression of fog-induced image degradation.

The core principle of the Normalization Module, also referred to as the PONO, is to adapt to feature 
transformations during the decoding phase. It achieves this by utilizing Moment Shortcut (MS) to combine the 
extracted mean and standard deviation, generating the normalization parameters β  and γ  In the encoding 
phase, PONO applies a normalization strategy to regularize post-convolution features, ensuring consistency 
in feature representation. To emphasize channel-wise feature extraction, the PONO module is strategically 
placed after the Conv 2D layer. Following two convolutional layers with kernel size 3 × 3 the extracted feature 
information is fed into the PONO module. Here, the module employs a unified normalization approach, 
formalized in Eqs. (12)–(14), to transform the features into a standardized form, facilitating robust processing 
and enhanced feature interpretability.

	 µ B,H,W = 1
c

∑
c
C=1XB,C,H,W � (12) 

	 σ B,H,W =
√

1
c

∑
c
C=1

(
XB,C,H,W − µ B,H,W

)2 + ϵ � (13)
 

	
X ′

B,C,H,W = γ
(

XB,C,H,W −µ

σ

)
+ β � (14)

 

Here, µ and σ denote the mean and standard deviation of the feature map, while β  and γ  represent the updated 
mean and standard deviation obtained through normalization using the PONO. The normalized feature 
information generated by the PONO module interacts with the feature map both preceding and succeeding the 
5 × 5 convolutional layer. As a result, the module significantly improves the model’s robustness to variations in 
input conditions.

In foggy weather scenarios, this mechanism allows the DND-Net to effectively adapt to images with varying 
levels of fog density. Consequently, it enhances the overall defogging model’s capability to restore image quality 
under adverse environmental conditions.

The Clear Image Generation Module comprises element-wise multiplication layers and multiple element-
wise addition layers. These layers collaboratively generate restored images by iteratively refining feature 
representations, as formalized in Eqs. (15) and (16):

	 J (x) = K (x) I (x) − K (x) + b � (15) 

	 K (x) =
1

t(x) (I(x) − A) + (A − b)
I(x) − 1

� (16)
 

Where b represents a constant bias term with a default value of 1. This approach effectively minimizes the 
reconstruction error between the output image and the ground truth clear image. By incorporating joint 
estimation of the haze map, it enhances the defogging process, enabling the DND-Net to more accurately restore 
the lighting conditions and structural details of degraded images. By employing a highly efficient DSConv using 
only three filters, alongside pose normalization techniques, DND-Net significantly reduces computational 
complexity while maintaining outstanding performance in restoring fog-free images. This design makes it 
particularly well-suited for handling foggy weather conditions.

To rigorously evaluate the quality capabilities of DND-NET, we compared its performance with several state-
of-the-art delayering methods, including Dark Channel Prior (DCP)62, Boundary Constraints and Context 
Regularization (BCCR)63, Color Decay Prior (CAP)64, Multi-Scale Convolutional Neural Network (MSCNN)65, 
Dehazenet66, and Originals AOD-Net. Comparative experiments were performed on the HSTS dataset under 
the RESIED67 dataset, and the comparison results shown in Fig. 9 clearly demonstrate the excellent performance 
of DND-NET. Compared with the original foggy images and existing methods, DND-NET exhibits significant 
clarity and improves recovery of structural details, highlighting its effectiveness in restoring image features and 
mitigating fog-induced degradation.

A more efficient neck detection network
The original YOLOv8 employs the Path Aggregation Network - Feature Pyramid Network (PAN-FPN) as its neck 
network to enhance multi-scale feature representation. However, under foggy weather conditions, an increase 
in the number of targets leads to the growth of irrelevant features, significantly increasing the computational 
burden. To address this challenge, we propose a more efficient design for the neck network.
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Specifically, the up-sampling component is replaced with a dynamic sampling-based method68, as illustrated 
in Fig. 10. DySample leverages dynamic perceptron to iteratively learn the sampling point coordinates in the 
input feature map by generating dynamic range factors. This approach produces content-aware sampling points, 
enabling adaptive resampling of the feature map. Unlike traditional methods that rely on computationally 
intensive dynamic convolution kernels, Dydymply adopts a more efficient and flexible sampling strategy. In 
haze weather, this process avoids the complex computing model that relies on dynamic convolution kernels in 
traditional methods, and adopts a more efficient and flexible sampling strategy that can effectively deal with 
the numerous redundant and irrelevant information present in haze images. This greatly reduces the inference 
latency and parameter counting, while achieving a significant improvement in detection accuracy.

In the convolutional part, we continue to continue the lightweight design idea in EHPD-Net and use deep 
convolution (DWConv) for lightweight design. By decomposing the standard convolution into a cascade operation 
of deep convolution and point-by-point convolution, the number of parameters and calculation complexity are 
significantly reduced while ensuring the unchanged receptive field, so as to improve the deployment efficiency 
of the model on the mobile terminal. For the C2f module, we did not use the original module of YOLOv8, but 
instead adopted the built-in C2 module of YOLO. By eliminating jump connections and parallel computing 
paths, it effectively suppressed the activation of irrelevant features caused by haze interference. At the same 
time, it introduced a serial processing mechanism, so that the network can adaptively focus on discriminant 
texture information, effectively improving the detection speed while reducing the amount of calculation. In haze 
weather, the combination of these modules significantly improves the target recognition speed of HR-YOLO, 
and the detection accuracy of low-virtuality targets is particularly significant.

Fig. 9.  Comparison of DND-Net with other algorithms.
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Loss function optimization
In YOLOv8, the bounding box loss employs Complete Intersection over Union (CIoU)69. Combining IoU, center 
point distance and width and height ratios to optimize the matching of the prediction box and the real box. 
Formulas for CIoU, please see (17)-(19):

	 CIoU = IoU − ρ 2(b,bgt)
c2 − α v � (17) 

	 α = v
1−IoU+v � (18) 

	
v = 4

π 2

(
arctan W gt

hgt − arctan W
h

)
� (19)

 

where ρ 2(b, bgt) represents the Euclidean distance between the predicted frame b and the center of the actual 
frame bgt, and c represents the diagonal distance that just contains the smallest closed area of ​​the predicted 
frame and the real frame. W gt and hgtrepresent the width and height of the actual frame of the ground, 
respectively. This loss increases the matching degree between the prediction box and the real box by increasing 
the length and width loss, so as to improve the overlap between the prediction frame and the actual frame in 
the inference stage. However, this method does not consider the sample difficulty balance problem. In smog 
weather, CIoU may over-punish low-quality samples, reducing model generalization capabilities. To this end, 
this paper introduces the Wise-IoU (WIoU) loss function70, which incorporates a dynamic non-monotonic 
focusing mechanism. WIoU replaces the traditional IoU metric with the “outlier degree” and enhances it with 
an additional focusing mechanism. This study employs the state-of-the-art WIoU v3, with the corresponding 
formulas provided in Eqs. (20)–(23).

	 LW IoU v3 = τ RW IoU LIoU � (20) 

Fig. 10.  DySample Network Architecture.
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RW IoU = exp

[
(x − xgt)2 + (y − ygt)2

(W 2
g + H2

g)∗

]
, RW IoU ∈ [1, e) � (21)

 

	 τ = β

δ α β −δ � (22) 

	
β = L∗

IoU
−

LIoU

∈ [0, +∞ ) , LIoU ∈ [0,1] � (23)
 

Here, xgt and ygt represent the center coordinates of the ground truth bounding box, while Wg and Hg 
denote the width and height of the smallest enclosing box. RWIoUis the scaling factor for regular-quality 
anchor boxes LIoU, and β  represents the outlier degree of anchor box quality. Finally, τ  is the non-monotonic 
focusing coefficient, aimed at mitigating the adverse effects of low-quality samples by suppressing harmful 
gradient contributions. WIoU v3 modulates the relationship between outlier degree (β) and gradient gain (τ) 
using hyperparameters α and δ. During the later training stages, it allocates smaller gradient gains to low-quality 
anchor boxes, mitigating their adverse influence while prioritizing normal-quality anchor boxes to enhance the 
model’s localization performance.

Experiments and analysis
Experimental setup
This paper experiment is based on the Ubuntu22.04 operating system, and uses i5-9400 F CPU and NVIDIA 
RTX 1080 Ti GPU for model training and testing. The HR-YOLO model is developed under the Pytorch 
framework. The deep learning framework used is Pytorch 12.1 and the programming language is Python 3.9. 
During the training process, to ensure fairness of the experiment, we set the size of the input image to 640 
× 640. It should be noted that although this configuration can ensure the repeatability of the experiment, it 
may not be an optimal parameter in practical applications. In terms of optimizers, we chose YOLOv8’s default 
Adam optimizer to ensure that it is universal compared with other methods. For details of the hyperparameter 
configuration, please refer to Table 1.

Evaluation metrics
In ADAS, the accuracy of the object detection algorithm is directly related to its security performance, and 
mAP is a key indicator for measuring the overall performance and reliability of the object detection algorithm71. 
Therefore, in order to comprehensively evaluate the validity of our proposed model, this study adopted mean 
accuracy (mAP) as the main evaluation indicator. To gain a deeper understanding of the concept of mAP, we 
introduced two basic indicators of recall and precision, which represent the proportion of correctly identified 
positive samples and the proportion of correctly identified correct instances among all identified positive 
instances. Their calculation formulas are shown in formulas (24)-(25):

	 Recall = T P
T P +F N � (24) 

	 P recision = T P
T P +F P � (25) 

Among them, TP (True Positives) is the number of bounding boxes correctly detected, FP (False Positives) 
is the number of bounding boxes incorrectly detected, and FN (False Negatives) is the number of bounding 
boxes missing during the detection process of the model. Furthermore, the average accuracy (AP) represents 
the tradeoff between the accuracy rate and the accuracy rate, which is quantified as the area under the accuracy 
rate-seeking rate curve. See formula for AP calculation (26):

	 AP = 1
m

∑
m
i Pi =

∫
P (R) dR � (26) 

The mAP is the average of AP values across all classes, and its calculation is expressed in Eq. (27):

Parameter name Parameter value

Initial Learning rate 0.01

Batchsize 16

Momentum 0.937

Training Epoch 300

Decay strategy Cosine annealing decay

Final learning rate 0.0001

Data augmentation Mosaic data augmentation

Closing Mosaic epochs 10

Weight decay 0.0005

Table 1.  Experimental parameters.
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	 mAP = 1
N

∑
N
j AP j � (27) 

Here, N denotes the total number of categories in the object recognition task. In this study, mAP calculations 
specifically refer to mAP50. To further evaluate the model, Parameters (the number of model parameters) 
and Giga Floating-Point Operations per Second (GFLOPs) are employed to measure the model size and 
computational efficiency. Additionally, Frames Per Second (FPS) is utilized to quantify the inference speed.

Dataset configuration
To assess the generalization ability of the proposed method, experiments were conducted on both real-world and 
synthetic foggy datasets. These experiments aim to evaluate the model’s performance and effectiveness across 
different environmental conditions.

Real-World Task-Driven testing set
In 2019, Li et al. introduced the RESIDE dataset, comprising the real-world foggy scene object detection 
dataset RTTS and synthetic datasets. RESIDE is notable for being the only real-world foggy scene dataset with 
multi-class detection labels. As shown in Fig.  11, in this study, the RTTS dataset, containing 4322 grayscale 
images spanning diverse visible light conditions such as daytime, cloudy, and foggy weather, was employed to 
validate the proposed method. Although RTTS lacks ground truth annotations, it is widely used for evaluating 
dehazing methods. Its application in this study ensures a fair evaluation and establishes a robust benchmark for 
comparison.

Semantic understanding image dataset for urban street scenes
Most existing foggy image datasets are primarily derived from the domain of image enhancement, yet they often 
lack detailed annotations and authentic real-world scene data. To overcome these limitations, this study utilized 
the Foggy Cityscapes dataset72, which builds upon the Cityscapes dataset and is generated through a combination 
of depth information and synthetic techniques. As shown in Fig. 12, the dataset includes multiple versions with 
varying fog densities, distinguished by a constant attenuation coefficient that defines the corresponding visibility 
range. This dataset is specifically designed to evaluate semantic understanding capabilities in urban street scenes. 
In this study, we utilized the highest fog density version (constant attenuation coefficient of 0.02) to thoroughly 
evaluate the dehazing model’s performance in complex urban environments.

Experimental analysis
Comparative experiments
To assess the performance of the proposed enhanced YOLOv8 model, we performed comparative experiments 
against several state-of-the-art object detection models, including YOLOv11n, YOLOv10n, and Faster R-CNN. 
All experiments were conducted on the previously mentioned foggy datasets under identical experimental 
conditions, with the results summarized in Tables 2 and 3.

Experimental results on the RTTS dataset reveal that the proposed method attained a peak accuracy of 
79.8% in object detection tasks under foggy weather conditions. Compared to other YOLO methods, such as 
YOLOv1073, the proposed model demonstrated an improvement in recognition accuracy ranging from 4.7 to 
8.9% points. Compared with other YOLO methods such as YOLOv10[67], the recognition accuracy of this model 
is improved by 4.7 to 8.9% points. This is because EPHD-Net’s feature extraction ability of dense fog images is 
significantly better than that of other network architectures. At the same time, DND-Net restores foggy images 
in the preprocessing stage, and the combination of other modules achieves the optimal matching in HR-YOLO. 
The proposed model outperformed several benchmark methods, with performance improvements of 12.9% over 
faster R-CNN, 12.0% over SSD30074, 14.4% over retinanet75, 10.0% over CenterNet76, 12.3% over DETR77, 11.8% 
over efficientdet78, 12.5% over Rtmdet79,0.7% over MSFFA-YOLO, and 3.2% over R-YOLO. The proposed model 

Fig. 11.  Analysis of the RTTS dataset.
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outperformed several benchmark methods, with performance improvements of 12.9% over faster R-CNN, 
12.0% over SSD300, 14.4% over retinanet, 10.0% over CenterNet, 12.3% over DETR, 11.8% over efficientdet, 
and 12.5% over Rtmdet. Although not the fastest, the FPS of the detection module in the mainstream on-board 
ADAS system is usually between 10–60 frames, and HR-YOLO Far exceeds the industry standard, which proves 
that it can fully Meet the needs of haze weather target detection tasks in actual applications.

Furthermore, the HR-YOLO model excels in detecting small objects (e.g., pedestrians and vehicles) under 
foggy weather conditions, a capability critical for object recognition in complex environments. As presented in 
Table 3, experimental results on the Foggy Cityscapes dataset show that the proposed HR-YOLO model achieved 
the highest mAP50 value of 49.5%. This represents a substantial improvement of 8.5 to 15.2% points over other 
YOLO series methods. Specifically, the mAP increased by 16.4% compared to Faster R-CNN, 14.9% compared 
to SSD300, 18.0% compared to RetinaNet, 25.3% compared to CenterNet, 22.1% compared to DETR, 23.1% 
compared to EfficientDet, 15.7% compared to Rtmdet, 6.8% compared to MSFFA-YOLO, and 1.2% compared 
to R-YOLO.

We present inference map comparisons of these models in Fig.  13, and these results emphasize the 
robustness and accuracy of HR-YOLO in handling foggy scenes, especially for identifying small objects in urban 
environments, which is often a challenge to existing methods.

Ablation study
To rigorously assess the contributions of each proposed module, we conducted comprehensive ablation 
experiments on the RTTS dataset.

In these experiments, the YOLOv8 model was incrementally enhanced with different module configurations, 
including YOLOv8-A (integrating EPHD-Net), YOLOv8-B (incorporating both EPHD-Net and DND-Net), 
along with YOLOv8-C, YOLOv8-D, YOLOv8-E, and the complete HR-YOLO model. These configurations 

Fig. 12.  Visualization of artificial fog effects in the Foggy Cityscapes dataset: (a) original image, (b) 
synthesized foggy image with a constant attenuation coefficient of 0.005, (c) synthesized foggy image with a 
constant attenuation coefficient of 0.01, and (d) synthesized foggy image with a constant attenuation coefficient 
of 0.02.
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allowed us to systematically evaluate the impact of the DySample module, DWConv module, C2 module, and 
WIoU loss function on object detection performance. The results are detailed in Table 4.

On the RTTS dataset, the baseline YOLOv8 model achieved a mAP of 73.9%. By introducing EPHD-Net, 
YOLOv8-A demonstrated a 2.8% increase in mAP, validating EPHD-Net’s role in enhancing the backbone 
network’s feature extraction capabilities. When DND-Net was added alongside EPHD-Net, YOLOv8-B further 
improved by 4.2%, reaching an mAP of 78.1%.

These results highlight the complementary strengths of EPHD-Net and DND-Net: the former significantly 
enhances image feature extraction, while the latter boosts defogging performance. Together, these modules 
effectively address the challenges of object detection under foggy weather conditions, enabling substantial 
accuracy improvements.

The results for YOLOv8-C, YOLOv8-D, YOLOv8-E, and HR-YOLO highlight that, with the integration of 
EPHD-Net and DND-Net, the incorporation and combination of all enhanced modules in the neck network 
yielded an additional 4.6–5.9% improvement in recognition accuracy. These findings further substantiate 
the individual and collective contributions of each module to the overall enhancement of object detection 

Method mAP50 Person Rider Car Truck Bus Train Motorbike Bicycle FPS

Faster RCNN 0.331 0.272 0.336 0.431 0.163 0.258 0.091 0.117 0.269 9.4

SSD300 0.346 0.334 0.379 0.425 0.284 0.366 0.378 0.255 0.314 19

RetinaNet 0.315 0.291 0.397 0.429 0.208 0.374 0.241 0.265 0.299 11

CenterNet 0.242 0.275 0.366 0.377 0.131 0.286 0.027 0.178 0.294 23

DETR 0.276 0.248 0.307 0.415 0.236 0.338 0.197 0.213 0.265 26

EfficentDet 0.264 0.279 0.362 0.352 0.16 0.283 0.102 0.246 0.325 29

Rtmdet 0.338 0.336 0.379 0.485 0.265 0.387 0.236 0.28 0.336 27

YOLOv5-L 0.343 0.299 0.433 0.435 0.235 0.36 0.328 0.301 0.352 45

YOLOv5-X 0.41 0.432 0.478 0.586 0.238 0.457 0.392 0.315 0.382 30

YOLOX-Tiny 0.401 0.399 0.473 0.513 0.279 0.411 0.352 0.363 0.418 45

YOLOv7-s 0.379 0.471 0.497 0.539 0.252 0.389 0.159 0.311 0.414 47

YOLOv8-n 0.398 0.332 0.475 0.479 0.316 0.474 0.409 0.323 0.371 110

YOLOv8-s 0.442 0.44 0.439 0.603 0.316 0.504 0.515 0.317 0.406 81

YOLOv10-n 0.399 0.389 0.499 0.543 0.259 0.483 0.337 0.286 0.396 91

YOLOv11-n 0.408 0.358 0.408 0.595 0.332 0.493 0.427 0.274 0.377 128

MSFFA-YOLO 0.468 0.448 0.433 0.642 0.398 0.551 0.501 0.383 0.388 108

R-YOLO 0.489 0.473 0.495 0.666 0.391 0.558 0.522 0.409 0.444 98

HR-YOLO 0.495 0.45 0.516 0.609 0.424 0.571 0.515 0.417 0.456 108

Table 3.  Comparative experimental results on the foggy cityscapes dataset.

 

Methods Precision Recall mAP50 Person Car Bus Bicycle Motorbike FPS

Faster RCNN 0.701 0.623 0.669 0.753 0.697 0.642 0.634 0.619 7.83

SSD300 0.704 0.619 0.678 0.744 0.738 0.646 0.625 0.637 20.84

RetinaNet 0.693 0.631 0.654 0.729 0.704 0.635 0.593 0.608 10.67

CenterNet 0.711 0.632 0.698 0.768 0.754 0.652 0.664 0.653 39.72

DETR 0.706 0.635 0.675 0.637 0.778 0.625 0.693 0.642 24

EfficentDet 0.714 0.618 0.684 0.769 0.756 0.643 0.616 0.636 36

Rtmdet 0.717 0.632 0.673 0.654 0.769 0.643 0.616 0.636 131

YOLOv5-L 0.786 0.633 0.717 0.805 0.813 0.634 0.625 0.708 67

YOLOv5-X 0.773 0.639 0.726 0.801 0.902 0.628 0.627 0.672 81

YOLOX-Tiny 0.793 0.640 0.709 0.803 0.806 0.629 0.613 0.694 74

YOLOv7-s 0.802 0.627 0.718 0.817 0.826 0.643 0.627 0.677 93

YOLOv8-n 0.828 0.637 0.737 0.825 0.87 0.667 0.638 0.695 264

YOLOv8-s 0.836 0.643 0.751 0.841 0.883 0.671 0.656 0.704 196

YOLOv10-n 0.801 0.624 0.717 0.81 0.858 0.616 0.623 0.68 283

YOLOv11-n 0.79 0.637 0.728 0.82 0.87 0.659 0.641 0.649 316

MSFFA-YOLO 0.825 0.671 0.777 0.853 0.746 0.824 0.693 0.769 199

R-YOLO 0.801 0.656 0.722 0.795 0.738 0.642 0.677 0.758 240

HR-YOLO 0.832 0.698 0.798 0.872 0.913 0.720 0.740 0.745 223

Table 2.  Performance comparison on the RTTS dataset. 
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Fig. 13.  Comparative inference performance of HR-YOLO and other algorithms on the RTTS and Foggy 
Cityscapes datasets, highlighting the model’s superior accuracy and robustness under challenging weather 
conditions.
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performance. Specifically, the proposed EPHD-Net and DND-Net exhibited remarkable efficacy in improving 
object detection under foggy weather conditions, driven by their precise feature extraction capabilities and 
efficient defogging processes. In particular, when using DySample, we found that it has not improved much 
in mAP, but DySample’s unique processing mechanism has significantly reduced the GFLOPs and parameter 

Figure 13.  (continued)

Model EPHD-Net DND-Net DySample DWConv C2 Wiou mAP50 Parameters GFLOPs FPS

YOLOv8 × × × × × × 0.739 3.0M 10.2 264

YOLOv8-A √ × × × × × 0.767 5.1 M 16.2 182

YOLOv8-B √ √ × × × × 0.781 6.0 M 16.4 168

YOLOv8-C √ √ √ × × × 0.782 5.7 M 15.5 180

YOLOv8-D √ √ √ √ × × 0.785 4.8 M 13.3 192

YOLOv8-E √ √ √ √ √ × 0.788 4.6 M 13.1 210

HR-YOLO √ √ √ √ √ √ 0.798 4.6 M 13.0 223

Table 4.  Results of the ablation study on the RTTS dataset.
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volume, and at the same time, the FPS has also significantly improved, which is more obvious in the case of thick 
fog.

In summary, the ablation study underscores the pivotal role of each proposed module in augmenting object 
detection performance. The synergistic combination of all methods delivered the most substantial improvement, 
thereby affirming the robustness and effectiveness of the proposed enhancements.

Conclusion
This paper presents HR-YOLO, an improved YOLOv8-based object detection method specifically optimized for 
traffic scenarios in foggy weather. The proposed model introduces several enhancements: (1) EPHD-Net as the 
backbone network to strengthen image feature extraction; (2) a lightweight unsupervised dehazing network, 
DND-Net, evolved from AOD-Net, to enhance defogging performance; (3) the integration of DySample, 
DWConv, and C2 modules into the neck network, boosting detection efficiency and the utilization of multi-scale 
features; and (4) the adoption of the WIoU loss function to improve target localization accuracy.

Experiments conducted on the RTTS and Foggy Cityscapes datasets reveal that HR-YOLO achieves mAP 
improvements of 5.9% and 9.7%, respectively, compared to the baseline, demonstrating its high efficacy and 
precision under adverse meteorological conditions, all while maintaining low computational overhead. Notably, 
these results highlight the model’s ability to balance accuracy and efficiency, making it suitable for deployment 
in real-world applications.

Future work will focus on further refining the network architecture to enhance detection speed without 
compromising accuracy. Such advancements aim to extend the applicability of HR-YOLO to edge computing 
devices and mobile platforms, enabling broader deployment in practical scenarios and promoting its integration 
into resource-constrained environments.

Data availability
The datasets used in this study are publicly available. RTTS dataset is available on the official website: ​h​t​t​​​​p​s​​:​/​/​​s​i​​t​e​​
s​.​g​​o​o​g​​l​e​​.​c​​o​m​/​​v​i​e​w​/​r​e​s​i​d​e​-​d​e​h​a​z​e​-​d​a​t​a​s​e​t​s​/​r​e​s​i​d​e​-​%​C​E​%​B​2​/​(​a​c​c​e​s​s​e​d on 10 July 2024). Foggy cityspaces dataset 
is available on the official website: https://www.cityscapes-dataset.com/(accessed on 28 August 2024).
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