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Microfluidic biosensors offer a promising solution for real-time analysis of coronaviruses with 
minimal sample volumes. This study optimizes a biochip for the rapid detection of SARS-CoV-2 
using the Taguchi orthogonal table L9(34), which comprises nine groups of experiments varying 
four key parameters: Reynolds number (Re), Damköhler number (Da), Schmidt number (Sc), and 
the dimensionless position of the reaction surface (X). Signal-to-noise (S/N) ratios and analysis of 
variance (ANOVA) are employed to determine optimal parameters and assess their impact on binding 
kinetics and response time of the detection device. These obtained optimal parameters correspond 
to Re = 4.10-2, Da = 1000, Sc = 105, and X = 1. Additionally, results highlight Da as the most influential 
factor, accounting for 91%, while X has a minimal effect of 0.3%. Furthermore, an artificial neural 
network optimization technique, specifically particle swarm optimization (PSO), was utilized to predict 
biosensor performance. Derived from the Full L81(34) design experiment, the PSO model demonstrates 
its effectiveness compared to the conventional multi-layer perception (MLP) model, thus underlining 
its potential in this innovative optimization context.
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Early detection of COVID-19 is crucial for effective pandemic management, enabling rapid isolation, preventing 
disease spread, and facilitating early treatment. The primary method for detecting SARS-CoV-2 is real-time 
reverse transcription polymerase chain reaction (RT-PCR)1,2. However, RT-PCR diagnostics require expensive 
reagents, specialized equipment, and trained personnel3. While conventional RT-PCR is often time-consuming, 
recent advancements in microfluidic-based PCR have significantly improved speed, cost-effectiveness, and 
sensitivity4. These techniques offer rapid amplification, reduced reagent consumption, and lower detection 
limits, making them competitive with traditional methods5.

To further reduce detection time, various point-of-care (POC) biosensors have been developed1,6–8, targeting 
antigens, antibodies, or nucleic acids7. While antibody tests are suitable for late-stage infections, nucleic acid-
based detection methods are preferred for early- stage diagnosis due to their superior sensitivity and specificity. 
However, nucleic acid testing involves more complex processes such as extraction, amplification, and detection9. 
Although RT-PCR remains clinically more sensitive and specific than POC biosensors, immunodiagnostic assays 
offer a reliable and cost-effective alternative by improving specific immunoassays for desired antigen proteins.

Immunoassays, based on antigen-antibody interactions, have garnered significant interest in fields such as 
medicine and environmental monitoring10. Traditional immunoassays include complex detection protocols 
and require skilled professionals. Moreover, diffusion-limited reaction kinetics and lengthy incubation steps 
limit their broad applications11. To address unmet medical needs like early and rapid disease diagnosis, 
immunoassays are increasingly being adapted to microfluidic formats12. This miniaturization technology 
enhances analysis performance by integrating multiple processes into a single chip, reducing analysis time 
and increasing sensitivity and reliability with minimal reagent use13. Microfluidic chip technology allows for 
the simultaneous detection of different samples, which is valuable in protein chips. However, its use is limited 
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by the diffusion transport of antigens in laminar flow, where low antigen concentrations delay detection14. To 
improve the sensitivity of microfluidic chips, many numerical and experimental studies have been conducted. 
Various physical mechanisms, such as magnetic effects15, optical forces16, and electrokinetic effects17–19, have 
been applied to enhance flow agitation and biosensor binding reaction rates. Other studies19,20 have analyzed the 
effects of reaction surface and electrodes shapes on biosensor performance. Shahbazi et al.21 demonstrated that 
the reaction surface’s location relative to the channel inlet significantly impacts microfluidic biosensor efficiency.

In related fields, recent studies have explored novel techniques for rapid and sensitive detection of various 
analytes, underscoring the necessity for continuous development in this area22–24. Among these advancements, 
the use of nanomaterials in biosensing has shown great potential in various applications. Nanomaterial-based 
electrochemical biosensing has been effectively employed to detect fumonisins, demonstrating the importance 
of developing sensitive detection techniques25. Furthermore, the use of metal-organic frameworks (MOFs) 
for electrochemical-based sensing platforms has shown promising results in detecting glucose and hydrogen 
peroxide26. These advancements illustrate the broader applicability and importance of developing specialized 
assays for different analytes.

Other research has identified several factors influencing the kinetics of antigen-antibody binding reactions 
in microfluidic biosensors, including flow velocity, target antigen concentration, reaction surface position, 
microfluidic dimensions, and biosensor shape. Optimizing these factors is crucial for enhancing immunoassay 
performance. Taguchi’s experimental design is a well-known technique for process optimization, providing a 
systematic and efficient methodology27–29. Taguchi’s method aims to design quality into the product by optimizing 
control factors through simple tools like signal-to-noise ratio (S/N) and analysis of variance (ANOVA)28.

Additionally, integrating artificial intelligence (AI) and machine learning has become prominent in 
optimizing microfluidic biosensor performance. Machine learning algorithms address complex and nonlinear 
problems, aiding in rapid and accurate data analysis and optimization. Specifically, Particle Swarm Optimization 
(PSO) combined with Artificial Neural Networks (ANN-PSO) has been applied to enhance detection device 
performance30–32. ANN models assist in predictive modeling and optimization, while PSO fine-tunes ANN 
parameters, improving prediction accuracy and control. This approach aligns with recent advancements33–35 
highlighting the innovative integration of optimization techniques in engineering and biomedical applications.

To improve future sensing devices, this study aims to optimize control parameters such as Reynolds number, 
Damköhler number, Schmidt number, and reaction surface position to reduce the response time of a microfluidic 
biosensor for SARS-CoV-2 detection. The design of experiments uses Taguchi’s L9 orthogonal array36,37, and 
machine learning models, specifically ANN-PSO, are developed to predict the microfluidic chip’s performance.

The originality and novelty of this work lie in using the Taguchi method combined with the PSO algorithm 
to predict biosensor performance for rapid SARS-CoV-2 detection. This approach offers potential advantages in 
efficiency, cost, and detection time. Unlike previous research focused on structural parameters17–19,21, our study 
prioritizes optimizing dimensionless numbers (Reynolds, Damköhler, and Schmidt numbers), providing a more 
comprehensive understanding and applicability across diverse microfluidic systems.

Biochip design
Figure 1a,b illustrates the geometry of the studied microfluidic chip. The microchannel has a length (L) of 
250 μm and a height (H) of 40 μm. The reaction surface, measuring 20 μm, is situated on the bottom wall at a 
specific x position from the inlet of the microchannel. The carrier fluid, composed of water mixed with antigens 
(SARS-CoV-2), flows through the microchannel from left to right. Initially, ligands (antibodies) are immobilized 
on the reaction surface.

Model equations
Modeling Navier-Stokes equations
The fluid carrying antigens, assumed to be Newtonian and incompressible, flows in a laminar regime inside the 
microchannel. The continuity equation for incompressible fluids is:

	
∂u

∂x
+ ∂v

∂y
= 0� (1)

Consequently, the 2D Navier-Stokes equations are employed to ascertain the fluid velocity field in the 
microchannel, as presented in Eqs. (2) and (3):
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Here, u and v represent the components of the flow velocity field, while p, ρ, and µ denote the pressure, density, 
and dynamic viscosity of the fluid, respectively.

Modeling the antigen transport equation
The diffusion-convection transport of the target antigen is modeled using Fick’s second law, as shown in Eq. (4):
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where [A] and D denote the concentration and the diffusion constant of the target antigen, respectively.

Modeling the binding kinetics of the antigen-antibody reaction
Antigen molecules (analytes A) are transported by diffusion and convection to reach free binding sites (ligands 
B) immobilized on the sensitive surface. This process results in the formation of an analyte-ligand complex (AB), 
as described by the following reaction:

	 A + B ⇌ AB� (5)

According to the first-order Langmuir-Hinshelwood adsorption model38, the formation of the antigen-antibody 
complex (AB) is described by:

	
∂ [AB]

∂t
= kon [Asurf ] . [Bfree] − koff [AB]� (6)

where [AB] represents the surface concentration of the complex, [Asurf ] is the volume analyte concentration 
at the binding surface, [Bfree] is the surface concentration of free ligands, kon is the complex association rate 
constant, and koff  is the complex dissociation rate constant. The equilibrium of the reaction is described by the 
equilibrium dissociation constant Kd = koff

kon
.

As illustrated in Fig. 2, the concentration of available binding sites on the sensitive surface [Bmax] is equal to 
the sum of the concentrations of free binding sites [Bfree] and the bound complexes [AB]:

	 [Bmax] = [Bfree] + [AB]� (7)

The Eq. (6) is then written as (Eq. (8)):

	
∂ [AB]

∂t
= kon [Asurf ] . ([Bmax − [AB]]) − koff [AB]� (8)

Fig. 1.  (a) Microfluidic biochip design. (b) 2D numerical domain. The 3D representation was generated using 
Microsoft PowerPoint 2016.
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Dimensionless model equations
The model equations have been transformed into a dimensionless form as follows: The two components of the 
velocity vector are scaled by u0, which is the average velocity of the fluid at the inlet of the microchannel. The 
time, pressure and x and y coordinates are scaled by the diffusion transport time H2

D , the pressure scale ρu0, and 
the length of the channel H, respectively. The surface concentration of the antigen-antibody complexes and the 
volume concentration of antigen molecules are scaled by the factors [Bmax] and [A0] respectively, where [A0] is 
the antigen concentration at the inlet of the microchannel.

The dimensionless form of Eqs. 1, 2, 3, 4 and 8 is then written as Eqs. 9, 10, 11, 12 and 13:
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where Re = ρu0H
µ  represents the Reynolds number, P e = u0H

D  is the Peclet number, Da = Kon[Bmax]H
D  is 

the Damkohler number, σ = H[A0]
[Bmax]  is the relative density of the analyte-ligand complex, and Kd = Koff

Kon[A0]  is 
the dimensionless equilibrium dissociation constant. The Damkohler number, used in chemical kinetics, defines 
the ratio between the characteristic diffusion time of the antigen (rate of the transport D

H ) and the characteristic 
reaction time for complex formation (reaction velocity Kon. [Bmax]).

Da > 1 indicates a transport-limited system, whereas Da < 1 specifies a reaction- rate-limited system. In the 
case of large molecules, such as the analyte in this study, Da will be large due to the small diffusion coefficient39.

The detection time of the microfluidic biosensor is a crucial parameter of the analyte-ligand chemical 
kinetics, representing the duration required for the concentration of the analyte-ligand complex to reach 95% 
of its threshold value. Here the spatially averaged dimensionless concentration of AB complexes is defined as:

	

⟨[AB]⟩ = 1
ls

ls∫

0

[AB] (x, t) dx� (14)

Fig. 2.  Antigen-antibody kinetic reaction.
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where ls = ls
H  is the dimensionless length of the binding surface.

Boundary and initial conditions
For the modeling of the laminar flow, at the inlet of the microfluidic channel, the fluid flows with a parabolic 
velocity profile of average value u0. At the outlet, the flow is assumed to be fully developed. For the lower and upper 
microchannel walls, including the reaction surface, the no-slip condition is applied. Regarding the modeling of 
antigen transport, a constant volume concentration [A]0 and a convective flow condition, −→n . (D∇ [A]) = 0, 
were imposed at the inlet and outlet of the microchannel, respectively. For the reaction surface, the condition 
of diffusive flux balanced by the temporal flow rate was applied. For the rest of the microchannel walls, they are 
assumed to be impermeable (i.e., they do not interact with the target antigens) and the homogeneous Neumann 
condition was adopted17,21.

For the initial conditions concerning Eqs. (12) and (13), the analyte and surface complex concentrations were 
initially set to zero: [A](t=0) = 0 and [AB](t=0) = 0.

Simulations protocols
To solve the model comprising Eqs. (9–13), the finite element method (FEM) was employed40. The 2D domain is 
divided into triangular cells, with mesh refinement near the sensitive surface. The numerical resolution process 
is shown in Fig.  3. The transport equations, coupled with the first Langmuir adsorption model, are solved 
using the finite element method (FEM) with the Galerkin approach. A computer code has been developed to 
compute the numerical solution41. First, triangular elements are used to discretize the domain and the mesh 
is refined near the reaction surface and electrodes to improve the quality. All variables are then approximated 
by polynomials within each element. Subsequently, the concentrations of the target antigen, [A] (x, y, t), in 
the microchannel and the antigen-antibody complex, [AB] (x, t), on the sensitive surface were obtained by 
simultaneously solving the antigen transport and the binding reaction equations in a time-dependent regime. In 
this study, the target antigen is the SARS-CoV-2 virus, and the ligand is its corresponding antibody (b1 or h12)21. 
To compute the total concentration of the formed complexes (SARS-CoV-2-antibody), the local concentration 
was integrated over the entire length of the binding surface (Eq. 14) and the normalized surface concentration of 

Fig. 3.  Algorithm of numerical simulation protocols.
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these complexes, 
[
AB

]
, was then calculated by dividing the total concentration by the concentration of binding 

sites on the biosensor surface, [Bmax].
Grid independence was assessed through a mesh sensitivity analysis of the dimensionless velocity profile 

along the y-axis at dimensionless x = 2 for several meshes (764, 1092, 1128 and 1549 elements) as shown in Fig. 4.
The error results show that the relative variation of successive values of u at each mesh point is calculated 

using the following expression:

	
Errorj =

∣∣∣ui+1 − ui

ui

∣∣∣ × 100

For other values of x, the fluctuating errors indicate more or less significant variations in u(i). For example, for 
x = 0.0313, the error for Error1 and Error2 is about 1%, while Error3 has a much smaller error (0.54%) (Fig. 5). 
This indicates that the successive variations of u are larger for Error1 and Error2 and more stable for Error3. In 
summary, the error peaks correspond to abrupt changes in u, while the smaller errors indicate a more regular 
variation of u. In conclusion, since the error of mesh 2 compared to mesh 1 remains less than 5%, mesh 2 
(composed of 1092 elements) is retained for this optimization study.

Results and discussion
Model validation
First, the numerical model was validated by comparing it with the experimental data of Berthier and Silberzan21, 
as shown in Fig.  6. The time-normalized surface concentration during the adsorption phase was calculated 
using the same experimental parameters within a microfluidic channel measuring 1 mm in height and 1 cm in 
width. The target antigens’ concentration and their diffusion constant are 2.5 × 10− 6 Mol/m3 and 7 × 10− 11 m2/s, 
respectively. The flow rate of the carrier fluid is 10− 6 m3/s. The density of binding sites, the association constant, 
and the dissociation constant are 1.668 × 10− 8 Mol/m2, 75 m3/Mol⋅s and 10− 2 1/s, respectively.

The following coefficients, namely the Root Mean Square Error (RMSE) and the Mean Absolute Percentage 
Error (MAPE), are calculated to evaluate the performance of the model proposed in this study42,43.

Fig. 4.  Dimensionless velocity profile along the y-axis at dimensionless x = 2 for different mesh grids.

 

Scientific Reports |        (2025) 15:14052 6| https://doi.org/10.1038/s41598-025-98304-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	

RMSE =

√√√√ 1
N

N∑
i=1
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where y is the actual value obtained by the experimental data and ŷ is the predicted value using one of the model 
and N and are numbers of observations.

The calculated Mean Absolute Error (MAE) of 0.0180 and Root Mean Square Error (RMSE) of 0.0298 indicate 
that the model’s predictions are quite accurate. The small MAE suggests that, on average, the model’s predictions 
deviate by only 0.0180 units from the experimental data, while the slightly higher RMSE reflects some larger 
deviations. Overall, the model demonstrates good performance in predicting the response with minimal error.

2D approximation for microfluidic biosensor analysis
The graph of Fig. 7 shows the evolution of the normalized concentration of the complex as a function of time for 
both the 2D and 3D models. The results show a slight underprediction bias with a mean error of -0.002476. The 
errors are consistent, as indicated by the low standard deviation of 0.006587112, and the maximum error is small 
at 0.00513, indicating good overall accuracy and stability.

This similarity shows that the 2D approximation faithfully reproduces the results of the 3D model, justifying 
its use for the study of the microfluidic biosensor while preferentially reducing the computational cost.

Parameters and levels selection
To evaluate the influence of control parameters on SARS-CoV-2 binding kinetics, we performed numerical 
simulations using the geometric design of the microfluidic biosensor shown in Fig.  1. The simulation 
parameters employed in this study include the input volume concentration of the SARS-CoV-2 antigen 
([A0] = 10−7Mol.m−3), the antibody concentration on the sensitive surface ([Bmax] = 3.3.10−8Mol.m−2

), and the equilibrium desorption constant (Kd = 10−6Mol.m−3), which align with values reported in the 
literature17–19,21,44. Consequently, the relative density of the analyte-ligand complex, σ, is determined to 1.2.10−4. 
In this study, different controllable parameters were chosen for optimization to maximize the biosensor’s 
efficiency. The Reynolds number (Re), Damkohler number (Da), Schmidt number (Sc), and the position of the 

Fig. 5.  Distribution of relative error along the y-axis for different meshes.
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Fig. 7.  Comparison between 3D and 2D calculation.

 

Fig. 6.  Comparison of our model with the experimental data from Berthier and Silberzan21.
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reaction surface (X) are the four variables targeted for optimization using the Taguchi method, with the objective 
of achieving the shortest detection time.

Reynolds number
In microfluidic devices, flow velocities typically remain low, ranging from a few tenths of a millimeter per 
second. For water as the carrier fluid (ρ = 103 kg m−3, µ = 1.08 × 10−3Pa s), the Reynolds number varies 
between 4.10− 3 and 4.10− 2 for flow velocities ranging from 10− 4 to 10− 3 m.s− 145,46.

Damkohler number
With the surface concentration of binding sites fixed ([Bmax] = 3, 3 × 10−8 mol m−2) and the microchannel 
height (H = 40.10−6m), the Damkohler number is influenced solely by the diffusion coefficient of the target 
antigen (D) and the adsorption antigen-antibody constant (Kon). For SARS-CoV-2, with the diffusion coefficient 
ranging from 10−11 to 10−10 m2. s−1 and the adsorption constant between 102 and 104 m3/Mol.s, the Damkohler 
number can fluctuate between 1 and 100010,47,48.

Schmidt number
Given that the Schmidt number (Sc = P e

Re
) is inversely proportional to the antigen diffusion coefficient (D) for 

a given density and dynamic viscosity of the carrier fluid, it can vary between 104 and 105 for the same range of 
D variation indicated previously19.

Taguchi method optimization
The Taguchi method was employed in this numerical simulation to streamline the testing process for achieving 
the shortest detection time in the microfluidic biosensor. The selection of the Taguchi Design of Experiments 
methodology is justified by its systematic and efficient approach to optimizing process parameters. The Taguchi 
method allows for a reduction in the number of experiments required to determine optimal conditions, which 
is particularly useful in complex systems like microfluidic biosensors49.

Table 1 outlines the four factors influencing the detection system, each with three levels denoted as “1,” “2,” 
and “3,” representing the lowest, mid, and highest levels, respectively. Considering these factors (A, B, C, and 
D), conducting experiments for all possible combinations would require 34 = 81 trials. To minimize the number 
of experiments, the Taguchi method was applied using the orthogonal table L9(34), as presented in Table 2. This 
approach reduced the number of experiments to nine, involving four critical parameters at three levels each, 
without considering their interactions.

In each test, the factors are set at levels 1, 2, or 3. Figure 8 illustrates the average normalized dimensionless 
concentration of the antigen-antibody complex over dimensionless time for all experimental tests conducted 
according to Table 2.

In the Taguchi design of experiments, we manipulate noise factors to intentionally introduce variability. 
From the obtained results, we can identify optimal parameters that make the detection process robust against 
variations caused by these noise factors. A high signal-to-noise ratio (S/N) value indicates that the control factor 
parameters effectively limit the effects of the noise factors. The S/N ratio, calculated based on the “smaller is 
better” criteria for each test, is determined using Eq. (15)50, and the results are recorded in Table 3.

Experiment tests

Factors levels

A B C D

1 1 1 1 1

2 1 2 2 2

3 1 3 3 3

4 2 1 2 3

5 2 2 3 1

6 2 3 1 2

7 3 1 3 2

8 3 2 1 3

9 3 3 2 1

Table 2.  The Taguchi L9(34) orthogonal table.

 

Symbol Optimization parameter Level 1 Level 2 Level 3

A Reynolds number (Re) 4.10− 3 2.10− 2 4.10− 2

B Damkohler number (Da) 5 500 1000

C Schmidt number (Sc) 104 5.104 105

D Reaction surface position (X) 1 2.5 4

Table 1.  Selected optimization factors and respective levels.
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Here, S represents the signal value, N is the noise value, n is the number of simulation tests, and yi is the measured 
response value (detection time of the ith simulation). A higher S/N value indicates better performance50, and the 
optimal level of each parameter is specified by a higher S/N values. Table 3 shows the numerical results for the 
biosensor’s response time (TR) and its corresponding S/N ratio using the experimental layout.

To evaluate the impact of each key parameter, it is essential to calculate the mean values of the responses for 
each level. This involves summing the results associated with each level in the orthogonal table and dividing 

Experimental run Designation Dimensionless Response time (TR) S/N ratio for TR

1 A1B1C1D1 930 − 59,3697

2 A1B2C2D2 225 − 47,0437

3 A1B3C3D3 175 − 44,8608

4 A2B1C2D3 680 − 56,6502

5 A2B2C3D1 105 − 40,4238

6 A2B3C1D2 220 − 46,8485

7 A3B1C3D2 630 − 55,9868

8 A3B2C1D3 170 − 44,6090

9 A3B3C2D1 100 − 40,0000

Table 3.  The Taguchi L9(34) designation with four factors at three levels, detection time, and S/N ratio 
obtained from the corresponding runs.

 

Fig. 8.  Normalized complex concentration versus time for the nine Taguchi tests.
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by the number of tests for that level to obtain the appropriate averages. Figure 9 visually represents the average 
effects of the four factors considered in this study. The factor with the most substantial influence is identified 
by the difference values (Delta) between the maximum and minimum values of the three averages. The greater 
the difference, the more influential the control factor. In Fig. 9, the Damkohler number stands out as having the 
strongest influence.

The significance of each key parameter is further analyzed in Table 4 by subtracting the maximum S/N ratio 
from its minimum value across the three levels. Parameters with minimal differences in the S/N ratio play a 
smaller role in controlling the synthesis process37.

The Schmidt number (Sc) plays a key role in antigen diffusion and, consequently, on the detection time. Being 
defined as the ratio of momentum diffusivity to mass diffusivity (Sc = ν/D), a high Sc implies a lower antigen 
diffusivity, which can prolong the detection time. Conversely, a lower Sc favors diffusion and can thus improve 
the detection efficiency. In order to better answer this question, we will add an in-depth discussion supported 
by numerical results to illustrate the impact of Sc variation on antigen transport and detection performance. In 
particular, we will analyze the evolution of antigen concentration as a function of time for different Sc values, 
thus highlighting its effect on the sensor efficiency51.

Plotting the S/N ratio against each key parameters, as per the values in Table  4, reveals in Fig.  10 that, 
according to the Taguchi method, the lowest value of the biochip’s response time is reached at the highest levels 
of the Reynolds number (4 × 10− 2), Damkohler number (103), Schmidt number (105), and the lowest level of the 
reaction surface position (1). Interestingly, the optimal combination (A3B3C3D1) was not among the nine tests of 
the L9 orthogonal network, but Taguchi’s method successfully identified it.

To justify the robustness of the optimization process with the Taguchi method and ensure the reliability of 
the S/N ratios and ANOVA results, we performed a new simulation of the biosensor’s response time using the 
optimized parameters. This validation procedure yielded a dimensionless detection time value of 80 (~ 21 min), 
the lowest among those obtained in the original L9 experiments, thus confirming the effectiveness of the 
optimization approach. Under optimal conditions, the limit of detection (LOD) and the limit of quantification 
(LOQ) were calculated 2.197 pmol/L and 6.659 pmol/L respectively.

Level Re Da Sc X

1 − 50,42 − 57,34 − 50,28 − 46,60

2 − 47,97 − 44,03 − 47,90 − 49,96

3 − 46,87 − 43,90 − 47,09 − 48,71

Delta = Max-Min 3,56 13,43 3,19 3,36

Rank 2 1 4 3

Table 4.  Signal to noise ratios for each level.

 

Fig. 9.  Main effect plots of each key parameter on the detection time of the device.
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ANOVA analysis
Following the ANOVA scheme used for the L9 Taguchi method52, the percentage contribution of each key 
parameter to the detection time is determined in this work. The equations used in this analysis are as follows 
(Eqs. 16, 17, 18, 19, 20):

•	 The average of all response times (TR) is calculated as:

	
TR = 1

9

9∑
i=1

TRi � (18)

•	 The total sum of squares (SSTotal) is determined by:

	
SSTotal =

9∑
i=1

(TRi − TR)2
� (19)

•	 The sum of squares for Reynolds number (SSRe), Damkohler number (SSDa), Schmidt number (SSSc) and 
reaction surface position (SSX) are given by:

	

SSRe = 3
3∑

i=1

(TRRei − TR)2, SSDa = 3
3∑

i=1

(TRDai − TR)2, SSSc = 3
3∑

i=1

(TRSCi − TR)2 and

SSX = 3
3∑

i=1

(TRXi − TR)2

� (20)

where TRxi  is the i-th average response time of the corresponding parameter x (Re, Da, Sc, X) in the Taguchi 
design.

•	 the mean squares for each parameter are:

Fig. 10.  S/N ratio for the four key parameters at different levels.
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MSRe = SSRe

DFRe
, MSDa = SSDa

DFDa
, MSSc = SSSc

DFSc
and MSX = SSX

DFX
� (21)

where DF is the degree of freedom (2 = number of level − 1).

•	 The contribution percentages for each parameter are:

	

% contributionRe = SSRe

SSTotal
, % contributionDa = SSDa

SSTotal
, % contribution Sc = SSSc

SSTotal
and

% contributionX = SSX

SSTotal

� (22)

The obtained results are presented in Table 5; Fig. 11. Among the key parameters, the Damkohler number (Da) 
has the highest contribution (91.1%) to reducing the response time of the device, while the reaction surface 
position (X) has the lowest contribution (0.3%).

Fig. 11.  Contributions of key parameters to biosensor detection time.

 

Source DF SS MS % Contribution

Re 2 33,506 16,753 4.5

Da 2 674,739 337,369 91.1

Sc 2 30,706 15,353 4.1

X 2 2022 1011 0.3

Residual error 0 0 0 0

Total 8 740,972 100

Table 5.  ANOVA results on the detection time response.
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Figure 12a shows the normalized complex concentration for the optimal test using the optimized parameters, 
while Fig.  12b,c illustrate the antigen diffusion boundary layers near the reaction surface at dimensionless 
adsorption times of 50 and 150, respectively. Notably, at t = 150 (where t is the dimensionless saturation time), 
the diffusion boundary layer thickness is remarkably thin, indicating efficient mass transport for the analyte-
ligand bond in the optimal test. This improvement in mass transport efficiency contributes to the enhanced 
performance of the biosensor.

ANN-MLP predictions
The Multi-Layer Perceptron Artificial Neural Network (ANN-MLP) is a type of ANN distinguished by its 
interconnected layers, including input, hidden, and output layers, widely applied in machine learning tasks like 
classification and pattern recognition53,54. Learning in ANN-MLP occurs through weight and bias adjustments 
during training55. An exhaustive investigation of 81 simulation data points derived from the Full L81(34) design 
experiment was utilized to train various networks with different quantities of hidden layer neurons. The training 
process employed back-propagation with gradient descent, dividing the dataset into training (70%), testing 
(15%), and validation (15%) subsets.

The following coefficients are calculated to control the performance of the proposed models in this study42,43. 
The first coefficient is the value of the root mean square error.

	

RMSE =

√√√√ 1
N

N∑
i=1

(yi − ŷi)2� (23)

where N and are numbers of observations.
We can also use the coefficient of determination R2 to evaluate the performance of the prediction. This 

coefficient is given by32:

	
R2 = 1 −

∑N

i=1 (yi − ŷi)2

∑N

i=1 (yi − y)2 � (24)

where y is average value of y.
The numerator in the above equation corresponds to the sum of squares of residuals whereas the denominator 

is related to the variance of the data. The best prediction is obtained when the coefficient of determination R2 
is close to one.

When the number k of input variables of the model increases, the coefficient of determination R2 
automatically increases. To correct this bias, an adjusted coefficient is proposed. It is defined by56:

	
R2

Adj = 1 −
(
1 − R2) N − 1

N − k − 1
� (25)

Figure 13 assesses the ANN-MLP model’s ability to predict the biosensor’s detection time. Subplot (a) compares 
simulated and predicted values, demonstrating the alignment between model predictions and actual data. 

Fig. 12.  (a) Normalized surface concentration for the optimal test. (b) and (c) diffusion boundary layers 
during the adsorption phase at two dimensionless times, TR= 50 and TR=150, respectively.
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Subplot (b) presents a statistical analysis fit, evaluating the degree of fit between predicted and actual values. In 
subplot (c), the deviation of predicted values from actual values is examined, aiding in understanding predictive 
errors and discrepancies. With an achieved adjusted coefficient of determination (R2

Adj) of 0.97 and a root mean 
square error (RMSE) of 42.12, the model demonstrates effective predictive capability.

ANN-PSO predictions
The incorporation of the Particle Swarm Optimization (PSO) algorithm into a traditional Artificial Neural 
Network (ANN) presents a promising approach. It optimizes the connection weights within the ANN, aiming 
to identify the optimal values that yield the best results. The PSO algorithm begins by generating a population of 
particles, each representing a potential solution set to be employed within the neural network57. Evaluating the 
fitness of each particle involves considering local and global information, and this information is retained within 
each particle. PSO uses this data to update particle velocities and efficiently explore the solution space.

The choice of the ANN-PSO algorithm is based on its ability to efficiently deal with complex and non-linear 
optimization problems (like our case). The combination of ANN for predictive modeling and PSO for parameter 
optimization improves the prediction of biosensor performance. This method showed superior results in terms 
of prediction accuracy and computational efficiency compared to other tested optimization algorithms31,32.

Configured with a swarm size of 150, a cognitive coefficient (C1) of 1.5, a social coefficient (C2) of 2, and 
an inertia weight (W) of 0.9, the ANN-PSO model delivers highly accurate predictive results, evidenced by an 
outstanding adjusted regression coefficient of 0.98 (as illustrated in Fig. 14). The performance metrics, including 
RMSE = 33.2, and R2 = 0.99, consistently demonstrate the superiority of the PSO-ANN model in capturing and 
predicting complex patterns in the Full L81(34) given data.

Conclusion
This study presents a numerical optimization of a microfluidic chip designed for rapid COVID-19 bioassays. 
By thoroughly analyzing the kinetics of the SARS-CoV-2 binding reaction, we identified four key control 

Fig. 13.  (a) Comparison of observed response time values using the ANN-MLP model; (b) statistical analysis 
fit of the ANN-MLP model; (c) deviation analysis of the ANN-MLP model predictions from actual response 
time values.
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parameters: the Reynolds number, Damkohler number, Schmidt number, and the position of the reaction 
surface. To optimize these key parameters, we used the Taguchi method in conjunction with ANOVA, reducing 
the number of required simulations from 81 to just 9 using the L9(34) orthogonal array. These approaches allowed 
us to efficiently explore the optimal combination of key parameters and their effects on biosensor performance. 
The optimal combination corresponds to a Reynolds number (Re) of 0.04 (level 3), a Damkohler number (Da) 
of 1000 (level 3), a Schmidt number (Sc) of 100,000 (level 3), and a dimensionless reaction surface position (X) 
of 1 (level 1).

Using the optimized values, the biosensor detection time was significantly reduced to 21 min, demonstrating 
the potential for rapid COVID-19 detection. Furthermore, the integration of Particle Swarm Optimization (PSO) 
with an Artificial Neural Network (ANN-PSO) significantly improved the predictive accuracy and robustness of 
our approach compared to the conventional ANN-MLP model.

This study underscores the effectiveness of combining the Taguchi method, ANOVA, and ANN-PSO for 
optimizing microfluidic biosensors, paving the way for rapid, efficient, and accurate COVID-19 detection. 
The proposed methodology not only offers significant improvements in biosensor performance but also holds 
promise for broader applications in the field of bioassays in general.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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