
The damping of the dynamic 
vibration absorber
Qikeren Tian

The design parameters of the dynamic vibration absorber notably affect the motion space of the main 
system. A complete new universal method of attaining the explicit exact solution to the optimum 
damping was proposed to enhance the accuracy of calculating the dynamic vibration absorber’s 
parameters. The interaction between the main system and dynamic vibration absorber taken into 
account, many exact analytic solutions, for example displacement amplitude amplification factor, 
stiffness ratio, fixed point coordinate, optimum damping ratio, and phase angle difference, were 
investigated with the real number form of differential equation of load motion and using L’Hospital 
first rule in minute detail. Some characteristic parameters of both the main system and dynamic 
vibration absorber were gotten. The mechanism of the dynamic vibration absorber was analyzed by 
comparing the displacement amplitude amplification factor between the dynamic vibration absorber 
and main system. Generally speaking, the dynamic vibration absorber lags behind the main system 
by certain degrees. The fixed point theory essentially achieves the extreme large value, but not the 
maximum value, which is a natural shortcoming required to be overcome. The maximum value of 
the displacement amplitude amplification factor was acquired adopting MATLAB® Version 7.9.0.529 
(R2009b). The relative error between the extreme large value and maximum value increases with the 
increase in the mass ratio. The relative error between the extreme large value and maximum value 
is 1.3018–10.397% for the optimum damping ratio. The present solutions would be useful to realize 
and control the precise dynamic characteristics of the main system and dynamic vibration absorber in 
practice.

Keywords  Dynamic vibration absorber, L’Hospital first rule, Optimum damping ratio, Minimization of 
maximum displacement amplitude amplification factor, Fixed point independent of damping ratio, Extreme 
large value, Maximum value

A machine or machine component, on which a steady alternating force with variable frequency is acting, 
can take up obnoxious vibration, particularly when the machine or machine component approaches to the 
resonance. In order to improve the above-mentioned vibration condition, one can first attempt to eliminate 
the force. However, quite often this method also is inapplicable, impractical or even impossible. Therefore one 
might change the mass or spring stiffness of the main system in an attempt to get away from such the resonance 
situation, but in many cases this method also is inappropriate.

The past 116 years have witnessed an intense international research from theory and experiment in the field 
of the dynamic vibration absorber, invented by Frahm in 1909. Den Hartog1 deduced the tuning ratio of the 
dynamic vibration absorber with respect to the main system. Timoshenko2 found a simple formula giving the 
proper way of tuning the dynamic vibration absorber. In 1928, Ormondroyd and Den Hartog proposed the 
optimization principle of the dynamic vibration absorber in terms of minimizing the maximum amplitude 
response of the main system. Five years later in 1933, following this principle, Hahnkamm3 deduced the 
relationship for the optimum tuning ratio of the dynamic vibration absorber for the first time. Thirteen years 
later in 1946, Brock4 is prejudiced against note and only one page paper which are not self-contained and self-
explanatory, and directly presented formulas for the optimum damping ratio for three cases of the dynamic 
vibration absorber with damping. One year later, Brock5 corrected the equation for the square of the damping 
ratio. Shen and Peng et al.6 analytically studied the optimal parameters of a dynamic vibration absorber with 
negative stiffness by Laplace transform method when the primary system is subjected to harmonic excitation. 
Shen and Xing et al.7 presented a novel dynamic vibration absorber with grounded stiffness element and 
amplifying mechanism, and the optimal parameters were studied in detail. Combining the two factors weighted 
by the dynamic-static proportion, Su and Bian et al.8 defined and optimized the control performance factor on 
the peak response. Based on analytical H∞ and H2 optimization, Su and Bian et al.9 derived the formulas of the 
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optimal parameters for the lever-type inerter-based vibration absorber. Using a translational 1-DOF vibration 
system and a continuous body as the host structure, Yamada and Asami10 theoretically derived the governing 
equations to accurately estimate the mass ratio of the beam-type dynamic vibration absorber and the equivalent 
stiffness ratio of the piezoelectric elements. Mahé and Renault et al.11 assessed the dynamic stability of this 
centrifugal pendulum vibration absorber and the shifting of its operating point using an analytic dynamical 
model based on a perturbation method. Tian and Gao12 suspended the in-wheel-drive motor as a mass block, 
thereby mounted a dynamic vibration absorber on the unsprung mass to absorb the vibration. Harouni and 
Attari et al.13 solved the governing equations by the multiple scale method, and examined, discussed and 
compared the answers and their stability. Alvis and Abdelkefi14 developed the nonlinear reduced-order model 
through modifying trilinear spring models to represent the impact forces, a modified van der Pol oscillator to 
represent the forcing due to the vortex-induced vibrations and using the Euler–Lagrange principle to express 
the equations of motion. Roozen and Urbán et al.15 tested a number of different dynamic vibration absorber 
designs on a silicate cement brick wall in a transmission loss facility. Park and Kwak et al.16 used theoretical 
and experimental methods to realize an ultrahigh-density acoustic metasurface consisting of thin membranes 
decorated with a coiled ring. Love and Taylor17 presented a method employing principal component analysis 
to transform the dynamic vibration absorber loading time series into M orthogonal principal components. By 
conducting a theoretical analysis and a numerical simulation based on a simplified analytical model, Maegawa 
and Itoigawa18 established a design standard that presents the appropriate design conditions for dynamic 
vibration absorbers to achieve smooth sliding without stick–slip. Rasid and Mizuno et al.19 gave information 
about the low-frequency acceleration of active dynamic vibration absorber as an accelerometer. Hua and Wong 
et al.20 proposed and optimized a beam-based dynamic vibration absorber for minimizing the resonant vibration 
of a general structure. Zhou and Jean-Mistral et al.21 investigated two configurations of dynamic vibration 
absorber in conjunction with negative stiffness and conducted their parameter optimization according to two 
tuning methodologies: the fixed points theory and the stability maximization criterion. In order to validate the 
closed solutions, Barredo and Blanco et al.22 formulated an optimization problem for minimizing the standard 
deviation of difference among vibration amplitudes under an excitation frequencies range. Barredo and Larios 
et al.23 studied two different excitation sources of random loads which are random ground motion and force 
excitation. Kiran and Al-Osta et al.24 considered a damped system with a single degree of freedom (SDOF) and 
supplementary dampers, including negative stiffness and inerter-based damper, to control the response based on 
H2 optimum control strategies. Kiran and Al-Osta et al.25 considered the nonlinear force–deformation behavior 
of the tuned mass damper-clutching inerter (TMDCI) under non-stationary earthquake excitation for obtaining 
the stochastic response of isolated structures using a time-dependent equivalent linearization technique. Kiran 
and Ahmad et al.26 presented a study on optimizing the combination of a tuned mass damper inerter and a 
negative stiffness damper (TMDI-NSD) for better performance of structures against seismic actions. In order to 
increase the efficiency of the structures to resist seismic excitation, Kiran and Al-Osta et al.27 used combinations 
of inerter, negative stiffness, and tuned mass damper. Kiran and Farsangi et al.28 used an innovative combination 
of negative stiffness and an inerter control mechanism to protect a structure under severe seismic loadings.

Up to now, the mechanics and exact parameter optimization method of the dynamic vibration absorber are 
not completely researched. Several detailed shortcomings of research results on the dynamic vibration absorber 
are as follows: (1) the real number force F sin ωt and complex number force F eiωt are not discriminated, 
and the complex number response displacement and real number response displacement amplitude are not 
distinguished, too; (2) all amplitude-frequency response characteristic curves pass through several fixed points 
independent of the damping ratio, but these fixed points are the extreme large value points not the maximum 
value points at all; and (3) to the author’s knowledge and to my regret, there is not a universal method attaining 
the exact solution to the optimum damping ratio of the dynamic vibration absorber.

A complete new universal method of attaining the explicit exact solution to the optimum damping of the 
dynamic vibration absorber was put forward. A lot of exact analytic solutions, such as displacement amplitude 
amplification factor, stiffness ratio, fixed point coordinate, and phase angle difference, were deduced in detail. 
The optimum damping ratio of the dynamic vibration absorber was attained using L’Hospital first rule. Some 
characteristic parameters of both the main system and dynamic vibration absorber were calculated. The 
mechanism of the dynamic vibration absorber was analyzed through comparing the displacement amplitude 
amplification factor between the dynamic vibration absorber and main system.

Displacement amplitude amplification factors of main mass and attached mass
In Fig. 1 let the combination m1, k1 be the schematic representation of the main system under consideration, 
with the alternating force F sin ωt acting on it, where m1 is named the main mass, and k1 the main stiffness. The 
dynamic vibration absorber consists of a comparatively small vibration system m2, k2, K, c, where m2 is named 
the attached mass, k2 the attached stiffness, K the connection stiffness, and c the connection damping.

There is an oil or air dashpot mechanism arranged parallel connection to the damper spring K, between two 
masses m1 and m2. The coefficient c is a constant depending on the kind of the damping device and numerically 
is equal to the magnitude of the damping force when the velocity is equal to unity. In deriving the differential 
equation of motion we will use Newton’s second law stating that the product of the mass of a particle and its 
acceleration is equal to the force acting in the direction of acceleration. The differential equation of load motion 
is in the matrix form

	

(
m1 0
0 m2

) (
ẍ1

ẍ2

)
+

(
c −c
−c c

) (
ẋ1

ẋ2

)
+

(
k1 + K −K
−K k2 + K

) (
x1

x2

)
=

(
F

0

)
sin ωt� (1)
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where x1 and x2 present the displacement of masses m1 and m2, F the amplitude of sine harmonic oscillating 
force, ω the forced angular frequency, and t the time. The acceleration of the body m is given by the second 
derivative of the displacement x with respect to time and will be denoted by ẍ = d2x

dt2 . The velocity of the body m 
is given by the first derivative of the displacement x with respect to time and will be denoted by ẋ = dx

dt . Assume 
that the vibrating body m encounters in its motion a resistance proportional to the velocity.

In terms of Euler’s formula eix = cos x + i sin x, Eq. (1) is viewed as the imaginary part of the following 
expression

	

(
m1 0
0 m2

) (
Ẍ1

Ẍ2

)
+

(
c −c
−c c

) (
Ẋ1

Ẋ2

)
+

(
k1 + K −K
−K k2 + K

) (
X1

X2

)
=

(
F

0

)
eiωt� (2)

where the lower case letter e denotes the natural constant invented by Euler in the first instance, the Roman 
type i =

√
−1 often named the imaginary (or imkginaire in French) unit introduced by Euler at the beginning. 

Consequently choose the imaginary part of X, x1 = ImX1, x2 = ImX2.
One particular solution of Eq. (2) will be of the form

	

X1 = X̂1eiωt

X2 = X̂2eiωt

}
� (3)

Substituting Eq. (3) into Eq. (2) yields

	

(
k1 + K − m1ω2 + icω −K − icω
−K − icω k2 + K − m2ω2 + icω

) (
X̂1

X̂2

)
=

(
F

0

)
� (4)

	

(
1 + K

k1
− m1ω2

k1
+ i cω

k1
− K

k1
− i cω

k1

− K
k1

− i cω
k1

k2
k1

+ K
k1

− m2ω2

k1
+ i cω

k1

) (
X̂1

X̂2

)
=

(
F

k1

0

)
� (5)

After performing some algebra Eq. (5) is transformed into

	

(
X̂1

X̂2

)
=

(
1 − g2 + k + i2ζg −k − i2ζg
−k − i2ζg k + µf2 − µg2 + i2ζg

)−1
(

F

k1

0

)
� (6)

To simplify our further discussion we bring these expressions into dimensionless form. For this purpose we 
introduce the following notations.

Where µ = m2
m1

 stands for the mass ratio; f = ω2
ω1

 is the tuning ratio, thereof ω2 =
√

k2
m2

 the natural angular 

frequency of dynamic vibration absorber, and ω1 =
√

k1
m1

 the natural angular frequency of main system; 

k = K
k1

 is the stiffness ratio; ζ = cω1
2k1

 represents the damping ratio; and g = ω
ω1

 is the forced angular frequency 
ratio. Five dimensionless variables of μ (determining m2), f (m2 having been determined, thus determining k2), k 
(determining K), ζ (determining c), and g (determining ω) are mutually independent.

By Eq. (6), we have

Fig. 1.  Addition of mass-spring-spring-damper dynamic vibration absorber to mass-spring main system.
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(
X̂1

X̂2

)
=

F
k1

µ(g2 − 1)(g2 − f2) + k(1 + µf2 − g2 − µg2) + i2ζg(1 + µf2 − g2 − µg2)

(
k + µf2 − µg2 + i2ζg

k + i2ζg

)
� (7)

So that

	
X̂1 = F

k1
· k + µf2 − µg2 + i2ζg

µ(g2 − 1)(g2 − f2) + k(1 + µf2 − g2 − µg2) + i2ζg(1 + µf2 − g2 − µg2) =
∣∣X̂1

∣∣ eiφ1 � (8)

	
X̂2 = F

k1
· k + i2ζg

µ(g2 − 1)(g2 − f2) + k(1 + µf2 − g2 − µg2) + i2ζg(1 + µf2 − g2 − µg2) =
∣∣X̂2

∣∣ eiφ2 � (9)

Hence X1 =
∣∣X̂1

∣∣ eiφ1eiωt =
∣∣X̂1

∣∣ ei(ωt+φ1) = |X1| ei(ωt+φ1), x1 = |X1| sin(ωt + φ1); 
X2 = |X2| ei(ωt+φ2), x2 = |X2| sin(ωt + φ2).

Five-parameter universal displacement amplitude amplification factors for the steady state response of the 
main mass and dynamic vibration absorber can be expressed as two important expressions, respectively

	

A1 =
k1

∣∣X̂1
∣∣

F
=

∣∣∣∣
k + µf2 − µg2 + i2ζg

µ(g2 − 1)(g2 − f2) + k(1 + µf2 − g2 − µg2) + i2ζg(1 + µf2 − g2 − µg2)

∣∣∣∣

=
√

(k + µf2 − µg2)2 + 4ζ2g2

[µ(g2 − 1)(g2 − f2) + k(1 + µf2 − g2 − µg2)]2 + 4ζ2g2(1 + µf2 − g2 − µg2)2

� (10)

	

A2 =
k1

∣∣X̂2
∣∣

F
=

∣∣∣∣
k + i2ζg

µ(g2 − 1)(g2 − f2) + k(1 + µf2 − g2 − µg2) + i2ζg(1 + µf2 − g2 − µg2)

∣∣∣∣

=
√

k2 + 4ζ2g2

[µ(g2 − 1)(g2 − f2) + k(1 + µf2 − g2 − µg2)]2 + 4ζ2g2(1 + µf2 − g2 − µg2)2

� (11)

Using Eqs. (10) and (11), for the given four dimensionless variables of μ, f, k, ζ, the (g, A) diagram can be 
obtained, where g is the abscissa, and A is the ordinate.

Conditions for equal ordinates of two fixed points of main system
Three fixed points of main system independent of damping ratio
Now return to Eq. (10) to see whether there are any values of g for which A1 becomes irrelevant to ζ. The formula 
is expressed as

	
A2

1 =
[

k + µf2 − µg2

µ(g2 − 1)(g2 − f2) + k(1 + µf2 − g2 − µg2)

]2

=
(

1
1 + µf2 − g2 − µg2

)2

� (12)

We can obliterate the square sign on both sides but then have to add a ± in front of the right-hand side, or written 
out fully, if

	
k + µf2 − µg2

µ(g2 − 1)(g2 − f2) + k(1 + µf2 − g2 − µg2) = ± 1
1 + µf2 − g2 − µg2 � (13)

With the plus sign, Eq. (13) gives

	
k + µf2 − µg2

µ(g2 − 1)(g2 − f2) + k(1 + µf2 − g2 − µg2) = 1
1 + µf2 − g2 − µg2 � (14)

After cross-multiplication, whence the abscissa of only one fixed point N of the (g, A1) diagram is

	 µ2(g2 − f2)2 = 0 ⇒ gN = f � (15)

Substituting Eq. (15) into the right-hand side of Eq. (12) or (14) reads the ordinate of fixed point N of the (g, A1) 
diagram

	
A1N = 1

|1 − f2| � (16)

The other alternative is the minus sign before the right-hand side of Eq. (13)

	
k + µf2 − µg2

µ(g2 − 1)(g2 − f2) + k(1 + µf2 − g2 − µg2) = − 1
1 + µf2 − g2 − µg2 � (17)

After a short calculation the equation then becomes
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µ(g2 − 1)(g2 − f2) + (2k + µf2 − µg2)(1 + µf2 − g2 − µg2)
2

=
(

µ + µ2

2

)
g4 − [µ + µf2 + µ2f2 + k(1 + µ)]g2 + µf2 + µ2f4

2 + k(1 + µf2) = 0
� (18)

This is a quadratic equation in one unknown g2, giving two roots, the fixed points S and T we are seeking. Let two 
roots of this equation be g2

S  and g2
T . It is seen that gS and gT (i.e., the horizontal coordinates of the fixed points S 

and T) are still functions of μ, f, and k. The root discriminant of the quadratic equation in one unknown (18) is

	 ∆ = [µ(1 + f2 + µf2) + k(1 + µ)]2 − µ(2 + µ)[µf2(2 + µf2) + 2k(1 + µf2)]� (19)

Equation (19) can be spread out to the form

	 ∆ = µ2(1 + f2 + µf2)2 + 2µk(1 + µ)(1 + f2 + µf2) + k2(1 + µ)2 − µ2f2(4 + 2µ + 2µf2 + µ2f2) − 2µk(2 + µ + 2µf2 + µ2f2)� (20)

Again Eq. (20) can be spread out to the form

	
∆ = µ2(1 + 2f2 + f4 + 2µf2 + 2µf4 + µ2f4) − µ2(4f2 + 2µf2 + 2µf4 + µ2f4) + 2µk(1 + µ + f2 + 2µf2 + µ2f2)

− 2µk(2 + µ + 2µf2 + µ2f2) + k2(1 + µ)2 � (21)

At last Eq. (21) can be reduced to the form

	 ∆ = µ2(f2 − 1)2 + 2µk(f2 − 1) + k2(1 + µ)2 = (µf2 − µ + k)2 + µk2(2 + µ)� (22)

According to the extracting root formula of quadratic equation in one unknown, the abscissas of fixed points S 
and T of the (g, A1) diagram are, respectively

	
gS =

√
µ + µf2 + µ2f2 + k(1 + µ) −

√
(µf2 − µ + k)2 + µk2(2 + µ)

2µ + µ2
� (23)

	
gT =

√
µ + µf2 + µ2f2 + k(1 + µ) +

√
(µf2 − µ + k)2 + µk2(2 + µ)

2µ + µ2
� (24)

According to Eq. (18), we construct the following auxiliary function

	
F (g) =

(
µ + µ2

2

)
g4 − [µ + µf2 + µ2f2 + k(1 + µ)]g2 + µf2 + µ2f4

2 + k(1 + µf2)� (25)

Through Eqs. (25), (18), (23) and (24), we get

	
F (0) = µf2 + µ2f4

2 + k(1 + µf2) > 0, F (gS) = F (gT ) = 0� (26)

	
F

(√
1 + µf2

1 + µ

)
= µ

(
1 + µ

2

) (1 + µf2)2

(1 + µ)2 − [µ + µf2(1 + µ) + k(1 + µ)] 1 + µf2

1 + µ
+ µf2 + µ2f4

2 + k(1 + µf2)� (27)

Equation (27) can be reduced to the form

	
F

(√
1 + µf2

1 + µ

)
= µ

2(1 + µ)2 (2 + µ)(1 + µf2)2 − µ

2(1 + µ) (2 + 2µf2 + µf4 + µ2f4)� (28)

Equation (28) can be spread out to the form

	
F

(√
1 + µf2

1 + µ

)
= µ

2(1 + µ)2 (2 + µ + 4µf2 + 2µ2f2 + 2µ2f4 + µ3f4) − µ

2(1 + µ)2 (2 + 2µ + 2µf2 + µf4 + 2µ2f2 + 2µ2f4 + µ3f4)� (29)

Finally Eq. (29) can be reduced to the form

	
F

(√
1 + µf2

1 + µ

)
= −µ2(1 − f2)2

2(1 + µ)2 ≤ 0� (30)

Through Eqs. (18), (26), (30) and the open upward property of parabola, we have

	
0 < gS ≤

√
1 + µf2

1 + µ
≤ gT � (31)

Scientific Reports |        (2025) 15:13917 5| https://doi.org/10.1038/s41598-025-98320-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Substituting Eqs. (23) and (24) into the right-hand side of Eq. (12) or (17) reads the ordinates of fixed points S 
and T of the (g, A1) diagram, respectively

	
A1S = 1

1 + µf2 − g2
S − µg2

S

� (32)

	
A1T = 1

g2
T + µg2

T − 1 − µf2 � (33)

Four fixed points of dynamic vibration absorber independent of damping ratio
Now return to Eq. (11) to see whether there are any values of g for which A2 becomes independent of ζ. The 
formula is of the form

	
A2

2 =
[

k

µ(g2 − 1)(g2 − f2) + k(1 + µf2 − g2 − µg2)

]2

=
(

1
1 + µf2 − g2 − µg2

)2

� (34)

We can obliterate the square sign on both sides but then have to add a ± in front of the right-hand side, or written 
out fully

	
k

µ(g2 − 1)(g2 − f2) + k(1 + µf2 − g2 − µg2) = ± 1
1 + µf2 − g2 − µg2 � (35)

With the plus sign, Eq. (35) gives

	
k

µ(g2 − 1)(g2 − f2) + k(1 + µf2 − g2 − µg2) = 1
1 + µf2 − g2 − µg2 � (36)

After cross-multiplication, whence the abscissas of two fixed points N and W of the (g, A2) diagram are, 
respectively

	 µ(g2 − 1)(g2 − f2) = 0 ⇒ gN = f, gW = 1� (37)

Substituting Eq. (37) into the right-hand side of Eq. (34) or (36) reads the ordinates of two fixed points N and W 
of the (g, A2) diagram, respectively

	
A2N = 1

|1 − f2| , A2W = 1
µ |1 − f2| � (38)

According to Eqs. (15) and (37), as well as Eqs. (16) and (38), the coordinates of the fixed point N in the dynamic 
vibration absorber are the same as those in the main system. The other alternative is the minus sign before the 
right-hand side of Eq. (35)

	
k

µ(g2 − 1)(g2 − f2) + k(1 + µf2 − g2 − µg2) = − 1
1 + µf2 − g2 − µg2 � (39)

After a short calculation the equation then becomes

	 µ(g2 − 1)(g2 − f2) + 2k(1 + µf2 − g2 − µg2) = µg4 − [µ + µf2 + 2k(1 + µ)]g2 + µf2 + 2k(1 + µf2) = 0� (40)

The discriminant of the quadratic Eq. (40) is

	 ∆ = [µ(1 + f2) + 2k(1 + µ)]2 − 4µ2f2 − 8µk(1 + µf2)]� (41)

Equation (41) can be spread out to the form

	 ∆ = µ2(1 + f2)2 + 4µk(1 + f2)(1 + µ) + 4k2(1 + µ)2 − 4µ2f2 − 8µk(1 + µf2)� (42)

Equation (42) can be reduced to the form

	 ∆ = µ2(1 − f2)2 + 4µk(µ − 1)(1 − f2) + 4k2(1 + µ)2� (43)

To the last Eq. (43) can be reduced to the form

	 ∆ = [µ − µf2 + 2k(µ − 1)]2 + 16µk2� (44)

The abscissas of fixed points V and M of the (g, A2) diagram are, respectively
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gV =

√
µ + µf2 + 2k(1 + µ) −

√
[µ − µf2 + 2k(µ − 1)]2 + 16µk2

2µ
� (45)

	
gM =

√
µ + µf2 + 2k(1 + µ) +

√
[µ − µf2 + 2k(µ − 1)]2 + 16µk2

2µ
� (46)

According to Eq. (40), we constitute the following auxiliary function

	 Φ(g) = µg4 − [µ + µf2 + 2k(1 + µ)]g2 + µf2 + 2k(1 + µf2)� (47)

Through Eqs. (47), (40), (45) and (46), we get

	 Φ(0) = µf2 + 2k(1 + µf2) > 0, Φ(gV ) = Φ(gM ) = 0� (48)

	
Φ

(√
1 + µf2

1 + µ

)
= µ

(1 + µf2)2

(1 + µ)2 −
(

µ
1 + f2

1 + µ
+ 2k

)
(1 + µf2) + µf2 + 2k(1 + µf2)� (49)

Equation (49) can be reduced to the form

	
Φ

(√
1 + µf2

1 + µ

)
= µ

(1 + µ)2 (1 + µf2)2 − µ

(
f2 + 1 + µf4

1 + µ

)
+ µf2� (50)

Finally Eq. (50) can be reduced to the form

	
Φ

(√
1 + µf2

1 + µ

)
= −µ2(1 − f2)2

(1 + µ)2 ≤ 0� (51)

Through Eqs. (40), (48), (51) and the open upward property of parabola, we have

	
0 < gV ≤

√
1 + µf2

1 + µ
≤ gM � (52)

Substituting Eqs. (45) and (46) into the right-hand side of Eq. (34) or (39) reads the ordinates of fixed points V 
and M of the (g, A2) diagram, respectively

	
A2V = 1

1 + µf2 − g2
V − µg2

V

� (53)

	
A2M = 1

g2
M + µg2

M − 1 − µf2 � (54)

Equal ordinates of two fixed points S and T of main system
Through Eqs. (23) and (24), we have (or the sum of two roots of quadratic equation in one unknown (18))

	
g2

S + g2
T = 2

[
1 + f2 + µf2

2 + µ
+ k(1 + µ)

2µ + µ2

]
� (55)

By changing the stiffness ratio k, two fixed points S and T can be shifted up and down the curve for ζ = 0. By 
changing k, one point goes up and the other down. Clearly the most favorable case is such that first by a proper 
choice of k two fixed points are adjusted to equal heights. The next objective is to adjust the stiffness ratio k so 
that the ordinates of two fixed points S and T are equal, viz.

	 A1S = A1T � (56)

Substitute this condition (56) in Eqs. (32) and (33) with the result that

	
g2

S + g2
T = 2(1 + µf2)

1 + µ
� (57)

Equation (57) is equal to Eq. (55) with the optimum stiffness ratio

	
k = µ(1 − f2)

(1 + µ)2 (f ≤ 1)� (58)

Inserting Eq. (58) into Eqs. (23) and (24), respectively, produces
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gS =

√
1 + µf2 − (1 − f2)

√
µ

2+µ

1 + µ
(f ≤ 1)� (59)

	
gT =

√
1 + µf2 + (1 − f2)

√
µ

2+µ

1 + µ
(f ≤ 1)� (60)

Inserting Eq. (59) into Eq. (32) and inserting Eq. (60) into Eq. (33) produce the extreme large value

	
A1S = A1T =

√
2+µ

µ

1 − f2 (f < 1)� (61)

According to Eqs. (16) and (61) we can obtain this inequality A1N < A1S = A1T . Figure  2 represents 
displacement amplitude amplification factors for the steady state response of the main system at two fixed points 
S and T for μ = 0.25 and the arbitrary k. In Fig. 2a, there exists an optimum operating point Q whose abscissa is 
0.096 (in terms of Eq. (58)) and whose ordinate is 5 (in terms of Eq. (61)). In Fig. 2b, there exists an inequality 
A1S > A1T .

Coordinates of two fixed points V and M of dynamic vibration absorber for optimum stiffness 
ratio
Inserting Eq. (58) into Eq. (45) produces

	
gV =

√
3 + µ − f2 + µf2 − 1−f2

1+µ

√
(4µ + µ2 − 1)2 + 16µ

2(1 + µ) (f ≤ 1)� (62)

Equation (62) can be spread out to the form

	
gV =

√
3 + µ − f2 + µf2 − 1−f2

1+µ

√
1 + 8µ + 14µ2 + 8µ3 + µ4

2(1 + µ) (f ≤ 1)� (63)

In the end, we attain the following results

	
gV =

√
3 + µ − f2 + µf2 − (1 − f2)

√
1 + 6µ + µ2

2(1 + µ) (f ≤ 1)� (64)

	
gM =

√
3 + µ − f2 + µf2 + (1 − f2)

√
1 + 6µ + µ2

2(1 + µ) (f ≤ 1)� (65)

Inserting Eq. (64) into Eq. (53) produces

	
A2V = 2

(1 − f2)(
√

1 + 6µ + µ2 − 1 − µ)
(f < 1)� (66)

Inserting Eq. (65) into Eq. (54) produces

	
A2M = 2

(1 − f2)(1 + µ +
√

1 + 6µ + µ2)
(f < 1)� (67)

According to Eqs. (67), (38) and (66) we can obtain this inequality A2M < A2N < A2W < A2V .

Optimum damping ratio of dynamic vibration absorber
Figure 3 represents the amplitude-frequency response characteristic curve of main mass for μ = 0.25, f =

√
10
5  

and some different damping ratios. The maximum displacement amplitude amplification factor of main mass 
A1max(ζ) decreases at first and then increases with the increase of the damping ratio ζ. In Fig. 3a, the maximum 
value becomes A1max(ζ = 0) =  + ∞. In Fig. 3b, the maximum value becomes A1max(ζ = 0.01) = 12.37. In Fig. 3c, 
the maximum value becomes A1max(ζ = 0.0267) = 5.504. In Fig. 3d, when the maximum displacement amplitude 
amplification factor becomes the minimum value min{A1max(ζ)}, the optimum damping ratio is ζ = 0.0351. If 
ζ = 0, the damping force is zero, no work is done, and hence the resonant amplitude is infinite. But when ζ =  + ∞, 
two masses are locked to each other so that their relative displacement is zero and again no work is done. 
Somewhere in between 0 and + ∞ there is a damping for which the product of damping force and displacement 
becomes a maximum, and then the resonant amplitude will be small. In Fig. 3e, the maximum value becomes 
A1max(ζ = 0.05) = 6.828. In Fig. 3f, the maximum value becomes A1max(ζ =  + ∞) =  + ∞.
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Figure 4 represents the maximum displacement amplitude amplification factor of the main mass as a function 
of the damping ratio for μ = 0.25 and f =

√
10
5 . It is interesting to follow that a V-shaped curve happens for 

increasing damping. When the damping becomes infinite, two masses m1 and m2 are virtually clamped together 
and we have a single-degree-of-freedom system with a mass m1 + m2. In adding the dynamic vibration absorber 
to the main system, the object is to bring the resonant peak of the amplitude down to its lowest possible value. 
With ζ = 0 the peak is infinite; with ζ =  + ∞ it is again infinite. Somewhere in between there must be a value of 
ζ for which the peak becomes a minimum. Firstly according to Eq. (10), A1max can be attained for 0 ≤ g <  + ∞. 

Fig. 2.  Displacement amplitude amplification factors of main mass at points S and T for μ = 0.25.
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Secondly in Fig.  4 the maximum displacement amplitude amplification factor reaches minimum value for 
corresponding damping ratio 0.025.

Start from Eq. (10)

	
4ζ2g2 = (k + µf2 − µg2)2 − A2

1[µ(g2 − 1)(g2 − f2) + k(1 + µf2 − g2 − µg2)]2

A2
1(1 + µf2 − g2 − µg2)2 − 1

� (68)

Fig. 3.  Amplitude-frequency response characteristic curve of main mass for μ = 0.25 and f =
√

10
5 .
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On the basis of the formula for the difference of squares, Eq. (68) can be written as

	

4g2ζ2 = k + µf2 − µg2 + A1[µ(g2 − 1)(g2 − f2) + k(1 + µf2 − g2 − µg2)]
A1(1 + µf2 − g2 − µg2) + 1

× k + µf2 − µg2 − A1[µ(g2 − 1)(g2 − f2) + k(1 + µf2 − g2 − µg2)]
A1(1 + µf2 − g2 − µg2) − 1

� (69)

Figure 3.  (continued)
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Optimum damping ratio at fixed point S
Introducing Eq. (32) into Eq. (17) leads to

	 A1[µ(g2 − 1)(g2 − f2) + k(1 + µf2 − g2 − µg2)] = µg2 − k − µf2� (70)

From Eq. (32) we find

Figure 3.  (continued)
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	 A1(1 + µf2 − g2 − µg2) = 1� (71)

Introducing Eqs. (70) and (71) into Eq. (69) leads to

	
4g2ζ2 = (k + µf2 − µg2)k + µf2 − µg2 + A1[µ(g2 − 1)(g2 − f2) + k(1 + µf2 − g2 − µg2)]

A1(1 + µf2 − g2 − µg2) − 1
� (72)

The conventional method such as H∞ took a slightly different quantity only instead of gS, that is to say 
g = gS + 10−6, etc. The conventional method such as H∞ is approximate. L’Hospital rule (or L’Hôpital in 
French) is divided into L’Hospital first rule and L’Hospital second rule. L’Hospital rule is exact. According to Eqs. 
(70) and (71), as g → gS , both the numerator and denominator of the right-hand side of Eq. (72) approach zero, 
and this indeterminant expression must be evaluated by using L’Hospital first rule. The limiting form of Eq. (72) 
can be rewritten as

	
4g2ζ2 = lim

g→gS

(k + µf2 − µg2)µg2 − k − µf2 − A1[µ(g2 − 1)(g2 − f2) + k(1 + µf2 − g2 − µg2)]
A1(g2 + µg2 − 1 − µf2) + 1

� (73)

According to L’Hospital first rule, the numerator and denominator of the right-hand side of Eq. (73) should be 
separately differentiated with respect to g to yield the limiting form of this equation as

	
4g2ζ2 = lim

g→gS

k + µf2 − µg2

1 + µ

[
µ

A1
+ µ(1 + f2 − 2g2) + k(1 + µ)

]
� (74)

Introduce Eqs. (58), (59) and (61) into Eq. (74). This is a long and tedious job, which leads to the result

	
ζ2 = lim

g→gS

µ3(1 − f2)2

4(1 + µ)4g2

(
3 + 2µ

2 + µ
− 2

√
µ

2 + µ

)
(f ≤ 1)� (75)

Introducing Eq. (59) into Eq. (75), we obtain

	
ζ2 = µ3(1 − f2)2

4(1 + µ)3 ·

[
3 + 2µ − 2(2 + µ)

√
µ

2+µ

] [
1 + µf2 + (1 − f2)

√
µ

2+µ

]
(2 + µ)(1 + µf2)2 − µ(1 − f2)2 (f ≤ 1)� (76)

Fig. 4.  Maximum displacement amplitude amplification factor of main mass and damping ratio relation for 
μ = 0.25 and f =

√
10
5 .
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Rationalizing the result, we obtain the optimum damping ratio at fixed point S arranged in the ascending form 
of μ

	
ζS = µ(1 − f2)

√
µ

4(1 + µ)3 ·
3 + 5µf2 + 2µ2f2 − (1 + 3f2 + 6µf2 + 2µ2f2)

√
µ

2+µ

2 + 6µf2 − µf4 + 2µ2f2 + 2µ2f4 + µ3f4 (f ≤ 1)� (77)

Because of ζ = cω1
2k1

= cω1
2m1ω2

1
= c

2m1ω1
= µ c

2m2ω1
= µζDen. When f = 0, we obtain the conventional result1 

ζS = µ
√

µ
8(1+µ)3

(
3 −

√
µ

2+µ

)
= µζDen.

Optimum damping ratio at fixed point T
Introducing Eq. (33) into Eq. (17) leads to

	 A1[µ(g2 − 1)(g2 − f2) + k(1 + µf2 − g2 − µg2)] = k + µf2 − µg2� (78)

From Eq. (33) we find

	 A1(1 + µf2 − g2 − µg2) = −1� (79)

Introducing Eqs. (78) and (79) into Eq. (69) leads to

	
4g2ζ2 = (µg2 − k − µf2)k + µf2 − µg2 − A1[µ(g2 − 1)(g2 − f2) + k(1 + µf2 − g2 − µg2)]

A1(1 + µf2 − g2 − µg2) + 1
� (80)

With the aid of L’Hospital first rule, the limiting form of Eq. (80) can be rewritten as

	
4g2ζ2 = lim

g→gT

(µg2 − k − µf2)µg2 − k − µf2 + A1[µ(g2 − 1)(g2 − f2) + k(1 + µf2 − g2 − µg2)]
A1(g2 + µg2 − 1 − µf2) − 1

� (81)

Separately differentiating the numerator and denominator with respect to g attains

	
4g2ζ2 = lim

g→gT

µg2 − k − µf2

1 + µ

[
µ

A1
+ µ(2g2 − 1 − f2) − k(1 + µ)

]
� (82)

Introducing Eqs. (60), (58) and (61) into Eq. (82) leads to

	
ζ2 = lim

g→gT

µ3(1 − f2)2

4(1 + µ)4g2

(
3 + 2µ

2 + µ
+ 2

√
µ

2 + µ

)
(f ≤ 1)� (83)

Introducing Eq. (60) into Eq. (83), we obtain

	
ζ2 = µ3(1 − f2)2

4(1 + µ)3 ·

[
3 + 2µ + 2(2 + µ)

√
µ

2+µ

] [
1 + µf2 − (1 − f2)

√
µ

2+µ

]
(2 + µ)(1 + µf2)2 − µ(1 − f2)2 (f ≤ 1)� (84)

Rationalizing the result, we deduce the optimum damping ratio at fixed point T

	
ζT = µ(1 − f2)

√
µ

4(1 + µ)3 ·
3 + 5µf2 + 2µ2f2 + (1 + 3f2 + 6µf2 + 2µ2f2)

√
µ

2+µ

2 + 6µf2 − µf4 + 2µ2f2 + 2µ2f4 + µ3f4 (f ≤ 1)� (85)

The real-world scenarios include the main system having damping force and nonlinear superstructures studied 
in the future research.

Characteristics of main system and dynamic vibration absorber
Figure  5 represents the amplitude-frequency response characteristic curve of the main mass for μ = 0.25, 
f =

√
10
5  and two optimum damping ratios. The curve of Fig. 5a shows that there is a horizontal tangent line 

at point S whose extreme large value is 5 smaller than the maximum value 5.504. Point S has the extreme large 
value but not the maximum value. The curve of Fig. 5b shows that there is a horizontal tangent line at point T 
whose extreme large value is 5 also smaller than the maximum value 5.273. Point T also has the extreme large 
value but not the maximum value. Both the fixed point S and point T have the extreme large value but not the 
maximum value. In Fig. 5 large difference is absorbed, for example 5 and 5,504, or 5 and 5.273.

The quantity A1S of Eq. (61) denotes an extreme large value at fixed point S. In Fig. 3c we obtain a maximum 
value A1max(ζS) for the optimum damping ratio ζS. The relative error between the extreme large value at fixed 
point S and maximum value is denoted by
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δS =

∣∣∣∣
A1S − A1 max(ζS)

A1 max(ζS)

∣∣∣∣ × 100% =
[

1 − A1S

A1 max(ζS)

]
× 100%� (86)

The quantity A1T of Eq. (61) denotes an extreme large value at fixed point T. In Fig. 3d we obtain a maximum 
value A1max(ζT) for the optimum damping ratio ζT. The relative error between the extreme large value at fixed 
point T and maximum value is denoted by

Fig. 5.  Amplitude-frequency response characteristic curve of main mass for μ = 0.25 and f =
√

10
5 .
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δT =

∣∣∣∣
A1T − A1 max(ζT )

A1 max(ζT )

∣∣∣∣ × 100% =
[

1 − A1T

A1 max(ζT )

]
× 100%� (87)

The relative error between the extreme large value and maximum value is shown in Fig. 6 and the corresponding 
data are given in Table 1 for f =

√
10
5 . It is seen that the relative error between the extreme large value and 

maximum value increases with the increase in the mass ratio. The relative error between the extreme large value 
at fixed point S and maximum value is 1.6983–24.650%. The relative error between the extreme large value at 
fixed point T and maximum value is 1.3018–10.397%. The relative error at the fixed point T is smaller than one 
at the fixed point S. The optimum damping ratio is chosen as the form of Eq. (85) at the fixed point T.

Figure 7 represents the amplitude-frequency response characteristic curve of the main mass for μ = 0.25 for 
different damping ratios. We observe a remarkable peculiarity, viz., that all four curves intersect at three fixed 
points N, S, and T. This, we shall presently prove, is no accident; all curves pass through these three fixed points 
independent of the damping ratio. By a proper choice of ζ the curve is adjusted to pass with a horizontal tangent 
line through one of them. Two curves are drawn. One curve at the optimum damping ratio ζS passes horizontally 
through the fixed point S and then is not horizontal at the fixed point T; the other curve at the optimum damping 

μ 0.050 0.080 0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275 0.300 0.325

A1S 10.6719 8.4984 7.6376 6.8718 6.3099 5.8757 5.5277 5.2411 5.0000 4.7937 4.6148 4.4578

A1max(ζS) 10.8562 8.7415 7.9161 7.1917 6.6690 6.2725 5.9610 5.7099 5.5036 5.3315 5.1862 5.0623

δS (%) 1.6983 2.7815 3.5173 4.4471 5.3844 6.3258 7.2687 8.2110 9.1509 10.087 11.018 11.942

A1max(ζT) 10.8126 8.6711 7.8274 7.0801 6.5341 6.1141 5.7789 5.5038 5.2733 5.0767 4.9067 4.7581

δT (%) 1.3018 1.9916 2.4250 2.9412 3.4318 3.8994 4.3459 4.7729 5.1819 5.5739 5.9500 6.3114

μ 0.350 0.375 0.400 0.425 0.450 0.475 0.500 0.525 0.550 0.600 0.650 0.700

A1S 4.3187 4.1944 4.0825 3.9812 3.8889 3.8044 3.7268 3.6551 3.5887 3.4694 3.3652 3.2733

A1max(ζS) 4.9559 4.8640 4.7842 4.7147 4.6540 4.6009 4.5543 4.5136 4.4779 4.4179 4.3760 4.3441

δS (%) 12.8588 13.768 14.668 15.559 16.440 17.310 18.171 19.020 19.858 21.501 23.099 24.650

A1max(ζT) 4.6267 4.5097 4.4047 4.3097 4.2235 4.1447 4.0725 4.0059 3.9443 3.8339 3.7378 3.6531

δT (%) 6.6586 6.9927 7.3143 7.6240 7.9225 8.2103 8.4880 8.7561 9.0149 9.5067 9.9666 10.397

Table 1.  Mass ratio, one kind of extreme large value, two kinds of maxima and relative error for f =
√

10
5 .

 

Fig. 6.  Relative error as a function of mass ratio for f =
√

10
5 .
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ratio ζT is horizontal at the fixed point T and not at the fixed point S. The main system has three fixed points just 
mentioned independent of the damping ratio.

Figure 8 represents the amplitude-frequency response characteristic curve of the attached mass for μ = 0.25 
and four various degrees of damping ratios. The dynamic vibration absorber has four fixed points N, V, W, 
and M independent of the damping ratio. From Figs. 7 and 8, the amplitude-frequency response characteristic 
curve is continuous for 0 < ζ <  + ∞. The amplitude-frequency response characteristic curve has two open upward 
peaks for zero damping ratio, where the amplitudes become infinitely large. The amplitude-frequency response 

Fig. 7.  Amplitude-frequency response characteristic curve of main mass for μ = 0.25 and four damping.
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characteristic curve has only one open upward peak for infinite damping ratio. In Figs. 7a and 8a, the three 
vertical asymptotic line equations from left to right are g = 0.8322, g = 0.9381, and g = 1.0897, respectively. In Figs. 
7b and 8b, the three vertical asymptotic line equations from left to right are g = 0.6983, g = 0.8944, and g = 1.1456, 
respectively.

According to Eqs. (61) and (66) we can obtain an important inequality A1S = A1T < A2V . Figure  9 
represents the amplitude-frequency response characteristic curves of the main mass and attached mass for 
f =

√
10
5 . It is seen that the displacement amplitude amplification factor of the attached mass is quite large, 

Fig. 8.  Amplitude-frequency response characteristic curve of attached mass for μ = 0.25 and four damping.
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three or four times as large as that of the main mass, therefore large difference is absorbed. The small amplitudes 
of the main mass are obtained at the expense of large deflections and stresses in the dynamic vibration absorber.

Equation (9) divided by Eq. (8) equals

	

X̂2

X̂1
=

∣∣X̂2
∣∣

∣∣X̂1
∣∣e

i(φ2−φ1) =

∣∣X̂2
∣∣

∣∣X̂1
∣∣e

iφ = k + i2ζg

k + µf2 − µg2 + i2ζg
� (88)

in which the quantity φ = arg X̂2
X̂1

= ωt + φ2 − (ωt + φ1) = φ2 − φ1 is known as the phase angle difference 
between the displacements x2 and x1. The argument φ is the principal value as defined by −π < φ ≤ π. As 
g → 0, so φ → 0, or as ζ =  + ∞, the dynamic vibration absorber and main system are in phase. As g → +∞, 
so φ → −π

2  rad, the dynamic vibration absorber lags behind the main system by 90°. At the fixed point N, we 
obtain that the dynamic vibration absorber and main system are in phase, namely

	 gN = f, φN = 0� (89)

Figure 10 represents the phase angle difference between the dynamic vibration absorber and main system for 
μ = 0.25 and six amounts of damping ratios. When ζ = 0, the phase angle difference mutates from 0° to − 180°, 
namely from in phase to in reverse phase. Basically, the dynamic vibration absorber lags behind the main system 
by some degrees.

Conclusions
(1) A complete new universal method of attaining the explicit exact solution to the optimum damping was 
proposed to enhance the accuracy of calculating the dynamic vibration absorber’s parameters. The attached 
mass was also suggested in coincidence with the main mass. The interaction between the main system and 
dynamic vibration absorber taken into account, a series of exact analytic solutions of displacement amplitude 
amplification factor, stiffness ratio, fixed point coordinate, and phase angle difference were deduced from the 
real number form of differential equation of load motion. The most important work in this paper is to attain the 
optimum damping ratio of the dynamic vibration absorber using L’Hospital first rule.

(2) Some characteristic parameters of both the main system and dynamic vibration absorber were calculated 
simultaneously. The mechanism of the dynamic vibration absorber was analyzed through comparing the 
displacement amplitude amplification factor between the dynamic vibration absorber and main system. The 
dynamic vibration absorber is out of phase with the main system. Basically, the dynamic vibration absorber lags 
behind the main system by some degrees.

Fig. 9.  Amplitude-frequency response characteristic curves of main mass and attached mass for f =
√

10
5 .
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(3) To one’s disappointment, some current references thought that the maximum value of the fixed point 
of the main system was obtained. In fact, the fixed point theory can obtain the extreme large value, but not the 
maximum value, which is a natural shortcoming not to be overcome. The maximum value of the displacement 
amplitude amplification factor could be attained in this paper using MATLAB® Version 7.9.0.529 (R2009b). The 
relative error between the extreme large value and maximum value increases with the increase in the mass ratio. 
The relative error between the extreme large value and maximum value is 1.3018–10.397% for the optimum 
damping ratio.

Fig. 10.  Phase angle difference between displacements x2 and x1 for μ = 0.25 and six damping.
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(4) The establishment of solving method using L’Hospital first rule will provide a theoretical foundation for 
attaining the precise optimum parameter of the dynamic vibration absorber. The solving method in this paper is 
applicable to other complex dynamic vibration absorbers.

At all events the findings presented here constitute another step toward the goal of establishing a sound 
basis for precisely predicting the dynamic characteristics of the main system and dynamic vibration absorber 
to be expected from some given known parameters of the main system, and for “designing” the desired efficient 
dynamic vibration absorber, completely without being bound to empiricism and any experimental measurement.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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