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The damping of the dynamic
vibration absorber

QikerenTian

The design parameters of the dynamic vibration absorber notably affect the motion space of the main
system. A complete new universal method of attaining the explicit exact solution to the optimum
damping was proposed to enhance the accuracy of calculating the dynamic vibration absorber’s
parameters. The interaction between the main system and dynamic vibration absorber taken into
account, many exact analytic solutions, for example displacement amplitude amplification factor,
stiffness ratio, fixed point coordinate, optimum damping ratio, and phase angle difference, were
investigated with the real number form of differential equation of load motion and using L'Hospital
first rule in minute detail. Some characteristic parameters of both the main system and dynamic
vibration absorber were gotten. The mechanism of the dynamic vibration absorber was analyzed by
comparing the displacement amplitude amplification factor between the dynamic vibration absorber
and main system. Generally speaking, the dynamic vibration absorber lags behind the main system
by certain degrees. The fixed point theory essentially achieves the extreme large value, but not the
maximum value, which is a natural shortcoming required to be overcome. The maximum value of

the displacement amplitude amplification factor was acquired adopting MATLAB® Version 7.9.0.529
(R2009b). The relative error between the extreme large value and maximum value increases with the
increase in the mass ratio. The relative error between the extreme large value and maximum value

is 1.3018-10.397% for the optimum damping ratio. The present solutions would be useful to realize
and control the precise dynamic characteristics of the main system and dynamic vibration absorber in
practice.

Keywords Dynamic vibration absorber, Hospital first rule, Optimum damping ratio, Minimization of
maximum displacement amplitude amplification factor, Fixed point independent of damping ratio, Extreme
large value, Maximum value

A machine or machine component, on which a steady alternating force with variable frequency is acting,
can take up obnoxious vibration, particularly when the machine or machine component approaches to the
resonance. In order to improve the above-mentioned vibration condition, one can first attempt to eliminate
the force. However, quite often this method also is inapplicable, impractical or even impossible. Therefore one
might change the mass or spring stiffness of the main system in an attempt to get away from such the resonance
situation, but in many cases this method also is inappropriate.

The past 116 years have witnessed an intense international research from theory and experiment in the field
of the dynamic vibration absorber, invented by Frahm in 1909. Den Hartog! deduced the tuning ratio of the
dynamic vibration absorber with respect to the main system. Timoshenko? found a simple formula giving the
proper way of tuning the dynamic vibration absorber. In 1928, Ormondroyd and Den Hartog proposed the
optimization principle of the dynamic vibration absorber in terms of minimizing the maximum amplitude
response of the main system. Five years later in 1933, following this principle, Hahnkamm® deduced the
relationship for the optimum tuning ratio of the dynamic vibration absorber for the first time. Thirteen years
later in 1946, Brock? is prejudiced against note and only one page paper which are not self-contained and self-
explanatory, and directly presented formulas for the optimum damping ratio for three cases of the dynamic
vibration absorber with damping. One year later, Brock® corrected the equation for the square of the damping
ratio. Shen and Peng et al.® analytically studied the optimal parameters of a dynamic vibration absorber with
negative stifftness by Laplace transform method when the primary system is subjected to harmonic excitation.
Shen and Xing et al.” presented a novel dynamic vibration absorber with grounded stiffness element and
amplifying mechanism, and the optimal parameters were studied in detail. Combining the two factors weighted
by the dynamic-static proportion, Su and Bian et al.® defined and optimized the control performance factor on
the peak response. Based on analytical H_ and H, optimization, Su and Bian et al.” derived the formulas of the
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optimal parameters for the lever-type inerter-based vibration absorber. Using a translational 1-DOF vibration
system and a continuous body as the host structure, Yamada and Asami'” theoretically derived the governing
equations to accurately estimate the mass ratio of the beam-type dynamic vibration absorber and the equivalent
stiffness ratio of the piezoelectric elements. Mahé and Renault et al.!! assessed the dynamic stability of this
centrifugal pendulum vibration absorber and the shifting of its operating point using an analytic dynamical
model based on a perturbation method. Tian and Gao'? suspended the in-wheel-drive motor as a mass block,
thereby mounted a dynamic vibration absorber on the unsprung mass to absorb the vibration. Harouni and
Attari et al.'® solved the governing equations by the multiple scale method, and examined, discussed and
compared the answers and their stability. Alvis and Abdelkefi'* developed the nonlinear reduced-order model
through modifying trilinear spring models to represent the impact forces, a modified van der Pol oscillator to
represent the forcing due to the vortex-induced vibrations and using the Euler-Lagrange principle to express
the equations of motion. Roozen and Urban et al.!> tested a number of different dynamic vibration absorber
designs on a silicate cement brick wall in a transmission loss facility. Park and Kwak et al.!® used theoretical
and experimental methods to realize an ultrahigh-density acoustic metasurface consisting of thin membranes
decorated with a coiled ring. Love and Taylor!” presented a method employing principal component analysis
to transform the dynamic vibration absorber loading time series into M orthogonal principal components. By
conducting a theoretical analysis and a numerical simulation based on a simplified analytical model, Maegawa
and Itoigawa!® established a design standard that presents the appropriate design conditions for dynamic
vibration absorbers to achieve smooth sliding without stick-slip. Rasid and Mizuno et al.!® gave information
about the low-frequency acceleration of active dynamic vibration absorber as an accelerometer. Hua and Wong
et al.? proposed and optimized a beam-based dynamic vibration absorber for minimizing the resonant vibration
of a general structure. Zhou and Jean-Mistral et al.?! investigated two configurations of dynamic vibration
absorber in conjunction with negative stiffness and conducted their parameter optimization according to two
tuning methodologies: the fixed points theory and the stability maximization criterion. In order to validate the
closed solutions, Barredo and Blanco et al.?? formulated an optimization problem for minimizing the standard
deviation of difference among vibration amplitudes under an excitation frequencies range. Barredo and Larios
et al.” studied two different excitation sources of random loads which are random ground motion and force
excitation. Kiran and Al-Osta et al.>* considered a damped system with a single degree of freedom (SDOF) and
supplementary dampers, including negative stiffness and inerter-based damper, to control the response based on
H, optimum control strategies. Kiran and Al-Osta et al.>* considered the nonlinear force-deformation behavior
of the tuned mass damper-clutching inerter (TMDCI) under non-stationary earthquake excitation for obtaining
the stochastic response of isolated structures using a time-dependent equivalent linearization technique. Kiran
and Ahmad et al.?® presented a study on optimizing the combination of a tuned mass damper inerter and a
negative stiffness damper (TMDI-NSD) for better performance of structures against seismic actions. In order to
increase the efficiency of the structures to resist seismic excitation, Kiran and Al-Osta et al.”” used combinations
of inerter, negative stiffness, and tuned mass damper. Kiran and Farsangi et al.28 used an innovative combination
of negative stiffness and an inerter control mechanism to protect a structure under severe seismic loadings.

Up to now, the mechanics and exact parameter optimization method of the dynamic vibration absorber are
not completely researched. Several detailed shortcomings of research results on the dynamic vibration absorber
are as follows: (1) the real number force F'sinwt and complex number force Fe“* are not discriminated,
and the complex number response displacement and real number response displacement amplitude are not
distinguished, too; (2) all amplitude-frequency response characteristic curves pass through several fixed points
independent of the damping ratio, but these fixed points are the extreme large value points not the maximum
value points at all; and (3) to the author’s knowledge and to my regret, there is not a universal method attaining
the exact solution to the optimum damping ratio of the dynamic vibration absorber.

A complete new universal method of attaining the explicit exact solution to the optimum damping of the
dynamic vibration absorber was put forward. A lot of exact analytic solutions, such as displacement amplitude
amplification factor, stiffness ratio, fixed point coordinate, and phase angle difference, were deduced in detail.
The optimum damping ratio of the dynamic vibration absorber was attained using L'Hospital first rule. Some
characteristic parameters of both the main system and dynamic vibration absorber were calculated. The
mechanism of the dynamic vibration absorber was analyzed through comparing the displacement amplitude
amplification factor between the dynamic vibration absorber and main system.

Displacement amplitude amplification factors of main mass and attached mass

In Fig. 1 let the combination m, k1 be the schematic representation of the main system under consideration,
with the alternating force F' sin wt acting on it, where m is named the main mass, and k1 the main stiffness. The
dynamic vibration absorber consists of a comparatively small vibration system m.,, k,, K, ¢, where m, is named
the attached mass, k, the attached stiffness, K the connection stiffness, and ¢ the connection damping.

There is an oil or air dashpot mechanism arranged parallel connection to the damper spring K, between two
masses m, and m,. The coefficient c is a constant depending on the kind of the damping device and numerically
is equal to the magnitude of the damping force when the velocity is equal to unity. In deriving the differential
equation of motion we will use Newton’s second law stating that the product of the mass of a particle and its
acceleration is equal to the force acting in the direction of acceleration. The differential equation of load motion
is in the matrix form

( 731 77(1]2 ) (2) +( C_C ;c ) (2) +( ]il[;rK I;Ii—K ) (2) = (5) sin wt (1)
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Fig. 1. Addition of mass-spring-spring-damper dynamic vibration absorber to mass-spring main system.

where x; and x, present the displacement of masses m, and m,, F the amplitude of sine harmonic oscillating
force, w the forced angular frequency, and t the time. The acceleration of the bgdy m is given by the second
derivative of the displacement x with respect to time and will be denoted by & = <_#. The velocity of the body m

is given by the first derivative of the displacement x with respect to time and will be denoted by & = 4Z. Assume
that the vibrating body m encounters in its motion a resistance proportional to the velocity.

In terms of Euler’s formula '® = cosx + isinx, Eq. (1) is viewed as the imaginary part of the following
expression

(o ) () (e ) () (B ) ()= (6) e e

where the lower case letter e denotes the natural constant invented by Euler in the first instance, the Roman
typei = /—1 often named the imaginary (or imkginaire in French) unit introduced by Euler at the beginning.
Consequently choose the imaginary part of X, 1 = Im X1, z2 = ImXo.

One particular solution of Eq. (2) will be of the form

Xl = X1ei“)t} (3)
X2 — X—Qeiwt
Substituting Eq. (3) into Eq. (2) yields
ki + K —miw?® +icw —K —icw X1 _(F @)
—K —icw ko + K — mow? + icw X, —\o
m wz s cw - cw > F
T4 g — Bhe g - - ) <X1> = & (5)
s cw k mow s cw &
- g met e ) T
After performing some algebra Eq. (5) is transformed into
A -1/ F
X1\ _ (1-g*+k+i2(g —k—i2g " ©)
X —k —i2¢g k+pf? — png® +i2¢g 0

To simplify our further discussion we bring these expressions into dimensionless form. For this purpose we
introduce the following notations.

Where p = % stands for the mass ratio; f = Z—? is the tuning ratio, thereof wo = 4/ :L—?Z the natural angular

frequency of dynamic vibration absorber, and w; = 4/ :1—11 the natural angular frequency of main system;

k= /TKl is the stiffness ratio; ¢ = 5+ represents the damping ratio; and g = - is the forced angular frequency

ratio. Five dimensionless variables of u (determining m,), f (m, having been determined, thus determining k), k
(determining K), { (determining c), and g (determining w) are mutually independent.
By Eq. (6), we have
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(XH) _ o (k +uf? — pg® + i2Cg> @)
X w(g? = 1)(g? = f2) + k(L + pf? — g% — pg?) +i2¢g(1 + pf? — g2 — ug?) \k +i2(g

So that
2 _ 2 . . .
X = £ ’ 2 2 2 s ,M2f 2#9 +21249- 2 2 2 {Xl e (8)
ki op(g? = 1)(g? — f2) + k(L4 puf? — g% — pg?) +i2¢g(1 + puf? — g — pug?)
N F k +1i2Cg > i
Xo=—- - =|X2|e"* (9
ki p(g? —1)(g — f2) + k(1 + pf? — g2 — pg?) +i2¢g(1 + pnf? — g% — pg?) | ©
Hence X, = |X1 eiPleiwt — |X1 etlwtter) — |X1|ei(m+¢1), z1 = | X1|sin(wt + ¢1);

Xo = | X eiwite) 4o | X2| sin(wt + 2).
Five-parameter universal displacement amplitude amplification factors for the steady state response of the
main mass and dynamic vibration absorber can be expressed as two important expressions, respectively

4 :k1’X1}:‘ kE+pf?—pg® +i2¢g
' F w(g? —1)(g% — f2) + k(1 + pf? — g2 — pg?) +i2¢g(1 + pf? — g2 — pg?) (10)
_ \/ (k+ pnf? — ng?)® +4¢%¢?
(1(g? = (9> = ) + k(1 + nf? — g° — pg®) + 4¢2* (1 + puf? — g° — pg?)?
o kx| k+i2¢g
? F w(g? —1)(g% — f2) + k(L + pf? — g% — pg?) +i2¢g(1 + pf? — g2 — pg?)

(11)

_ k2+4<'292
a \/[u(g2 = (g% = f2) + k(L + pf? — g% — pg?)]? +4Cg% (1 + puf? — g% — pg?)?

Using Egs. (10) and (11), for the given four dimensionless variables of y, f, k, {, the (g, A) diagram can be
obtained, where g is the abscissa, and A is the ordinate.

Conditions for equal ordinates of two fixed points of main system

Three fixed points of main system independent of damping ratio

Now return to Eq. (10) to see whether there are any values of g for which A, becomes irrelevant to . The formula
is expressed as

A2: k+uf2—M92 2: 1 ’ (12)
Pl =D = ) + R+ pf? - g7 - pg?) L+ puf? = g2 — pg?

We can obliterate the square sign on both sides but then have to add a +in front of the right-hand side, or written
out fully, if

plg? =19 = )+ k(L +pf? = 9> —pg?) 1+ pf? = g% — ng®
With the plus sign, Eq. (13) gives
wlg? —1)(g* = f2) + k(L +pf? —g> —pg?) 1+ pf? — g — pg?
After cross-multiplication, whence the abscissa of only one fixed point N of the (g, A) diagram is
W =) =0=gn=f (15)

Substituting Eq. (15) into the right-hand side of Eq. (12) or (14) reads the ordinate of fixed point N of the (g, A,)
diagram
1

Ay = ——
1IN TN (16)

The other alternative is the minus sign before the right-hand side of Eq. (13)

2 2
k+pf”—pg _ 1 (17)

g =02 =)+ k(U +pf2 =g —pg®) ~ 1+pf>—g¢° —pg’

After a short calculation the equation then becomes
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w(g® = 1)(g* = f*) + 2k + pf? — pg®) (L + pf* — g° — pg®)
2

= <u+”2> g =l nf? + 2 P 4 R+ Wl + o+

as)
Skt u) =0

This is a quadratic equatlon in one unknown g7, giving two roots, the fixed points S and T we are seeking. Let two
roots of this equation be g% and g%. It is seen that gsand g;. (i.e., the horizontal coordinates of the fixed points §
and T) are still functions of 4, f, and k. The root d1scr1m1nant of the quadratic equation in one unknown (18) is

A= [+ 2+ uf?) + k(L ) = p(2 4+ W) lf* (2 + uf?) + 2k(1+ uf?)] (19)
Equation (19) can be spread out to the form
A=+ £+ pf?)? 4 20k (L + )L+ £+ pf?) + 61+ ) — 2 P4+ 2+ 2uf + 12 F%) = 2uk(2 + p+ 208 + 1 £%) (20)
Again Eq. (20) can be spread out to the form

A=pP (27 + £ 2uf 4 2uf* + 1P 1) — 12 AF7 4 20 + 2uft + 12 F) 4 20k (U4 o+ 2+ 2uf 4 1 f2)

. .y . . 21

= 2uk(2+ p+ 2uf? + 1 ) + K2 (1 + p)? 2D
At last Eq. (21) can be reduced to the form

A=y (f7 = 1)+ 2uk(f* = 1)+ K1+ p)? = (uf* — p+ k) + pk* (2 + ) (22)

According to the extracting root formula of quadratic equation in one unknown, the abscissas of fixed points S
and T of the (g, A,) diagram are, respectively

B \/u+uf2+u2f2+k(1+u)—\/(qu—u+k)2+Mk2(2+u) (23)
gS - 2
2u+ p

et a2 R4 )+ (0 = p 4 k)2 A+ k(2 p) (24)
9= 24+ p?

According to Eq. (18), we construct the following auxiliary function

2
F(g)—(u+”2>g R R (N PO SRe AR BET
Through Egs. (25), (18), (23) and (24), we get
FO) = 1 + 5L k4% > 0 Plgs) = Flar) =0 26)

1+ pf? (1 +uf?)? 1+ pf? pf
F( H#) (1+ )W—[uwﬁ(lw)w(lwﬂ T3 +uf’+ - k(4 pf?) (27)

Equation (27) can be reduced to the form

1+ pf? _ H 212 1% 2 4 2,4
F(\/ T+ u )2(1+M)2(2+M)(1+Nf) _2(14_7“)(2‘*‘2/”0 +uf +utf) (28)

Equation (28) can be spread out to the form

@+2u+2uf +pft+ 27 7+ 27 + 1P (29)

1 2 ’ . . 3 4
F( + S ) }7(2+M+4uf2+2u2f2+2u2f4+Mdf4)*

I
1+p 2(1 + p)? 2(1 + p)?

Finally Eq. (29) can be reduced to the form

[T+puf? _ p?0-/%?
F< 1+u>_ 2(1 4 )2 =0 (30)

Through Egs. (18), (26), (30) and the open upward property of parabola, we have

1 2
0<gs< M <y, (31)
1+u
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Substituting Egs. (23) and (24) into the right-hand side of Eq. (12) or (17) reads the ordinates of fixed points S
and T of the (g, A|) diagram, respectively
A : (32)
15 =
L+ pf? = g8 — ngs
1

91 + ngp —1—pf?

AlT -

Four fixed points of dynamic vibration absorber independent of damping ratio
Now return to Eq. (11) to see whether there are any values of g for which A, becomes independent of {. The
formula is of the form

A2 = F . L 2 (34)
2L = (P = ) + k(L pf? - g% - ug?) L+ pf? = g° — pg?
We can obliterate the square sign on both sides but then have to add a £ in front of the right-hand side, or written
out fully
k 1
2 2 2 2 _ 2 5y =+ 2 _ 2 2 (35)
pg® =g = )+ k(L +pf? —g* —pg®) 1+ pf? —g*—ng
With the plus sign, Eq. (35) gives
k 1
(36)

u(g? = 1)(g? = f2) + k(L + pf? — g% —pg?) 1+ puf? — g% — pg?

After cross-multiplication, whence the abscissas of two fixed points N and W of the (g, A,) diagram are,
respectively

g = - =0=>gv="f gw=1 (37)

Substituting Eq. (37) into the right-hand side of Eq. (34) or (36) reads the ordinates of two fixed points N and W
of the (g, A,) diagram, respectively
1

1
AN S Ao (38)

According to Egs. (15) and (37), as well as Eqgs. (16) and (38), the coordinates of the fixed point N in the dynamic
vibration absorber are the same as those in the main system. The other alternative is the minus sign before the
right-hand side of Eq. (35)

k 1
w(g®> =) — )+ k(L +uf> — > —ng®)  1+npf>— g% — ng? 9

After a short calculation the equation then becomes
wg* = 1)(g" = %) + 2k(L+ pf* — g% — pg®) = pg" — [+ pf* +2k(1 + p)lg” + uf* + 2k(1+ pf*) = 0 (40)
The discriminant of the quadratic Eq. (40) is
A= a1+ 12) + 261+ )] — 42 — 8k(1 + )] (41)
Equation (41) can be spread out to the form
A= pP(1+ ) + 4pk(L+ f2) (14 p) + 46> (1 + p)® — 4p” 2 = 8k (1 + puf?) (42)
Equation (42) can be reduced to the form
A= (1= f2)” + dpk(p — 1) (1 = f2) + 4k (1 4 p)? (43)
To the last Eq. (43) can be reduced to the form
A= [p—pf? +2k(p—1)]* + 16uk> (44)

The abscissas of fixed points V.and M of the (g, A,) diagram are, respectively
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\/u+uf2+2k(1+u) — /I — 1 f? + 2k(pu — 1)]% + 16k> (45)
gv =
2p
\/u+uf2+2k(1+u)+ VI — pf? +2k(u — 1] + 16k> (46)
gm = 21&

According to Eq. (40), we constitute the following auxiliary function
®(g) = pg" — [+ uf? + 2k(1 + w)g® + pf? + 2k(1 + uf?) (47)
Through Egs. (47), (40), (45) and (46), we get

B(0) = pf? +2k(1+ pf?) >0, @(gv) = P(gu) =0 (48)

L+pf2) (14 uf?)? 1+ f? 2 2 2
‘I’<\/ T+ )—u L _(“1+u +2k) (L pf7) + pf” + 21+ pf) (49)

Equation (49) can be reduced to the form

14+puf?2y) Iz 22 2 1+puf! 2
‘1’<\/ T+ )—(1+u)2(1+uf) u(f T >+uf (50)

Finally Eq. (50) can be reduced to the form

[T+pf?\ _ p?(Q-r%7°
(I)( 1+u)_ (14 p)? =0 51

Through Egs. (40), (48), (51) and the open upward property of parabola, we have

1+ pf?
1+p

0<gv < <gm (52)

Substituting Egs. (45) and (46) into the right-hand side of Eq. (34) or (39) reads the ordinates of fixed points V'
and M of the (g, Az) diagram, respectively

A ! (53)
ov =
L+ pf? = g3 — ngy
A ! (54)
oM =
s + gy — 1= pf?
Equal ordinates of two fixed points S and T of main system
Through Egs. (23) and (24), we have (or the sum of two roots of quadratic equation in one unknown (18))
L+ f2+pf?  k(1+
g%—l—g% —9 / wf ( ©) (55)

24 pu 2p + p?

By changing the stiffness ratio k, two fixed points S and T can be shifted up and down the curve for {=0. By
changing k, one point goes up and the other down. Clearly the most favorable case is such that first by a proper
choice of k two fixed points are adjusted to equal heights. The next objective is to adjust the stiffness ratio k so
that the ordinates of two fixed points S and T are equal, viz.

Ais = Air (56)
Substitute this condition (56) in Egs. (32) and (33) with the result that

2 2_2(1+Mf2)

= 57
gs t9gr T+ (57)
Equation (57) is equal to Eq. (55) with the optimum stiffness ratio
p(— £
k= <1 58
TR U<y (58)

Inserting Eq. (58) into Eqs. (23) and (24), respectively, produces
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L+p

PR TVER (e (60
I

gr =

gS:\/l—FﬂfQ_(l—fQ)\/m (fgl) (59)

Inserting Eq. (59) into Eq. (32) and inserting Eq. (60) into Eq. (33) produce the extreme large value

24

A15=A1T=1_7l}2 (f<1 (61)

According to Egs. (16) and (61) we can obtain this inequality A1n < A1s = Air. Figure 2 represents
displacement amplitude amplification factors for the steady state response of the main system at two fixed points
Sand T for 4=0.25 and the arbitrary k. In Fig. 2a, there exists an optimum operating point Q whose abscissa is
0.096 (in terms of Eq. (58)) and whose ordinate is 5 (in terms of Eq. (61)). In Fig. 2b, there exists an inequality
Ars > Aur.

Coordinates of two fixed points V and M of dynamic vibration absorber for optimum stiffness
ratio
Inserting Eq. (58) into Eq. (45) produces

34 p— f2 2 1P S+ —1)2 1 16
o [2EH FP 4 pf? = 5/ Ap 2 - 12 + 16 (7<) 62)
2(14p) -
Equation (62) can be spread out to the form
3 _ f2 2 _1=F2 T8 + 1442 + 8u3 + 4
o = tu—fr4uf 1+M\/ +8u + 14p2 +8p® + (f<1) (63)
214 p) -

In the end, we attain the following results

gV_\/3+u—f2+uf2—(1—f2)\/1+6u+u2 <D (64)

201+ p)

2(14p)

gM:\/3+uf2+uf2+(1f2)\/m (7<) (65)

Inserting Eq. (64) into Eq. (53) produces
2
Agy = (f<1 (66)

A= P Tt —1—p)

Inserting Eq. (65) into Eq. (54) produces

AQJM =

2
(f<1) 67
(L= + p+ /1 +6p+ p?) )
According to Egs. (67), (38) and (66) we can obtain this inequality A2ps < Aoy < Aow < Agvy.

Optimum damping ratio of dynamic vibration absorber

Figure 3 represents the amplitude-frequency response characteristic curve of main mass for =025, f = ¥C

5

and some different damping ratios. The maximum displacement amplitude amplification factor of main mass
A ax(Q) decreases at first and then increases with the increase of the damping ratio (. In Fig. 3a, the maximum
value becomes Almax(C= 0) = +co. In Fig. 3b, the maximum value becomes Almax((: 0.01)=12.37. In Fig. 3c,
the maximum value becomes A, ({=0.0267) =5.504. In Fig. 3d, when the maximum displacement amplitude
amplification factor becomes the minimum value min{A, ()}, the optimum damping ratio is {=0.0351. If
{=0, the damping force is zero, no work is done, and hence the resonant amplitude is infinite. But when (= + oo,
two masses are locked to each other so that their relative displacement is zero and again no work is done.
Somewhere in between 0 and + - there is a damping for which the product of damping force and displacement
becomes a maximum, and then the resonant amplitude will be small. In Fig. 3e, the maximum value becomes
A 1.x((=0.05)=6.828. In Fig. 3f, the maximum value becomes A, ({= +ec0) = +oco.

ax
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Fig. 2. Displacement amplitude amplification factors of main mass at points S and T for y=0.25.

Figure 4 represents the maximum displacement amplitude amplification factor of the main mass as a function
of the damping ratio for y=0.25 and f = @. It is interesting to follow that a V-shaped curve happens for

increasing damping. When the damping becomes infinite, two masses m, and m, are virtually clamped together
and we have a single-degree-of-freedom system with a mass m, +m,. In adding the dynamic vibration absorber
to the main system, the object is to bring the resonant peak of the amplitude down to its lowest possible value.
With (=0 the peak is infinite; with {= + o it is again infinite. Somewhere in between there must be a value of
( for which the peak becomes a minimum. Firstly according to Eq. (10), A, can be attained for 0<g< +oo.
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(b) For {=0.01, maximum value 4. ({=0.01) = 12.37.
Fig. 3. Amplitude-frequency response characteristic curve of main mass for y=0.25and f = @.

Secondly in Fig. 4 the maximum displacement amplitude amplification factor reaches minimum value for
corresponding damping ratio 0.025.
Start from Eq. (10)

scrg? = bt nf” = pug®) = Atlulg® — V(9" = f*) + k(1 +pf* —g° = pg”))? (68)
AL+ pf? — g% — pg)* — 1
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(d) For {={7r=0.0351, maximum value 4 m.({=0.0351) = 5.273.

Figure 3. (continued)

On the basis of the formula for the difference of squares, Eq. (68) can be written as

_ ktpf? = pg® + Ailp(g® = V(9 = f) + k(L + pf? — g* — ng?)]
Ar(L+pf? —g* — pg?) +1

o R nf? = pg® = Apg® — D(g® — f*) + k(L + pf* — g° — pg®)]
A1+ pf? = g% —pg®) — 1

49°¢*

(69)
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Figure 3. (continued)

Optimum damping ratio at fixed point S
Introducing Eq. (32) into Eq. (17) leads to

Arlp(g® = )¢ — )+ k(L + pf? — g° — ug®) = ng® — k — uf* (70)

From Eq. (32) we find
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Fig. 4. Maximum displacement amplitude amplification factor of main mass and damping ratio relation for
= — V1o
p=025and f = Y=,

AL+ pf? —g* —pg®) =1 (71)
Introducing Egs. (70) and (71) into Eq. (69) leads to

Rt uf? = pg® £ Alule® = D" — ) + R+ pf? = g° —pgd)] 5
A(L+pf? —g* —pg®) — 1

49°C* = (k + pf* — png®)

The conventional method such as H_ took a slightly different quantity only instead of g, that is to say
g = gs + 1075, etc. The conventional method such as H_ is approximate. LHospital rule (or UHopital in
French) is divided into UHospital first rule and UHospital second rule. CHospital rule is exact. According to Eqs.
(70) and (71), as g — ¢s, both the numerator and denominator of the right-hand side of Eq. (72) approach zero,
and this indeterminant expression must be evaluated by using UHospital first rule. The limiting form of Eq. (72)
can be rewritten as

pg® —k —pf? — Aule® —D(¢* — ) + k(1L + pf? — ¢° — pug®)] (73)
Ar(g? + pg? =1 —pf?)+1

49°¢% = (k+ pnf* — ng?)

lim
g—gs

According to UHospital first rule, the numerator and denominator of the right-hand side of Eq. (73) should be
separately differentiated with respect to g to yield the limiting form of this equation as

k 2 _ 2
46%¢% = lim M [Ai +u(l+ 2 —2¢%) + k(1 + u)} (74)
9—9s +p 1

Introduce Egs. (58), (59) and (61) into Eq. (74). This is a long and tedious job, which leads to the result

s . WA= (3+2u m
¢ _92?34(1+u)492 2+ pu —2 241 (F=1) 75)

Introducing Eq. (59) into Eq. (75), we obtain

o (-2 [B2e—22+ ) /5] L+ + - )/ -, -
¢ = 401+ p)3 ' @+ )1+ pf2)2—pu(l— f2)2 (f<1)
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Rationalizing the result, we obtain the optimum damping ratio at fixed point S arranged in the ascending form
of u

2 2f£2 2 2 2 f2 T
cs—u<1—f2>\/4<1” T L T (r<y )

+p)? 24 6pf? = pft 4202 f2 + 202 f4 4 B f4

cwq cwi c

—_— =4 — p— —_ C
Because of ¢ = 261 T 2miw? T 2maiwr Homaor

Cs = M\/W (3 RV ﬁ) = pCpen-

Optimum damping ratio at fixed pointT
Introducing Eq. (33) into Eq. (17) leads to

Arlu(g® = 1)(g* = f2) + kQ + pf? — ¢* — ng®)) =k + nf® — pg’ (78)

From Eq. (33) we find

= (¢pen. When f=0, we obtain the conventional result!

AL+ pf? —g° — pg®) = -1 (79)
Introducing Egs. (78) and (79) into Eq. (69) leads to

k+pf? —pg® — Aifulg® — 1)(g*> — f2) + k(1 + pf? — ¢° — pg®)]

42C% = (ud® — b — uf? 30
g°¢ (g wf”) AL(L+pf2 — g2 — pg?) + 1 (80)
With the aid of LHospital first rule, the limiting form of Eq. (80) can be rewritten as
Pk pf? 4 Adlu(g® = 1)(g® = £2) + k(L + pf? — g% — 1g?)]
14022 = 1 2 _ g 2\ Mg M 1K 81
g°¢ = lim (ug wf”) A T pg? — T ) -1 (81)
Separately differentiating the numerator and denominator with respect to g attains
2 2
. —k—pf" [ p 2 2
422:hm'ug7[—+ 29" —1— —k(1+ 82
g ¢ = lim = A, T2 f7) = k(1 +p) (82)

Introducing Egs. (60), (58) and (61) into Eq. (82) leads to

2 o =2 (3420 p
¢ 791552 414+ p)*g®> \ 24+ p 2 24 F=b (83)

Introducing Eq. (60) into Eq. (83), we obtain

PO [3+2u+22+u) /35 [1+0f° - (- 1)/35]
BTCENE 2+ p)(1+puf?)? — p(l - f2)?

(f<1 (84)

Rationalizing the result, we deduce the optimum damping ratio at fixed point T

_ 2 0 3+ 5uf? +2u2f2 + (1432 + 6uf? +2u2f2) /35 .
CT‘“(l_f)\/4(1+u>3' R Ty ety ey ey (f<1) 69

The real-world scenarios include the main system having damping force and nonlinear superstructures studied
in the future research.

Characteristics of main system and dynamic vibration absorber
Figure 5 represents the amplitude-frequency response characteristic curve of the main mass for y=0.25,
f= @ and two optimum damping ratios. The curve of Fig. 5a shows that there is a horizontal tangent line

at point S whose extreme large value is 5 smaller than the maximum value 5.504. Point S has the extreme large
value but not the maximum value. The curve of Fig. 5b shows that there is a horizontal tangent line at point T
whose extreme large value is 5 also smaller than the maximum value 5.273. Point T also has the extreme large
value but not the maximum value. Both the fixed point S and point T have the extreme large value but not the
maximum value. In Fig. 5 large difference is absorbed, for example 5 and 5,504, or 5 and 5.273.

The quantity A, ; of Eq. (61) denotes an extreme large value at fixed point S. In Fig. 3c we obtain a maximum
value Almax((s) for the optimum damping ratio (S. The relative error between the extreme large value at fixed
point S and maximum value is denoted by
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(b) For {= {r=0.0351 at fixed point T.

Fig. 5. Amplitude-frequency response characteristic curve of main mass for y=0.25and f = @.
AIS - Al max(cs) AlS
0s = | ———F——>| x 100% = |1 — —————| x 100% 86
s Al max(CS) ° Al max(CS) ° ( )

The quantity A, ;. of Eq. (61) denotes an extreme large value at fixed point T. In Fig. 3d we obtain a maximum
value A, ({;) for the optimum damping ratio {,. The relative error between the extreme large value at fixed
point T'and maximum value is denoted by
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Fig. 6. Relative error as a function of mass ratio for f = @.

u 0.050 0.080 |0.100 |0.125 |0.150 |0.175 |0.200 |0.225 |0.250 |0.275 |0.300 |0.325

A 10.6719 | 8.4984 | 7.6376 | 6.8718 | 6.3099 | 5.8757 | 5.5277 | 5.2411 | 5.0000 | 4.7937 | 4.6148 | 4.4578
A ) | 10.8562 | 8.7415 | 7.9161 | 7.1917 | 6.6690 | 6.2725 | 5.9610 |5.7099 | 5.5036 | 5.3315 | 5.1862 | 5.0623
3 (%) 1.6983 | 2.7815 | 3.5173 | 4.4471 | 5.3844 | 6.3258 | 7.2687 | 8.2110 | 9.1509 | 10.087 | 11.018 | 11.942
Apnax(Cp) | 10.8126 | 8.6711 | 7.8274 | 7.0801 | 6.5341 | 6.1141 | 5.7789 | 5.5038 | 5.2733 | 5.0767 | 4.9067 | 4.7581
8, (%) 1.3018 | 1.9916 | 2.4250 | 2.9412 | 3.4318 | 3.8994 | 4.3459 | 4.7729 | 5.1819 | 5.5739 | 5.9500 | 6.3114
u 0.350 0.375 |0.400 |0.425 |0.450 |0.475 |0.500 |0.525 |[0.550 |0.600 |0.650 |0.700

A 4.3187 | 4.1944 | 4.0825 | 3.9812 | 3.8889 | 3.8044 | 3.7268 | 3.6551 | 3.5887 | 3.4694 | 3.3652 | 3.2733
A nax(Cs) | 49559 | 4.8640 | 4.7842 | 4.7147 | 4.6540 | 4.6009 | 4.5543 | 4.5136 | 4.4779 | 44179 | 43760 | 4.3441
3 (%) 12.8588 | 13.768 | 14.668 | 15.559 | 16.440 | 17.310 | 18.171 | 19.020 | 19.858 | 21.501 | 23.099 | 24.650
Ala(Cp) | 46267 | 4.5097 | 4.4047 | 4.3097 | 4.2235 | 4.1447 | 4.0725 | 4.0059 | 3.9443 | 3.8339 | 3.7378 | 3.6531
3, (%) 6.6586 | 6.9927 | 7.3143 | 7.6240 | 7.9225 | 8.2103 | 8.4880 | 8.7561 | 9.0149 | 9.5067 | 9.9666 | 10.397

Table 1. Mass ratio, one kind of extreme large value, two kinds of maxima and relative error for f = Y22,
AIT - Al max(gT) AlT
oy = |————F——>—>| x 100% = |1 — ————| x 100% 87
r Al max(CT) ° Al max(CT) 0 ( )

The relative error between the extreme large value and maximum value is shown in Fig. 6 and the corresponding
data are given in Table 1 for f = @. It is seen that the relative error between the extreme large value and

maximum value increases with the increase in the mass ratio. The relative error between the extreme large value
at fixed point S and maximum value is 1.6983-24.650%. The relative error between the extreme large value at
fixed point T and maximum value is 1.3018-10.397%. The relative error at the fixed point T is smaller than one
at the fixed point S. The optimum damping ratio is chosen as the form of Eq. (85) at the fixed point T.

Figure 7 represents the amplitude-frequency response characteristic curve of the main mass for y=0.25 for
different damping ratios. We observe a remarkable peculiarity, viz., that all four curves intersect at three fixed
points N, S, and T. This, we shall presently prove, is no accident; all curves pass through these three fixed points
independent of the damping ratio. By a proper choice of { the curve is adjusted to pass with a horizontal tangent
line through one of them. Two curves are drawn. One curve at the optimum damping ratio {; passes horizontally
through the fixed point S and then is not horizontal at the fixed point T; the other curve at the optimum damping
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Fig. 7. Amplitude-frequency response characteristic curve of main mass for y=0.25 and four damping.

ratio (. is horizontal at the fixed point T'and not at the fixed point S. The main system has three fixed points just
mentioned independent of the damping ratio.

Figure 8 represents the amplitude-frequency response characteristic curve of the attached mass for y=0.25
and four various degrees of damping ratios. The dynamic vibration absorber has four fixed points N, V, W,
and M independent of the damping ratio. From Figs. 7 and 8, the amplitude-frequency response characteristic
curve is continuous for 0 < {< + 0. The amplitude-frequency response characteristic curve has two open upward
peaks for zero damping ratio, where the amplitudes become infinitely large. The amplitude-frequency response
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Fig. 8. Amplitude-frequency response characteristic curve of attached mass for y#=0.25 and four damping.

characteristic curve has only one open upward peak for infinite damping ratio. In Figs. 7a and 8a, the three
vertical asymptotic line equations from left to right are g=0.8322, g=0.9381, and g=1.0897, respectively. In Figs.
7b and 8b, the three vertical asymptotic line equations from left to right are g=0.6983, g=0.8944, and g=1.1456,
respectively.

According to Egs. (61) and (66) we can obtain an important inequality A1s = A1 < Aav. Figure 9
represents the amplitude-frequency response characteristic curves of the main mass and attached mass for
f= @. It is seen that the displacement amplitude amplification factor of the attached mass is quite large,
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three or four times as large as that of the main mass, therefore large difference is absorbed. The small amplitudes

of the main mass are obtained at the expense of large deflections and stresses in the dynamic vibration absorber.
Equation (9) divided by Eq. (8) equals

X 2 X 2

S

i(p2—p1) _ ‘XQ

Tkt uf? - pg? +i2(g (88)

X1

in which the quantity ¢ = arg % = wt + w2 — (Wt + ¢1) = Y2 — 1 is known as the phase angle difference
between the displacements x, and x,. The argument ¢ is the principal value as defined by —m < ¢ < 7. As
g — 0, s0 ¢ — 0, or as {= + o, the dynamic vibration absorber and main system are in phase. As g — +o0,
so0 ¢ — —7% rad, the dynamic vibration absorber lags behind the main system by 90°. At the fixed point N, we
obtain that the dynamic vibration absorber and main system are in phase, namely

gn=1[f, ¢n=0 (89)

Figure 10 represents the phase angle difference between the dynamic vibration absorber and main system for
$#=0.25 and six amounts of damping ratios. When (=0, the phase angle difference mutates from 0° to—180°,
namely from in phase to in reverse phase. Basically, the dynamic vibration absorber lags behind the main system
by some degrees.

Conclusions

(1) A complete new universal method of attaining the explicit exact solution to the optimum damping was
proposed to enhance the accuracy of calculating the dynamic vibration absorber’s parameters. The attached
mass was also suggested in coincidence with the main mass. The interaction between the main system and
dynamic vibration absorber taken into account, a series of exact analytic solutions of displacement amplitude
amplification factor, stiffness ratio, fixed point coordinate, and phase angle difference were deduced from the
real number form of differential equation of load motion. The most important work in this paper is to attain the
optimum damping ratio of the dynamic vibration absorber using UHospital first rule.

(2) Some characteristic parameters of both the main system and dynamic vibration absorber were calculated
simultaneously. The mechanism of the dynamic vibration absorber was analyzed through comparing the
displacement amplitude amplification factor between the dynamic vibration absorber and main system. The
dynamic vibration absorber is out of phase with the main system. Basically, the dynamic vibration absorber lags
behind the main system by some degrees.
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Fig. 10. Phase angle difference between displacements x, and x, for ¢ =0.25 and six damping.

(3) To one’s disappointment, some current references thought that the maximum value of the fixed point
of the main system was obtained. In fact, the fixed point theory can obtain the extreme large value, but not the
maximum value, which is a natural shortcoming not to be overcome. The maximum value of the displacement
amplitude amplification factor could be attained in this paper using MATLAB® Version 7.9.0.529 (R2009b). The
relative error between the extreme large value and maximum value increases with the increase in the mass ratio.
The relative error between the extreme large value and maximum value is 1.3018-10.397% for the optimum

damping ratio.
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(4) The establishment of solving method using U'Hospital first rule will provide a theoretical foundation for
attaining the precise optimum parameter of the dynamic vibration absorber. The solving method in this paper is
applicable to other complex dynamic vibration absorbers.

At all events the findings presented here constitute another step toward the goal of establishing a sound
basis for precisely predicting the dynamic characteristics of the main system and dynamic vibration absorber
to be expected from some given known parameters of the main system, and for “designing” the desired efficient
dynamic vibration absorber, completely without being bound to empiricism and any experimental measurement.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable
request.
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