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Wind energy has become a key answer to the world’s energy problems, providing a clean and 
sustainable option instead of relying on fossil fuels. Enhancing wind energy systems and energy 
management is essential through efficient wind speed prediction. However, the complex nature 
of wind speed data contains significant challenges with existing forecasting models for long-term 
nonlinear forecasting accuracy, and this causes a lack of wind energy predictions, which may 
cause false distributions of energy. This study proposes a multi-step methodology that integrates 
Variational Mode Decomposition (VMD) with advanced machine learning like Extreme Gradient 
Boosting (XGBoost), Adaptive Boosting (AdaBoost), Light Gradient Boosting Machine (LightGBM), 
K-Nearest Neighbor (KNN), and transformer-based model (Informer) to improve long-term wind speed 
forecasting. The approach involves data collection from the NASA Power project, which consists of 35k 
samples of wind speed data, with performance evaluated on R-squared (R²) score and error metrics. 
The proposed approach demonstrated state-of-the-art performance, with LightGBM achieving the 
highest R² of 98% and the lowest error metrics. XGBoost and KNN performed slightly lower in R², 
achieving 97% score. Despite the high performance of the Informer model, it demonstrated the 
lowest in scores with a 78% R² score. The study’s novelty lies in highlighting the effectiveness and 
efficiency of VMD in addressing the complexities of wind speed data and underscores the potential of 
combining decomposition techniques with advanced machine learning models for accurate wind speed 
forecasting.

Improved technologies around the world cause an increased rate of fuel consumption, impacting the increased 
prices and high impact of CO2 emissions1. As the world faces the dual crises of resource depletion and 
environmental degradation caused by non-renewable energy consumption, wind power stands out for its 
affordability, abundance, and minimal ecological impact2. Wind energy, alongside solar power, is one of the 
most reliable renewable energy sources, capable of addressing the growing global energy demand driven by 
population growth and industrialization3. Wind energy has become a key answer to the world’s energy problems, 
providing a clean and sustainable option instead of relying on fossil fuels. As the world transitions toward cleaner 
energy systems, wind power is playing a pivotal role in mitigating climate change and ensuring a sustainable 
energy future4. Continued innovation in wind energy technology and forecasting methods will be vital to 
overcoming current limitations in the lack of wind energy predictions, which may cause false distributions 
of energy and managing demand difficulties5. However, challenges such as the complex nature of wind speed, 
along with limitations in meteorological data quality, hold back long-term forecasting accuracy6–9. Despite these 
challenges, advancements in forecasting techniques are crucial for balancing supply and demand in power grids 
and reducing reliance on fossil fuels6–9. Efficient wind speed forecasting is important in enhancing wind energy 
related systems, as it enhances energy management and grid stability10.

Recent studies have demonstrated the effectiveness of various decomposition techniques in handling the non-
stationary nature of wind speed data. Sareen et al.11 combined k-nearest neighbor (KNN), Complete Ensemble 
Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), and Bidirectional Long Short-Term Memory 
(BILSTM) for signal de-noising. When demonstrated on a dataset from the National Institute of Wind Energy 
(NIWE), their model achieved results with an R² of 94%, a Root Mean Squared Error (RMSE) of 0.41, and an 
Mean Absolute Error (MAE) of 0.31 for next-hour wind speed forecasting. Similarly, Bommidi et al.2 developed 
a hybrid model combining Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise 
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(ICEEMDAN) and a transformer model. When applied to wind farms in Block Island and Texas, their approach 
achieved remarkable results with an R² of 90% and an RMSE of 0.75 for 48-hour forecasts. Variational Mode 
Decomposition (VMD) combined with an autoencoder and optimized fuzzy cognitive mapping network is 
introduced in6. Their model demonstrated excellent performance for 144-hour forecasts when applied to wind 
speed data of three different coordinates in western mountains of Chongqing, China, with an R² of 98% and an 
MAE of 0.462. In a comparative analysis, Liang et al.12 evaluated seven different decomposition methods combined 
with Long Short-Term Memory (LSTM) for short-term forecasting, concluding that VMD outperformed other 
methods with an MAE of 0.086 and an RMSE of 0.112 for 5-hour predictions. The application of transformer 
architecture and deep learning models has shown promising results in wind speed forecasting. Wang et al.10 
introduced a hybrid model combining random forest feature selection with a transformer for multi-step-ahead 
forecasting. Using National Renewable Energy Laboratory (NREL) data, their model achieved an MAE of 0.52 for 
36-hour predictions, though with a moderate R² of 44%. Zhang et al.13 developed a more sophisticated approach 
using a multi-head attention-based probabilistic Convolutional Neural Networks (CNN) with a BiLSTM model, 
achieving an RMSE of 0.77 and an MAE of 0.56 for day-ahead forecasting at 2022 Winter Olympics venues. Lin 
et al.14 developed an adaptive spatiotemporal feature fusion transformer (GAOformer), performing with MAE 
1.45 and Mean Squared Error (MSE) 3.85 for 2 h forecasting using data taken from the Fujian wind field. Several 
researchers have focused on developing models adapted to specific geographical and climatic conditions. In 
the Arctic region, Li et al.15 combined CEEMDAN with a CNN-LSTM model, achieving an MSE of 0.3960 and 
an RMSE of 0.6293 for 16-hour predictions using ERA5 reanalysis data. In Pakistan, Bashir et al.3 integrated 
decomposition techniques with Harris hawk’s optimization and a sequence-to-sequence model, achieving for 
2-day predictions using World Bank data an RMSE of 0.639 and a MAE of 0.474. Chen et al.4 developed a 
spatial transfer-based hybrid model using CNN-LSTM-Autoencoder architecture for Chinese meteorological 
data, achieving impressive results with an MAE of 0.25 and an RMSE of 0.34 for 30-minute predictions. Recent 
research has explored innovative combinations of different methodologies. Jiang et al.16 integrated VMD, Graph 
Neural Networks, and Temporal Convolutional Networks for multi-step forecasting, establishing good results 
for R² and RMSE with 85% and 0.39, respectively, for 12-hour predictions using data from Shenzhen. Hilbert–
Huang method with a nonlinear autoregressive dynamic neural network combined in17. Achieving prediction 
for 1 day ahead at Karamay wind farm for R² and RMSE with 90% and 1.99, respectively. Houndekindo et al.18 
combined the gradient boosting algorithm in place of the random forest model. With the use of data from 
Environment and Climate Change in Canada (ECCC), achieved a next hour wind speed prediction MAE of 
1.13 and RMSE of 1.47. Yu et al.19 maintained the combination of CNN with time-frequency recurrent neural 
network, performed an MAE of 1.32 and RMSE of 1.71 on 30-min wind speed forecasting with data obtained 
from the National Data Buoy Center. Particular attention has been paid to forecasting wind speed for a short-
term period. Jiang et al.20 developed a Convolutional Gated Recurrent Unit network (CGRU) model with feature 
selection alongside secondary decomposition using Extreme Gradient Boosting (XGBoost), achieving an RMSE 
of 0.74 and an MAE of 0.53 for 2 h forecasting in Shandong Province. While focusing primarily on wind speed, 
some researchers have extended their work to wind energy applications. Yuan et al.21 combined an improved 
butterfly optimization algorithm with a relevance vector machine and Adaptive Boosting (AdaBoost) for short-
term wind power prediction, achieving an R² of 95% and an RMSE of 10.403 for 15-minute predictions. Zeng et 
al.22 developed a Light Gradient-Boosting Machine (LightGBM) and Artificial Neural Network (ANN) hybrid 
model for wind power density forecasting across diverse terrains, achieving an average R² of 97% and an MAE of 
10.55 for 1-hour forecasting. Al-Quraan et al.23 proposed a novel method for wind energy prediction in Jordan 
using the Whale Optimization Algorithm (WOA) to optimize parameters for Weibull, Gamma, and Rayleigh 
distribution models. The study evaluated wind energy potential across nine sites, achieving high accuracy with 
RMSE as low as 0.01013 and R² up to 0.98836. Al-Mhairat and Al-Quraan24 evaluated wind energy potential in 
Jordan using Weibull, Rayleigh, and Gamma distribution models, optimized with Particle Swarm Optimization 
(PSO), Grey Wolf Optimizer (GWO), and Whale Optimization Algorithm (WOA). The study found that 
the Gamma distribution combined with PSO (G-PSO) achieved the best performance, with RMSE as low as 
0.00788 and R² up to 0.99777. Al-Quraan and Al-Mhairat25 compared different power models for calculating 
capacity factor and levelized cost of energy (LCoE) across multiple airport sites, with King Hussein Airport 
demonstrating the best results. The findings suggest that the exponential power model Q3(v) outperforms other 
models in terms of LCoE and capacity factor. Darwish and Al-Quraan26 utilized machine learning techniques 
to assess wind energy potential in Jordan, comparing the normal and Weibull probability distribution functions. 
Their study found that the normal PDF outperformed the Weibull PDF in estimating extractable wind energy, 
achieving improved accuracy through the application of 24 classifier algorithms. Stathopoulos et al.27 reviewed 
recent advancements in urban wind energy, focusing on wind resource assessment methods, including CFD 
and wind tunnel testing, and the integration of building-mounted wind turbines. The study emphasizes the 
need for further research in urban aerodynamics to optimize wind energy generation in urban environments. 
Al-Quraan et al.28 evaluated urban wind energy potential by comparing wind tunnel measurements with field 
data from two Montreal buildings, demonstrating less than 5% error in homogeneous terrain and up to 20% in 
non-homogeneous conditions, thus validating the wind tunnel approach for initial assessments.

Based on the literature review, various research studies demonstrated the concept of wind speed forecasting 
based on short-term and long-term forecast horizons using different machine learning models and decomposition 
methods in different areas, as summarized in Table 1. This table reveals the novelty of our paper compared with 
the current literature.

The contribution of this study is integrating VMD with advanced machine learning algorithms and transformer 
model to demonstrate accurate long-term forecasting of wind speed at 10 m using while accounting for the 
uncertainty and stochastic behavior of future wind speed. The study introduces a novel integration of VMD 
with machine learning and transformer models achieving lower errors than existing decomposition methods 
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in Table  1 for long-term forecasting. The approach used in this study consists of multiple stages, beginning 
with the decomposition method, followed by hyperparameter tuning, and the implementation of machine 
learning and transformer models. Following this approach, the rest of the paper is organized as follows: Data and 
Methods presents the theory behind the algorithms used, describes the decomposition method, and explains 
the dataset employed. Results discuss the outcomes obtained from the proposed algorithms and compare them 
with previous studies. Finally, the conclusion summarizes the proposed methodology findings derived from it.

System framework
The framework for wind speed forecasting involves a multi-step methodology that integrates data collection, 
feature decomposition, hyperparameters tuning and advanced machine learning techniques to achieve efficient 
accuracy for long-term forecasting. The proposed architecture is shown in Fig. 1.

	1.	 Data Collection: Wind speed data at a height of 10 m is collected from the NASA Power project. This dataset 
serves as the foundation for the forecasting model, with wind speed selected as the target feature for predic-
tion.

	2.	 Feature Decomposition: To address the nonlinear and non-stationary characteristics of wind speed data, 
Variational Mode Decomposition (VMD) is applied. VMD decomposes the original wind speed signal into 
seven Intrinsic Mode Functions (IMFs), each representing a distinct frequency component of the data. These 
IMFs are used as the primary input features for the forecasting model, capturing the inherent complexity and 
variability of wind speed patterns.

	3.	 Hyperparameters Tuning: To optimize the performance of machine learning models, a randomized search 
approach is employed for hyperparameter tuning. This method efficiently explores a wide range of hyperpa-
rameter combinations.

	4.	 Advanced Models Techniques: The final stage involves training and evaluating machine learning and trans-
former-based models for long-term wind speed forecasting.

Dataset and methodology
System location and data compilation
The wind speed at the 10-meter dataset is sourced from the NASA power project29, which also provides 
comprehensive information about climate features like temperature, specific and relevant humidity, surface 
pressure, solar irradiance, and wind speed and direction at 10 m. Featuring a four-year timetable for data used 
for training from January 1, 2020 – December 31, 2023 with hourly intervals of wind speed measurements for 
accurate forecasting and a one-month timetable for testing data, Table 2 contains the details for the train and 
test data derived from the dataset. The dataset was taken at a specific location in Egypt called Al-Zaafarana wind 
park, which is considered the biggest wind farm in the Mideast30, with coordinates 29°12’00.0"N 32°36’00.0"E, 
the figure of the original data is shown in Fig. 2. This park contains a variety of characteristics, like an average 
wind speed of 10 m/s and geographic factors30. The data compilation has been followed by variational mode 
decomposition (VMD) method to gain robust and adaptive time-frequency analysis as will be illustrated in the 
following section.

Author Location Methods Period R² MSE RMSE MAE

Sareen et al.11 Gujarat, India KNN + CEEMDAN + BiLSTM 1-hours 94% NA 0.41 0.31

Bommidi et al.2 Block Island and Texas Transformer + ICEEMDAN 48-hours 90% NA 0.75 NA

Hu et al.6 western mountains of 
Chongqing, China Autoencoder + VMD + Optimized fuzzy mapping network 144-hours 98% NA NA 0.462

Liang et al.12 Guangzhou LSTM + VMD 5-hours NA NA 0.112 0.086

Wang et al.10 Denver Transformer + RF feature selection 36-hours 44% 0.52

Zhang et al.13 China CNN + BiLSTM 1-day NA NA 0.77 0.56

Lin et al.14 Fujian GAOformer 2-hours NA 3.85 NA 1.45

Li et al.15 Arctic region CNN-LSTM + CEEMDAN 16-hours NA 0.3960 0.6293 NA

Bashir et al.3 Pakistan Seq-2-Seq + Harris hawk’s 2-days NA NA 0.639 0.474

Chen et al.4 China CNN-LSTM-Autoencoder 30-minutes NA NA 0.34 0.25

Jiang et al.16 Shenzhen Graph Neural Network + Temporal Convolutional 
Network + VMD 12-hours 85% NA 0.39 NA

Chen et al.17 Karamay Hilbert–Huang + Nonlinear Autoregressive Dynamic Neural 
Network 1-day 90% NA 1.99 NA

Houndekindo et al.18 Canada RF + Gradient Boosting 1-hour NA NA 1.47 1.13

Yu et al.19 Southern Mississippi CNN + RNN 30-minutes NA NA 1.71 1.32

Jiang et al.20 Shandong Province, China CGRU + XGBoost 2-hours NA NA 0.74 0.53

Yuan et al.21 NA AdaBoost + Relevance Vector Machine 15-minutes 95% NA 10.403 NA

Zeng et al.22 Average of Six Locations LightGBM + ANN 1-hour 97% NA 23.02 10.55

Proposed Zaafarana, Egypt LightGBM + VMD 1-month 98% 0.02 0.15 0.12

Table 1.  Comparison between proposed method and previous research.
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Variational mode decomposition
The VMD algorithm begins with the idea of breaking a signal into a set of numbers of Intrinsic Mode Functions 
(IMFs). Each IMF has its own unique, slowly changing amplitude and frequency. The goal of the decomposition 
process is to identify the set of IMFs that most accurately capture the essence of the original signal. At the same 
time, the algorithm enforces certain constraints to ensure that the resulting IMFs are not only mathematically 
sound but also physically meaningful, making them useful for real-world applications12. The operation of the 
decomposition method happens on a variable principle, where the different measurements between the original 
and reconstructed signals are being minimized by the cost function produced by the method12. This process 

Usage Location Interval Duration Samples Max Min Mean

Train Zaafarana, Egypt 1-hour January 1, 2020 December 31, 2023 35,040 16.63 0.04 4.85

Test Zaafarana, Egypt 1-hour January 1, 2024 January 31, 2024 744 8.65 1.06 5.6

Table 2.  Wind speed dataset description for the region (January 1, 2020 – December 31, 2023).

 

Fig. 1.  Framework of The Proposed Methodology.

 

Scientific Reports |        (2025) 15:15599 4| https://doi.org/10.1038/s41598-025-98543-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


involves setting limits on each IMF’s amplitude and frequency. To solve this problem, a step-by-step approach 
is used to adjust the IMF values and the frequency and amplitude limits until an optimal solution is reached.

The VMD decomposes the original signal into a list of frequency bands, representing their characteristics as 
mode functions. The mode functions are collected by the optimization process to minimize the sum of squared 
Hilbert-transformed signal derivatives for each mode as shown in (1).

	
min{ui},{ω i}

{∑
L
i=1

∥∥∥
[
∂ t

(
δ (t) + j

π t

)
∗ ci (t)

]
e−jω it

∥∥∥
2

2

}
� (1)

	
x (t) =

∑
L
i=1ci (t)� (2)

Where, x (t) is the original signal, t presents time, and frequency bands as ci (t). The center frequencies are 
presented as ω i = ω 1, . . . , ω L. The Dirac function is denoted as δ (t) and j as the imaginary unit. Where 
the center frequencies are specified to a frequency band.

Advanced machine learning training models
Extreme gradient boosting
Extreme Gradient Boosting (XGBoost) is a powerful and scalable machine learning algorithm that builds on 
the foundation of gradient boosting decision trees. It works by combining multiple classification and regression 
trees in a boosting framework. The core idea behind XGBoost is to iteratively improve the model by focusing 
on the errors made by the previous trees; each new tree is trained to correct the mistakes of the ones before it20.

To enhance its performance, XGBoost uses a second-order Taylor expansion to closely approximate the 
loss function, which improves precision. Additionally, it incorporates a regularization term into its objective 
function to control the model’s complexity. This helps prevent overfitting, ensuring that the model generalizes 
well with new, unseen data. These features make XGBoost a robust and efficient tool for both regression and 
classification tasks.

Adaptive boosting
Adaptive Boosting (AdaBoost) dynamically adjusts the weights of the training samples during iterations, giving 
higher importance to those that were misclassified in previous rounds. This ensures that the algorithm focuses 
more on the harder to predict instances, allowing subsequent learners to prioritize and correct these errors21. 
This adaptive weighting mechanism is a key strength of AdaBoost, as it continuously refines the model’s focus on 
challenging data points, leading to improved accuracy over time. Ultimately, AdaBoost combines the predictions 
of all individual learners through a weighted voting system, where each learner’s contribution is based on its 
performance during training. This ensemble approach not only enhances the model’s robustness but also 
reduces the risk of overfitting, as it leverages the collective strength of multiple weak learners to produce a more 
accurate and reliable final prediction. By iteratively refining its focus and combining diverse learners, AdaBoost 
significantly improves the overall performance of the model, making it a powerful tool for complex prediction 
tasks.

Fig. 2.  Wind Speed Original Data (January 1, 2020 – December 31, 2023).
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Light gradient-boosting machine
Light Gradient-Boosting Machine (LightGBM) is a highly efficient and scalable machine learning algorithm 
designed for gradient boosting frameworks. Unlike traditional gradient boosting methods that grow trees level-
wise, LightGBM uses a novel technique called leaf-wise growth. This approach expands the tree by splitting the 
leaf that provides the largest gain in accuracy, resulting in faster training and often better performance22.

Another advantage of LightGBM is its support for parallel and distributed computing, allowing it to efficiently 
process massive datasets across multiple machines or cores. This scalability, combined with its accuracy and 
speed, has made LightGBM a popular choice for tasks like regression [18].

K-Nearest neighbor
The k-nearest neighbors (k-NN) method relies on the idea of measuring the distance between two data points. 
To fill in missing values, it uses the average, either simple or weighted by distance, of the nearest observations. 
The choice of ‘k’ depends on the similarity of features. Finding the right value for ‘k’ is a key part of tuning the 
algorithm to improve its accuracy. Since there’s no straightforward way to determine the best ‘k’ we typically 
experiment with different values to find the most suitable one as shown in (3). Smaller values of ‘k’ can make 
the model sensitive to noise and outliers, leading to overfitting. On the other hand, larger values of ‘k’ create 
smoother decision boundaries, reducing variance but potentially increasing bias. Striking the right balance 
is crucial for achieving reliable results11. Therefore, the hyperparameter tuning method is used in this article, 
which will be talked about in the next sections. The k-NN equation is provided as follows:

	
xm =

∑
i
ciwi

wi
; where wi = 1

di
� (3)

where, the predicted value for the target point is presented as xm. ci is the observed value of the ith neighbor, 
and wi is the weight of the ith neighbor, calculated as wi = 1

di
. The distance between target and neighbor is di.

Informer
The Informer transformer model proposed by Zhou et al.31, Informer, is an advanced prediction algorithm 
that enhances the Transformer architecture for improved performance. It consists of an encoder and a decoder, 
where time series data are processed through the encoder. The time complexity is optimized by the algorithm 
with the use of ProbSparse self-attention. Also, a special process within the self-attention mechanism helps 
shorten the time-related part of the input sequence. Finally, the decoder generates output. Figure 3 illustrates the 
architecture of the transformer.

PropSparse self-attention allows each key to attend to the dominant queries through calculations using the 
scaled dot product as follows:

	
A (Q, K, V ) = Softmax

(
QKT

√
d

)
V � (4)

Q represents the sparse matrix, and d denotes the input sequence dimension. The product QK is used to determine 
the relationships or dependencies within the data. A SoftMax function is then applied to the aggregated data to 

Fig. 3.  The Structure of The Informer Model31.
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compute attention scores, which indicate the importance of each location in the sequence32. The attention for the 
ith query can be thought of as a kernel smoother expressed in probabilistic terms:

	
A (qi, K, V ) =

∑
j

k(qi, kj)∑
l
k(qi, kl)

Vj = Ep(kj |qi) [Vj ]� (5)

where the asymmetric exponential kernel is selected by k(qi, kj), the probability p (kj | qi) helps the self-
attention on combining the values and acquires outputs. Quadratic time complexity dot product with O (LQLK) 
memory usage is required for traditional self-attention. The i-th query vector sparsity measurement is evaluated 
using Kullback-Leibler divergence and the formula as follows:

	
M (qi, K) = ln

∑
LK
j=1e

qikT
j√

d − 1
LK

∑
Lk
j=1

qik
T
j√
d

� (6)

The first term represents the Log-Sum-Exp of qi across all the keys, while the second term corresponds to their 
arithmetic meaning.

Encoder primary function is to understand relationships in long data sequences. The ProbSparse self-
attention mechanism handles sequences that have extra V vectors. Consequently, the distillation operation 
assigns higher weights to the most important features in this scenario. The distillation procedure is as follows:

	 Xt
j+1 = Maxpool

(
ELU

(
Conv1d

([
Xt

j

]
AB

)))
� (7)

Multi-head ProbSparse self-attention and the essential operations were contained by [.]AB  representing the 
attention block, and Conv1d(.) works as 1 dimensional convolutional filter with ELU (.) As his activation 
function.

Decoder consists of two multi-head attention layers and takes input vectors as follows:

	 Xt
feedde

= Concat(Xt
token, Xt

0)ϵR(Ltoken+Ly)× dmodel � (8)

In this process, Xt
feedde

 represents the input to the decoder, Xt
token serves as the start token of the sequence, 

Xt
0 acts as a placeholder for the target sequence. To maintain a consistent input dimension, the timestamps are 

padded with zeros. The masked multi-head attention mechanism makes sure that each part of the sequence pays 
attention only to the important information related to its own position, therefore avoiding self-regression. In the 
end, the final output is obtained.

Evaluation metrics
To evaluate the effectiveness of the forecasting model, several metrics were used, like Mean Absolute Error 
(MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE), and the coefficient of determination (R²), 
as represented from (9) to (12). MAE calculates the average absolute difference between the predicted values 
and the actual values, giving a clear and simple measure of how accurate the predictions are. MSE measures 
the average squared difference between predicted and actual values, while RMSE is the square root of MSE, 
providing a measure of error in the same units as the original data. R² was used to assess how well the model 
explains the variance in the data, with values closer to 1 indicating a better fit. These metrics collectively provide 
a comprehensive evaluation of the model’s forecasting accuracy and reliability.

	
MSE = 1

n

∑
n
i=1(yi − ŷi)2� (9)

	
MAE = 1

n

∑
n
i=1|yi − ŷi|� (10)

	
RMSE =

√
1
n

∑
n
i=1(yi − ŷi)2� (11)

	
R2 = SSR

SST
=

∑
N
i=1(yi − ŷi)2

∑
N
i=1(yi−

−
yi)

2 � (12)

where yi is the original wind speed at 10 m at i, ŷi is the forecasted wind speed number at i, 
−
yi is the actual 

wind speed average value at time i.

Results and discussion
The methods were developed on an AMD Ryzen 5 4600 H with 16 GB RAMs and Nvidia GeForce GTX 1660 
Ti GPU, and TensorFlow framework were used in python software programming with libraries like Sklearn, 
NumPy, Pandas, and any required library for the used methods.
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VMD implementation
The VMD algorithm was applied to the wind speed data collected at a height of 10 m from the NASA Power 
project. As described earlier, VMD results in a limited number of IMFs from breaking down the original signal, 
each representing a different frequency and amplitude part of the wind speed signal. The wind speed time 
series data was preprocessed to remove any inconsistencies or missing values before being fed into the VMD 
algorithm. The algorithm was configured to decompose the signal into seven IMFs, as illustrated in Fig. 4. Each 
IMF represents a specific frequency band, ranging from high-frequency fluctuations to low-frequency trends, 
enabling a detailed analysis of the wind speed signal at multiple scales.

In the implementation of the VMD algorithm, several key parameters were configured to control the 
decomposition process. These parameters ensure the decomposition captures relevant frequency components 
while maintaining stability and accuracy. These parameters are described in Table 3.

Models configuration and Hyper-parameter tuning
In the proposed method, several machine learning models were employed to predict and analyze wind speed 
data efficiently. To optimize the performance of these models, hyperparameter tuning was performed using the 

Fig. 4.  Frequency analysis of IMFs from VMD.
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Randomized Search method, a popular and efficient approach for exploring a wide range of hyperparameter 
combinations. However, for the Informer model, hyperparameter tuning using Randomized Search was not 
implemented. The Randomized Search method allows for quicker exploration compared to Grid Search, making 
it ideal for high-dimensional search spaces. The Randomized Search method was implemented to identify the 
best hyperparameters that maximize the models’ predictive performance. In Table 4, a detailed structures and 
parameters of each model after hyperparameter tuning.

Wind speed forecasting
To evaluate the effectiveness of the proposed approach and to highlight the impact of Variational Mode 
Decomposition (VMD) on the predictive models, we evaluated two scenarios: (1) models trained without VMD 
and (2) models trained with VMD-generated features. The results, summarized in Tables 5 and 6, illustrate a 
substantial improvement in forecasting accuracy with VMD.

	1.	 Performance Without VMD Method.

Models R² MSE RMSE MAE

XGBoost 33% 1.92 1.38 1.06

AdaBoost 32% 1.08 1.95 1.39

LightGBM 23% 1.15 2.24 1.49

KNN 17% 1.19 2.4 1.55

Informer 71% 0.25 0.5 0.38

Table 5.  Performance without using VMD.

 

Model Hyper-parameter Value

XGBoost

Learning Rate 0.076

Tree Depth 5

Tree Count 271

Child Weight 2

AdaBoost

Tree Depth 9

Learning Rate 0.286

Estimator Count 249

LightGBM

Learning Rate 0.075

Max Depth 3

Child Samples 21

Estimator Count 394

KNN

Tree Size 49

Neighbor Count 8

Weighting Method Distance

Informer

Encoder and Decoder Input Size 8

Input Sequence Length 96

Start Token Length 48

Prediction Sequence Length 24

Dimensional of Model 512

Table 4.  Models structure and hyperparameters values.

 

Parameters Value Description

Alpha 2000 Controls the bandwidth constraint, moderating the separation between different modes

Tau 0 Enforces noise tolerance

K 7 Defines the number of distinct frequency components to extract from the wind speed signal

DC 0 Indicating that the decomposition excludes any direct current (DC) component from the modes.

Initialization 1 Specifying random initialization for the algorithm’s optimization process.

Tolerance 10−6 Ensuring the algorithm stops when the difference between iterations becomes negligible

Table 3.  Parameters used in VMD.
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In the first scenario, the models were trained using the traditional features extracted from the data source, such 
as year, month, day, hour, temperature, relative and specific humidity, surface pressure, solar irradiance, and 
wind direction at 10 m, with the wind speed at 10 m as the target feature. The performance metrics, including 
R², MSE, RMSE, and MAE, are summarized in Table  5. The Informer Transformer model achieved for R², 
MSE, RMSE, and MAE the best performance with 71%, 0.25, 0.5, and 0.38, respectively. Among the machine 
learning models, XGBoost performed relatively well for R², MSE, RMSE, and MAE of 33%, 1.92, 1.38, and 1.06, 
respectively, as shown in Fig. 5. However, the overall performance of the models in this scenario was limited, 
indicating challenges in capturing the complex patterns of wind speed using traditional features alone, but also 
showing the superiority of the Informer model in capturing long-term dependencies without the complexity of 
the data compared to other models.

	2.	 Performance With VMD Method.

In the second scenario, the Variational Mode Decomposition (VMD) method was applied to decompose the 
wind speed data at 10 m into seven Intrinsic Mode Functions (IMFs), which were then used as the primary 
input features. This approach significantly improved forecast performance across all models, as shown in Table 6. 
LightGBM achieved the highest R² of 98%, with an MSE of 0.02, an RMSE of 0.15, and an MAE of 0.12. XGBoost 
and KNN also demonstrated strong performance, with R² values of 97% for both, respectively. The transformer 
model, while still competitive, showed slightly lower performance in this scenario, with R², MSE, RMSE, and 
MAE of 78%, 0.3, 0.49, and 0.24, respectively, as shown in Fig. 6. These results highlight the effectiveness of VMD 
in enhancing the models’ ability to capture the underlying patterns of wind speed data.

The comparison between the two scenarios underscores the significant impact of the VMD method on 
forecasting accuracy. By decomposing the wind speed signal into its constituent IMFs, the models were able 
to achieve much higher R² values and lower error metrics compared to using traditional features alone. This 
improvement can be attributed to the ability of VMD to address the complex characteristics of wind speed data, 
providing the models with more meaningful and interpretable input features. The results demonstrate that VMD 
is a powerful preprocessing tool for wind speed forecasting, particularly when combined with machine learning 
and transformer-based models.

Conclusion
This study has demonstrated the effectiveness of integrating Variational Mode Decomposition (VMD) 
with advanced machine learning and transformer-based models for long-term wind speed forecasting. By 
decomposing the wind speed signal into its constituent Intrinsic Mode Functions (IMFs), the models were able 

Fig. 5.  Performance without Using VMD Method (a) R², (b) MSE, RMSE, MAE.

 

Models R² MSE RMSE MAE

XGBoost 97% 0.02 0.15 0.12

AdaBoost 96% 0.03 0.19 0.15

LightGBM 98% 0.02 0.15 0.12

KNN 97% 0.03 0.18 0.13

Informer 78% 0.3 0.49 0.24

Table 6.  Performance with using VMD.
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to capture the underlying patterns of wind speed data more effectively, leading to significant improvements 
in forecasting accuracy. LightGBM emerged as the top-performing model, achieving an R² of 98% and the 
lowest error metrics, an MSE of 0.02, when combined with VMD. The Informer transformer model also showed 
competitive performance, particularly in scenarios without VMD, highlighting its ability to capture complex 
dependencies in the data. The results underscore the importance of addressing the nonlinear and non-stationary 
characteristics of wind speed data through decomposition techniques like VMD. The limitation of this study 
is the dataset limited to a specific location and not varying in regions with different climate conditions, which 
might affect the performance of the models. Although the dataset time span is four years, incorporating a 
longer life span can enhance forecasting accuracy. Future research could explore the integration of additional 
meteorological variables instead of integrating the VMD method with only the wind speed variable and further 
refinement of transformer architectures to enhance forecasting accuracy by applying hyperparameters tuning 
method. Overall, this study contributes to the growing body of knowledge on wind speed forecasting and 
provides a robust framework for optimizing wind energy systems, ultimately supporting the global transition to 
sustainable energy sources.

Data availability
The dataset used during the current study is available online “https://power.larc.nasa.gov/“.
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