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Incorporating electric vehicles (EVs) into the power grid significantly impacts its safe and reliable 
operation, while the unpredictable nature of wind power adds further complications. Solar power, 
though less efficient in converting sunlight to electricity compared to wind power, remains a popular 
renewable energy source. Combining wind and solar energy is advantageous because wind energy 
can be harnessed both day and night, unlike solar energy. Tidal energy also offers a reliable renewable 
option, although it has its own set of challenges. Consequently, the utilization of renewable energy 
sources (RESs) have become increasingly complex. Fossil fuels, on the other hand, are a major cause 
of severe pollution. This study addresses integration of wind, solar, tidal, and electric vehicles, using 
a unique moth-flame optimization technique, to solve the challenge of hydrothermal scheduling 
(HTS). The primary objective is to reduce power generation costs while adhering to various limitations, 
including transmission losses, thermal unit valve point effects, and RESs variability. In order to 
maximize energy management, several EVs are currently being built as virtual power plants (VPPs), 
utilizing sustainable energy sources. So, VPPs and combined renewable energy sources make the 
micro-grid more rigid. The objective is to minimize fuel expenditures by balancing load demand and 
transmission losses while satisfying all conditions. By evaluating the generation costs with MFO, 
this study demonstrates the effectiveness of the method and compares it with other advanced 
optimization techniques, highlighting its superior efficiency, utility and reliability. When the 
performance of normal HTS system, RES and EV based HTS system are observed, it is clearly observed 
that RESs based system has improved the results by 5.49% as compared to the conventional system 
using the suggested COMFO approach. The findings also show that EVs can effectively contribute to a 
hydro-thermal scheduling system with integrated renewable energy by using grid power.
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DE	� Differential evolution
EV	� Electric vehicle
HSA	� Harmony search algorithm
HTS	� Hydro-thermal scheduling
LR	� Lagrange relaxation method
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MIP	� Mixed integer programming
MDE	� Modified differential evolution
MFO	� Moth-flame optimization
NP	� Nonlinear programming
OGHO	� Oppositional grasshopper optimization
PSO	� Particle swarm optimization
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POZ	� Prohibited operating zones
QP	� Quadratic programming
QPSO	� Quantam behaved particle swarm optimization
QTLBO	� Quantam inspired TLBO
QOCRO	� Quasi-oppositional chemical reaction optimization
QOWOA	� Quasi-oppositional whale optimization algorithm
RES	� Renewable energy sources
SD	� Standard deviations
SOC	� State of charge
TLBO	� Teaching learning based optimization
TES	� Tidal energy system
V2G	� Vehicle–to–grid
VPP	� Virtual power plant
WOA	� Whale optimization algorithm
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To achieve sustainable development, developing countries must have access to clean energy. An Energy transition 
is necessary to conserve natural fuels, reduce greenhouse gas concentrations, and halt rising sea levels. With the 
daily depletion of fossil fuel sources, integrating renewable energy sources (RESs) with thermal units is essential. 
However, maintaining economic viability, reliability, and security in the face of intermittent nature of wind 
and solar power requires effective policies and dispatch methods. Fossil fuel-based energy production reduces 
the efficiency of thermal generating units to 50–60% and harms the environment through emissions. Thermal 
power plants may have an effect on the performance of grid-connected wind power generation. Controlling 
these plants directly impacts pollutant discharge, contributing to environmental pollution. Maximizing thermal 
power output can achieve both economic and environmental goals. Hydro-generation, using fewer expensive 
and scarce fossil fuels, lowers the environmental damage associated with thermal, diesel, and nuclear power 
generation. Thus, environmental degradation and fossil fuel issues significantly drive electric vehicle adoption. 
The use of photovoltaic (PV)-powered electric vehicles (EVs) has been implemented to reduce greenhouse gas 
emissions from 47 to 78%. Satisfying load demands within a designated timeframe while adhering to constraints 
on thermal, hydraulic, solar, wind, and electric vehicle (EV) systems is a challenging endeavor. The objective of 
the wind-solar-EVs integrating hydro-thermal generation scheduling (WSEHTGS) problem is to identify the 
optimal combinations of thermal and hydro generation. Due to the presence of a nonlinear objective function 
alongside both nonlinear and linear constraints, the optimal scheduling of WSEHTGS is considerably more 
complex than that of a simple thermal system. WSEHTGS is vital for stable grid operation, optimizing hourly 
water discharge, thermal power, wind, and solar generation. The problem involves inequality constraints such as 
electricity production, balance of power, reservoir water levels, water flow, and thermal power constraints due to 
restricted operating zones (ROZ). Balancing power generation and demand while meeting all constraints makes 
WSEHTGS nonlinear.

Various optimization strategies have been evaluated to address these challenges. Traditional optimization 
approaches have strong convergence but struggle with local optima. Solving differential functions was once 
feasible with standard optimization, but WSEHTGS’s nonlinearity complicates this. Several methods, including 
mathematical decomposition (MD)1, network flow technique (NFT)2, branch-and-bound algorithm3, and 
Lagrangian relaxation (LR)4, require more time and iterations, increasing memory size to find optimal solutions. 
Evolutionary algorithms have been developed to overcome traditional optimization shortcomings. For example, 
Hazra et al.5 developed combined economic emission dispatch for wind-based systems. Improved Borg 
algorithm6 minimized costs and emissions in a wind-based hydro-thermal scheduling problem7,8. Combining 
HTS with wind and solar power aims to maximize renewable resource power9. Statistical process control 
monitored and controlled the system. Probability production simulation and chaotic self-adaptive differential 
mutation operator in harmony search algorithm were also proposed. Niu et al.10 used pitch adjustment to deliver 
disruptive information and harmony memory for economic dispatch problems. Quantum-behaved particle 
swarm optimization (MOQPSO)11 and genetic algorithm based on non-dominated sorting (NSGA)12 addressed 
multi-objective HTS problems. Hemmati et al.13 considered uncertainties like wind speed, water inflows, and 
power demand. Li et al.14 included ramp rate functions in HTS models for efficient power generation with lower 
emissions. Hydro unit performance curves were modeled using general formulations15–17. Modified approaches 
have been enhanced using search ability with different constraints18. Queiroz19 scheduled future water availability 
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in complex HTS systems. Elkadeem et al.20 evaluated power micro-grid sustainability. Various meta-heuristic 
algorithms21, including PSO, slime mould algorithm (SMA)22, and the moth-flame optimization algorithm 
(MFOA)23, minimized generation cost and pollution24. Hazra et al. introduced an oppositional grasshopper 
algorithm25 for integration of wind power. For hydro-thermal scheduling challenges, Yin et al.26 deployed 
crisscross optimization. Roy et al.27 reduced generation costs by integrating renewable energy. Wu et al.28 used 
meta-heuristics for single objective problems. Approaches to handle wind and PV power uncertainties were 
proposed29,30. Mustafa İnci and colleagues31 proposed a method to enhance the optimization of electric vehicle 
(EV) charging and discharging processes. Meanwhile, Muhammad Mohsin Ansari and his team32 applied the 
point estimate method (PEM) to address uncertainties associated with wind and solar power in hydro-thermal 
systems (HTS). Nonetheless, the whale optimization algorithm (WOA)33 is known for its slow convergence 
and tendency to converge prematurely. The study suggested34 using a time-varying mutation scale (TVMS) in 
conjunction with fast convergence evolutionary programming (FCEP) to address the issue of hydrothermal 
scheduling in a grid that includes pumped-storage-hydraulic units and renewable energy sources. Demand-side 
management, a technique for monitoring and regulating the demand for power in real-time to maintain stability, 
is also incorporated into the system. In order to handle the intermittent nature of renewable energy sources, 
the manuscript35 involved quasi-oppositional fast convergence real-coded genetic algorithm (QOFC-RCGA) to 
optimize the generation schedule of a system containing pumped-storage hydro plants (PSHPs). PSHPs provide 
system flexibility by storing energy during periods of high generation or low demand and releasing it during peak 
periods. To improve scheduling efficiency, the system takes renewable energy and load demand volatility into 
account. In36 authors used modified artificial hummingbird algorithm (MAHA) that makes use of Levy flying and 
pitch adjustment actions. Four short term hydrothermal scheduling (STHS) examples are used to test MAHA, 
including uncertainty modeling with lognormal and Weibull distributions and integration of renewable energy. 
Its effectiveness is verified using AHA and other cutting-edge techniques.In order to lower generation costs, 
article37 proposed an ideal day-ahead scheduling model for wind, solar, and hydrothermal systems with pumped 
storage plants (PSPs). The short-term scheduling problem is solved using an improved cheetah optimizer (ICO), 
which has taken renewable uncertainties into account in addition to thermal, hydraulic, and network restrictions. 
The fuel costs, emissions, convergence rate, and calculation time of the suggested ICO method are compared to 
those of comparable algorithms. The outcomes validate its efficacy in optimizing OWSPHTS in the real world. In 
order to overcome drawbacks such as stagnation and poor diversity in complicated optimization problems, the 
improved quadratic interpolation optimization (IQIO) in38 has improved on the original QIO by adding Weibull 
flight motion, chaotic mutation, and PDO processes. IQIO efficiently handles restrictions and enhances solution 
quality when used for short-term hydrothermal scheduling (STHS) with system uncertainties and renewable 
energy integration. Using a self-adaptive crystal structure algorithm (SACRYSTAL)39, this work presented a 
unique energy management strategy (EMS) for microgrids that aim to integrate plug-in hybrid electric vehicles 
(PHEVs) with renewable energy sources (RESs). The connecting of various energy supply subsystems to meet a 
range of user needs and improve operating efficiency is the main focus of this paper’s investigation40 of regional 
integrated energy systems (RIES). Using the multi-objective chaotic artificial hummingbird algorithm, a new 
low-carbon economic dispatch technique is presented. The shortcomings of certain classically based methods, 
such as the LR41, LP42, NP43, QP44 have been illustrated by the authors. Many evolutionary algorithms fall short 
of providing optimal solutions for nonlinear problems. To account for the influence of virtual power plants 
(VPPs), the authors introduced moth flame optimization (MFO) for integrating EVs with wind, solar, and tidal 
energy in hydro-thermal systems. The merits and demerits of the existing algorithms are listed in Table 1.

Research gap
Though the previously mentioned approaches have been successfully been applied in various field of power 
system optimizations, yet these systems have the following disadvantages: 

	 i.	 Most of the aforesaid techniques have slow convergence rate. Untimely convergence is a major concern for 
most of the aforementioned methods, resulting in suboptimal solutions and decreased performance and 
exploration capability.

	ii.	 Many of the aforesaid algorithms stuck in a local optimal region.
	iii.	 Many of the discussed methods have limited ability to explore and exploit.

Novelty and importance of the work
Novelty and importance of the work are illustrated below:

•	 Various renewable sources, namely solar, wind and tidal are successfully integrated in the HTS problem to 
utilize unlimited resources of the said renewable sources.

•	 Suggested study also integrates electrical vehicle in wind-solar-tidal based HTS systems
•	 To cope up with these non-linearity, OBL and chaotic phenomena are integrated with MFO in a new approach 

named COMFO and it is implemented on the proposed work to provide optimal solutions and improve con-
vergence mobility.

•	 The robustness of the proposed algorithm is accessed by using statistical analysis for both cost and emission 
minimization problems.

The study utilized two test systems: one comprising 4 hydro units and 3 thermal units, and another featuring 4 
hydro units, 3 thermal units, 1 wind unit, 1 solar unit, 1 tidal unit, and 1 EV unit. MFO’s results are compared 
with existing algorithms, proving its superior performance. This paper’s significant contributions include 
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proposing EVs considering VPPs for tidal-wind-solar-hydro-thermal systems, desirable scheduling based on 
energy market laws, fast-converging meta-heuristic techniques, and robust MFO algorithms.

Contributions
The following are the paper’s primary contributions:

•	 An analysis has been performed to compare the efficacy of the suggested COMFO approach with other effi-
cient optimization methods in order to address its superiority.

•	 Main contribution of this research work is integrating of solar, wind, tidal and electrical vehicle to strengthen 
the microgrid as well as provide reliable and pollution free energy supply to mitigate the demand.

•	 Two single objective functions, such as i.e. cost reduction and polution reduction have been tested for the 
four-hydro, three-thermal, one-wind, one-solar, one-tidal, and one-EV unit system.

The rest of the paper is structured as follows: the details of solar, wind, tidal, and electric vehicle (EV) power 
generation are included in “Modeling of electric vehicle” section. The formulation of a mathematical problem is 
discussed in “Problem formulation” section. All constraints related to the complex system have been explained 
in “Constraints” section. The several suggested steps for the proposed optimization technique with a flow chart 
have been explained in “Algorithm for optimization” section. The results of various simulation-based test system 
outcomes and statistical evaluation are demonstrated in “Simulation result” section and the research work ended 
with a conclusion in “Conclusions” section.

Modeling of electric vehicle
Electric vehicles (EVs) do not rely on fossil fuels to power their batteries, instead using electricity, offering a 
significant promise for environmental and economic benefits by reducing fossil fuel dependency. EVs play a 
vital role in vehicle-to-grid (V2G) operations. They can function as both energy sources and loads. Through 
the Vehicle-to-Grid (V2G) system, electric vehicles (EVs) can connect to the public power grid and supply 
electricity back to it, aiding in energy demand management. The overall energy consumption of a fleet of EVs is 
influenced by the individual energy needs of each vehicle, while the fleet’s total energy capacity is determined by 
the maximum charging capacity of each EV. Adding more EVs to the fleet can increase the available electricity 

Name Type Mechanisms Merits Demerits

LR4,41

Classical 
method

Iterative optimization Many ways to obtain feasibility Computationally expensive, sensitive 
in choice of control parameters

MIP17 Handles linear objective function where at least one variable is integer Optimization process is fast and 
better accuracy Impossible to take nonlinear effects

LP42 Mathematical model Better resource allocation, 
streamlined decision-making

Assumption on linearity, errors 
sensitivity

NP43 Objective functions are non-linear based Better flexibility and accuracy More memory required

QP44 Nonlinear programming Simple for equality constraints 
problem More simulation time and complex

PSO21

Evolutionary 
algorithm

Based of behabiour of swarm of birds CEasy implementation convergerges to suboptimal solutions

WOA33 Encircling prey, Bubble-net attacking technique of humpback whales Can overcome local optima Slow convergence speed

CRO27 Chemical reaction based Greater flexibility Not applicable for large scale problem

TLBO45 Population based, teaching-learning Less parameters required Poor population diversity

MFO7,46 Transverse orientation Fast converging Sensitive in initial population

CWOA47 Based on encirclement prey and bubble net searching Can overcome local optima Better convergence speed than WOA.

QOWOA47 Encirclement prey and bubble net searching is used Can overcome local optima Superior convergence profile 
compared to WOA.

CQOWOA47 Based on chattic quasioppositional concept, encirclement prey and 
bubble net searching Avoid local optimality Better convergence characteristic 

than WOA and QOWOA.

QOCRO5 Quasioppositional and Chemical reaction concept is used 
optimization needs more memory Slow convergence proficiency

QPSO11 Needs more memory Better convergence speed Better convergence speed

CSMA22 Based on Slime molds’ behavior, morphological changes in foraging 
and chaotic concept. Can overcome local optimality FAST convergence

HSA24 Harmony Search is a metaheuristic algorithm inspired by music More memory space 
requirement Moderate convergence profile

OGHO25 Nature based oppositional optimizaion approach Diversification in population More complexity

CCO26 Nature inspired algorithm More memory space Easy implementation

CSA48 Based on immune system’s clonal selection theory Higher efficiency More computing time

MDE49 Mutation or crossover strategies Easy implementation Fast convergence

CO37 Based on hunting and chasing behaviours of cheetahs Fast converging capability Less flexibility

AHA36 Intelligent foraging strategies of hummingbirds Strong robustness More computational time

Table 1.  Literature review of the existing algorithms.

 

Scientific Reports |        (2025) 15:14888 4| https://doi.org/10.1038/s41598-025-98594-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


supplied to the grid. Key operational parameters for the EV fleet include the starting and ending points, start 
and arrival times, as well as the charging and discharging status of each vehicle. Typically, the scheduling of EVs 
is organized into 24-hour cycles, allowing for an assessment of the time spent on charging, discharging, and 
driving within this timeframe.

Electric vehicles (EVs) offer significant environmental and economic benefits by reducing reliance on fossil 
fuels. They use electricity to power their batteries, making them crucial in vehicle-to-grid (V2G) operations. EVs 
can act as both energy sources and loads, connecting to the public power grid to supply electricity when needed.

Environmental and Economic Benefits: EVs reduce reliance on fossil fuels, lowering emissions and 
contributing to cleaner air. Economic benefits arise from decreased fuel costs and potential revenue from V2G 
operations. Through V2G systems, EVs can return electricity to the grid, helping meet energy demands.

Energy Consumption and Capacity: The energy needs of every EV to establish the fleet’s total consumption, 
while each EV’s maximum charging capacity defines the fleet’s overall energy potential. Additional EVs can 
provide surplus electricity to the grid.

Operational Parameters: Scheduling time for EVs is typically organized in 24-hour cycles, encompassing 
charging, discharging, and driving periods. The operational parameters include the starting point, destination, 
start time, arrival time, and the EV’s charging and discharging status.

24-Hour Cycle Assessment: The duration spent on charging, discharging, and driving an EV is assessed 
over this 24-hour timeframe. This model allows for efficient energy management and optimal utilization of EVs 
within the V2G framework, contributing to a more sustainable and reliable power system.

Vehicle-to-Grid (V2G) System: In the V2G system, EVs play a dual role. When connected to the grid, they 
can absorb excess power during low demand periods and power back to the grid during peak demand times. 
This two-way energy flow improves grid stability and efficiency. The V2G system also provides an opportunity 
for EV owners to monetize their vehicles’ unused energy, creating an additional income stream.

Charging and Discharging Dynamics: The patterns of charging and discharging for electric vehicles (EVs) 
play a vital role in their effective integration into the power grid. Smart charging infrastructure allows for EVs to 
be charged during off-peak hours when electricity is more affordable and plentiful. In contrast, during periods 
of high demand, EVs can discharge their stored energy back into the grid, helping to bolster energy supply and 
lessen reliance on traditional power generation methods.

Impact on the Power Grid: Integrating EVs into the power grid necessitates careful planning and coordination. 
Grid operators need to account for the combined load from multiple EVs, manage energy distribution effectively, 
and ensure that the grid can accommodate the fluctuating demands of EV charging and discharging. To facilitate 
this, advanced software and communication technologies are utilized to monitor and regulate the interactions 
between EVs and the grid, ensuring smooth operations and preventing overloads.

Probabilistic model of EV
The capacity of EVs to store energy is a critical aspect of this study. To estimate the available energy, a stochastic 
model is proposed. The probability density function (PDF) below illustrates that the vehicle-to-grid (V2G) 
power follows a normal distribution:

	
fPcar (Pcar) = 1√

2πσ2
e−(Pcar−m)2

/2σ2 � (1)

where fPcar (Pcar) corresponds the PDF of the EV unit’s power output; m is mean and σ isthe normal 
distribution function’s standard deviation.

Power and state of charge estimation of EVs
Electric vehicles (EVs) provide the grid with electricity during peak load and consume the grid’s electricity 
during valley load. The time that EVs spend charging, discharging, and driving can be represented by the length 
of a 24-hour period. The following two formulas represent EV charging and discharging power.

	
P ch arg e

I,t = −
Nl∑

v=1

Minimum (0, Ecar,t) � (2)

	
P disch arg e

I,t =
Nl∑

v=1

Maximum (0, Ecar,t) � (3)

Vehicle numbers indicate fleet size and it is represented by Nl; Fleet index is represented by I; t is the time index; 
Ecar,t symbolizes charging and discharging ability.

Depending on the battery’s state of charge (SOC), which is calculated by dividing its capacity by its current 
state of charge, EV may accelerate a car. Moreover, for reducing losses, SOC guards against excessive charging 
and battery drain. The SOC is depicted as follows.
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SOCcar,t = SOCinit − 1
Ccar

t∑
q=1

[Minimum (0, Ecar,q) × ηch arg ing]

− 1
Ccar

t∑
q=1

[
Maximum (0, Ecar,q) × ηdisch arg ing + Edrv

car,q

] � (4)

SOC at tth hour t is denoted by soccar,t. In EV, battery ηch arg ing  and ηdisch arg ing  represent the effectiveness 
of charging and discharging. Driving force at qth hour is depicted by Edriving

car,q . The starting value of the charging 
state is represented by socinitial. Ccar  represents the EV battery’s capacity.

Cost calculation of EVs
Cost expenses related to driving a car may be formulated as: and it is represented as follows:

	 CostEV l (PEV l) = Costd
EV l + CostO

EV l + CostU
EV l� (5)

where CostO
EV l, Costd

EV l and CostU
EV l are the overestimation cost, the direct cost and the underestimation 

cost.

EV direct cost
EV’s direct cost can be calculated in this way:

	 Costd
EV l = dEV

l PEV shl, where l = 1, 2, 3.., nEv � (6)

where nEV : number of EV units; dEV
l : direct cost coefficients;PEV shl is the EV’sscheduled power.

EV overestimation cost
Overestimation cost of EV may be defined as follows:

	




CostO
EV l =

PEV shl∫
0

P F O
EV l (PEV l − PEV shl) .fPEV (PEV l) dPEV l

= P F O
EV lσ√
2π

(
e−m2

/2σ2 − e−(m−PEV shl)2
/2σ2

)
+

P F O
EV l

2 (m − PEV shl) ×
[

Gf

(
m√
2σ

)
− Gf

(
m − PEV shl√

2σ

)]
� (7)

where P F O
EV l is the overestimated component of penalty factor EV.

EV underestimation cost
Using V2G power, the underestimation (i.e. for desired power is less than the available EV power) penalty cost 
is computed as follows:

	




CostU
EV l =

+∞∫
PEV shl

P F U
EV l (PEV l − PEV shl) × fPEV (PEV l) dPEV l

= P F U
EV l

2 (m − PEV shl) ×


1 + Gf

(
m − PEV shl√

2σ

)
+ P F U

EV l.σ√
2π

e
−

(m − PEV shl)2

2σ2




� (8)

Solar photo-voltaic panel designing and cost calculation
The probability distribution function based on lognormal solar irradiance is illustrated in Fig. 2. Equation (9) 
demonstrates how solar irradiance ird generates solar power.

	
fsolar(ird) = 1

irdd
√

2π
e

−(ln ird − M)2

(2d)2
for ird > 0� (9)

Power output is depicted as a function solar irradiance ird.

	

Psolar = Psr

(
ird

2

ird,sdRC

)
for 0 < ird < RC

= Psr

(
ird

ird,sd

)
for ird > RC

� (10)

where SR and S are the solar unit’s rating and output power; Two indicators namely standard irradiance and 
particular irradiance point are ird,sd (=1000 w/m2) and RC  (=150 w/m2).
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Solar cost calculation
Overall solar cost is illustrated as under:8:

	 Costsolarl (Psolarl) = Costd
solarl + CostO

solarl + CostU
solarl� (11)

Here direct, overestimation and underestimation costs are denoted with Costd
solarl, CostO

solarl and CostU
solarl 

of the lth solar unit.
Solar direct cost Direct costs of a PV unit may be formulated as under:

	 Costd
solarl = dsolar

l Psolarshl, where l = 1, 2, 3.., ns� (12)

Here, ds
l  represents coefficients of direct costs and Psolarshl schedule power of the lth solar.

Solar underestimation cost The underestimating cost of the lth solar unit may be depicted as:

	

CostU
solarl = P F U

solarl (Psolaravl − Psolarshl)

= P F U
solarl

Psolarrl∫
Psolarshl

(Ps − Psolarshl) fps (Psolar) dPSolar
� (13)

where Psrl and P F U
sl are the rated power and underestimation panalty cost.

Solar overestimation cost If the amount of solar power available is less than what is scheduled, the 
overestimation cost may be defined as under:

	

CostO
solarl = P F O

solarl (Psolarshl − Psolaravl)

= P F O
solarl

Psolarshl∫
0

(Psolarshl − Psolar) fPsolar (Psolar) dPsolar
� (14)

Here fps (Psolar): power output; Psolarshl: scheduled power; Psolaravl:average power and P F O
solarl: Over-

estimation panalty cost coefficient.

Model of tidal power
The probability model of discharge rate qtidal in the tidal range is defined by using the Gumbel distribution, as 
indicated in Eq. (15) and shown in Fig. 3.

	
Fqtidal (qtidal) = 1

µ
e

(qtidal − γ

µ

)
e


−e

(qtidal − γ

µ

)


� (15)

The display of the tidal power plant can be found in Fig. 4. An equation can be used to mathematically model 
the tidal range’s output power.

	 Ptidal(qtidal) = ρgqtidalhη� (16)

where ρ is the water density (kg/m3), qtidal is the discharge value ((m3/s)) across the turbine, g is the gravity 
acceleration (m/s2), nh is the distinction between water levels at high and low levels, η is the turbine efficiency. 
These system parameters are configured as h= 3.2 m, η = 0.85, ρ = 1025 kg/m3 and g = 9.81 (m/s2). One 
active power-generating device was found to be the tidal energy system (TES). The modeling methodology in 
the TES generates the overestimation and underestimation cost models.

	

{
Cos tO

tidal.i = Co
tidal.i(Ptdls.i − Ptdlav.i)

= Co
tdl.i ∗ Ftdl(Ptdlav.i < Ptdls.i)∗

[Ptdls.i − E((Ptdlav.i < Ptdls.i)]
� (17)

	

{
Cos tU

tidal.i = CU
tidal.i(Ptdlav.i − Ptdls.i)

= CU
tdl.i ∗ Ftdl(Ptdlav.i > Ptdls.i)∗

[E(Ptdlav.i > Ptdls.i) − Ptdlav.i]
� (18)

where Cos tU
tidal.i and Cos tO

tidal.i represents underestimation cost and overestimation cost of tidal power; 
scheduled tidal power signifies by Ptdls.i. Uncertainty cost coefficient denoted by Co

tidal.i and CU
tidal.i; 

and available tidal power shown by Ptdlav.i respectively; generated extra and less tidal power denoted with 
Ptdlav.i > Ptdls.i and Ptdlav.i < Ptdls.i.

Overview of wind energy and battery
WP model
The Weibull PDF46 is often used to describe the wind speed. It is given by
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Frand(Vwind) = k

d

(
Vwind

d

)k−1
× e

−

(
Vwind

d

)k

� (19)

where the chances of getting wind velocity of Vwind is Frand; The shape factor is indicated by k > 0, while the 
scale factor is shown by d > 0. The corresponding cumulative density function (CDF) is represented as:

	 frand(Vwind) = 1 − e

−

(
Vwind

d

)k

� (20)

The WP output of the wind unit is given by:

	

Pwind =




0 Vwind < Vin or Vwind > Vout

Pwrated (Vwind − Vin)
Vrated − Vin

Vin ≤ Vwind < Vrated

Pwrated Vrated ≤ Vwind < Vout

� (21)

where the indicated output power and the rated power are Pwind and Pwrated respectively; Vrated indicates the 
rated wind velocity; Vin and Vout are used to indicate the cut-in and cut-out velocity of the wind. PDF for WP 
is as follows:

	

FPwind (Pwind) = ku

dPwrated




Vin + u
Pwind

Pwrated

d




k−1

× e

−




Vin + u
Pwind

Pwrated

d




k

� (22)

where u = Vrated − Vin

When Pwind = 0 or Pwind =Pwrated, the probability distributions are presented as :

	

Srated (Pwind = 0) = Srated (V < Vin) + Srated (V > Vout)

= 1 − e

−

(
Vin

d

)k

+ e

−

(
Vout

d

)k

� (23)

	

Srated(Pwind = Pwrated) = Srated (Vrated ≤ V < Vout)

= e

−

(
Vrated

d

)k

− e

−

(
Vout

d

)k

� (24)

The corresponding Pwind CDF is expressed as:

	

fPwind (Pwind) =





0 P wind < 0

ku

dPwrated




Vin + u
Pwind

Pwrated

d




k−1

× e

−




Vin + u
Pwind

Pwrated

d




k

0 ≤ Pwind < Pwrated

1 , Pwind ≥ Pwrated

� (25)

WP cost computation
It is necessary to integrate wind power into the current electricity network during periods of high demand. 
When WP must be implemented with the current power system, two cost categories are taken into account: 
overestimation and underestimation. This is because wind electricity generation has an intrinsic unpredictable 
nature. To forecast wind power generation in this context, the Weibull distribution is employed. Weibull-based 
PDF is shown in Fig. 5. The overall cost for wind electricity generation is expressed as

	

T otalCostwind =
Nwind∑
m=1

Costwindm (Pwindm)

=
Nwind∑
m=1

(
Costd

windm + CostO
windm + CostU

windm

) � (26)

where T otalCostwind: total wind cost; Nwind: number of wind units; Costd
windm: direct cost; CostO

windm: 
overestimation cost; CostU

windm: underestimation cost; m represents unit indices.
Direct cost For mth WP unit, direct cost is given by:
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	 Costd
windm = dwind

m Pwindm, where m = 1, 2, 3.., nw � (27)

Here, dwind
m  is direct cost coefficients and Pwindm is power scheduled from mth unit.

Overestimation cost There is discussion of the cost of overestimation when power generation is less than 
expected. This suggests that there will be insufficient WP to satisfy the required demand. When the load need is 
met, the additional power will come from the spinning reserve. The cost of the overestimation can be calculated 
using (28).

	




CostO
windm = P fO

windm × Pwindm


1 − e

−

(
Vin

s

)j

+ e

−

(
Vout

s

)j

 +

(
PwratedmVin

Vrated − Vin
+ Pwindm

)




e

−

(
Vin

c

)j

− e

−




Vin + Pwindm
Vrated − Vin

Pwrated

s




j



+
(

Pwrateds

Vrated − Vin

)

ζ




1 + 1
j

,




Vin + Pwindm
Vrated − Vin

Pwrated

s




j


− ζ

{
1 + 1

j
,
(

Vin

s

)j
}



� (28)

Underestimation cost The costs of underestimation occur when the actual WP exceeds projections. Wind 
turbines will store any excess electrical energy they generate in batteries, as they would otherwise lose their 
power. As shown in (29), is the formula used to determine the underestimate cost:

	




CostU
windm = P fU

windm × (Pwrated − Pwindm)


e

−

(
Vrated

s

)j

− e

−

(
Vout

s

)j

 +

(
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+ Pwindm

)




e
−
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s

)j

− e

−


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s


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j



+ Pwrateds

Vrated − Vin


ζ




1 + 1
j

,




Vin + Pwindm
Vrated − Vin

Pwrated

s




j


− ζ

{
1 + 1

j
,
(

Vrated

s

)j
}



� (29)

Here, CostO
windm and CostU

windm: mth wind unit’s overestimation and underestimation costs respectively; 
Pwrated and Vrated: rated output power and rated velocity respectively; Vin and Vout: cut-in and cut-out velocity 
of wind turbine respectively; P fU

windm and P fO
windm: underestimation and overestimation cost co-efficient.

Problem formulation
Incorporating wind, solar, tidal, and electric vehicles (EVs) into the optimal operation of hydrothermal power 
systems introduces a highly complex and non-linear optimization challenge. To accurately model this system 
under real-world conditions, several technical constraints and factors must be taken into account. These include 
the unique operational characteristics of renewable sources such as wind, solar, and tidal as well as those of 
conventional thermal and hydro units. Additional complexities such as valve point effects, prohibited operating 
zones (POZ) and transmission losses are also integrated into the problem formulation. These constraints 
are essential for evaluating the performance and efficiency of the hybrid test system (HTS), which combines 
these diverse energy sources. The following sections outline the objective functions and critical constraints-
both equality and inequality-that are vital to optimizing the wind-solar-tidal-EVs-based HTS model. These 
considerations are key to ensuring that the system operates efficiently while adhering to the technical and 
practical limitations of each energy source.

Objective function
The primary goal of this challenge is to reduce the cost of power generation and create a world free of pollutants.
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Case 1: HTS without wind, solar and EVs
In the HTS problem, wind, solar and electric vehicles are not taken into account, and the objective function of 
thermal units has a quadratic cost function. In addition, the cost of producing hydroelectric power plants is very 
low. Only water discharges from hydro reservoirs have been used. Thus, for the thermal generating unit, the 
objective function of the HTS problem is provided by:

	
Min C =

Np∑
i=1

Cpi(Ppi)� (30)

The cost function of thermal power is explained by the quadratic equation, which is shown in Eq. (31):

	 Cpi(Ppi) = αpi(Ppi)2 + βpiPpi + γpi� (31)

where the cost function’s coefficients of the ith thermal power are represented by αpi, βpi and γpi. In Eq. (32), 
the impact of the valve point is taken into account. It illustrates a sinusoidal feature.

	

Cpi(Ppi) = αpi(Ppi)2 + βpiPpi + γpi

+
∣∣δpi Sin (εpi × (P min

pi − Ppi)
∣∣ � (32)

Case 2: HTS with wind, solar, EVs, tidal and energy storage
An equation (33) describes the cost function of the HTS problem based on solar, wind and electric vehicles.

	

Min C =
Np∑
i=1

Cpi (Ppi) +
Nw∑
a=1

xwa (Pwa) +
Ns∑
l=1

Csrl (Psrl)

+
Nv∑

m=1
Cvehm (Pvehm) +

Ntidal∑
i=1

Costtidali (Ptidali)
� (33)

In the above equation, Xwa (Pwa) represents the wind generation cost; The cost of solar and electric vehicle 
generation are represented by Cslr (Pslr) and Cvehm (Pvehm), respectively; The number of wind unit, solar 
panel, and electric vehicle fleets is represented by Nw , Ns and Nv , respectively.

Constraints
Power balance constraints
HTS without REs and EV
The hydro-thermal scheduling problem’s power balance constraint7 in the absence of renewable energy sources 
and EVS is provided by:

	

Np∑
i=1

Cpi (Ppi) +
Nhd∑
i=1

Phd,i = Pde + Ploss� (34)

Nhd is the total number of hydroelectric plants; Pde is the network’s total power demand; Ploss is the sum of 
transmission losses; Phd,i is the production of hydropower and is mostly determined by the storage volume and 
discharge rate, which can be explained as follows:

	 Phd,i = λ1i(Vi)2 + λ2i(Qi)2 + λ3iViQi + λ4iVi + λ5iQi + λ6i� (35)

where, λ: hydro power plant generation coefficients. Vi, Qi: reservoir storage volumes for hydro power plant.

HTS with REs and EV
When using EVs and renewable energy sources, the hydro-thermal scheduling problem’s power balance 
constraint is provided by:

	

Np∑
i=1

Cpi (Ppi) +
Nhd∑
i=j

Phd,j +
Nw∑
a=1

xwa (Pwa) +
Ns∑
l=1

Csrl (Psrl)

+
Nv∑

m=1
Cvehm (Pvehm) +

Ntidal∑
i=1

Costtidali (Ptidali) = Pde + Ploss

� (36)

Inequality constraints
Generation limit constraints
The lower and upper range of thermal power, hydro power, wind power, solar power and EV are shown by Eqs. 
(37)–(42):

	 P min
pi ≤Ppi ≤ P max

pi where, i = 1, 2, 3, ..., Np � (37)
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	 P min
hd ≤Phd ≤ P max

hd where, j = 1, 2, 3, ..., Nhd � (38)

	 P min
wa ≤Pwa ≤ P max

wa where, a = 1, 2, 3, ..., Nw � (39)

	 P min
srl ≤Psrl ≤ P max

srl where, l = 1, 2, 3, ..., Ns � (40)

	 P min
veh ≤Pveh ≤ P max

veh where, m = 1, 2, 3, ..., Nv � (41)

	 P min
tidali ≤Ptidali ≤ P max

tidaliwhere, i = 1, 2, 3, ..., Ntidal � (42)

Lower and upper power limits of ith thermal power unit is presented by P min
pi , P max

pi ; P min
hd , P min

wa , P min
srl  and 

P min
veh  are the lower power generation of jth hydro, ath wind, lth solar and mth EV units;P max

hd , P max
wa , P max

slr  
and P max

veh  are presented upper generation of jth hydro, ath wind, lth solar and mth EV units.
The schematic diagram of hydro-thermal-wind-PEV- tidal-solar system is presented in Fig. 1.

Power limits for EV charging and discharging

	
xj,k =

{
−Ech arg ing(max) ≤ Ev,t < 0, charging
Edisch arg ing(max) ≥ Ev,t > 0, discharging
Ev,t = 0, driving

� (43)

Limit of state of charging for EVs

	 SOCmin ≤ SOCv,t ≤ SOCmax� (44)

Fig. 2.  Lognormal based solar irradiance PDF.

 

Fig. 1.  Schematic diagram of solar-wind-hydro-thermal-EV-tidal system.
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Fig. 5.  Weibul based wind velocity PDF.

 

Fig. 4.  Schamatic diagram of tidal plant.

 

Fig. 3.  Gumbel based water flow rate PDF.
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Initial and final SOC limit

	 SOC0 = SOCT = SOCinitial� (45)

Restrictions on hydro power
Limits on reservoir storage volumes

	 Vi,min ≤ Vi ≤ Vi,max� (46)

where, Vi,min, Vi,min are the boundaries of the storage volume of the ith reservoir.

Limits on water release

	 Qi,min ≤ Qi ≤ Qi,max� (47)

where, Qi,min, Qi,max are the water release’s lowest and maximum limits of the ith power plant.

Reservoir restrictions for initial and final reserve volumes
Each unit’s reservoir storage opening and closing shall adhere to this restriction.

	 V 0
i = V bn

i � (48)

	 V t
i = V end

i � (49)

where, V 0
i  and V t

i  are the ith hydro unit’s tank storage at time period 0 and t; V bn
i  and V end

i  are the beginning 
and ending the hydro unit’s tank storage constraints i.

Water restrictions and dynamic balance
The hydro plant’s reservoir storage must continuously monitor the hydraulic system’s continuity equations when 
it is compressed by spills and inflows at the previous event and it is expressed as follows48:

	
V t

i = V t−1
i + It

i − Qt
i − St

i +
Nus∑
n=1

(
Qn,t−τn,us + Sn,t−τn,us

)
� (50)

The ith hydro units inflow and spillage are depicted using It
i , St

i ; n, us is the upstream component; τn,us is the 
time delay.

	

Minimum emissionpou

=
T∑

t=1

Npou∑
i=1

[
bi0 + bi1P t

poui + bi2(P t
poui)

2 + bi3 exp(bi4P t
poui)

] � (51)

In (51), bi0, bi1, bi2, bi3 and bi4 denote emission coefficients whereas P t
poui represents thermal generation.

Algorithm for optimization
Moth flame optimization (MFO) is a well-known algorithm based on swarm intelligence, inspired by the 
navigation behavior of moths. The optimization technique mimics the moth’s ability to navigate using a method 
known as transverse orientation, which is especially noticeable during nighttime. This natural behavior allows 
moths to maintain a constant angle with respect to the moonlight as they fly, helping them reach their destination. 
By applying this concept, the searching capabilities of moths are enhanced in the optimization process. MFO, 
originally introduced by Mirjalili, utilizes this navigation mechanism to solve complex optimization problems. 
The moths’ movements are simulated to find optimal solutions by constantly adjusting their position in search of 
a better solution. The working steps of the MFO algorithm are often illustrated using a flowchart, which details 
the step-by-step process of this meta-heuristic algorithm. Mirjali50 is the one who initially invented this meta-
heuristic algorithm. The placements of the moths have mostly been moved to the vicinity of the best solutions, 
and the flame sequence has been altered based on the best solutions. The moth population set’s location is shown 
by:

	

Mo
@ =




mo@
1,1 mo@

1,2 ... . .....mo@
1,d

... ... ... ...
...
mo@

k,1

...
mo@

k,2

...

.......
...
....mo@

k,d


� (52)

Here, d indicates the dimension of the variables and k denotes the moths number (i.e. size of population).The 
following array is used to store the appropriate fitness.
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Cm@ =




Cm1
@

Cm2
@

.

.
Cmn

@


� (53)

where Cmi is the function of fitness of the ith moth.
Accordingly, the flames can also be displayed in a matrix form, as presented below:

	

Fl
@ =




fl@
1,1 fl@

1,2 ... . .....f l@
1,D

... ... ... ...
...
f l@

n,1

...
f l@

n,2

...

.......
...
....f l@

n,D


� (54)

The flame equivalent array is introduced to accumulate the corresponding fitness values as illustrated below:

	

OF @ =




OF @
1

OF @
2

.
.
OF @

n


� (55)

where, ith flame fitness value is shown by OF @
1 .

Three-tuple estimation is added by the MFO algorithm’s ordinary surface. Thus, the primary approach is 
included as follows:

	 MF = [T @
R1, T @

R2, T @
R3]� (56)

An important factor in changing the moths’ position is a logarithmic spiral. Moths are shifted in the direction of 
the flame by using navigation or transverse orientation steps. Lastly, moths are moved forward and backward in 
the vicinity of flames in a logarithmic spiral motion. The following formula can be used to depict the logarithmic 
spiral movement:

	 SI@(M@
i , F @

j ) = li × enq × cos(2πq) + F @
j � (57)

where n signifies a constant number depending on where a moth is closest to the appropriate flame, it has a 
logarithmic spiral structure. jth flame of the ith moth length is presented using li; the range of q is (−1 to 1) and 
it is a random value; The outcome of li moth can be represented as follows:

	 li =
∣∣Fl

@
j − MO@

i

∣∣� (58)

To increase the action qualities surrounding the flames of succeeding moths, the iteration process is further 
performed.

	
fla cou = round

[
HM − rq × HM − 1

Ymax

]
� (59)

where, the largest quantity of flames is shown using HM; the maximum number of iterations is determined by 
Ymax and Iterations in progress can be recognized by rq . Movement of moth according to the flame is shown in 
Fig. 6. Flow chart of chaotic oppositional moth flame optimization is shown in Fig. 7.

Chaotic based learning (CBL)
Many evolutionary algorithms are inspired by random initialization and the ongoing search for the optimal 
solution. MFO still cannot find the global optimal solution better than other approaches, which also affects the 
rate of convergence. To reduce this impact, MFO and chaos behavior are combined to generate COMFO. Faster 

Fig. 6.  Moth movement as per flame position.
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overall searches are made possible by chaos’s unpredictable and non-repeating characteristics, which be crucial 
for accelerating a metaheuristic algorithm’s convergence.

The CMFO approach integrates various chaotic maps with MFO to regulate its parameters. Ten chaotic maps 
with various behaviors have been considered. In the range of 0 to 1, the starting value for the optimal solution is 
0.7. Table 2 discusses the different chaotic maps.

Opposite number
The mirror position of the proposed solution uses the opposite number (60). The equivalent opposite number 
Xo of a randomly generated candidate solution with interval [a, b] for a one-dimensional search space is 
represented as:

	 Xo = a + b − X � (60)

where the search space’s minimum and maximum limits are a and b, respectively. The preceding statement is 
stated similarly for n-dimensional search space by the following Eq. (61)

where the lowest and maximum bounds of the search space are a and b, respectively. The following Eq. (61) 
similarly states the above statement for a n-dimensional search space:

Sl. No. Name Chaotic map

K1 Sine Xi+1 = a/4
(

sin
∏

x
)

K2 Gussian map rk+1 = rk+1

{
0 , rk = 0 ,

1
rk

mod (1) =
1

rk

−
[

1
rk

]

K3 Circle rk+1 = rk+b − (a/2π)sin (2πk) mod (2)

K4 Cubic rj+1 = arj

(
1 − rj

2
)

K5 Chebyshev map rj+1 = cos
(

kcos−1 (rk)
)

K6 Sinusoidal Xi+1 = a (Xi) 2
(

sin
∏

xi

)

K7 Tent Xi+1 =

{
Xi

0.7
; Xi < 0.7

10
3

(1 − Xi) ; Xi ≥ 0.7

K8 Liebovitch map rk+1 = ark (1 − rk)

K9 Iterative map rk+1 = Sin
(

aπ

rk

)
,α∈ (U,1)

K10 Logistic map rk+1 = ark (1 − rk)

Table 2.  List of various chaotic maps.

 

Fig. 7.  Flow chart of moth flame optimization.
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	 Xok = ak + bk − Xk � (61)

where k = 1, 2, ...., n and Xk = X1, X2, ...., Xn

Jumping rate
Jumping rate offers a new approach that exceeds the current one in terms of fitness value (62). Fresh solutions are 
developed using the jumping rate equation, and the quasi-opposite solution has been determined. The algorithm 
receives assistance in determining the optimal solution globally.

	
jR = (jR,Max − jR,Min) − (jR,Max − jR,Min)

(
fMax − f

fMax

)
� (62)

where jR is jumping rate; jR,Max denotes maximum jumping rate; minimum jumping rate is denoted by 
jR,Min; f is function for current iteration and fMax is maximum number of iteration.

Steps of COMFO for wind-solar-EV-tidal-energy storage based HTS problem

	Step 1:	 Initialization

•	 The hybrid power system’s input characteristics are taken into consideration, including the fuel cost co-
efficients, emission coefficients, water discharge rate of hydro plants, solar PV, hydro, wind, and thermal 
generators, as well as the input parameters of electric vehicles.

•	 The outputs are randomly selected within the specified search space.
•	 Inequality constraints are checked to confirm the viability of the generated results. If any non-elite solu-

tions are found, they are reinitialized.
•	 A possible solution array is constructed based on the population size of the moths, which is given in matrix 

form.

	Step 2:	 Non-dominated sorting

•	 A non-dominated sorting Pareto front is incorporated depending on the moths’ population matrix.
•	 Each solution is compared with others to determine if it is dominated. If no other feasible solution domi-

nates a given solution, it is considered a non-dominated Pareto optimal front.
•	 The validation process ensures that at least one objective function value is better for the non-dominated 

solution. 

	 fi(m) ≤ fi(m
′
), i = 1, 2...., P � (63)

	 The equation below holds true for at least one value of i. 

	 fi(m) < fi(m
′
)� (64)

	 where fi(m) is the ith objective function and m = (M1, ...., Mn) are the objective functions’ control variables.

	Step 3:	 Fitness representation

•	 A column array is introduced to represent fitness equivalent values based on each moth’s position, opti-
mizing for cost.

	Step 4:	 Position alternation

•	 Moths’ positions are modified based on their proximity to the flames, moving them up to the current iter-
ation within the search space.

•	 The best existing positions of each moth are aligned with the flame positions, ensuring optimal values are 
achieved.

	Step 5:	 Flame fitness array

•	 Fitness values are stored in the flame fitness array. Moths’ positions can be adjusted to enhance search space 
exploration.

•	 By validating moths and including optimal flame positions towards the end of the search process, the ef-
fectiveness of the flame is determined.

	Step 6:	 MFO technique

•	 Triple estimate functions are used by the MFO approach to determine the optimal solution.
•	 The lower and higher bounds of the control variable are indicated in the penetration space, where the 

moths’ fitness values are computed.
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	Step 7:	 Compromise solution

•	 The compromise solution is reached using a pseudo-weight vector, which calculates each solution after 
optimization.

•	 The method optimizes for the minimum and maximum values of the target function by allocating weights 
to each created Pareto solution set. 

	 MO∗(i, j) = rand(j) ∗ (U∗(i) − L∗(i)) + L∗(i)� (65)

	 where, ‘T ∗
R2’ denotes the moths movement in the section of the penetrating space. L and U are the lower and 

higher limit of the control variable. Procedure for modernization of the recognized matrix M is processed in 
this way. 

	 T ∗
R2 : MO∗ → MO∗� (66)

	 If the principle of termination is in accordance then T ∗
R3 functions proceeds “yes,” and if the termination stand-

ard is not in in accordance it returns “No”. Each flame’s position progression is determined using the equation 
below: 

	 MO∗
i = SI∗ (

MO∗
i , F ∗

lj

)
� (67)

	 Here, SI∗ is the spiral characteristics; MO∗
i  presents the ith moth of the F ∗

lj  flame position.

	 The best result is obtained by introducing a logarithmic spiral to update fitness values from the worst to 
the global best using (54)–(55). Results are boosted based on the iteration count and the flames amount is 
reduced gradually using equation (68).

	Step 8:	 The pseudo-weight vector is used to obtain the compromise solution, and each solution is produced 
using: 

	

(wvi) = [fi(x)max − fi (x) /fi(x)max − fi(x)min]
b∑

k=1

[
fk(x)max − fk (x) /fk(x)max − fk(x)min] � (68)

	 The minimum and highest value of objective functions is expressed by fi(x)max and fi(x)min.

	Step 9:	 Stopping criteria

•	 The algorithm terminates and the results are presented if the halting criteria-the maximum number of 
iterations is met.

	 This algorithm will halt its execution if the stopping criteria, or maximum number of iterations, is met and 
print the result.

Advantages of COMFO over standard MFO algorithm
Advantages of COMFO over standard MFO algorithm are listed below:

•	 COMFO effectively handles complex and nonlinear optimization problems.
•	 Robustness is better than other existing algorithms including MFO.
•	 It has better exploration and exploitation capability as compared to the conventional MFO approach.
•	 Multi-objective optimization problems can be dealt in an effective manner.
•	 It has better Convergence superiority.

Simulation result
CEC benchmark system
CEC Benchmark functions consisting of a number of unimodal, multi-modal, hybrid, or composite functions 
are mostly used to judge the effectiveness of any optimization technique. The aforesaid Benchmark functions 
are mostly used in various dimensions such as with 10D, 30D, 50D, and 100D dimensions. In the proposed 
research work, the present authors successfully used IEEE CEC 2017 benchmark functions having 30D and 50D 
dimensions. The present authors used 104 × D number of iterations to optimize the aforementioned functions. 
The present authors evaluate the performance of the algorithm in 30 different runs. There are various groups into 
which the benchmark functions may be classified. In this study, most widely used benchmark functions namely 
unimodal (F1–F3), multimodal (F4–F16), hybrid (F17–F22) and composite functions (F23–F30) are used for 
accessing the efficacy of the COMFO approach.
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CEC 2017 (30D)
The best mean error values and standard deviations (SD) obtained by the proposed COMFO and other approaches 
for CEC 2017 with 30D are illustrated in Table 3. Mean error values less than 10 × 10−8 are considered zero 
for all participating algorithms. Table 3 clearly shows that, in terms of mean error values, proposed COMFO 
outperforms most of the other discussed algorithms used in this work for the majority of test functions. In 
contrast to the other algorithms, COMFO outperforms in reaching optimal values for unimodal and multimodal 
test functions. Furthermore, it is observed from the standard deviation values listed in Table 3 that among all 
the algorithms, the proposed COMFO has the highest level of precision. Table 4 compares the best mean error 
values and SD generated by different MCTs for hybrid and composite functions. Moreover, the computational 
results listed in Table 4 demonstrates that the proposed COMFO performs better in terms of mean error values 
and SD compared to the other approaches. This facts clearly prove that COMFO has the potential to provide 
most accurate and effective results. The Wilcoxon signed rank test with a significance threshold of 0.05 is 
used to compare the mean error values of the proposed MCT with the other MCTs for each test function in 
order to assess statistical significance. Competing MCTs are assigned the “+”, “=”, and “−” signs based on their 
statistical performance versus the suggested COMFO, as determined by the results of the signed-rank test. If the 
performance of any algorithm is better, equal to, or worse than the recommended COMFO, it is indicated by 
the “+”, “=”, and “−” symbols. Table 9 proves the statistical robustness of the proposed COMFO over its rivals, 
which shows that among the participating MCTs, the proposed MCT receives the most “+” signs. Moreover, 
the Friedman rank test51 is used to assess the proposed MCT’s overall statistical performance. Based on the 
Friedman rank, the proposed COMFO comes in first place among all approaches.

CEC 2017 (50D)
Moreover, to judge the efficacy of the proposed approach for high dimensional problem, CEC 2017 with 50 
dimension is used.The best mean error values and standard deviations (SD) for the 50D scenario are shown in 
Table 4, which has been compiled by the suggested COMFO and other participating MCTs. The competitiveness 
of the suggested COMFO’s performance across most uni-modal and multi-modal functions is illustrated by 
the best mean error values displayed in Table 4. Additionally, the SD values show that the proposed strategy 
performs consistently better than the other strategies considered. According to Table 9, the recommended 
approach outperforms alternative approaches in terms of mean error values and SD for the majority of hybrid and 
composite functions. Since the suggested COMFO achieves more “+” signs than the other eligible algorithms, 
the results of the Wilcoxon signed-rank test listed in Table 5, prove its statistical superiority. Moreover, the 
Friedman rank test listed in the bottom row of Table 5 clearly demonstrates that the recommended COMFO 
ranks first among all the discussed algorithms.

HTS systems
Using the moth flame optimization algorithm (MFO), in this simulation study two different hybrid test systems 
(HTS) i.e., one with and one without renewable energy sources, were examined in this simulation study. In 
addition, electric vehicles (EVs) and tidal energy were integrated with renewable sources to maximize the 
advantages of a virtual power plant. Brief descriptions of the test systems under study are made in Table 6. The 
systems data of the proposed research work are given in Tables A1–A13. The suggested MFO algorithm was 
contrasted with alternative optimization methods in order to evaluate its efficacy, including teaching learning 
based optimization (TLBO)45, clonal selection algorithm (CSA)48, differential evolution (DE)49, and improved 
particle swarm optimization (IPSO)52. The simulations were conducted using MATLAB 7.8 on a system equipped 
with a recent generation Intel Core i5 CPU running at 2.5 GHz and 4 GB of RAM. The results for both test systems 
were documented, detailing the lowest, average, and highest generation costs, as well as computation times. Each 
test system was performed for 100 iterations with a population size of 50. The MFO algorithm showed optimal 
performance with a jump rate of 0.3. Test System 1 consisted of four hydroelectric and three thermal power 
plants, focusing on minimizing generation costs while ensuring reliability and stability. In contrast, Test System 
2 featured a more diverse mix of energy sources: four hydroelectric units, three thermal units, one wind unit, 
one solar unit, one tidal unit, and one EV. This integration aimed not only to reduce costs but also to enhance 
the sustainability and resilience of the power system. Both test systems were rigorously evaluated using the MFO 
algorithm, with outcomes compared to those from TLBO, CSA, DE, and IPSO. The comparison highlighted 
performance in terms of generation costs, computational efficiency, and effectiveness in managing renewable 
energy sources and their uncertainty. The detailed results demonstrated that the MFO algorithm outperformed 
the other methods, achieving lower generation costs and improved computational efficiency. These findings 
highlight the potential of MFO in effectively managing hybrid power systems, particularly those with a high 
proportion of renewable energy sources and advanced technologies like EVs and tidal power.

Moreover, COMFO has been used on both test systems. In contrast to HTS systems that rely on non-
renewable energy, the simulation findings show that using renewable sources reduces generation costs.

Test system 1
In this test system, seven different units are indicated in Test system 1, consisting of a combination of four 
hydroelectric and three thermal power plants. A new optimization method called moth-flame optimization 
(MFO) is used to examine the performance of Test system 1. The MFO method is used to search for the best 
global solutions. The input parameter of the thermal power plant is exerted from8. Reservoir inflows, volume 
restrictions, maximum/minimum limits, and generation coefficients are among the cost coefficients taken from8. 
The moth flame optimization (MFO) algorithm was evaluated against several other optimization methods to 
minimize generation costs. MFO achieved the lowest cost at $41,526.37 per day, outperforming other techniques 
such as clonal selection algorithm (CSA) with $42,440.57, differential evolution (DE) at $44,526.10, and teaching 
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CEC 2017 (D=30)

Function BWM_HS CVnew SGSADE HGSO SCA MFO COMFO

Unimodal

F1

Mean 3.798×103 1.199×1010 3.498×10−8 5.497×103 0.000 3.073×10−8 2.986 × 10−8

SD 4.799×103 0.000 3.945×10−8 1.123×103 0.000 2.049×10−8 2.029 × 10−8

Sign + + − − − −

F3

Mean 1.199×10−7 1.515×102 1.338×102 5.958×102 2.119×10−8 3.299×10−8 1.983 × 10−7

SD 4.499×10−8 9.459×101 1.173×102 2.875×102 2.198×10−8 1.920×10−8 2.137 × 10−7

Sign + + + + + +

Multi-modal

F4

Mean 6.799×101 1.558×101 1.399×101 4.729×102 4.342×101 3.242×10−8 2.788 × 10−8

SD 3.101×101 2.797×101 2.598×101 3.012×102 2.897 3.004×10−8 1.316 × 10−8

Sign + + + + + −

F5

Mean 5.101×101 1.298×102 8.901×101 6.196×102 1.448×101 3.711 3.087 × 101

SD 1.901×101 2.801×101 1.799×101 9.896 2.399 2.693 1.087 × 101

Sign + + + + − −

F6

Mean 1.199×10−5 2.124×101 2.304×10−8 5.983×102 1.101×10−8 1.115×10−8 8.230 × 10−8

SD 2.224×10−5 8.231 1.499×10−8 7.701 1.502×10−8 1.318×10−8 1.234 × 10−7

Sign − + − + − −

F7

Mean 5.988×101 2.299×102 1.297×102 8.398×102 4.891×101 3.582×101 5.417

SD 9.701 2.099×101 1.599×101 6.196×101 2.252 8.229×10−1 5.268 × 10−1

Sign + + + + + +

F8

Mean 4.988×101 1.197×102 8.289×101 8.302×102 1.295×101 3.416 3.157

SD 1.303×101 2.701×101 1.603×101 2.604×101 2.789 1.777 1.596

Sign + + + + + =

F9

Mean 1.099×101 2.198×103 5.972×10−8 1.801×103 0.199 0.403 0.000

SD 8.0044×101 8.505×102 6.033×10−8 2.402×102 0.303 0.842 0.005 × 10−8

Sign + + + + + +

F10

Mean 2.755×103 4.498×103 5.099×103 5.194×103 1.101×103 2.463×103 4.420 × 102

SD 4.801×102 3.035×102 5.499×102 3.098×102 2.396×102 3.543×102 9.417 × 101

Sign + + + + + +

F11

Mean 9.501×101 3.704×101 5.036×101 1.502×103 1.803×101 4.206 3.100

SD 3.199×101 1.888×101 3.099×101 2.901×101 2.001×101 3.846 1.541

Sign + + + + + =

F12

Mean 5.011×105 5.099×109 1.906×104 5.002×104 4.199×102 4.872×102 5.125

SD 4.501×105 5.899×109 6.988×103 3.098×104 1.503×102 2.64×102 3.632

Sign + + + + + +

F13

Mean 1.901×104 7.988×101 2.987×102 5.501×104 2.112×101 0.901×101 7.299 × 10−1

SD 2.197×104 2.902×101 3.001×102 2.099×103 0.983×101 4.826 4.056 × 10−1

Sign + + + + + +

F14

Mean 4.011×103 5.023×101 6.222×101 2.299×103 1.889×101 2.793×101 3.146 × 10−1

SD 3.301×103 7.099 8.912 1.803 2.501 1.989 0.688 × 10−1

Sign + + + + + +

F15

Mean 8.112×103 3.778×101 4.888×101 3.812×103 4.018 4.561 3.146 × 101

SD 8.908×103 8.803 3.001×101 5.012×102 2.101 2.897 1.401 × 101

Sign + = + + − −

F16

Mean 4.888×102 7.509×102 5.054×102 3.299×103 2.706×101 4.222×101 5.478

SD 1.972×102 2.112×102 1.801×102 3.399×102 2.978×101 5.745×101 2.911

Sign + + + + + +

Table 3.  Statistical comparison of COMFO on CEC 2017 with 30D for F1–F16.
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learning-based optimization (TLBO) at $42,385.88. Additional comparisons with particle swarm optimization 
(PSO), modified differential evolution (MDE), and quantum-inspired TLBO (QTLBO) also confirmed the 
superiority of MFO. The results, including hour-wise generation data and statistical analysis, demonstrate 
the effectiveness of MFO in optimizing hybrid power systems for cost efficiency and reliability. The thermal 
power plant’s input parameter is derived from8. Based on the discussion above, it can be concluded that the 

CEC-2017 (D=50)

Function BWM_HS CVnew SGSADE HGSO LSHADE-cnEpSin LSHADE-SPACMA COMFO

Hybrid

F17

Mean 3.099×102 2.011×102 8.099×101 2.014×103 3.199×101 3.987×101 1.810 × 101

SD 1.889×102 6.901×101 2.198×101 1.983×101 4.986 7.401 1.077 × 101

Sign + + − + − −

F18

Mean 1.501×105 4.009×101 1.988×103 1.001×104 1.986×101 3.801×101 0.732 × 101

SD 5.901×104 6.985 1.801×103 5.712×104 6.901×10−1 2.021 1.666 × 10−1

Sign + − = + − −

F19

Mean 7.907×103 1.897×101 2.199×101 1.966×103 4.512 8.201 7.523 × 10−1

SD 9.902×103 3.101 6.190 2.901×103 1.901 2.303 6.006

Sign + + + + + +

F20

Mean 1.799×102 1.812×102 0.909×102 1.701×103 2.512×101 7.805×101 3.475 × 102

SD 8.901×101 9.615×101 4.905×101 2.988×102 6.501 4.201×101 2.042 × 101

Sign + + + + = +

F21

Mean 2.604×102 1.801×102 2.803×102 2.899×103 1.899×102 1.799×102 7.236

SD 1.501×101 2.712×101 2.199×101 2.499×101 2.815 3.533 1.813

Sign + + + + + +

F22

Mean 1.912×103 1.198×103 1.801×102 3.899×103 2.901×102 2.612×102 1.263 × 101

SD 1.599×103 1.907×103 1.199×101 8.278×102 1.499×101 2.901×101 7.645

Sign + + = + = =

Composite

F23

Mean 4.111×102 3.808×102 3.966×102 1.977×103 2.701×102 2.212×102 4.047 × 101

SD 4.889×101 4.714 2.692×101 5.394×101 2.981×101 3.502×101 2.124

Sign + + + + + +

F24

Mean 5.001×102 4.502×102 3.099×104 2.099×103 4.098×102 1.901×101 1.822 × 101

SD 2.194×101 2.601×102 2.199×101 8.701×101 2.515 1.712 2.515 × 10−1

Sign + + + + + +

F25

Mean 3.901×102 3.612×102 4.099×102 2.866×102 2.404×102 1.888×101 2.036 × 101

SD 2.401 7.312×10−1 4.901 2.887×101 7.401×10−3 1.828×10−2 1.410 × 10−3

Sign + + + + + +

F26

Mean 2.701×103 3.711×102 2.912×103 4.701×103 9.310×102 9.831×102 1.222 × 102

SD 6.401×102 3.201×101 2.101×102 1.889×102 4.701×101 3.498×101 2.757 × 101

Sign + + + + + +

F27

Mean 5.618×102 5.301×102 5.615×102 3.701×103 5.099×102 5.198×102 3.617×102

SD 1.401×101 9.901 1.815 1.099×102 6.603 1.789×101 9.701 × 10−1

Sign = = = + = =

F28

Mean 4.501×102 3.312×102 3.601×102 3.214×103 2.901×102 2.888×102 8.498×101

SD 6.501×101 3.919×101 5.097×101 7.501×101 3.883×101 5.803×101 3.206 × 101

Sign + + + + + +

F29

Mean 5.099×102 8.412×102 6.504×102 3.811×103 4.415×102 3.901×102 2.640 × 102

SD 1.812×102 1.301×102 6.601×101 1.402×102 7.096 4.111×101 1.222 × 101

Sign + + + + + +

F30

Mean 1.111×104 2.401×103 2.719×103 9.828×103 1.502×103 8.828×102 7.826 × 102

SD 5.801×103 5.242×102 9.401×102 3.615×103 4.299×103 9.099×102 2.606 × 102

Sign = − − = − −

Table 4.  Statistical comparison of COMFO, on CEC 2017 with 50D for F17–F30.
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newly developed metaheuristic technique. is superior to other currently utilized ways due to its effectiveness 
in lowering generating costs and computation time. Table 7 represents the thermal power generation of each 
unit. Hydro power plant generation and discharge of each unit is shown in Table 8. Its durability and resilience 
are further demonstrated by the near proximity of the lowest, mean, and maximum generating costs that were 
obtained. Thermal power generation of each unit is displayed in Fig. 8.

Test system-2
The effectiveness of the proposed MFO algorithm is further validated by applying it to a more complex system, 
known as Test system 2. This system builds on Test system 1 by adding non-linear elements such as wind, solar, 

Hour

Thermal power plant
(without renewable energy)

Plant1 Plant2 Plant3

1 30.4973 210.2592 229.5196

2 175 206.8581 139.7598

3 175 124.9438 139.7545

4 38.6093 124.9184 229.5196

5 33.2099 124.9149 229.5196

6 175 184.9776 139.7597

7 175 214.1778 139.7619

8 28.0166 213.6608 319.2794

9 175 216.967 229.5273

10 175 209.5819 229.5194

11 175 129.216 319.2793

12 175 280.0915 229.5196

13 175 224.9497 229.5196

14 102.6847 124.9079 318.7135

15 175 209.8205 139.7127

16 106.7563 228.6361 229.5196

17 98.5909 209.8133 229.504

18 175 207.445 229.5196

19 112.1642 215.022 229.5196

20 20.911 285.6258 229.5194

21 175 124.9043 138.831

22 33.7233 127.1845 229.5196

23 20.1978 127.6663 229.5196

24 102.6748 124.9079 139.7598

Table 7.  Thermal power generation of each unit for test system-I.

 

Case Without renewable With renewable Considered objective Constraints Test system

1 ✓ Overall cost reduction with valve point effects

2 ✓ Emission minimization Equality and inequality 4-Hydro 3-Thermal

3 ✓ Overall cost reduction with valve point effects

4 ✓ Emission minimization Equality and inequality
4-Hydro 3-Thermal
1-Wind 1-Solar
1-Tidal 1-EV

Table 6.  Summaries of different case studies under consideration.

 

Sign

COMFO Vs.

BWM_HS CVnew SGSADE HGSO LSHADE-cnEpSin LSHADE-SPACMA

+/=/− 27/00/02 22/02/05 26/00/03 28/00/01 17/04/08 18/03/08

Statistical rank BWM_HS CVnew SGSADE HGSO LSHADE -cnEpSin LSHADE -SPACMA COMFO

Friedman rank 5.497 4.683 5.105 6.996 2.782 2.121 1.409

Overall rank 6 4 5 7 3 2 1

Table 5.  Wilcoxon signed-rank and friedman rank test based on mean error of CEC 2017 (D = 50).
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tidal energy, and electric vehicles (EVs), thereby increasing its complexity. The input data for the hydro and 
thermal power plants remain the same as in the earlier test, while wind system data is sourced from56 and solar 
and EV inputs are taken from47. Tidal system data comes from9. Test system 2 consists of four hydro, three 
thermal, one wind, one solar, one tidal, and one EV unit. By integrating these renewable sources and EVs, the 
system aims to further reduce generation costs while handling the additional complexity of the expanded unit 
mix. units are present. Table 9 lists the hydro power volume of various units for each hour using the suggested 
methodologies. Hydro power generation and hydro power discharge are listed in Table 10. Hydro power 
generation of each unit has been presented in Fig. 9. The volume of each hydro power unit has been displayed in 
Fig. 10. Thermal, wind, EV, tidal, solar power generation for test system-II are displayed in Table 11.

In a similar way, Table 12 lists the status of the solar panels. Here, a total 13 PV panels are used. The hourly 
costs of thermal, electric vehicle, tidal, wind, and solar power generation are shown in the table in Table 13. 
The individual cost of each generator unit is listed in Table 14. The comparison of statistical analysis obtained 
by different algorithms for Test system-I and Test system-II is shown in Table 15. Thus, Table 15 indicates that 
the lowest generating cost while employing MFO is 39405.1809 $/day for solar, EV, tidal and wind integrated 

Fig. 8.  Thermal production of individual plant for 1st test case.

 

Hydro power plant (without renewable energy)

Generation (MW) Discharge (×104 m3)

Plant1 Plant2 Plant3 Plant4 Plant1 Plant2 Plant3 Plant4

78.897 50.164 21.6346 129.0269 0.855 0.6 2.344 0.6

71.1537 51.296 10.1869 125.7437 0.727 0.6 2.416 0.6

72.1469 52.934 13.5952 121.6253 0.7391 0.6 2.296 0.6

67.3884 54.5 19.24 115.8221 0.672 0.6 2.156 0.6

65.9078 55.504 28.8517 132.0915 0.654 0.6 1.941 0.6

60.4452 55.994 36.7302 147.0931 0.582 0.6 1.73 0.6

86.594 63.8744 38.8545 231.7413 0.992 0.7228 1.646 1.219

86.1952 66.0102 37.8707 258.9692 0.99 0.761 1.643 1.429

86.3171 68.1556 36.0665 277.968 0.992 0.7952 1.703 1.61

77.2591 67.5065 35.2959 285.8382 0.8123 0.774 1.737 1.705

87.6747 71.7037 35.9696 281.1584 0.987 0.838 1.732 1.646

85.9891 64.6333 33.8516 280.9147 0.951 0.7179 1.795 1.643

87.2879 73.6041 33.9562 285.6831 0.969 0.8698 1.83 1.703

87.2055 74.8421 33.3614 288.2862 0.955 0.891 1.869 1.737

85.5299 77.0498 34.9773 287.9079 0.9166 0.9352 1.843 1.732

86.1193 76.1657 40.2437 292.5612 0.924 0.932 1.725 1.795

86.066 77.0497 44.7193 304.2573 0.924 0.98 1.614 2

88.767 76.1007 47.139 296.0246 0.9824 1.011 1.58 1.8689

84.836 77.0939 48.7902 302.576 0.9192 1.089 1.9988 1.9988

82.2878 78.0024 53.89 299.7646 0.8875 1.1786 2 2

54.7097 67.5631 56.3146 292.6818 0.5079 0.942 1.9381 1.9381

54.372 68.6724 58.3511 288.1773 0.5 0.975 1.9244 1.9244

54.7547 70.8399 59.3073 287.7167 0.5 1.064 2 2

60.5977 70.8617 56.4812 244.7185 0.5611 1.1236 1.4418 1.4418

Table 8.  Hydro power plant generation and discharge of each unit for test system-I.
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system, which are quite less with respect to test system 1. The convergence graph illustrates how the resulting 
cost ($/day) varies with the number of iterations of the recommended technique. It is hypothesized that MFO 
starts to converge based on the convergence graph of the renewable energy linked system i.e. described that 
at iteration 22 with a minimum cost of 39405.18 $/day, and for the without renewable energy system MFO 
begins to converge at iteration 26 with a cost of 41526.3689 ($/day). Convergence curve has been displayed 
in Fig. 11. Generation of thermal, wind, solar, EV, tidal have been displayed in Fig. 12. The convergence graph 
illustrates the relationship between the generated cost (in $/day) and the number of iterations for the proposed 
Moth Flame Optimization (MFO) method. It indicates that the MFO algorithm begins to converge at around 22 
iterations, achieving a minimum cost of $39,405.18. Fig. 13. displays the thermal power generation for each unit 
in Test system 2. Simulation results reveal that the generation cost for Test system 2, using the MFO algorithm, 
significantly outperforms that of Test system 1 in addressing the realistic non-linear problem. Additionally, the 
integration of renewable energy sources (RESs) with the hydro-thermal system contributes to a reduction in fuel 
consumption by thermal units, ultimately lowering overall generation costs compared to systems without RESs. 
The convergence rate of the algorithm is enhanced by advanced metaheuristic methods. Fig. 14 present the hour-
wise generation costs for wind, tidal, solar and EVs, as well as the status of solar panels for Test System 2 is shown 
in Fig. 15 respectively. Microgrid stabilization is a crucial part of modern electrical systems to ensure a consistent 
and dependable supply of electricity. A single renewable energy source increases unpredictability as microgrid 
stability is weakened by varying needs. However, it has been demonstrated that the microgrid should be easily 
stabilized by utilizing a range of energy sources to balance supply and demand. To transition to a sustainable 
energy system, increase microgrid reliability, and prevent blackouts, this process is very much needful.

Emission minimization (Test system-1 and 2)
The effectiveness of the proposed MFO algorithm is further validated by applying it individually for minimizing 
the emission for both test system-1 (i.e. without renewable) and test system-2 (i.e. with renewable). The input 
data for the hydro, thermal, solar, tidal and EV remain the same as in the earlier cases. By integrating these 
renewable sources and EVs, the system aims to further reduce emision while handling the additional complexity. 
Comparison of statistical analysis for emission minimization obtained by different algorithms is listed in Table 
16. Table 15 indicates that the lowest emission while employing COMFO, OMFO and MFO are 7551.38 lb/
day, 7558.26 lb/day and 7562.44 lb/day, respectively. Similarly for solar, EV, tidal and wind integrated system 
the emissions are quite less (i.e. 16306.94 lb/day using COMFO, 16309.63 lb/day using OMFO and 16317.92 
using MFO) with respect to emission minimization without renewable energy. Simulation results reveal that 
the emission for both systems using the COMFO algorithm, significantly outperforms other approaches. 

Hourwise hydral volume of four 
hydro units

U-I U-II U-III U-IV

1004240 820000 1619210 1168000

1002160 840000 1523920 1088450

954850 845500 1367800 968660

966470 871100 1434260 851650

966390 844190 1463170 903390

986390 807300 1467750 956590

977050 717300 1498270 1049950

968230 719590 1493730 992100

984920 736570 1496600 1059280

1018420 766570 1641600 1079310

1043710 759980 1611890 1068720

1093710 768530 1580710 1120440

1136080 788530 1556570 1183400

1206080 789700 1545830 1200140

1224950 811270 1419240 1251320

1219710 811310 1425960 1333410

1211630 759360 1508030 1386480

1231440 728220 1556000 1392230

1175150 723460 1633540 1599890

1152920 735570 1676810 1573960

1160510 736920 1729400 1535220

1153570 763230 1754970 1492060

1150940 732870 1685170 1406100

1200000 700000 1700000 1400000

Table 9.  Hourwise hydral volume of four hydro units for test system-II.
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Fig. 10.  Hourwise hydral volume of water for test system-II.

 

Fig. 9.  Hydro power production for 2nd system at individual hour.

 

Hour

Hydral discharge of four units 
hourwise

Hour

Hydral generation of four units 
hourwise

U-I U-II U-III U-IV U-I U-II U-III U-IV

1 0.9576 0.6 1.6179 0.6 1 84.1206 50.164 54.2397 129.0269

2 0.9208 0.6 1.7729 1.0355 2 82.1658 51.296 47.6972 173.3565

3 1.2731 0.845 2.9188 1.3579 3 93.3492 67.3632 0 189.7976

4 0.5838 0.644 1.0562 1.1701 4 58.7438 56.1055 51.803 159.1551

5 0.6008 1.0691 1.884 1.1005 5 60.0888 78.5445 41.9494 158.9735

6 0.5 1.0689 1.783 1.2409 6 52.2064 76.1758 45.5879 178.3381

7 0.8934 1.5 1.2396 1.9852 7 79.8442 82.3307 54.5692 240.1551

8 0.9882 0.6771 1.8145 1.6347 8 84.2765 49.2 45.4259 213.1412

9 0.8331 0.6302 2.0336 1.2122 9 76.6757 47.1848 36.8669 187.6994

10 0.765 0.6 1.1382 1.5827 10 73.3896 46.9829 57.065 220.5203

11 0.9471 0.9659 1.9073 1.3455 11 84.873 68.3175 45.8916 200.7043

12 0.5 0.7145 1.907 1.2973 12 54.0991 54.7858 44.9481 202.3769

13 0.6763 0.6 2.1885 1.404 13 69.5086 48.318 31.2181 218.7092

14 0.5 0.8883 1.8733 0.9708 14 55.044 66.3193 45.0824 177.7636

15 0.9113 0.6843 2.9567 1.3955 15 86.9637 55.4462 0 225.3639

16 1.0524 0.7996 1.2328 1.0861 16 94.5226 62.6724 52.7151 203.2594

17 0.9808 1.2195 1.1789 1.6578 17 90.717 78.6296 54.59 260.9377

18 0.6019 0.9114 1.457 1.8158 18 64.3491 63.4239 55.0306 272.5893

19 1.2629 0.7476 1.105 0.8801 19 101.5889 53.9064 56.5646 200.8146

20 0.8223 0.6789 1.4887 1.4921 20 80.2073 50.3715 57.5769 265.6162

21 0.6241 0.8865 1.8484 1.5663 21 65.6602 62.7271 51.1811 268.5191

22 0.8694 0.6369 1.5142 1.8886 22 83.2123 49.3352 58.9448 287.9857

23 0.9263 1.1036 2.101 1.9646 23 86.5249 72.4992 39.9441 283.1451

24 0.5094 1.1287 1.6076 1.5497 24 55.8999 71.0589 56.4075 253.888

Table 10.  Hourwise hydro power discharge and generation for test system-II.
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Additionally, the integration of renewable energy sources (RESs) with the hydro-thermal system contributes to 
a reduction in emission by thermal units, ultimately lowering overall generation emission compared to systems 
without RESs. .

Conclusions
The integration of renewable energy sources (RESs) with traditional thermal units presents a pivotal solution 
for achieving sustainable and resilient energy systems. In this study, we focused on optimizing the scheduling 
of wind-solar-electric vehicle (EV)-based hydro-thermal generation systems (WSEHTGS) to enhance 
economic efficiency and environmental sustainability. Leveraging the Moth Flame Optimization (MFO) 
algorithm, a robust meta-heuristic approach, we addressed the complex, nonlinear nature of WSEHTGS to 
minimize generation costs and mitigate environmental impacts, including greenhouse gas emissions. Through 
comprehensive simulations and comparative analyses against existing algorithms, our results demonstrate 
that MFO effectively balances the dynamic integration of renewable resources and EVs with thermal units. 
This optimization not only improves operational efficiency but also supports grid stability and reliability. By 
incorporating the dynamic characteristics of EVs and the intermittency of renewable sources into scheduling 
decisions, our approach contributes to advancing sustainable energy practices. Future Scope Looking ahead, 
several promising directions for future research emerge from this study: Our study underscores the potential of 
advanced meta-heuristic algorithms and hybrid optimization techniques, including machine learning and deep 
reinforcement learning, to further enhance the performance of WSEHTGS. These approaches could unlock new 
avenues for optimizing energy scheduling under uncertainty and variability. Integrating energy storage systems 
(ESSs), such as batteries and pumped hydro storage, into WSEHTGS frameworks offers significant potential to 
enhance grid stability and manage fluctuations in renewable generation. Future research could explore optimal 
coordination strategies between ESSs, EVs, and renewable resources Exploring the integration of demand 
response programs with WSEHTGS could leverage flexible load management strategies. Incentivizing EV 
owners to adjust charging patterns based on grid conditions can support peak load shaving and enhance grid 
reliability. Robustness analysis is crucial to assess the resilience of optimized schedules against uncertainties 
such as variable renewable generation and unexpected grid events. Developing strategies to mitigate risks and 
enhance system resilience will be critical for real-world deployment. Understanding the impact of policy and 
regulatory frameworks on the adoption of integrated renewable and thermal generation systems is essential. 
Evaluating incentives and regulations that promote sustainable energy practices will influence the scalability 
and effectiveness of optimized solutions. Developing real-time implementation frameworks for WSEHTGS 
in smart grids represents a significant opportunity. Exploring decentralized control strategies that empower 
local energy communities to participate actively in energy management could revolutionize grid operations. 

Thermal, wind, electric vehicle, tidal and solar generation of various hours

TUNIT 1 TUNIT 2 TUNIT 3 WIND EV TIDAL SOLAR

102.6587 40 229.7902 0 60 0 0

36.3823 129.4953 148.4131 21.3752 60 29.8187 0

103.571 40 140.7445 16.2302 18.9444 30 0

105.0533 40 116.3755 13.5792 19.1845 30 0

174.175 40.0541 50 16.4085 19.1012 29.9072 6.6206

103.8262 125.6414 158.1555 2.4873 0.223 30 96.9442

20.2615 55.1386 307.5528 8.7474 20.1269 29.0622 336.6627

93.7508 121.7377 307.9745 0 0 0 83.9942

174.2787 116.8376 319.9178 0 0.4511 0.246 124.8377

103.6712 124.6808 192.0843 20.3195 59.9997 11.7017 1181.8218

104.2432 207.7711 231.0235 0 0 8.6812 380.9959

102.8966 300 76.4671 15.2054 19.2534 30 1388.1904

103.0709 40 408.5411 0 0 4.8596 282.4631

174.6324 40 227.5914 4.3745 0 0 191.3539

105.9578 123.0495 198.8366 0 0 6.0375 273.8796

102.9698 124.4885 238.5461 18.1054 19.5951 30 793.0426

102.3447 52.2219 229.3298 0 60 0 540.0214

102.3329 249.7028 229.6617 0 19.6263 22.8446 231.2373

21.0877 295.0791 241.2665 0 60 30 80.2821

147.9466 124.7676 233.514 0 60 30 0

100.3001 208.4065 133.5558 0 19.6502 0 0

21.3625 209.6706 59.4889 0 60 30 0

106.9062 116.4441 52.4614 3.8568 60 28.2182 0

102.473 121.4427 50 0 58.8299 30 0

Table 11.  Thermal, wind, EV, tidal, solar power generation for test system-II.
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In conclusion, our research underscores the transformative potential of integrating renewable energy sources, 
electric vehicles, and advanced optimization techniques in achieving sustainable and resilient energy systems. 
Continued innovation and interdisciplinary collaboration will be essential in advancing these solutions towards 
a cleaner and more sustainable energy future.

Solar panel on of status of various solar panel hourwise

PANEL 1 PANEL 2 PANEL 3 PANEL 4 PANEL 5 PANEL 6 PANEL 7 PANEL 8 PANEL 9 PANEL 10 PANEL 11 PANEL 12 PANEL 13

1 1 0 1 0 0 0 0 0 1 1 0 0

1 1 0 0 1 1 1 0 1 0 0 1 1

1 0 1 0 1 0 0 0 1 0 0 1 0

0 1 1 1 0 1 1 0 0 1 1 1 1

0 0 0 0 1 0 0 0 1 1 0 0 1

0 0 1 1 1 1 1 1 0 0 0 1 1

1 0 0 0 0 1 1 1 0 1 1 0 0

1 1 1 0 1 0 0 1 0 0 0 0 1

0 0 0 1 1 0 1 1 1 1 0 0 1

0 1 0 1 1 1 0 0 0 1 0 1 1

0 0 0 1 0 1 0 1 1 0 0 0 0

1 0 1 1 0 0 0 1 0 1 0 1 1

1 1 0 0 0 1 1 0 0 0 1 1 0

1 1 1 1 0 0 0 0 1 1 1 1 1

1 0 1 0 1 1 1 1 1 0 0 1 1

0 0 0 1 0 1 0 1 0 0 1 1 0

0 0 0 1 1 1 1 1 1 0 1 1 1

0 1 0 1 1 0 1 0 1 0 0 1 0

1 1 1 0 0 0 1 1 0 1 1 1 0

1 0 1 0 1 0 1 0 1 0 0 0 1

1 0 0 0 0 1 1 0 1 1 1 0 0

1 1 1 0 0 1 1 0 1 1 1 1 0

0 1 1 1 1 0 0 1 1 1 1 0 1

0 0 1 1 1 0 1 1 1 1 0 0 0

Table 12.  Hourwise solar panel on/off status.
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Algorithms

Best fuel Average fuel Worst fuel Computational Function

cost ($/day) cost ($/day) cost ($/day) Time (Sec) Evaluation

COMFO (Test System-II) 39405.1809 39468.42 39602.85 17.24 3483

OMFO (Test System-II) 39506.38 39565.06 39679.88 18.41 6124

MFO (Test System-II) 39658.11 39698.02 40018.14 22.16 3566

COMFO (Test System-I) 41692.20 41705.64 41891.24 21.06 3129

OMFO (Test System-I) 41781.02 41935.06 41951.57 22.08 5327

MFO (Test System-I) 41789.94 41829.48 41991.82 22.08 3306

CSA48 42440.57 NA NA NA NA

DE49 44526.10 NA NA NA NA

TLBO45 42385.88 42441.36 42407.23 NA NA

PSO52 44740 NA NA NA NA NA

QTLBO45 42187.49 42202.75 42193.46 NA NA

Table 15.  Statistical comparison for cost optimization for both systems.

 

Individual cost of each generating unit

Thermal cost hourwise ($/day) 36592.0554

Wind cost hourwise ($/day) 1113.0796

Tidal cost hourwise ($/day) 115.6729

EV cost hourwise ($/day) 177.1578

Solar cost hourwise ($/day) 1407.2152

Total cost ($/day) 39405.1809

Table 14.  Individual cost of each generating unit for test system-II.

 

Hour Thermal cost hourwise ($/day) Wind cost hourwise ($/day) Tidal cost hourwise ($/day) Tidal cost hourwise ($/day) Solar cost hourwise ($/day)

1 1292.3094 21.3021 3.1258 0.0001 0

2 1305.9817 141.8371 6.4851 0.0001 0

3 1068.6457 92.5918 6.5641 21.5518 0

4 1160.1943 71.2755 6.5641 18.9397 0

5 1102.6768 94.133 6.5236 19.5124 1.5293

6 1446.1767 21.8436 6.5641 0.0001 22.9941

7 1515.8626 41.0903 6.1632 43.745 78.6692

8 1847.8741 21.3021 3.1258 0 21.1298

9 2066.2435 21.3021 3.0752 0.0006 33.3258

10 1601.2442 130.9814 2.1616 0.0001 267.3321

11 1762.5064 21.3021 2.1281 0 93.8761

12 1786.3135 83.9895 6.5641 18.776 320.2936

13 1843.8693 21.3021 2.3674 0 70.2063

14 1561.3305 25.0462 3.1258 0 49.8317

15 1628.6435 21.3021 2.2601 0 68.6962

16 1592.3474 109.4294 6.5641 17.0874 183.7334

17 1399.6558 21.3021 3.1258 0.0001 123.7457

18 2018.6048 21.3021 3.9841 18.2931 53.5333

19 1876.7366 21.3021 6.5641 0.0001 18.3186

20 1822.9531 21.3021 6.5641 0.0001 0

21 1528.8466 21.3021 3.1258 19.2502 0

22 1157.9735 21.3021 6.5641 0.0001 0

23 1141.9263 23.9345 5.8186 0.0001 0

24 1063.1391 21.3021 6.5641 0.0007 0

Cost ($/day) 36592.0554 1113.0796 115.6729 177.1578 1407.2152

Total cost ($/day) 39405.18

Table 13.  Hourwise cost of thermal, wind, tidal, EV and solar for test system-II.
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Fig. 13.  Hour wise power production of 2nd case study (Thermal).

 

Fig. 12.  Hour wise thermal, wind, EV, tidal, solar generation.

 

Fig. 11.  Cost convergence profile for 2nd case study.
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Data availibility
The datasets used during the current study are available from the corresponding author on reasonable request.
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