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Incorporating electric vehicles (EVs) into the power grid significantly impacts its safe and reliable
operation, while the unpredictable nature of wind power adds further complications. Solar power,
though less efficient in converting sunlight to electricity compared to wind power, remains a popular
renewable energy source. Combining wind and solar energy is advantageous because wind energy
can be harnessed both day and night, unlike solar energy. Tidal energy also offers a reliable renewable
option, although it has its own set of challenges. Consequently, the utilization of renewable energy
sources (RESs) have become increasingly complex. Fossil fuels, on the other hand, are a major cause
of severe pollution. This study addresses integration of wind, solar, tidal, and electric vehicles, using

a unique moth-flame optimization technique, to solve the challenge of hydrothermal scheduling
(HTS). The primary objective is to reduce power generation costs while adhering to various limitations,
including transmission losses, thermal unit valve point effects, and RESs variability. In order to
maximize energy management, several EVs are currently being built as virtual power plants (VPPs),
utilizing sustainable energy sources. So, VPPs and combined renewable energy sources make the
micro-grid more rigid. The objective is to minimize fuel expenditures by balancing load demand and
transmission losses while satisfying all conditions. By evaluating the generation costs with MFO,

this study demonstrates the effectiveness of the method and compares it with other advanced
optimization techniques, highlighting its superior efficiency, utility and reliability. When the
performance of normal HTS system, RES and EV based HTS system are observed, it is clearly observed
that RESs based system has improved the results by 5.49% as compared to the conventional system
using the suggested COMFO approach. The findings also show that EVs can effectively contribute to a
hydro-thermal scheduling system with integrated renewable energy by using grid power.

Keywords Tidal, Wind, Solar, Electric vehicles (EVs), Hydro-thermal scheduling (HTS), Advanced
optimization technique

Abbreviations

AHA Artificial hummingbird algorithm

CBL Chaotic based learning

COMFO Chaotic oppositional moth flame optimization
CQOWOA  Chaotic quasi-oppositional whale optimization algorithm
CSMA Chaotic slime mould algorithm

CWOA Chaotic whale optimization algorithm

CO Cheetah optimization

CRO Chemical reaction optimization

CSA Clonal selection algorithm
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CCO Crisscross optimization

DE Differential evolution

EV Electric vehicle

HSA Harmony search algorithm

HTS Hydro-thermal scheduling

LR Lagrange relaxation method

LP Linear programming

MIP Mixed integer programming

MDE Modified differential evolution

MFO Moth-flame optimization

NP Nonlinear programming

OGHO Oppositional grasshopper optimization

PSO Particle swarm optimization

PDF Probability density function

POZ Prohibited operating zones

QP Quadratic programming

QPSO Quantam behaved particle swarm optimization
QTLBO Quantam inspired TLBO

QOCRO Quasi-oppositional chemical reaction optimization
QOWOA Quasi-oppositional whale optimization algorithm
RES Renewable energy sources

SD Standard deviations

SOC State of charge

TLBO Teaching learning based optimization

TES Tidal energy system

V2G Vehicle-to-grid

VPP Virtual power plant

WOA Whale optimization algorithm

WP Wind power

To achieve sustainable development, developing countries must have access to clean energy. An Energy transition
is necessary to conserve natural fuels, reduce greenhouse gas concentrations, and halt rising sea levels. With the
daily depletion of fossil fuel sources, integrating renewable energy sources (RESs) with thermal units is essential.
However, maintaining economic viability, reliability, and security in the face of intermittent nature of wind
and solar power requires effective policies and dispatch methods. Fossil fuel-based energy production reduces
the efficiency of thermal generating units to 50-60% and harms the environment through emissions. Thermal
power plants may have an effect on the performance of grid-connected wind power generation. Controlling
these plants directly impacts pollutant discharge, contributing to environmental pollution. Maximizing thermal
power output can achieve both economic and environmental goals. Hydro-generation, using fewer expensive
and scarce fossil fuels, lowers the environmental damage associated with thermal, diesel, and nuclear power
generation. Thus, environmental degradation and fossil fuel issues significantly drive electric vehicle adoption.
The use of photovoltaic (PV)-powered electric vehicles (EVs) has been implemented to reduce greenhouse gas
emissions from 47 to 78%. Satisfying load demands within a designated timeframe while adhering to constraints
on thermal, hydraulic, solar, wind, and electric vehicle (EV) systems is a challenging endeavor. The objective of
the wind-solar-EVs integrating hydro-thermal generation scheduling (WSEHTGS) problem is to identify the
optimal combinations of thermal and hydro generation. Due to the presence of a nonlinear objective function
alongside both nonlinear and linear constraints, the optimal scheduling of WSEHTGS is considerably more
complex than that of a simple thermal system. WSEHTGS is vital for stable grid operation, optimizing hourly
water discharge, thermal power, wind, and solar generation. The problem involves inequality constraints such as
electricity production, balance of power, reservoir water levels, water flow, and thermal power constraints due to
restricted operating zones (ROZ). Balancing power generation and demand while meeting all constraints makes
WSEHTGS nonlinear.

Various optimization strategies have been evaluated to address these challenges. Traditional optimization
approaches have strong convergence but struggle with local optima. Solving differential functions was once
feasible with standard optimization, but WSEHTGS’s nonlinearity complicates this. Several methods, including
mathematical decomposition (MD)!, network flow technique (NFT)? branch-and-bound algorithm?®, and
Lagrangian relaxation (LR)*, require more time and iterations, increasing memory size to find optimal solutions.
Evolutionary algorithms have been developed to overcome traditional optimization shortcomings. For example,
Hazra et al® developed combined economic emission dispatch for wind-based systems. Improved Borg
algorithm® minimized costs and emissions in a wind-based hydro-thermal scheduling problem”$. Combining
HTS with wind and solar power aims to maximize renewable resource power’. Statistical process control
monitored and controlled the system. Probability production simulation and chaotic self-adaptive differential
mutation operator in harmony search algorithm were also proposed. Niu et al.!? used pitch adjustment to deliver
disruptive information and harmony memory for economic dispatch problems. Quantum-behaved particle
swarm optimization (MOQPSO)!! and genetic algorithm based on non-dominated sorting (NSGA)'? addressed
multi-objective HTS problems. Hemmati et al.1® considered uncertainties like wind speed, water inflows, and
power demand. Li et al.' included ramp rate functions in HTS models for efficient power generation with lower
emissions. Hydro unit performance curves were modeled using general formulations'>-!7. Modified approaches
have been enhanced using search ability with different constraints'®. Queiroz!® scheduled future water availability
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in complex HTS systems. Elkadeem et al.2® evaluated power micro-grid sustainability. Various meta-heuristic

algorithms?!, including PSO, slime mould algorithm (SMA)?, and the moth-flame optimization algorithm
(MFOA)?*, minimized generation cost and pollution?!. Hazra et al. introduced an oppositional grasshopper
algorithm?® for integration of wind power. For hydro-thermal scheduling challenges, Yin et al.® deployed
crisscross optimization. Roy et al.”” reduced generation costs by integrating renewable energy. Wu et al.® used
meta-heuristics for single objective problems. Approaches to handle wind and PV power uncertainties were
proposed?*. Mustafa Inci and colleagues®! proposed a method to enhance the optimization of electric vehicle
(EV) charging and discharging processes. Meanwhile, Muhammad Mohsin Ansari and his team*? applied the
point estimate method (PEM) to address uncertainties associated with wind and solar power in hydro-thermal
systems (HTS). Nonetheless, the whale optimization algorithm (WOA)3 is known for its slow convergence
and tendency to converge prematurely. The study suggested®* using a time-varying mutation scale (TVMS) in
conjunction with fast convergence evolutionary programming (FCEP) to address the issue of hydrothermal
scheduling in a grid that includes pumped-storage-hydraulic units and renewable energy sources. Demand-side
management, a technique for monitoring and regulating the demand for power in real-time to maintain stability,
is also incorporated into the system. In order to handle the intermittent nature of renewable energy sources,
the manuscript® involved quasi-oppositional fast convergence real-coded genetic algorithm (QOFC-RCGA) to
optimize the generation schedule of a system containing pumped-storage hydro plants (PSHPs). PSHPs provide
system flexibility by storing energy during periods of high generation or low demand and releasing it during peak
periods. To improve scheduling efficiency, the system takes renewable energy and load demand volatility into
account. In* authors used modified artificial hummingbird algorithm (MAHA) that makes use of Levy flying and
pitch adjustment actions. Four short term hydrothermal scheduling (STHS) examples are used to test MAHA,
including uncertainty modeling with lognormal and Weibull distributions and integration of renewable energy.
Its effectiveness is verified using AHA and other cutting-edge techniques.In order to lower generation costs,
article’” proposed an ideal day-ahead scheduling model for wind, solar, and hydrothermal systems with pumped
storage plants (PSPs). The short-term scheduling problem is solved using an improved cheetah optimizer (ICO),
which has taken renewable uncertainties into account in addition to thermal, hydraulic, and network restrictions.
The fuel costs, emissions, convergence rate, and calculation time of the suggested ICO method are compared to
those of comparable algorithms. The outcomes validate its efficacy in optimizing OWSPHTS in the real world. In
order to overcome drawbacks such as stagnation and poor diversity in complicated optimization problems, the
improved quadratic interpolation optimization (IQIO) in®*® has improved on the original QIO by adding Weibull
flight motion, chaotic mutation, and PDO processes. IQIO efficiently handles restrictions and enhances solution
quality when used for short-term hydrothermal scheduling (STHS) with system uncertainties and renewable
energy integration. Using a self-adaptive crystal structure algorithm (SACRYSTAL)%, this work presented a
unique energy management strategy (EMS) for microgrids that aim to integrate plug-in hybrid electric vehicles
(PHEVs) with renewable energy sources (RESs). The connecting of various energy supply subsystems to meet a
range of user needs and improve operating efficiency is the main focus of this paper’s investigation of regional
integrated energy systems (RIES). Using the multi-objective chaotic artificial hummingbird algorithm, a new
low-carbon economic dispatch technique is presented. The shortcomings of certain classically based methods,
such as the LR*!, LP*2, NP*}, QP4 have been illustrated by the authors. Many evolutionary algorithms fall short
of providing optimal solutions for nonlinear problems. To account for the influence of virtual power plants
(VPPs), the authors introduced moth flame optimization (MFO) for integrating EV's with wind, solar, and tidal
energy in hydro-thermal systems. The merits and demerits of the existing algorithms are listed in Table 1.

Research gap
Though the previously mentioned approaches have been successfully been applied in various field of power
system optimizations, yet these systems have the following disadvantages:

i. Most of the aforesaid techniques have slow convergence rate. Untimely convergence is a major concern for
most of the aforementioned methods, resulting in suboptimal solutions and decreased performance and
exploration capability.

ii. Many of the aforesaid algorithms stuck in a local optimal region.
iii. Many of the discussed methods have limited ability to explore and exploit.

Novelty and importance of the work
Novelty and importance of the work are illustrated below:

 Various renewable sources, namely solar, wind and tidal are successfully integrated in the HTS problem to
utilize unlimited resources of the said renewable sources.

o Suggested study also integrates electrical vehicle in wind-solar-tidal based HTS systems

« To cope up with these non-linearity, OBL and chaotic phenomena are integrated with MFO in a new approach
named COMFO and it is implemented on the proposed work to provide optimal solutions and improve con-
vergence mobility.

« The robustness of the proposed algorithm is accessed by using statistical analysis for both cost and emission
minimization problems.

The study utilized two test systems: one comprising 4 hydro units and 3 thermal units, and another featuring 4
hydro units, 3 thermal units, 1 wind unit, 1 solar unit, 1 tidal unit, and 1 EV unit. MFO’s results are compared
with existing algorithms, proving its superior performance. This paper’s significant contributions include
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Name Type Mechanisms Merits Demerits
LR Iterative optimization Many ways to obtain feasibility Computationally expensive, sensitive
in choice of control parameters
MIPY Handles linear objective function where at least one variable is integer S ptimization process is fast and Impossible to take nonlinear effects
etter accuracy
Classical - - - -

Lp® method Mathematical model Better resource a_il!ocatlon,‘ Assqmptlon on linearity, errors
streamlined decision-making sensitivity

NpP#® Objective functions are non-linear based Better flexibility and accuracy More memory required

Qp# Nonlinear programming Simple for equality constraints More simulation time and complex
problem

PSO?! Based of behabiour of swarm of birds CEasy implementation convergerges to suboptimal solutions

WOA3 Encircling prey, Bubble-net attacking technique of humpback whales | Can overcome local optima Slow convergence speed

CRO% Chemical reaction based Greater flexibility Not applicable for large scale problem

TLBO* Population based, teaching-learning Less parameters required Poor population diversity

MFO74¢ Transverse orientation Fast converging Sensitive in initial population

CWOAY Based on encirclement prey and bubble net searching Can overcome local optima Better convergence speed than WOA.

. Lo . Superior convergence profile
47
QOWOA Encirclement prey and bubble net searching is used Can overcome local optima compared to WOA.
7 Based on chattic quasioppositional concept, encirclement prey and . L Better convergence characteristic
47 >
CQOWOoA bubble net searching Avoid local optimality than WOA and QOWOA.
OCRO’ Quasioppositional and Chemical reaction concept is used d sl fici
QOCR! Evolutionary | gptimization needs more memory ow convergence proficiency
algorithm
QPSO!! Needs more memory Better convergence speed Better convergence speed
CSMA2 Based on Sllme molds’ behavior, morphological changes in foraging Can overcome local optimality | FAST convergence
and chaotic concept.

HSA% Harmony Search is a metaheuristic algorithm inspired by music More memory space Moderate convergence profile
requirement

OGHO?* Nature based oppositional optimizaion approach Diversification in population More complexity

CCO?* Nature inspired algorithm More memory space Easy implementation

CSA™ Based on immune system’s clonal selection theory Higher efficiency More computing time

MDE® Mutation or crossover strategies Easy implementation Fast convergence

Cco¥ Based on hunting and chasing behaviours of cheetahs Fast converging capability Less flexibility

AHA%¢ Intelligent foraging strategies of hummingbirds Strong robustness More computational time

8 gIng 8 8 g P

Table 1. Literature review of the existing algorithms.

proposing EVs considering VPPs for tidal-wind-solar-hydro-thermal systems, desirable scheduling based on
energy market laws, fast-converging meta-heuristic techniques, and robust MFO algorithms.

Contributions
The following are the paper’s primary contributions:

« An analysis has been performed to compare the efficacy of the suggested COMFO approach with other effi-
cient optimization methods in order to address its superiority.

« Main contribution of this research work is integrating of solar, wind, tidal and electrical vehicle to strengthen
the microgrid as well as provide reliable and pollution free energy supply to mitigate the demand.

« Two single objective functions, such as i.e. cost reduction and polution reduction have been tested for the
four-hydro, three-thermal, one-wind, one-solar, one-tidal, and one-EV unit system.

The rest of the paper is structured as follows: the details of solar, wind, tidal, and electric vehicle (EV) power
generation are included in “Modeling of electric vehicle” section. The formulation of a mathematical problem is
discussed in “Problem formulation” section. All constraints related to the complex system have been explained
in “Constraints” section. The several suggested steps for the proposed optimization technique with a flow chart
have been explained in “Algorithm for optimization” section. The results of various simulation-based test system
outcomes and statistical evaluation are demonstrated in “Simulation result” section and the research work ended
with a conclusion in “Conclusions” section.

Modeling of electric vehicle

Electric vehicles (EVs) do not rely on fossil fuels to power their batteries, instead using electricity, offering a
significant promise for environmental and economic benefits by reducing fossil fuel dependency. EVs play a
vital role in vehicle-to-grid (V2G) operations. They can function as both energy sources and loads. Through
the Vehicle-to-Grid (V2G) system, electric vehicles (EVs) can connect to the public power grid and supply
electricity back to it, aiding in energy demand management. The overall energy consumption of a fleet of EVs is
influenced by the individual energy needs of each vehicle, while the fleet’s total energy capacity is determined by
the maximum charging capacity of each EV. Adding more EVs to the fleet can increase the available electricity
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supplied to the grid. Key operational parameters for the EV fleet include the starting and ending points, start
and arrival times, as well as the charging and discharging status of each vehicle. Typically, the scheduling of EVs
is organized into 24-hour cycles, allowing for an assessment of the time spent on charging, discharging, and
driving within this timeframe.

Electric vehicles (EVs) offer significant environmental and economic benefits by reducing reliance on fossil
fuels. They use electricity to power their batteries, making them crucial in vehicle-to-grid (V2G) operations. EVs
can act as both energy sources and loads, connecting to the public power grid to supply electricity when needed.

Environmental and Economic Benefits: EVs reduce reliance on fossil fuels, lowering emissions and
contributing to cleaner air. Economic benefits arise from decreased fuel costs and potential revenue from V2G
operations. Through V2G systems, EVs can return electricity to the grid, helping meet energy demands.

Energy Consumption and Capacity: The energy needs of every EV to establish the fleet’s total consumption,
while each EV’s maximum charging capacity defines the fleet’s overall energy potential. Additional EVs can
provide surplus electricity to the grid.

Operational Parameters: Scheduling time for EVs is typically organized in 24-hour cycles, encompassing
charging, discharging, and driving periods. The operational parameters include the starting point, destination,
start time, arrival time, and the EV’s charging and discharging status.

24-Hour Cycle Assessment: The duration spent on charging, discharging, and driving an EV is assessed
over this 24-hour timeframe. This model allows for efficient energy management and optimal utilization of EVs
within the V2G framework, contributing to a more sustainable and reliable power system.

Vehicle-to-Grid (V2G) System: In the V2G system, EVs play a dual role. When connected to the grid, they
can absorb excess power during low demand periods and power back to the grid during peak demand times.
This two-way energy flow improves grid stability and efficiency. The V2G system also provides an opportunity
for EV owners to monetize their vehicles’ unused energy, creating an additional income stream.

Charging and Discharging Dynamics: The patterns of charging and discharging for electric vehicles (EVs)
play a vital role in their effective integration into the power grid. Smart charging infrastructure allows for EVs to
be charged during off-peak hours when electricity is more affordable and plentiful. In contrast, during periods
of high demand, EVs can discharge their stored energy back into the grid, helping to bolster energy supply and
lessen reliance on traditional power generation methods.

Impact on the Power Grid: Integrating EVs into the power grid necessitates careful planning and coordination.
Grid operators need to account for the combined load from multiple EVs, manage energy distribution effectively,
and ensure that the grid can accommodate the fluctuating demands of EV charging and discharging. To facilitate
this, advanced software and communication technologies are utilized to monitor and regulate the interactions
between EV's and the grid, ensuring smooth operations and preventing overloads.

Probabilistic model of EV

The capacity of EVs to store energy is a critical aspect of this study. To estimate the available energy, a stochastic
model is proposed. The probability density function (PDF) below illustrates that the vehicle-to-grid (V2G)
power follows a normal distribution:

Pear—m)?
1 e_( c ) /902

V2mo? W

where fp,,, (Pear) corresponds the PDF of the EV units power output; m is mean and o isthe normal

e

distribution function’s standard deviation.

fPear (Pear) =

Power and state of charge estimation of EVs

Electric vehicles (EVs) provide the grid with electricity during peak load and consume the grid’s electricity
during valley load. The time that EVs spend charging, discharging, and driving can be represented by the length
of a 24-hour period. The following two formulas represent EV charging and discharging power.

Ny

P = =" Minimum (0, Bear,) )
v=1
Ny

P =N " Magimum (0, Bear,t) 3)
v=1

Vehicle numbers indicate fleet size and it is represented by V;; Fleet index is represented by I; ¢ is the time index;
Ecar s symbolizes charging and discharging ability.

Depending on the battery’s state of charge (SOC), which is calculated by dividing its capacity by its current
state of charge, EV may accelerate a car. Moreover, for reducing losses, SOC guards against excessive charging
and battery drain. The SOC is depicted as follows.
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t
1 .
SOCcar,t = SOCinit — C g [M'Lnlmum (07 Ecar,q) X Nch arg ing}
car
L ! @
- Ccar E [Mafimum (07 Ecar,q) X Ndisch arging + Ei::,q]

q=1

SOC at t¢, hour t is denoted by soccar,t. In EV, battery nch arg ing and Ndisch arg ing represent the effectiveness
driving

of charging and discharging. Driving force at ;1 hour is depicted by E¢, ;" "9. The starting value of the charging
state is represented by s0Cinitial. Cecar represents the EV battery’s capacity.

Cost calculation of EVs
Cost expenses related to driving a car may be formulated as: and it is represented as follows:

Costgyvi (Pevi) = CostdEw + Costgw + Cost%w (5)

where Cost@y,;, Costy, and Cost%y,; are the overestimation cost, the direct cost and the underestimation
cost.

EV direct cost
EV’s direct cost can be calculated in this way:

CostdEVl = dFVPEVShl, where 1=1,2,3..,np, (6)
where ngv: number of EV units; dlE V. direct cost coefficients; Prv sn; is the EV’sscheduled power.

EV overestimation cost
Overestimation cost of EV may be defined as follows:

Pgvshi

Cost@y, = f PF%y, (Pevi — Pevsn) -fryy (Pevi) dPev)
0

O m2 m— 3 2
_ PFEVZU e /202 _ ef( PRV shl) /202) + (7)

o\/§7T
PLEVL (i Py ) [Gf (J%;) T (m—fzjiVM)]

where PF,,, is the overestimated component of penalty factor EV.

EV underestimation cost
Using V2G power, the underestimation (i.e. for desired power is less than the available EV power) penalty cost
is computed as follows:

—+o0
Cost%y, = f PFY%., (Pevi — Pevsn) X fegy (Pevi) dPEv:
Prvsni
(m — Ppysnm)® (8)
202

_ PFy,
- 2

_ U -
(m — Pevs) X |1+ Gf <m PEVshl> n PFEVer

V2o V2r

Solar photo-voltaic panel designing and cost calculation
The probability distribution function based on lognormal solar irradiance is illustrated in Fig. 2. Equation (9)
demonstrates how solar irradiance ¢,.q generates solar power.

—(Inipg — M)?
. 1 (2d)? , )
. lpd) = ——F—¢€ or ipqg >0
fsolar( d) irdd\/ﬂ f d
Power output is depicted as a function solar irradiance %,4.
ira” .
Psolar = Ps'r 7R fOT 0< lrd < RC
i
d,5d-0 (10)
™~
= Psr B rd fO?" ird > RC
lrd,sd

where Sr and S are the solar unit’s rating and output power; Two indicators namely standard irradiance and
particular irradiance point are 4,.4,sq (=1000 w/m?) and Rc (=150 w/m?).
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Solar cost calculation
Overall solar cost is illustrated as under:%:

COStSOla” (PSOZ(”‘Z) = COSt?olarl + COSt?ola'rl + COStonlarl (11)

Here direct, overestimation and underestimation costs are denoted with Cost2,,,,,, C0stS.,.,; and Cost? ..,
of the I*" solar unit.
Solar direct cost Direct costs of a PV unit may be formulated as under:

COSt?olarl = dlSOZaTPsolarshl, where 1=1,2,3..,n, (12)

Here, dj represents coeflicients of direct costs and Pisoiarshi schedule power of the I*" solar.
Solar underestimation cost The underestimating cost of the I** solar unit may be depicted as:

U U
COStsolarl = PF (Psola'ra'vl - Psola'rshl)

solarl
Py

- U solarrl _ (13)
- PFsola'rl f (Ps Psola.rshl) fps (Psola.r) dPSolar

Psotarshl
where Ps,; and PFY, are the rated power and underestimation panalty cost.

Solar overestimation cost If the amount of solar power available is less than what is scheduled, the
overestimation cost may be defined as under:

(o} O
COStsolarl = PFsolarl (Psola'rshl - Psola'ravl)
o Psotarshi (14)
= PFsolarl f (PSOlaTShl - Psolar) fpsolar (Psolar) dPsolar
0

Here fp, (Psotar): power output; Psoarsni: scheduled power; Psoaravi:average power and PFg)l(m: Over-
estimation panalty cost coefficient.

Model of tidal power
The probability model of discharge rate g:iqq; in the tidal range is defined by using the Gumbel distribution, as
indicated in Eq. (15) and shown in Fig. 3.
(qn’dal - ’Y)
e 1

) (qn’dal - ’Y) (15)
Fytidai (qtidat) = ;e H e

The display of the tidal power plant can be found in Fig. 4. An equation can be used to mathematically model
the tidal range’s output power.

Piidai(qtidal) = p9qtidalhn (16)

where p is the water density (kg/m?), giidar is the discharge value ((m?®/s)) across the turbine, g is the gravity
acceleration (m/s?), nh is the distinction between water levels at high and low levels, 7 is the turbine efficiency.
These system parameters are configured as h= 3.2 m, = 0.85, p = 1025 kg/m® and g = 9.81 (m/s?). One
active power-generating device was found to be the tidal energy system (TES). The modeling methodology in
the TES generates the overestimation and underestimation cost models.

Costgari = Chiaar.i(Prats.i — Pediav.i)
= CPui * Frail(Prdiav.s < Prdis.i)* (17)
[Prais.i — E((Pratav.i < Prdis.i))
U U
Costiigar.i = vidat.i(Pediav.i — Prdis.i)
= Ciar.i * Frai(Prdiav.s > Prais.i)* (18)

[E(Prdiav.i > Prais.i) — Prdiav.i

where CostY ., and Cost) ., ; represents underestimation cost and overestimation cost of tidal power;
scheduled tidal power signifies by Piqis.;. Uncertainty cost coefficient denoted by Cfi4,;; and CY ot s
and available tidal power shown by Piaiav.; respectively; generated extra and less tidal power denoted with
Prdiav.i > Prais.i and Pratav.i < Prdis.i.

Overview of wind energy and battery
WP model
The Weibull PDF*® is often used to describe the wind speed. It is given by
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V k
wind
k Vwin k=1 - < d ) (19)
Frand(vwind) = E( d d) X e

where the chances of getting wind velocity of Viying is Frand; The shape factor is indicated by & > 0, while the
scale factor is shown by d > 0. The corresponding cumulative density function (CDF) is represented as:

(Vwind> ¥ ( )
-\ T 20
frand(vwind) =1-e d

The WP output of the wind unit is given by:

0 Vwind < ‘/7,n or Vwind > Vout
Pwra e Vwin - ‘/7,
Pyina = i/d( i/ ) Vin < Vwind < Vrated (21)
rated — Vi
Pwrated ‘/Nzted S Vwind < Vout

where the indicated output power and the rated power are Pying and Purated respectively; Viateq indicates the
rated wind velocity; Vi, and Vi, are used to indicate the cut-in and cut-out velocity of the wind. PDF for WP
is as follows:

k
Pwind

Pum"ated
Pwind d

Vin +u

Vin +u
— ku Pwrated
Fruima (Puina) = 55 00 d e

where v = Vygtea — Vi
When Pyind =0 or Pyind =Puwrated, the probability distributions are presented as :

S7'aied (Pwind = 0) = Sr'ated (V < ‘/7,’:1) + Srated (V k> Vout)
_ <‘/'i7l> B <Vout> (23)
=1-e d +e d
Srated(Pwind - Pwrated) - STated (Vtrated S V< Vout)

k k
_ Vrated _ Vout (24)
d d
=e€ — €

The corresponding P.ying CDF is expressed as:

0 Pwind < 0
Vi Pw'ind k
in +U——
P k—1 _ wrated
FPuina(Pwina) = . Vin +u# p o
dPyrated d E— xe 0 < Puind < Purated
! ’ sz'n.d Z Pwruted

WP cost computation

It is necessary to integrate wind power into the current electricity network during periods of high demand.
When WP must be implemented with the current power system, two cost categories are taken into account:
overestimation and underestimation. This is because wind electricity generation has an intrinsic unpredictable
nature. To forecast wind power generation in this context, the Weibull distribution is employed. Weibull-based
PDF is shown in Fig. 5. The overall cost for wind electricity generation is expressed as

N.

wind
TotalCostying = Z Costwindm (Pwindm)
Nyind m (26)
= Z (COStZJindm + COStlouindm + COStgindm)
m=1

where T'otalCostuyina: total wind cost; Nuina: number of wind units; Cost? ;, 4,.: direct cost; Cost2;, 4m:
overestimation cost; C' ostgmdm: underestimation cost; m represents unit indices.
Direct cost For m!™ WP unit, direct cost is given by:
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Costeinam = Ao Pyinam, where m=1,2,3..,n, (27)
Here, d%™% is direct cost coefficients and Puyindrm is power scheduled from m!” unit.

Overestimation cost There is discussion of the cost of overestimation when power generation is less than
expected. This suggests that there will be insufficient WP to satisfy the required demand. When the load need is
met, the additional power will come from the spinning reserve. The cost of the overestimation can be calculated
using (28).

( Vin ) ’ ( Vour ) ’
COSt1Oui7Ld7n = Pfo X Pw'm,dm 1—e 5 +e § —+

windm

Vrated - ‘/in

Pwrated

_ (Vn) T s
P’w'ratedm‘/in ) c
Pwin m - (28)
( Vrated - V; + ¢ c ¢

‘/in + Pwindm

‘/mzted - ‘/’L
‘/in + P’wind’m j
Pum‘ateds ) 1 P, ted 1 (‘/in )]
1 - wrate _ 1 -
) [y 5 VG

Underestimation cost The costs of underestimation occur when the actual WP exceeds projections. Wind
turbines will store any excess electrical energy they generate in batteries, as they would otherwise lose their
power. As shown in (29), is the formula used to determine the underestimate cost:

( V'rated > ! < Vout > !
COSt'ﬁJ]zndm = Pfgindm X (Pwrated - Pu)indm) (& s — e § +
Vi + P . Urated — Vin ]
B in windm Pun-af,ed
VUrated J S
Pu)rated ‘/Zn ) - ( )
Iy 15 Pwin m S - (29)
(‘/ra.f,ed - ‘/in + ¢ ¢ ¢
V’r‘ated — ‘/in
‘/in + Pwindmi j
Pw'r‘ateds 1 P, ted 1 (Vra,ted )]
_ ~ wrateds 1 - wrate. _ 1 - YVrated
+Vrated_‘/7,' C +]’ S C +J7 s

Here, C0st9;,, 4m and CostY,, .. m™ wind unit’s overestimation and underestimation costs respectively;
Pyrated and Vyqieq: rated output power and rated velocity respectively; Vi, and V5 cut-in and cut-out velocity
of wind turbine respectively; PfY. . and Pf,, .. :underestimation and overestimation cost co-efficient.

Problem formulation

Incorporating wind, solar, tidal, and electric vehicles (EVs) into the optimal operation of hydrothermal power
systems introduces a highly complex and non-linear optimization challenge. To accurately model this system
under real-world conditions, several technical constraints and factors must be taken into account. These include
the unique operational characteristics of renewable sources such as wind, solar, and tidal as well as those of
conventional thermal and hydro units. Additional complexities such as valve point effects, prohibited operating
zones (POZ) and transmission losses are also integrated into the problem formulation. These constraints
are essential for evaluating the performance and efficiency of the hybrid test system (HTS), which combines
these diverse energy sources. The following sections outline the objective functions and critical constraints-
both equality and inequality-that are vital to optimizing the wind-solar-tidal-EVs-based HTS model. These
considerations are key to ensuring that the system operates efficiently while adhering to the technical and
practical limitations of each energy source.

Objective function
The primary goal of this challenge is to reduce the cost of power generation and create a world free of pollutants.
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Case 1: HTS without wind, solar and EVs

In the HTS problem, wind, solar and electric vehicles are not taken into account, and the objective function of
thermal units has a quadratic cost function. In addition, the cost of producing hydroelectric power plants is very
low. Only water discharges from hydro reservoirs have been used. Thus, for the thermal generating unit, the
objective function of the HTS problem is provided by:

NP
Min C = Z Cpi(Py) (30)

i=1
The cost function of thermal power is explained by the quadratic equation, which is shown in Eq. (31):
Cpi(Ppi) = O‘pi(Ppi)z + BpiPpi + Vpi (31

where the cost function’s coefficients of the i*" thermal power are represented by ap:, Bps and yp;. In Eq. (32),
the impact of the valve point is taken into account. It illustrates a sinusoidal feature.

Cpi(Ppi) = api(Ppi)2 + BpiPpi + Ypi
+|0pi Sin (epi x (Pp™ = Ppi)

pi

(32)

Case 2: HTS with wind, solar, EVs, tidal and energy storage
An equation (33) describes the cost function of the HTS problem based on solar, wind and electric vehicles.

Np Ny N
Min C = Zsz (sz)‘l' waa (Pwa)+zcsrl (Psrl)
i=1

a=1 =1
Ny Niidal (33)

+ Z Cvehm (P’vehm) + Z COSttidali (Ptidali)

m=1 i=1

In the above equation, X (Pwa) represents the wind generation cost; The cost of solar and electric vehicle
generation are represented by Ciir (Psir) and Cuenm (Poehm ), respectively; The number of wind unit, solar
panel, and electric vehicle fleets is represented by V., N and N, respectively.

Constraints

Power balance constraints

HTS without REs and EV

The hydro-thermal scheduling problem’s power balance constraint” in the absence of renewable energy sources
and EVS is provided by:

Np Npa
Z Cpi (sz) + Z Phd,i = Pde + ]Jloss (34)
i=1 =1

Npq is the total number of hydroelectric plants; Pge is the network’s total power demand; P55 is the sum of
transmission losses; Pq,; is the production of hydropower and is mostly determined by the storage volume and
discharge rate, which can be explained as follows:

Pra; = >\1i(Vi)2 + >\2i(Qi)2 4+ A3iViQi + Aai Vi + A5 Qi + Aei (35)
where, A: hydro power plant generation coeflicients. V;, Q;: reservoir storage volumes for hydro power plant.
HTS with REs and EV

When using EVs and renewable energy sources, the hydro-thermal scheduling problem’s power balance
constraint is provided by:

Nyp Npa Nay Ns
Z Cpi (PZ”) + Z P/’Ld,j + Z Twa (Pwa) + Z Csrl (Ps'rl)
i=1 i=j a=1 =1 (36)
Ny Niidat
+ Z C’uehm (Pvehm) + E COSttidali (Ptidali) = Pje + Pioss
m=1 i=1

Inequality constraints

Generation limit constraints

The lower and upper range of thermal power, hydro power, wind power, solar power and EV are shown by Egs.
(37)-(42):

P <Py < Py where,i = 1,2,3,..., Ny (37)
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Fig. 1. Schematic diagram of solar-wind-hydro-thermal-EV-tidal system.
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Fig. 2. Lognormal based solar irradiance PDE

PR <Prg < PR where, j = 1,2,3, ..., Npa (38)
PP < Pua < PP where,a =1,2,3, ..., Nu (39)
min < p < PP phere,l =1,2,3, ..., Ny (40)
PRN <Py < PR yhere,m = 1,2,3, ..., Ny (41)
Pidai <Pudani < Piigaywhere,i =1,2,3,..., Nuigal (42)

min

Lower and upper power limits of i'" thermal power unit is presented by Py}, Pyi**; Pr™, Puy™, Pii™ and

v"eli" are the lower power generation of j th hydro, a™ wind, [*" solar and m*™ EV units; Pry™®, Poo'®, Pit®
and P2 are presented upper generation of j°™ hydro, a*" wind, I*" solar and m*" EV units.
The schematic diagram of hydro-thermal-wind-PEV- tidal-solar system is presented in Fig. 1.
Power limits for EV charging and discharging
_Ech arg ing(max) < Ev,t < O, chargz'ng
Xjk = 4 Paischarging(max) = Fu,t >0, discharging (43)
Ey,: =0, driving
Limit of state of charging for EVs
SOCmin S SOC’U,t S SOCmax (44)
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Initial and final SOC limit

SOCy = SOCT = SOCinitial (45)
Restrictions on hydro power
Limits on reservoir storage volumes

Vimin < Vi < Vimax (46)
where, V; min, Vi, min are the boundaries of the storage volume of the it" reservoir.
Limits on water release
Qi min < Qi < Qi max (47)
where, Qi min, Qi max are the water release’s lowest and maximum limits of the i** power plant.

Reservoir restrictions for initial and final reserve volumes
Each unit’s reservoir storage opening and closing shall adhere to this restriction.

VviO _ Vvilm (48)

‘/z‘t _ ‘/iend (49)

where, V; and V' are the i hydro unit’s tank storage at time period 0 and t; V;>" and V;*"¢ are the beginning
and ending the hydro unit’s tank storage constraints i.

Water restrictions and dynamic balance
The hydro plant’s reservoir storage must continuously monitor the hydraulic system’s continuity equations when
it is compressed by spills and inflows at the previous event and it is expressed as follows*3:

Nuys

VE=VIT I = Qb= ST+ (Quit—rae + Snt—raas) (50)

n=1

The i*" hydro units inflow and spillage are depicted using I?, Sf; n, us is the upstream component; 7, is the
time delay.

Minimum emissionpou
T Npou )

= Z Z I:blo + b“PIfm“' + b’i2(P;foui) + bis eXp(bMP;oui)]
t=1

i=1

(51)

In (51), bio, bi1, bi2, bi3 and b;4 denote emission coeflicients whereas P;foui represents thermal generation.

Algorithm for optimization

Moth flame optimization (MFO) is a well-known algorithm based on swarm intelligence, inspired by the
navigation behavior of moths. The optimization technique mimics the moth’s ability to navigate using a method
known as transverse orientation, which is especially noticeable during nighttime. This natural behavior allows
moths to maintain a constant angle with respect to the moonlight as they fly, helping them reach their destination.
By applying this concept, the searching capabilities of moths are enhanced in the optimization process. MFO,
originally introduced by Mirjalili, utilizes this navigation mechanism to solve complex optimization problems.
The moths’ movements are simulated to find optimal solutions by constantly adjusting their position in search of
a better solution. The working steps of the MFO algorithm are often illustrated using a flowchart, which details
the step-by-step process of this meta-heuristic algorithm. Mirjali® is the one who initially invented this meta-
heuristic algorithm. The placements of the moths have mostly been moved to the vicinity of the best solutions,
and the flame sequence has been altered based on the best solutions. The moth population set’s location is shown
by:

Q@ Q
mo 1,1 mo 1,2 cee 0 eeees m0@1 d
M, = (52)

Q Q@ Q
mo k1 MO k2 e <O " k.d

Here, d indicates the dimension of the variables and k denotes the moths number (i.e. size of population).The
following array is used to store the appropriate fitness.
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le@
@ sz@
Cm~ = ) (53)

Cmn®
where Cm; is the function of fitness of the i*" moth.
Accordingly, the flames can also be displayed in a matrix form, as presented below:

191 fl®10 e fl®.p
Fl@ _ (54)

fl1%nq fl®ne o fl®p
The flame equivalent array is introduced to accumulate the corresponding fitness values as illustrated below:

OF?

o OFY

OF® = | . (55)
OFE?

where, it" flame fitness value is shown by OF} 1@ .
Three-tuple estimation is added by the MFO algorithm’s ordinary surface. Thus, the primary approach is
included as follows:

MF = [Ty, T, Ths) (56)

An important factor in changing the moths’ position is a logarithmic spiral. Moths are shifted in the direction of
the flame by using navigation or transverse orientation steps. Lastly, moths are moved forward and backward in
the vicinity of flames in a logarithmic spiral motion. The following formula can be used to depict the logarithmic
spiral movement:

SI® (M2, F) =1; x €™ x cos(2mq) + Fy® (57)

where # signifies a constant number depending on where a moth is closest to the appropriate flame, it has a
logarithmic spiral structure. j* flame of the " moth length is presented using l;; the range of g is (-1 to 1) and
it is a random value; The outcome of I; moth can be represented as follows:

li = |Fj — MO? (58)

To increase the action qualities surrounding the flames of succeeding moths, the iteration process is further
performed.

fla  cou = round [HM —1rg X %} (59)

where, the largest quantity of flames is shown using HM; the maximum number of iterations is determined by
Ymax and Iterations in progress can be recognized by r,. Movement of moth according to the flame is shown in
Fig. 6. Flow chart of chaotic oppositional moth flame optimization is shown in Fig. 7.

Chaotic based learning (CBL)

Many evolutionary algorithms are inspired by random initialization and the ongoing search for the optimal
solution. MFO still cannot find the global optimal solution better than other approaches, which also affects the
rate of convergence. To reduce this impact, MFO and chaos behavior are combined to generate COMFO. Faster

\ Moth

Flame

Fig. 6. Moth movement as per flame position.
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Fig. 7. Flow chart of moth flame optimization.

SL. No. | Name Chaotic map
K1 Sine Xiy1 =a/4 (sin H w)
) 1 1 1
K2 Gussian map Thil = Tkl {0 , 7, =0, —mod (1) = — — [—]
T Tk Tk
K3 Circle Thyl = Thto — (a/2m)sin (2wk) mod (2)
K4 Cubic 41 = ar; (1 — 7"]2)

K5 Chebyshev map | ;41 = cos (kcos_1 (rk))

K6 Sinusoidal Xit1=a(X;)2 (sin H ZEL)

— X; < 0.7
K7 Tent Xit1 = 90

*(1 X;) ;X 2 0.7
K8 Liebovitchmap | rp41 = arg (1 — 7)

. . am
K9 Iterative map rk+1 = Sin (—k) ,a€ (U,1)
r

K10 Logistic map ret1 = arg (1 —ry)

Table 2. List of various chaotic maps.

overall searches are made possible by chaos’s unpredictable and non-repeating characteristics, which be crucial
for accelerating a metaheuristic algorithm’s convergence.

The CMFO approach integrates various chaotic maps with MFO to regulate its parameters. Ten chaotic maps
with various behaviors have been considered. In the range of 0 to 1, the starting value for the optimal solution is
0.7. Table 2 discusses the different chaotic maps.

Opposite number

The mirror position of the proposed solution uses the opposite number (60). The equivalent opposite number
X, of a randomly generated candidate solution with interval [a, b] for a one-dimensional search space is
represented as:

Xo=a+b—X (60)

where the search space’s minimum and maximum limits are a and b, respectively. The preceding statement is
stated similarly for n-dimensional search space by the following Eq. (61)

where the lowest and maximum bounds of the search space are a and b, respectively. The following Eq. (61)
similarly states the above statement for a n-dimensional search space:
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Xok = ar +br, — Xi (61)
where k = 1,2, ....,nand X = X1, Xo,...., X,

Jumping rate

Jumping rate offers a new approach that exceeds the current one in terms of fitness value (62). Fresh solutions are
developed using the jumping rate equation, and the quasi-opposite solution has been determined. The algorithm
receives assistance in determining the optimal solution globally.

Jjr = (JrR,Maz — jR,Min) — (JR,Maz — JR,Min) (W) (62)
Mazx

where jr is jumping rate; Jr,Max denotes maximum jumping rate; minimum jumping rate is denoted by
JR,Min; fis function for current iteration and fasqz is maximum number of iteration.

Steps of COMFO for wind-solar-EV-tidal-energy storage based HTS problem
Step 1: Initialization

o The hybrid power system’s input characteristics are taken into consideration, including the fuel cost co-
efficients, emission coefficients, water discharge rate of hydro plants, solar PV, hydro, wind, and thermal
generators, as well as the input parameters of electric vehicles.

« The outputs are randomly selected within the specified search space.

o Inequality constraints are checked to confirm the viability of the generated results. If any non-elite solu-
tions are found, they are reinitialized.

A possible solution array is constructed based on the population size of the moths, which is given in matrix
form.

Step 2: Non-dominated sorting

« A non-dominated sorting Pareto front is incorporated depending on the moths” population matrix.

« Each solution is compared with others to determine if it is dominated. If no other feasible solution domi-
nates a given solution, it is considered a non-dominated Pareto optimal front.

o The validation process ensures that at least one objective function value is better for the non-dominated
solution.

’

film) < fi(m), i=1,2...,P (63)

The equation below holds true for at least one value of i.

film) < fi(m) (64)

where f;(m) is the i"" objective function and m = (M, ...., M,,) are the objective functions’ control variables.

Step 3: Fitness representation

o A column array is introduced to represent fitness equivalent values based on each moth’s position, opti-
mizing for cost.

Step 4: Position alternation

« Moths’ positions are modified based on their proximity to the flames, moving them up to the current iter-
ation within the search space.

« The best existing positions of each moth are aligned with the flame positions, ensuring optimal values are
achieved.

Step 5: Flame fitness array

« Fitness values are stored in the flame fitness array. Moths’ positions can be adjusted to enhance search space
exploration.

« By validating moths and including optimal flame positions towards the end of the search process, the ef-
fectiveness of the flame is determined.

Step 6: MFO technique

« Triple estimate functions are used by the MFO approach to determine the optimal solution.
o The lower and higher bounds of the control variable are indicated in the penetration space, where the
moths’ fitness values are computed.
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Step 7:  Compromise solution
o The compromise solution is reached using a pseudo-weight vector, which calculates each solution after
optimization.
o The method optimizes for the minimum and maximum values of the target function by allocating weights
to each created Pareto solution set.

MO (i, ) = rand(j) + (U (i) — L+(3)) + L (i) (65)
where, Ty’ denotes the moths movement in the section of the penetrating space. L and U are the lower and

higher limit of the control variable. Procedure for modernization of the recognized matrix M is processed in
this way.

Thy : MO* — MO* (66)
If the principle of termination is in accordance then T'z5 functions proceeds “yes;” and if the termination stand-

ard is not in in accordance it returns “No”. Each flame’s position progression is determined using the equation
below:

MO; = SI" (MO}, Fy;) (67)

Here, ST* is the spiral characteristics; M O} presents the i*" moth of the Fy; flame position.

The best result is obtained by introducing a logarithmic spiral to update fitness values from the worst to
the global best using (54)-(55). Results are boosted based on the iteration count and the flames amount is
reduced gradually using equation (68).

Step 8: The pseudo-weight vector is used to obtain the compromise solution, and each solution is produced
using:

[fi (@)™ — fi (x) / fi(@)™™ — fi(x)™"]
b .
kZ_:l (@)™ — fi (2) [ fu (@)™ = fo(z)™™]

(wv;) = (68)

The minimum and highest value of objective functions is expressed by f; ()™ and f; (x)™™.

Step 9:  Stopping criteria

« The algorithm terminates and the results are presented if the halting criteria-the maximum number of
iterations is met.
This algorithm will halt its execution if the stopping criteria, or maximum number of iterations, is met and
print the result.

Advantages of COMFO over standard MFO algorithm
Advantages of COMFO over standard MFO algorithm are listed below:

o COMEFO effectively handles complex and nonlinear optimization problems.

« Robustness is better than other existing algorithms including MFO.

« It has better exploration and exploitation capability as compared to the conventional MFO approach.
« Multi-objective optimization problems can be dealt in an effective manner.

« It has better Convergence superiority.

Simulation result

CEC benchmark system

CEC Benchmark functions consisting of a number of unimodal, multi-modal, hybrid, or composite functions
are mostly used to judge the effectiveness of any optimization technique. The aforesaid Benchmark functions
are mostly used in various dimensions such as with 10D, 30D, 50D, and 100D dimensions. In the proposed
research work, the present authors successfully used IEEE CEC 2017 benchmark functions having 30D and 50D
dimensions. The present authors used 10* x D number of iterations to optimize the aforementioned functions.
The present authors evaluate the performance of the algorithm in 30 different runs. There are various groups into
which the benchmark functions may be classified. In this study, most widely used benchmark functions namely
unimodal (F1-F3), multimodal (F4-F16), hybrid (F17-F22) and composite functions (F23-F30) are used for
accessing the efficacy of the COMFO approach.
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CEC 2017 (30D)

Thebest mean error values and standard deviations (SD) obtained by the proposed COMFO and other approaches
for CEC 2017 with 30D are illustrated in Table 3. Mean error values less than 10 x 10™® are considered zero
for all participating algorithms. Table 3 clearly shows that, in terms of mean error values, proposed COMFO
outperforms most of the other discussed algorithms used in this work for the majority of test functions. In
contrast to the other algorithms, COMFO outperforms in reaching optimal values for unimodal and multimodal
test functions. Furthermore, it is observed from the standard deviation values listed in Table 3 that among all
the algorithms, the proposed COMFO has the highest level of precision. Table 4 compares the best mean error
values and SD generated by different MCTs for hybrid and composite functions. Moreover, the computational
results listed in Table 4 demonstrates that the proposed COMFO performs better in terms of mean error values
and SD compared to the other approaches. This facts clearly prove that COMFO has the potential to provide
most accurate and effective results. The Wilcoxon signed rank test with a significance threshold of 0.05 is
used to compare the mean error values of the proposed MCT with the other MCTs for each test function in
order to assess statistical significance. Competing MCTs are assigned the “+”, “=”, and “~” signs based on their
statistical performance versus the suggested COMFO, as determined by the results of the signed-rank test. If the
performance of any algorithm is better, equal to, or worse than the recommended COMFO, it is indicated by
the “+”, “=” and “~” symbols. Table 9 proves the statistical robustness of the proposed COMFO over its rivals,
which shows that among the participating MCTs, the proposed MCT receives the most “+” signs. Moreover,
the Friedman rank test’! is used to assess the proposed MCT’s overall statistical performance. Based on the
Friedman rank, the proposed COMFO comes in first place among all approaches.

CEC 2017 (50D)

Moreover, to judge the efficacy of the proposed approach for high dimensional problem, CEC 2017 with 50
dimension is used.The best mean error values and standard deviations (SD) for the 50D scenario are shown in
Table 4, which has been compiled by the suggested COMFO and other participating MCTs. The competitiveness
of the suggested COMFO’s performance across most uni-modal and multi-modal functions is illustrated by
the best mean error values displayed in Table 4. Additionally, the SD values show that the proposed strategy
performs consistently better than the other strategies considered. According to Table 9, the recommended
approach outperforms alternative approaches in terms of mean error values and SD for the majority of hybrid and
composite functions. Since the suggested COMFO achieves more “+” signs than the other eligible algorithms,
the results of the Wilcoxon signed-rank test listed in Table 5, prove its statistical superiority. Moreover, the
Friedman rank test listed in the bottom row of Table 5 clearly demonstrates that the recommended COMFO
ranks first among all the discussed algorithms.

HTS systems
Using the moth flame optimization algorithm (MFO), in this simulation study two different hybrid test systems
(HTS) i.e., one with and one without renewable energy sources, were examined in this simulation study. In
addition, electric vehicles (EVs) and tidal energy were integrated with renewable sources to maximize the
advantages of a virtual power plant. Brief descriptions of the test systems under study are made in Table 6. The
systems data of the proposed research work are given in Tables A1-A13. The suggested MFO algorithm was
contrasted with alternative optimization methods in order to evaluate its efficacy, including teaching learning
based optimization (TLBO)*, clonal selection algorithm (CSA)*, differential evolution (DE)*, and improved
particle swarm optimization (IPSO)>2. The simulations were conducted using MATLAB 7.8 on a system equipped
with a recent generation Intel Core i5 CPU running at 2.5 GHz and 4 GB of RAM. The results for both test systems
were documented, detailing the lowest, average, and highest generation costs, as well as computation times. Each
test system was performed for 100 iterations with a population size of 50. The MFO algorithm showed optimal
performance with a jump rate of 0.3. Test System 1 consisted of four hydroelectric and three thermal power
plants, focusing on minimizing generation costs while ensuring reliability and stability. In contrast, Test System
2 featured a more diverse mix of energy sources: four hydroelectric units, three thermal units, one wind unit,
one solar unit, one tidal unit, and one EV. This integration aimed not only to reduce costs but also to enhance
the sustainability and resilience of the power system. Both test systems were rigorously evaluated using the MFO
algorithm, with outcomes compared to those from TLBO, CSA, DE, and IPSO. The comparison highlighted
performance in terms of generation costs, computational efficiency, and effectiveness in managing renewable
energy sources and their uncertainty. The detailed results demonstrated that the MFO algorithm outperformed
the other methods, achieving lower generation costs and improved computational efficiency. These findings
highlight the potential of MFO in effectively managing hybrid power systems, particularly those with a high
proportion of renewable energy sources and advanced technologies like EV's and tidal power.

Moreover, COMFO has been used on both test systems. In contrast to HTS systems that rely on non-
renewable energy, the simulation findings show that using renewable sources reduces generation costs.

Test system 1

In this test system, seven different units are indicated in Test system 1, consisting of a combination of four
hydroelectric and three thermal power plants. A new optimization method called moth-flame optimization
(MFO) is used to examine the performance of Test system 1. The MFO method is used to search for the best
global solutions. The input parameter of the thermal power plant is exerted from®. Reservoir inflows, volume
restrictions, maximum/minimum limits, and generation coeflicients are among the cost coeflicients taken froms®.
The moth flame optimization (MFO) algorithm was evaluated against several other optimization methods to
minimize generation costs. MFO achieved the lowest cost at $41,526.37 per day, outperforming other techniques
such as clonal selection algorithm (CSA) with $42,440.57, differential evolution (DE) at $44,526.10, and teaching
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CEC 2017 (D=30)
Function |BWM_HS | CVnew SGSADE HGSO SCA MFO COMFO
Unimodal
Mean | 3.798x10% | 1.199x 10" | 3.498x107% | 5.497x10° | 0.000 3.073x 1078 |2.986 x 107
F1 |SD |4799x10® |0.000 3.945x 1078 | 1.123%x 102 | 0.000 2.049x 1078 | 2.029x 1078
Sign | + + — — — -
Mean | 1.199x10~7 | 1.515x10% | 1.338x10% |5.958x 102 |2.119x107% |3.299%x 10~ | 1.983 x 1077
F3 |SD | 4.499x107% | 9.459x10" | 1173x10% | 2.875x10% |2.198x10™° | 1.920x107% | 2.137 x 1077
Sign | + + + + + +
Multi-modal
Mean | 6.799x10% | 1.558x 101 |1.399x10* |4.729%10% | 4.342x10" |3.242x 1078 | 2788 x 108
F4 |SD  [3.101x10" |2797x10' |2598x10' |3.012x102 |2.897 3.004x1078 | 1316 x 1078
Sign | + + + + + —
Mean |5101x10 | 1.298x10% |8.901x10' |6.196x10% | 1.448x10" |3.711 3.087 x 10!
F5 |SD |1.901x10' |2801x10* |1.799x10' |9.896 2.399 2.693 1.087 x 10"
Sign | + + + + — _
Mean | 1.199x107° | 2.124x 10" |2304x107% |5.983x10% | 1.101x10~® | 1.115x10~% |8.230x 107
F6 |SD  |2224x107° |8231 1.499x10~8 | 7.701 1.502x1078 | 1.318x10~8 | 1.234x 1077
Sign — + — + — —
Mean | 5988x 10" [2299%10% |1.297x10% |8.398x10% |4.891x10" |3.582x10" |5417
F7 |sSD |9.701 2.099x10" | 1.599x10" |6.196x10" | 2.252 8.229%x 107! | 5.268 x 107!
Sign | + + + + + +
Mean | 4.988x 10" | 1.197x10% |8289x10' |8302x10% | 1.295x10" |3.416 3.157
F8 |SD [1.303x10' |2701x10' |1.603x10' |2.604x10" |2.789 1.777 1.596
Sign | + + + + + =
Mean | 1.099x 10" | 2.198x10% |5972x107% | 1.801x10° | 0.199 0.403 0.000
F9 |SD |8.0044x10" |8505x10% |6.033x107% |2.402x102 | 0.303 0.842 0.005 x 107
Sign | + + + + + +
Mean |2755%10% | 4.498x10% |5.099x10% |5194x10% | 1.101x10% |2.463x10% | 4.420 x 10?
F10 |SD  |4.801x10% |3.035x10% |5499x10% |3.098x10% |2396x10% |3.543x10% |9.417 x 10!
Sign | + + + + + +
Mean | 9501x10% | 3.704x10* |5.036x10" |1.502x10% | 1.803x 10" | 4.206 3.100
FI1 |SD  [3.199x10" | 1.888x10" |3.099x10' |2901x10" |2.001x10" |3.846 1.541
Sign | + + + + + =
Mean |5011x10° |5.099%10° |1.906x10* |[5.002x10% |4.199x10% |4.872x10% |5.125
F12 |SD  |4501x10° |5899x10° |6.988x10% |3.098x10* |1.503x10% |2.64x10? 3.632
Sign | + + + + + +
Mean | 1.901x10* |7.988x10% |2987x10% |5501x10* |2112x10 |0.901x10* |[7.299x 107!
F13 |SD  [2197x10* [2902x10" |3.001x10% |2.099x10% | 0.983x10" |4.826 4.056 x 107!
Sign | + + + + + +
Mean | 4011x10% |5.023x10% |6.222x10% |2299x10% | 1.889x10' |2.793x10* |[3.146x 107!
Fl14 |SD  [3301x10% |7.099 8.912 1.803 2.501 1.989 0.688 x 107!
Sign | + + + + + +
Mean | 8.112x10% |3.778x10' |4.888x10' |3.812x10° | 4.018 4.561 3.146 x 10!
F15 | SD 8.908x10% | 8.803 3.001x10'  |5.012%x10% | 2.101 2.897 1.401 x 10!
Sign | + = + + — _
Mean | 4.888x10% |7.509x10% |5.054x10% |3299x10% |2706x10' |4.222x10' |5478
F16 |SD  |1.972x10% |2112x10% |1.801x10% |3.399x10% |2.978x10' |5745x10" |2.911
Sign | + + + + + +
Table 3. Statistical comparison of COMFO on CEC 2017 with 30D for F1-F16.
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CEC-2017 (D=50)
Function |BWM_HS | CVnew SGSADE | HGSO LSHADE-cnEpSin | LSHADE-SPACMA | COMFO
Hybrid

Mean |3.099x10% |2.011x10% |8.099x10" |2.014x10% |3.199%x 10! 3.987x 101 1.810 x 10!
F17 |SD | 1.889x10% |6.901x10" |2.198x10" | 1.983x10" |4.986 7.401 1.077 x 10!

Sign | + + — + — -

Mean | 1.501x10° | 4.009x10' | 1.988x10% | 1.001x10* | 1.986x 10" 3.801x 10" 0.732 x 10!
F18 |SD  |5901x10% |6.985 1.801x10% | 5.712x10* | 6.901x10~! 2.021 1.666 x 107!

Sign | + — = + _ _

Mean | 7.907x10% | 1.897x 10" | 2.199x 10" | 1.966x 10° | 4.512 8.201 7.523 x 107!
F19 |SD | 9.902x10% |3.101 6.190 2.901x10° | 1.901 2.303 6.006

Sign | + + + + + +

Mean | 1.799x 10 | 1.812x 102 | 0.909x 102 | 1.701x10® |2.512x10* 7.805x 10" 3.475 x 102
F20 |SD  [8.901x10" [9.615x10" |4.905x10" |2.988x 102 |6.501 4201x10* 2.042 x 10!

Sign | + + + + = +

Mean | 2.604x 102 | 1.801x10% | 2.803x10% |2.899x10% |1.899x10? 1.799% 102 7.236
F21 | sD 1.501x 10" | 2.712x 101 | 2.199%x10" | 2.499x 10" | 2.815 3.533 1.813

Sign | + + + + + +

Mean | 1.912x10% | 1.198x10® | 1.801x 102 |3.899x10% |2.901x10? 2.612x102 1.263 x 10!
F22 |SD [ 1.599%10% [1.907x10% | 1.199%x10" |8.278x10% |1.499x10" 2.901x10* 7.645

Sign | + + = + = =
Composite

Mean | 4.111x10% |3.808x10% | 3.966x10% | 1.977x10°® |2.701x10? 2212x10? 4.047 x 10*
F23 |SD | 4.889x10" |4.714 2692x10" | 5.394x10" | 2.981x 10" 3.502x 10" 2124

Sign | + + + + + +

Mean |5.001x10% | 4502x10% |3.099x10* | 2.099x10° |4.098x 102 1.901x 10" 1.822 x 10!
F24 |SD | 2194x10" |2.601x10% |2.199x10' |8701x 10" | 2515 1712 2515x 107!

Sign | + + + + + +

Mean | 3.901x10% |3.612x10% | 4.099x102 |2.866x 102 |2.404x 102 1.888x 10" 2.036 x 10!
F25 |sD | 2401 7.312x107 1 | 4.901 2.887x 10" |7.401x1073 1.828x1072 1.410 x 1073

Sign | + + + + + +

Mean |2.701x10% |3.711x10% | 2.912x10% | 4.701x10% | 9.310x 10> 9.831x 102 1.222 x 10?
F26 | SD  |6.401x10% |3201x10" |2.101x10% | 1.889x10% |4.701x 10" 3.498x10* 2.757 x 10!

Sign | + + + + + +

Mean | 5.618x10% |5301x10% |5.615x10% |3.701x10% |5.099x 10> 5198 %102 3.617x102
F27 |SD | 1.401x10" |9.901 1.815 1.099% 102 | 6.603 1.789% 10" 9.701 x 107!

Sign = = = + = =

Mean | 4501x10% |3.312x10% | 3.601x10% |3.214x10° |2.901x 10> 2.888 %102 8.498x 10"
F28 |SD  |6.501x10" [3.919x10" |5.097x10" |7.501x10" |3.883x10* 5.803x10* 3.206 x 10!

Sign | + + + + + +

Mean |5.099x10% | 8.412x10% | 6.504x10% |3.811x10° | 4.415x 10> 3.901x 102 2.640 x 102
F29 |SD | 1.812x10% | 1.301x10% |6.601x10" | 1.402x10? |7.096 4.111x10* 1.222 x 10!

Sign | + + + + + +

Mean | 1.111x10* |2.401x10% |2.719x10% |9.828x10% | 1.502x 10> 8.828 %102 7.826 x 102
F30 |SD  |5801x10% |5.242x10% |9.401x10% |3.615x10% |4.299x10% 9.099x 102 2.606 x 102

Sign = — — = — _

Table 4. Statistical comparison of COMFO, on CEC 2017 with 50D for F17-F30.

learning-based optimization (TLBO) at $42,385.88. Additional comparisons with particle swarm optimization
(PSO), modified differential evolution (MDE), and quantum-inspired TLBO (QTLBO) also confirmed the
superiority of MFO. The results, including hour-wise generation data and statistical analysis, demonstrate
the effectiveness of MFO in optimizing hybrid power systems for cost efficiency and reliability. The thermal
power plant’s input parameter is derived fromS. Based on the discussion above, it can be concluded that the
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Sign BWM_HS | CVnew | SGSADE | HGSO LSHADE-cnEpSin | LSHADE-SPACMA
+/=/- COMFO | Vs. 27/00/02 | 22/02/05 | 26/00/03 | 28/00/01 17/04/08 18/03/08

Statistical rank BWM_HS | CVnew SGSADE | HGSO LSHADE -cnEpSin | LSHADE -SPACMA | COMFO

Friedman rank 5.497 4.683 5.105 6.996 2.782 2.121 1.409

Overall rank 6 4 5 7 3 2 1

Table 5. Wilcoxon signed-rank and friedman rank test based on mean error of CEC 2017 (D = 50).

Case | Without renewable | With renewable | Considered objective Constraints Test system
1 v Overall cost reduction with valve point effects
2 v Emission minimization Equality and inequality | 4-Hydro 3-Thermal
3 v Overall cost reduction with valve point effects
4-Hydro 3-Thermal
4 v Emission minimization Equality and inequality | 1-Wind 1-Solar
1-Tidal 1-EV

Table 6. Summaries of different case studies under consideration.

Thermal power plant
(without renewable energy)

Hour | Plantl Plant2 Plant3

1 30.4973 | 210.2592 | 229.5196
2 175 206.8581 | 139.7598
3 175 124.9438 | 139.7545
4 38.6093 | 124.9184 | 229.5196
5 33.2099 | 124.9149 | 229.5196
6 175 184.9776 | 139.7597
7 175 214.1778 | 139.7619
8 28.0166 | 213.6608 | 319.2794
9 175 216.967 | 229.5273
10 175 209.5819 | 229.5194
11 175 129.216 | 319.2793
12 175 280.0915 | 229.5196
13 175 2249497 | 229.5196
14 102.6847 | 124.9079 | 318.7135
15 175 209.8205 | 139.7127
16 106.7563 | 228.6361 | 229.5196
17 98.5909 | 209.8133 | 229.504
18 175 207.445 | 229.5196
19 112.1642 | 215.022 | 229.5196
20 20911 285.6258 | 229.5194
21 175 124.9043 | 138.831
22 33.7233 | 127.1845 | 229.5196
23 20.1978 | 127.6663 | 229.5196
24 102.6748 | 124.9079 | 139.7598

Table 7. Thermal power generation of each unit for test system-1I.

newly developed metaheuristic technique. is superior to other currently utilized ways due to its effectiveness
in lowering generating costs and computation time. Table 7 represents the thermal power generation of each
unit. Hydro power plant generation and discharge of each unit is shown in Table 8. Its durability and resilience
are further demonstrated by the near proximity of the lowest, mean, and maximum generating costs that were
obtained. Thermal power generation of each unit is displayed in Fig. 8.

Test system-2
The effectiveness of the proposed MFO algorithm is further validated by applying it to a more complex system,
known as Test system 2. This system builds on Test system 1 by adding non-linear elements such as wind, solar,
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Hydro power plant (without renewable energy)

Generation (MW) Discharge (x10% m?)

Plantl |Plant2 |Plant3 | Plant4 | Plantl | Plant2 | Plant3 | Plant4
78.897 | 50.164 |21.6346 | 129.0269 | 0.855 0.6 2.344 | 0.6
71.1537 | 51.296 | 10.1869 | 125.7437 | 0.727 0.6 2416 | 0.6
72.1469 | 52.934 | 13.5952 | 121.6253 | 0.7391 | 0.6 2296 | 0.6
67.3884 | 54.5 19.24 115.8221 | 0.672 0.6 2.156 | 0.6
65.9078 | 55.504 | 28.8517 | 132.0915 | 0.654 0.6 1.941 0.6
60.4452 | 55.994 | 36.7302 | 147.0931 | 0.582 0.6 1.73 0.6

86.594 | 63.8744 | 38.8545 | 231.7413 | 0.992 | 0.7228 | 1.646 | 1.219
86.1952 | 66.0102 | 37.8707 | 258.9692 | 0.99 0.761 1.643 | 1.429
86.3171 | 68.1556 | 36.0665 | 277.968 |0.992 |0.7952 | 1.703 | 1.61
77.2591 | 67.5065 | 35.2959 | 285.8382 | 0.8123 | 0.774 | 1.737 | 1.705
87.6747 | 71.7037 | 35.9696 | 281.1584 | 0.987 | 0.838 |1.732 | 1.646
85.9891 | 64.6333 | 33.8516 | 280.9147 | 0.951 | 0.7179 | 1.795 | 1.643
87.2879 | 73.6041 | 33.9562 | 285.6831 | 0.969 | 0.8698 |1.83 1.703
87.2055 | 74.8421 | 33.3614 | 288.2862 | 0.955 | 0.891 1.869 | 1.737
85.5299 | 77.0498 | 34.9773 | 287.9079 | 0.9166 | 0.9352 | 1.843 | 1.732
86.1193 | 76.1657 | 40.2437 | 292.5612 | 0.924 |0.932 | 1.725 | 1.795
86.066 | 77.0497 | 44.7193 | 304.2573 | 0.924 | 0.98 1614 |2
88.767 | 76.1007 | 47.139 | 296.0246 | 0.9824 | 1.011 1.58 1.8689
84.836 | 77.0939 | 48.7902 | 302.576 | 0.9192 | 1.089 | 1.9988 | 1.9988

82.2878 | 78.0024 | 53.89 299.7646 | 0.8875 | 1.1786 |2 2
54.7097 | 67.5631 | 56.3146 | 292.6818 | 0.5079 | 0.942 | 1.9381 | 1.9381
54.372 | 68.6724 | 58.3511 | 288.1773 | 0.5 0.975 | 1.9244 | 1.9244
54.7547 | 70.8399 | 59.3073 | 287.7167 | 0.5 1.064 |2 2

60.5977 | 70.8617 | 56.4812 | 244.7185 | 0.5611 | 1.1236 | 1.4418 | 1.4418

Table 8. Hydro power plant generation and discharge of each unit for test system-I.
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Fig. 8. Thermal production of individual plant for 1st test case.

tidal energy, and electric vehicles (EVs), thereby increasing its complexity. The input data for the hydro and
thermal power plants remain the same as in the earlier test, while wind system data is sourced from>® and solar
and EV inputs are taken from?. Tidal system data comes from’. Test system 2 consists of four hydro, three
thermal, one wind, one solar, one tidal, and one EV unit. By integrating these renewable sources and EVs, the
system aims to further reduce generation costs while handling the additional complexity of the expanded unit
mix. units are present. Table 9 lists the hydro power volume of various units for each hour using the suggested
methodologies. Hydro power generation and hydro power discharge are listed in Table 10. Hydro power
generation of each unit has been presented in Fig. 9. The volume of each hydro power unit has been displayed in
Fig. 10. Thermal, wind, EV; tidal, solar power generation for test system-II are displayed in Table 11.

In a similar way, Table 12 lists the status of the solar panels. Here, a total 13 PV panels are used. The hourly
costs of thermal, electric vehicle, tidal, wind, and solar power generation are shown in the table in Table 13.
The individual cost of each generator unit is listed in Table 14. The comparison of statistical analysis obtained
by different algorithms for Test system-I and Test system-II is shown in Table 15. Thus, Table 15 indicates that
the lowest generating cost while employing MFO is 39405.1809 $/day for solar, EV, tidal and wind integrated
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Hourwise hydral volume of four
hydro units

U-I U-II U-III U-1v

1004240 | 820000 | 1619210 | 1168000
1002160 | 840000 | 1523920 | 1088450
954850 | 845500 | 1367800 | 968660
966470 | 871100 | 1434260 | 851650
966390 | 844190 | 1463170 | 903390
986390 | 807300 | 1467750 | 956590
977050 | 717300 | 1498270 | 1049950
968230 | 719590 | 1493730 | 992100
984920 | 736570 | 1496600 | 1059280
1018420 | 766570 | 1641600 | 1079310
1043710 | 759980 | 1611890 | 1068720
1093710 | 768530 | 1580710 | 1120440
1136080 | 788530 | 1556570 | 1183400
1206080 | 789700 | 1545830 | 1200140
1224950 | 811270 | 1419240 | 1251320
1219710 | 811310 | 1425960 | 1333410
1211630 | 759360 | 1508030 | 1386480
1231440 | 728220 | 1556000 | 1392230
1175150 | 723460 | 1633540 | 1599890
1152920 | 735570 | 1676810 | 1573960
1160510 | 736920 | 1729400 | 1535220
1153570 | 763230 | 1754970 | 1492060
1150940 | 732870 | 1685170 | 1406100
1200000 | 700000 | 1700000 | 1400000

Table 9. Hourwise hydral volume of four hydro units for test system-II.

system, which are quite less with respect to test system 1. The convergence graph illustrates how the resulting
cost ($/day) varies with the number of iterations of the recommended technique. It is hypothesized that MFO
starts to converge based on the convergence graph of the renewable energy linked system i.e. described that
at iteration 22 with a minimum cost of 39405.18 $/day, and for the without renewable energy system MFO
begins to converge at iteration 26 with a cost of 41526.3689 ($/day). Convergence curve has been displayed
in Fig. 11. Generation of thermal, wind, solar, EV, tidal have been displayed in Fig. 12. The convergence graph
illustrates the relationship between the generated cost (in $/day) and the number of iterations for the proposed
Moth Flame Optimization (MFO) method. It indicates that the MFO algorithm begins to converge at around 22
iterations, achieving a minimum cost of $39,405.18. Fig. 13. displays the thermal power generation for each unit
in Test system 2. Simulation results reveal that the generation cost for Test system 2, using the MFO algorithm,
significantly outperforms that of Test system 1 in addressing the realistic non-linear problem. Additionally, the
integration of renewable energy sources (RESs) with the hydro-thermal system contributes to a reduction in fuel
consumption by thermal units, ultimately lowering overall generation costs compared to systems without RESs.
The convergence rate of the algorithm is enhanced by advanced metaheuristic methods. Fig. 14 present the hour-
wise generation costs for wind, tidal, solar and EVs, as well as the status of solar panels for Test System 2 is shown
in Fig. 15 respectively. Microgrid stabilization is a crucial part of modern electrical systems to ensure a consistent
and dependable supply of electricity. A single renewable energy source increases unpredictability as microgrid
stability is weakened by varying needs. However, it has been demonstrated that the microgrid should be easily
stabilized by utilizing a range of energy sources to balance supply and demand. To transition to a sustainable
energy system, increase microgrid reliability, and prevent blackouts, this process is very much needful.

Emission minimization (Test system-1 and 2)

The effectiveness of the proposed MFO algorithm is further validated by applying it individually for minimizing
the emission for both test system-1 (i.e. without renewable) and test system-2 (i.e. with renewable). The input
data for the hydro, thermal, solar, tidal and EV remain the same as in the earlier cases. By integrating these
renewable sources and EVs, the system aims to further reduce emision while handling the additional complexity.
Comparison of statistical analysis for emission minimization obtained by different algorithms is listed in Table
16. Table 15 indicates that the lowest emission while employing COMFO, OMFO and MFO are 7551.38 Ib/
day, 7558.26 lb/day and 7562.44 Ib/day, respectively. Similarly for solar, EV, tidal and wind integrated system
the emissions are quite less (i.e. 16306.94 Ib/day using COMFO, 16309.63 lb/day using OMFO and 16317.92
using MFO) with respect to emission minimization without renewable energy. Simulation results reveal that
the emission for both systems using the COMFO algorithm, significantly outperforms other approaches.
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Hydral discharge of four units Hydral generation of four units

hourwise hourwise
Hour | U-I U-II | U-III |U-IV |Hour | U-I U-11 U1 | U-IV
1 0.9576 | 0.6 1.6179 | 0.6 1 84.1206 | 50.164 | 54.2397 | 129.0269
2 0.9208 | 0.6 1.7729 | 1.0355 | 2 82.1658 | 51.296 | 47.6972 | 173.3565
3 1.2731 | 0.845 |2.9188 | 1.3579 |3 93.3492 | 67.3632 | 0 189.7976
4 0.5838 | 0.644 | 1.0562 | 1.1701 |4 58.7438 | 56.1055 | 51.803 | 159.1551
5 0.6008 | 1.0691 | 1.884 | 1.1005 |5 60.0888 | 78.5445 | 41.9494 | 158.9735
6 0.5 1.0689 | 1.783 | 1.2409 | 6 52.2064 | 76.1758 | 45.5879 | 178.3381
7 0.8934 | 1.5 1.2396 | 1.9852 | 7 79.8442 | 82.3307 | 54.5692 | 240.1551
8 0.9882 | 0.6771 | 1.8145 | 1.6347 | 8 84.2765 | 49.2 45.4259 | 213.1412
9 0.8331 | 0.6302 | 2.0336 | 1.2122 | 9 76.6757 | 47.1848 | 36.8669 | 187.6994
10 0.765 | 0.6 1.1382 | 1.5827 | 10 73.3896 | 46.9829 | 57.065 | 220.5203

11 0.9471 | 0.9659 | 1.9073 | 1.3455 | 11 84.873 68.3175 | 45.8916 | 200.7043
12 0.5 0.7145 | 1.907 | 1.2973 | 12 54.0991 | 54.7858 | 44.9481 | 202.3769
13 0.6763 | 0.6 2.1885 | 1.404 |13 69.5086 | 48.318 | 31.2181 |218.7092
14 0.5 0.8883 | 1.8733 | 0.9708 | 14 55.044 66.3193 | 45.0824 | 177.7636
15 0.9113 | 0.6843 | 2.9567 | 1.3955 | 15 86.9637 | 55.4462 | 0 225.3639
16 1.0524 | 0.7996 | 1.2328 | 1.0861 | 16 94.5226 | 62.6724 | 52.7151 | 203.2594
17 0.9808 | 1.2195 | 1.1789 | 1.6578 | 17 90.717 78.6296 | 54.59 260.9377
18 0.6019 | 0.9114 | 1.457 | 1.8158 | 18 64.3491 | 63.4239 | 55.0306 | 272.5893
19 1.2629 | 0.7476 | 1.105 | 0.8801 | 19 101.5889 | 53.9064 | 56.5646 | 200.8146
20 0.8223 | 0.6789 | 1.4887 | 1.4921 | 20 80.2073 | 50.3715 | 57.5769 | 265.6162
21 0.6241 | 0.8865 | 1.8484 | 1.5663 | 21 65.6602 | 62.7271 | 51.1811 | 268.5191
22 0.8694 | 0.6369 | 1.5142 | 1.8886 | 22 83.2123 | 49.3352 | 58.9448 | 287.9857
23 0.9263 | 1.1036 | 2.101 | 1.9646 | 23 86.5249 | 72.4992 | 39.9441 | 283.1451
24 0.5094 | 1.1287 | 1.6076 | 1.5497 | 24 55.8999 | 71.0589 | 56.4075 | 253.888

Table 10. Hourwise hydro power discharge and generation for test system-II.
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Fig. 9. Hydro power production for 2"¢ system at individual hour.
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Fig. 10. Hourwise hydral volume of water for test system-II.
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Thermal, wind, electric vehicle, tidal and solar generation of various hours
TUNIT1 | TUNIT 2 | TUNIT 3 | WIND | EV TIDAL | SOLAR
102.6587 | 40 229.7902 |0 60 0 0

36.3823 129.4953 | 148.4131 |21.3752 | 60 29.8187 | 0

103.571 40 140.7445 | 16.2302 | 18.9444 | 30 0
105.0533 | 40 116.3755 | 13.5792 | 19.1845 | 30 0

174.175 40.0541 50 16.4085 | 19.1012 | 29.9072 | 6.6206
103.8262 | 125.6414 | 158.1555 |2.4873 |0.223 30 96.9442
20.2615 55.1386 307.5528 | 8.7474 | 20.1269 | 29.0622 | 336.6627
93.7508 121.7377 | 307.9745 |0 0 0 83.9942
1742787 | 116.8376 | 319.9178 |0 0.4511 0.246 124.8377
103.6712 | 124.6808 | 192.0843 | 20.3195 | 59.9997 | 11.7017 | 1181.8218
104.2432 | 207.7711 | 231.0235 |0 0 8.6812 | 380.9959
102.8966 | 300 76.4671 15.2054 | 19.2534 | 30 1388.1904
103.0709 | 40 408.5411 |0 0 4.8596 | 282.4631
174.6324 | 40 227.5914 | 4.3745 |0 0 191.3539
105.9578 | 123.0495 | 198.8366 |0 0 6.0375 | 273.8796
102.9698 | 124.4885 | 238.5461 |18.1054 | 19.5951 | 30 793.0426
102.3447 | 52.2219 229.3298 |0 60 0 540.0214
102.3329 | 249.7028 | 229.6617 |0 19.6263 | 22.8446 | 231.2373
21.0877 295.0791 | 241.2665 |0 60 30 80.2821
147.9466 | 124.7676 | 233.514 0 60 30 0
100.3001 | 208.4065 | 133.5558 |0 19.6502 | 0 0

21.3625 209.6706 | 59.4889 0 60 30 0
106.9062 | 116.4441 | 52.4614 3.8568 | 60 28.2182 | 0

102.473 121.4427 | 50 0 58.8299 | 30 0

Table 11. Thermal, wind, EV, tidal, solar power generation for test system-II.

Additionally, the integration of renewable energy sources (RESs) with the hydro-thermal system contributes to
a reduction in emission by thermal units, ultimately lowering overall generation emission compared to systems
without RESs. .

Conclusions

The integration of renewable energy sources (RESs) with traditional thermal units presents a pivotal solution
for achieving sustainable and resilient energy systems. In this study, we focused on optimizing the scheduling
of wind-solar-electric vehicle (EV)-based hydro-thermal generation systems (WSEHTGS) to enhance
economic efficiency and environmental sustainability. Leveraging the Moth Flame Optimization (MFO)
algorithm, a robust meta-heuristic approach, we addressed the complex, nonlinear nature of WSEHTGS to
minimize generation costs and mitigate environmental impacts, including greenhouse gas emissions. Through
comprehensive simulations and comparative analyses against existing algorithms, our results demonstrate
that MFO effectively balances the dynamic integration of renewable resources and EVs with thermal units.
This optimization not only improves operational efficiency but also supports grid stability and reliability. By
incorporating the dynamic characteristics of EVs and the intermittency of renewable sources into scheduling
decisions, our approach contributes to advancing sustainable energy practices. Future Scope Looking ahead,
several promising directions for future research emerge from this study: Our study underscores the potential of
advanced meta-heuristic algorithms and hybrid optimization techniques, including machine learning and deep
reinforcement learning, to further enhance the performance of WSEHTGS. These approaches could unlock new
avenues for optimizing energy scheduling under uncertainty and variability. Integrating energy storage systems
(ESSs), such as batteries and pumped hydro storage, into WSEHTGS frameworks offers significant potential to
enhance grid stability and manage fluctuations in renewable generation. Future research could explore optimal
coordination strategies between ESSs, EVs, and renewable resources Exploring the integration of demand
response programs with WSEHTGS could leverage flexible load management strategies. Incentivizing EV
owners to adjust charging patterns based on grid conditions can support peak load shaving and enhance grid
reliability. Robustness analysis is crucial to assess the resilience of optimized schedules against uncertainties
such as variable renewable generation and unexpected grid events. Developing strategies to mitigate risks and
enhance system resilience will be critical for real-world deployment. Understanding the impact of policy and
regulatory frameworks on the adoption of integrated renewable and thermal generation systems is essential.
Evaluating incentives and regulations that promote sustainable energy practices will influence the scalability
and effectiveness of optimized solutions. Developing real-time implementation frameworks for WSEHTGS
in smart grids represents a significant opportunity. Exploring decentralized control strategies that empower
local energy communities to participate actively in energy management could revolutionize grid operations.
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Solar panel on of status of various solar panel hourwise

PANEL1 | PANEL 2 | PANEL 3 | PANEL 4 | PANEL 5 | PANEL 6 | PANEL7 | PANEL 8 | PANEL9 | PANEL 10 | PANEL 11 | PANEL 12 | PANEL 13
1 1 0 1 0 0 0 0 0 1 1 0 0
1 1 0 0 1 1 1 0 1 0 0 1 1
1 0 1 0 1 0 0 0 1 0 0 1 0
0 1 1 1 0 1 1 0 0 1 1 1 1
0 0 0 0 1 0 0 0 1 1 0 0 1
0 0 1 1 1 1 1 1 0 0 0 1 1
1 0 0 0 0 1 1 1 0 1 1 0 0
1 1 1 0 1 0 0 1 0 0 0 0 1
0 0 0 1 1 0 1 1 1 1 0 0 1
0 1 0 1 1 1 0 0 0 1 0 1 1
0 0 0 1 0 1 0 1 1 0 0 0 0
1 0 1 1 0 0 0 1 0 1 0 1 1
1 1 0 0 0 1 1 0 0 0 1 1 0
1 1 1 1 0 0 0 0 1 1 1 1 1
1 0 1 0 1 1 1 1 1 0 0 1 1
0 0 0 1 0 1 0 1 0 0 1 1 0
0 0 0 1 1 1 1 1 1 0 1 1 1
0 1 0 1 1 0 1 0 1 0 0 1 0
1 1 1 0 0 0 1 1 0 1 1 1 0
1 0 1 0 1 0 1 0 1 0 0 0 1
1 0 0 0 0 1 1 0 1 1 1 0 0
1 1 1 0 0 1 1 0 1 1 1 1 0
0 1 1 1 1 0 0 1 1 1 1 0 1
0 0 1 1 1 0 1 1 1 1 0 0 0

Table 12. Hourwise solar panel on/off status.

In conclusion, our research underscores the transformative potential of integrating renewable energy sources,
electric vehicles, and advanced optimization techniques in achieving sustainable and resilient energy systems.
Continued innovation and interdisciplinary collaboration will be essential in advancing these solutions towards
a cleaner and more sustainable energy future.
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Hour Thermal cost hourwise ($/day) | Wind cost hourwise ($/day) | Tidal cost hourwise ($/day) | Tidal cost hourwise ($/day) | Solar cost hourwise ($/day)
1 1292.3094 21.3021 3.1258 0.0001 0
2 1305.9817 141.8371 6.4851 0.0001 0
3 1068.6457 92.5918 6.5641 21.5518 0
4 1160.1943 71.2755 6.5641 18.9397 0
5 1102.6768 94.133 6.5236 19.5124 1.5293
6 1446.1767 21.8436 6.5641 0.0001 22.9941
7 1515.8626 41.0903 6.1632 43.745 78.6692
8 1847.8741 21.3021 3.1258 0 21.1298
9 2066.2435 21.3021 3.0752 0.0006 33.3258
10 1601.2442 130.9814 2.1616 0.0001 267.3321
11 1762.5064 21.3021 2.1281 0 93.8761
12 1786.3135 83.9895 6.5641 18.776 320.2936
13 1843.8693 21.3021 2.3674 0 70.2063
14 1561.3305 25.0462 3.1258 0 49.8317
15 1628.6435 21.3021 2.2601 0 68.6962
16 1592.3474 109.4294 6.5641 17.0874 183.7334
17 1399.6558 21.3021 3.1258 0.0001 123.7457
18 2018.6048 21.3021 3.9841 18.2931 53.5333
19 1876.7366 21.3021 6.5641 0.0001 18.3186
20 1822.9531 21.3021 6.5641 0.0001 0
21 1528.8466 21.3021 3.1258 19.2502 0
22 1157.9735 21.3021 6.5641 0.0001 0
23 1141.9263 23.9345 5.8186 0.0001 0
24 1063.1391 21.3021 6.5641 0.0007 0
Cost ($/day) | 36592.0554 1113.0796 115.6729 177.1578 1407.2152
Total cost ($/day) 39405.18
Table 13. Hourwise cost of thermal, wind, tidal, EV and solar for test system-II.
Individual cost of each generating unit
Thermal cost hourwise ($/day) | 36592.0554
Wind cost hourwise ($/day) 1113.0796
Tidal cost hourwise ($/day) 115.6729
EV cost hourwise ($/day) 177.1578
Solar cost hourwise ($/day) 1407.2152
Total cost ($/day) 39405.1809
Table 14. Individual cost of each generating unit for test system-II.
Best fuel Average fuel | Worst fuel | Computational | Function
Algorithms cost ($/day) | cost ($/day) | cost ($/day) | Time (Sec) Evaluation
COMFO (Test System-II) | 39405.1809 | 39468.42 39602.85 17.24 3483
OMFO (Test System-1II) 39506.38 39565.06 39679.88 18.41 6124
MFO (Test System-II) 39658.11 39698.02 40018.14 22.16 3566
COMFO (Test System-I) | 41692.20 41705.64 41891.24 21.06 3129
OMEFO (Test System-I) 41781.02 41935.06 41951.57 22.08 5327
MFO (Test System-I) 41789.94 41829.48 41991.82 22.08 3306
CSA* 42440.57 NA NA NA NA
DE¥ 44526.10 NA NA NA NA
TLBO* 42385.88 42441.36 42407.23 NA NA
PSO* 44740 NA NA NA NA NA
QTLBO* 42187.49 42202.75 42193.46 NA NA
Table 15. Statistical comparison for cost optimization for both systems.
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Best emission | Average emission | Worst emissi Computational | Function

Algorithms (Ib/day) (Ib/day) (Ib/day) Time (Sec) Evaluation
COMFO (Test System-II) | 7551.38 7559.12 7572.73 16.65 3382
OMFO (Test System-1II) 7558.26 7577.86 7593.11 29.01 5145
MFO (Test System-II) 7562.44 7580.05 7597.33 20.42 3507
COMFO (Test System-I) | 15838.24 15842.39 15857.36 15.96 3222
OMEFO (Test System-I) 15842.17 15850.55 15859.99 27.22 4826
MFO (Test System-I) 15849.43 15861.72 15873.50 19.17 3218
PSO* 16 928.00 NA NA NA NA
Fuzzy EP% 16554.00 NA NA NA NA
IGA™ 17659.00 NA NA NA NA

DE*® 18257.00 NA NA NA NA

Table 16. Statistical comparison for emission minimization of both systems.

Data availibility

The datasets used during the current study are available from the corresponding author on reasonable request.
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