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Addressing the challenges of integrating photovoltaic (PV) systems into power grids, this research 
develops a dual-phase optimization model incorporating deep learning techniques. Given the 
fluctuating nature of solar energy, the study employs Generative Adversarial Networks (GANs) to 
simulate diverse and high-resolution energy generation-consumption patterns. These synthetic 
scenarios are subsequently utilized within a real-time adaptive control framework, allowing for 
dynamic adjustments in operational strategies that enhance both efficiency and grid stability. By 
leveraging this approach, the model has demonstrated substantial improvements in economic and 
environmental performance, achieving up to 96% efficiency while reducing energy expenses by 20%, 
lowering carbon emissions by 30%, and cutting annual operational downtime by half (from 120 to 
60 h). Through a scenario-driven predictive analysis, this framework provides data-driven optimization 
for energy systems, strengthening their resilience against renewable energy intermittency. 
Furthermore, the integration of AI-enhanced forecasting techniques ensures proactive decision-
making, supporting a sustainable transition toward greener energy solutions.

Keywords  AI in energy systems, Energy forecasting, Grid optimization, Machine learning, Renewable 
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The increasing reliance on renewable energy sources in modern power grids is pivotal for meeting rising energy 
demands while ensuring sustainability. However, the inherent unpredictability of sources like solar and wind 
energy presents substantial difficulties in maintaining grid stability and operational efficiency. These fluctuations 
are mainly influenced by weather variability, necessitating the implementation of advanced management 
techniques to secure a consistent and resilient power supply1–3. Traditional energy management frameworks 
often struggle with the intermittent nature of renewable energy, lacking the capability to dynamically adapt to 
fluctuating supply and demand, which leads to higher operational costs and inefficiencies. As global policies 
continue to advocate for clean energy transitions, there is an urgent need for robust and flexible energy 
management solutions capable of mitigating these uncertainties4,5. In response to this challenge, this research 
develops a technologically advanced grid optimization model that integrates AI-driven strategies to enhance the 
integration of renewable energy without compromising system reliability. Unlike conventional approaches, this 
model not only addresses technical constraints but also considers economic and environmental factors, aligning 
with the overarching goal of sustainable energy systems6,7.

The primary objective of this study is to introduce a multi-stage optimization framework that leverages 
deep learning methodologies for managing the continuous operation of PV-based power systems. This adaptive 
model effectively accommodates variations and uncertainties in solar energy generation, ensuring maximum 
utilization of renewable resources while simultaneously minimizing operational expenditures and enhancing 
system sustainability.

To enhance the optimization process, this research employs Generative Adversarial Networks (GANs), 
leveraging their capacity to produce diverse and high-fidelity energy scenarios. By simulating realistic variations 
in solar power generation and demand patterns, the model effectively captures fluctuations in renewable 
energy availability. These synthesized scenarios are subsequently integrated within a dynamic decision-making 
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framework, allowing for real-time operational adjustments that maximize efficiency and ensure system stability 
under varying conditions.

This paper systematically outlines the mathematical foundation of the proposed optimization model, 
detailing the objective functions and operational constraints essential for maintaining the stability and efficiency 
of photovoltaic (PV) systems. Subsequently, the study explores the application of GANs in generating diverse 
energy scenarios, emphasizing novel techniques for handling data fluctuations and predictive modeling 
enhancements. A central aspect of this research is the seamless incorporation of these synthetic scenarios into 
an adaptive optimization framework, which dynamically adjusts operational strategies in response to real-
time fluctuations in energy input and demand. This mechanism significantly reduces uncertainties associated 
with renewable energy sources, thereby improving system robustness and flexibility. Consequently, the energy 
management framework achieves a higher degree of resilience and adaptability, reinforcing its role as a strategic 
tool for promoting sustainable energy transitions:

	1.	 This research introduces an innovative two-stage optimization methodology that incorporates GANs along-
side advanced computational strategies. By combining these approaches, the model enhances the spatial de-
ployment and functional efficiency of PV systems within electrical grids. Additionally, it effectively mitigates 
the inherent fluctuations and unpredictability associated with renewable energy generation.

	2.	 This study demonstrates the advanced application of GANs in generating high-fidelity representations of 
solar power fluctuations and demand dynamics. The synthesized scenarios play a crucial role in enhancing 
the optimization framework, allowing the system to proactively predict and adjust to a diverse range of op-
erational conditions. As a result, this methodology significantly improves the precision and dependability of 
energy management frameworks.

	3.	 The implementation of the GAN-enhanced optimization model has led to significant improvements in key 
grid management performance indicators. Notably, this approach has achieved a 20% decrease in energy 
expenditures, a 30% reduction in carbon emissions, and an 8.5% enhancement in overall system efficiency. 
These findings underscore the practical advantages of integrating AI-powered methodologies in optimizing 
grid operations.

	4.	 The proposed system demonstrates high scalability and adaptability across different grid configurations and 
geographic regions. Its capacity for retraining and customization with diverse datasets highlights its flexibili-
ty, establishing it as a valuable asset for global energy management. By effectively narrowing the gap between 
theoretical developments and practical applications, this approach facilitates real-world implementation in 
renewable energy networks.

This paper is organized into several key sections. Section  2 critically reviews existing literature, identifying 
research gaps and methodological limitations. Section 3 introduces the mathematical framework and system 
design, detailing the core optimization functions and operational boundaries. Section 4 explains the structure 
and training methodologies of GANs, discussing their implementation for scenario generation. Section  5 
explores how the generated scenarios are integrated into the optimization framework, enhancing decision-
making under uncertainty. Section 6 presents a real-world case study, demonstrating the practical effectiveness 
of the proposed system. Lastly, Sect. 7 synthesizes the main findings and outlines potential avenues for future 
advancements in the field.

Literature review
The incorporation of renewable energy into modern electrical grids presents both advantages and obstacles, 
prompting extensive research efforts to enhance grid management and operational efficiency. This section 
examines key theoretical and recent advancements in renewable energy management, particularly focusing 
on PV systems, the integration of advanced optimization methods, and the application of GANs in energy 
systems. The purpose of this review is to position this study within the broader research landscape by identifying 
methodological gaps that this work aims to bridge.

The fluctuating nature of renewable energy sources, including solar and wind power, presents significant 
challenges in ensuring grid stability and operational reliability8–10. Prior research has explored the technical 
and operational difficulties linked to the integration of renewable energy systems (RES) into power grids, 
emphasizing the role of energy storage solutions in addressing power fluctuations and maintaining supply 
quality. Studies indicate that power instability often arises due to the variable nature of renewable resources, 
necessitating advanced stabilization strategies11. To mitigate these challenges, researchers have examined the 
application of Flexible AC Transmission System (FACTS) technologies to enhance grid resilience. Simulations 
have demonstrated the effectiveness of these approaches in stabilizing power networks dominated by renewable 
inputs. Other studies assess the impact of increased renewable energy penetration on the structural resilience 
of electrical grids, leveraging dynamic modeling techniques to analyze household-level energy consumption 
patterns and photovoltaic power generation. The decentralized nature of renewables contributes to daily 
grid fluctuations, which may at times compromise overall stability12. Despite the benefits of battery storage 
technologies in improving consumer energy autonomy, they do not fully address broader concerns regarding 
grid-wide stability. Research also highlights the evolution of smart grid concepts, particularly how modern 
grid architectures not only accommodate but optimize the integration of renewable sources. The comparison 
between traditional grid systems and smart grids underscores the crucial role of advanced communication and 
energy management technologies in enhancing power system reliability13.

Enhancing energy systems, particularly in the context of scheduling and consumption management, plays 
a crucial role in overcoming existing challenges. A comparative study examined grid-tied and off-grid solar 
PV configurations, incorporating both traditional and high-efficiency appliances14–16. The findings highlighted 
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notable reductions in energy consumption, operational costs, and greenhouse gas emissions when energy-
efficient devices were integrated within grid-connected infrastructures, offering a promising solution for 
promoting sustainability in residential energy usage17. Further research explored the optimization of grid-
connected solar PV designs using Selective Particle Swarm Optimization (SPSO) in Ethiopia, demonstrating its 
effectiveness in determining PV system placement and sizing within radial distribution networks. This approach 
improved voltage regulation and minimized power losses, thereby enhancing the stability and efficiency of 
energy distribution18. Additionally, another study investigated the role of distributed solar PV systems coupled 
with battery storage and controllable loads in residential applications. By leveraging the REopt model, it was 
observed that integrating smart solar PV technologies, commonly termed “solar plus,” significantly improves the 
economic feasibility of solar investments. Even in scenarios with complex rate structures, including demand-
based charges and time-of-use variability, the integration of intelligent PV solutions demonstrated substantial 
benefits19.

Recent advancements have expanded the use of GANs beyond traditional applications such as image 
generation and data augmentation, leading to their integration into renewable energy systems20–22. Initially 
introduced by Goodfellow et al., GANs have demonstrated potential in simulating and optimizing energy 
system behaviors across various domains. A notable application involves the deployment of Conditional GANs 
to enhance energy consumption efficiency, particularly in scenarios with limited data availability. Studies show 
that by integrating environmental parameters into GAN models, the predictive accuracy of multivariate energy 
forecasting significantly improves, despite challenges in processing intricate commercial energy datasets23,24. 
Another innovative approach leverages GAN-driven methodologies to develop high-fidelity operational models 
for integrated energy systems (IES). These advanced datasets support the refinement of renewable energy 
control strategies, helping to address the challenges posed by variability and uncertainty in energy production25. 
Compared with existing GAN-based energy modeling studies, such as23,25, and26, the proposed framework 
introduces several key advancements. First, while prior works primarily utilize GANs for short-term load or 
generation forecasting, our approach leverages GANs to generate scenario sets spanning full-year operational 
variability, which are then embedded directly into a robust optimization loop. This dual integration of scenario 
generation and real-time adaptive scheduling distinguishes our method from static forecasting applications. 
Second, unlike23] and [25, which focus on individual component behavior (e.g., PV generation or load profile 
synthesis), our model captures system-level dynamics by incorporating storage operation, grid interaction, 
and economic-environmental trade-offs. Furthermore, we implement Wasserstein GAN with gradient penalty, 
offering improved training stability and scenario diversity compared to the standard GAN implementations used 
in26. Lastly, the proposed framework is validated on a full-year, high-resolution dataset, and includes sensitivity 
and robustness analyses that are not typically explored in comparable studies. These enhancements ensure that 
our model is not only theoretically sound but also practical and scalable for real-world PV-grid integration 
scenarios. As a result, GAN-based solutions contribute to enhancing both dataset comprehensiveness and 
operational adaptability, making them an essential tool for future energy grid optimizations.

Addressing the challenges of optimizing renewable energy systems, particularly in integrating GAN-generated 
scenarios with optimization frameworks, remains a critical research focus. While advancements in renewable 
energy optimization and scenario generation have been significant, their full potential in grid management 
applications has yet to be fully realized. This study proposes a dual-phase optimization approach, incorporating 
GAN-generated energy scenarios into a dynamic framework that ensures adaptability to fluctuating conditions, 
thereby enhancing the efficiency and reliability of PV system operations27. By leveraging AI-driven predictive 
technologies, the framework not only accounts for the inherent variability of solar energy but also extends the scope 
of energy system optimization to facilitate broader adoption of economically sustainable renewable solutions. 
Furthermore, this research contributes to the field by introducing a comprehensive strategy that integrates state-
of-the-art computational techniques to model diverse operational scenarios. Through this approach, the study 
pushes the boundaries of renewable energy management, ensuring that innovative methodologies are effectively 
applied to meet real-world energy demands28.

Mathematical formulation and system modelling
Developing an effective objective function is fundamental to optimizing PV system operations within the IEEE 
33-bus network. This study prioritizes the maximization of renewable energy utilization while simultaneously 
reducing operational expenditures within a 24-hour cycle. Ensuring an accurate formulation of the objective 
function plays a crucial role in maintaining cost-effectiveness and efficiency in integrating solar energy into the 
grid.
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∑
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t=1 Ψ t
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t
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t
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The optimization function, denoted as Z is formulated to minimize operational expenses and penalties arising 
from deviations in expected energy generation and consumption. The function incorporates adjustable 
parameters δ that regulate cost reduction and energy balance, ensuring compliance with operational priorities 
and regulatory guidelines. At each time step t, the cost function Ψ t accounts for generation costs, power 
transactions with the grid, and revenue from selling surplus electricity. Specifically, Qgen

t ​represents the power 
generated, while Qbuy

t ​and Qsell
t ​ denote electricity purchased from or sold to the grid. Additionally, Qdemand

t ​ 
signifies the total power requirement at time t.

Figure 1 illustrates the end-to-end process of optimizing PV integration into power grids, encompassing data 
inputs, GAN-based optimization, and real-time results analysis for enhanced grid efficiency and sustainability.

Scientific Reports |        (2025) 15:14851 3| https://doi.org/10.1038/s41598-025-98724-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


To maintain financial efficiency, the model optimizes energy adequacy and grid stability by penalizing 
discrepancies between produced energy and actual demand over the operational horizon, which is segmented 
into T time intervals, typically on an hourly basis. This objective function serves as the cornerstone of the 
optimization framework, aiming to minimize operational costs while satisfying technical constraints across 
the scheduling horizon. It aggregates multiple energy-related variables, including local PV generation, grid 
transactions, and energy storage decisions. The economic efficiency of the system hinges on the accuracy of this 
formulation, which must be coordinated with subsequent constraints to ensure feasible and optimal scheduling.

	 Qgen
t = Qcons

t + Qloss
t � (2)

To maintain system efficiency and grid stability, it is essential that the total energy generation from PV systems 
aligns with the aggregate energy demand. At any time t, the generated power Qgen

t ​ must balance the sum 
of energy consumption by the load Qcons

t ​ and transmission/conversion losses Qloss
t ​. This ensures that all 

produced energy is effectively accounted for and optimally utilized within the network.

	 Qgen
t = η · It · A� (3)

The conversion of solar irradiance It​ into electrical power is governed by specific constraints that account for 
system efficiency. The conversion factor η  incorporates panel performance, inverter losses, and temperature 
coefficients, which influence overall efficiency. Additionally, the total effective surface area of the solar panels 
A plays a crucial role in determining energy output. This formulation is essential for accurately forecasting and 
regulating PV system performance based on real-time or projected solar irradiance.

	
Et+1 = Et + η c · Qcharge

t − 1
η d

· Qdischarge
t � (4)

Equation (4) models the evolution of the battery storage system’s state of charge over time by accounting for the 
energy charged into and discharged from the system within each time interval. Specifically, the energy stored at 
time t + 1 is determined by adding the effective charging energy to the previous energy state and subtracting 
the energy lost through discharging. The charging power Qcharge

t  is multiplied by the charging efficiency η c, 
representing the proportion of input energy successfully stored. Conversely, the discharging power Qdischarge

t  is 
divided by the discharging efficiency η d, reflecting the additional energy required to supply the desired output 
due to conversion losses. This formulation ensures that energy conservation and conversion inefficiencies are 

Fig. 1.  Comprehensive framework for optimized PV integration using GANs.
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accurately captured in the system model. It provides a time-coupled relationship between consecutive time steps, 
which is critical for optimizing long-term energy usage, balancing demand and supply, and ensuring stable 
operation of the photovoltaic-grid system. The proper modeling of energy storage dynamics not only enhances 
system reliability but also enables effective load shifting and peak shaving strateqies.

The evolution of battery storage, as defined in Eq. (4), interacts directly with the energy balance condition 
described in Eq. (2). At each time step, the available stored energy not only compensates for mismatches between 
generation and demand but also provides temporal flexibility to the system. This coupling ensures that short-
term decisions are aligned with long-term storage dynamics, enhancing overall system resilience.

	 Qgen
t + Qstore

t ≤ Qmax� (5)

To ensure grid stability and compliance with safety regulations, the total power fed into the grid, which includes 
contributions from both the PV system and discharged energy from storage Qstore

t ​, must remain within the 
maximum allowable feed-in threshold Qmax​. This constraint is essential in preventing grid overloading and 
maintaining adherence to interconnection agreements.

	 Dt = h(PastObservations,Meteorological Variables, t)� (6)

The function h serves as a predictive model for estimating electrical demand Dt over a 24-hour period by 
incorporating historical energy usage, meteorological factors, and time-dependent patterns. This demand 
estimation plays a crucial role in optimizing PV system operations, as it facilitates proactive adjustments in 
power generation and storage strategies. By accurately forecasting demand, the system effectively mitigates the 
intermittency of solar energy, reducing dependency on backup power sources and ultimately improving grid 
stability and operational efficiency.

	 Qsupply
t = k (Qgen

t , St, Dt)� (7)

To maintain a stable energy supply, the PV system dynamically regulates its power output based on real-time 
energy demand Dt and the status of stored energy St. The function k determines the optimal balance between 
generated power Qgen

t ​ available stored energy, ensuring alignment with current demand conditions. This 
adaptive regulation is essential for maintaining grid stability, particularly during peak demand periods or low 
solar irradiance. By continuously adjusting output, the system enhances energy utilization efficiency, reducing 
unnecessary energy waste and improving overall system responsiveness.

	 z ∼ Platent (z)� (8)

To generate realistic solar energy availability patterns, the generator explores different regions within the data 
space by adjusting the input vector z. This input is sampled from a probability distribution, commonly modeled 
as Gaussian or uniform, which introduces stochastic variability and noise into the system. The function Pz (z) 
plays a crucial role in determining diverse and complex data representations, enabling the generator to synthesize 
a broad spectrum of possible scenarios. By leveraging these statistical variations, the generator enhances data 
diversity, making it more adaptable for renewable energy modeling and scenario analysis.

Equation (8) introduces the stochastic input z used by the generator network to explore diverse data patterns. 
This latent input, sampled from a predefined distribution, allows the generator to synthesize various solar and 
demand scenarios. The mapping function in Eq.  (9) transforms this latent space into realistic synthetic data 
G (z), which are subsequently used in the optimization model. This bridge enables the integration of data-
driven uncertainty into the otherwise deterministic optimization process.

	 xgen = G (z; θ G)� (9)

The generator G is designed to create synthetic solar energy data that closely resemble real-world observations. 
This is achieved by mapping a latent space representation z to the solar energy scenario space, a process 
governed by the parameter set θ G ​. By learning the intricate structures within actual solar data, the generator 
ensures that the produced outputs are indistinguishable from real data, which enhances the training efficiency of 
the optimization model. The transformation from input noise z to synthetic outputs xgen​ allows the system to 
effectively model complex patterns, improving its ability to simulate realistic energy conditions.

	 PD(x | θ D) = Preal (x)� (10)

The discriminator D is a neural network designed to differentiate between real data and synthetic data 
generated by the generator G. It is governed by the parameter set θ D  and estimates the probability distribution 
PD (x | θ D), which ideally should match the true data distribution Preal (x). The role of D is to assign a 
high probability to real data and a low probability to fake (generated) data, thereby guiding the generator during 
training. As the generator G, parameterized by θ G, produces synthetic samples G (z) from latent inputs z, 
the discriminator evaluates these samples against real data and returns feedback. By optimizing its loss function, 
the discriminator improves its classification ability, while simultaneously pushing the generator to produce 
increasingly realistic outputs in an effort to “fool” the discriminator. This adversarial interaction creates a two-
player minimax game, where G and D iteratively compete and improve, ultimately driving the convergence of 
the GAN model towards a state where the generated data is indistinguishable from real data.
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LG = log

(
1

D (G( z ))

)
� (11)

To ensure that the generator produces increasingly realistic data, its training objective is structured around 
minimizing the probability of the discriminator accurately distinguishing between real and generated samples. 
This is achieved by utilizing a loss function, which adjusts the generator’s parameters to refine the realism of 
synthesized data based on feedback from the discriminator. Equation  (11) mathematically expresses this 
optimization process, where the generator’s loss function is designed to reduce the negative log probability 
assigned by the discriminator when it classifies generated data as synthetic. This iterative improvement enhances 
the quality and reliability of generated scenarios, making them increasingly indistinguishable from authentic 
data.

	 LD = − [logD (xreal ) + log(1 − D(G (z) ))]� (12)

The adversarial training framework relies on the discriminator’s loss function to improve its ability to distinguish 
between authentic and generated data. This function is designed to penalize incorrect classifications, compelling 
the discriminator to refine its decision boundary and more effectively differentiate between real and synthetic 
samples. Equation  (12) formalizes this optimization strategy, ensuring that the discriminator continuously 
adjusts its parameters to enhance classification accuracy. As a result, the generator is indirectly encouraged to 
produce increasingly realistic data, aligning its outputs closer to the true data distribution.

	 θ G ← θ G − α · ∇ θ G LG � (13)

The generator’s weight parameters θ G  are iteratively refined using a backpropagation-based learning process. 
This optimization is guided by computing the gradient ∇ θ G LG ​ of the generator’s loss function, which directs 
parameter updates based on the learning rate α. Equation (13) formally defines this gradient-based learning rule, 
ensuring that the generator continuously adjusts its parameters to enhance data realism. By refining its outputs 
through successive updates, the generator progressively improves its ability to synthesize data that closely 
resembles authentic samples, making them increasingly difficult for the discriminator to distinguish.

	 θ D ← θ D − β · ∇ θ D LD � (14)

The discriminator’s weight parameters θ D ​ are updated iteratively using a gradient-based backpropagation 
approach. The optimization process is governed by the computed gradient ∇ θ D LD ​ of the loss function, which 
directs how the discriminator adjusts to improve its classification accuracy over time.

	 LG + LD = min� (15)

In the GAN training process, equilibrium is achieved when neither the generator nor the discriminator can 
further improve, indicating that the system has reached a stable state. At this point, the generator is capable of 
producing synthetic data that the discriminator perceives as indistinguishable from real samples. Equation (15) 
mathematically represents this condition, where the loss functions of both networks reach their minimum value, 
signifying that training has successfully converged. This balance ensures that the adversarial framework reaches 
optimal performance, with both models counteracting each other effectively.

	 z = z0 + σ · ε� (16)

To improve the diversity and robustness of generated data, the generator incorporates controlled noise variations 
into its input. By integrating a noise vector z0 along with a random noise component ε and a scalable amplitude 
factor σ, the model effectively explores a broader range of data distributions while reducing overfitting to specific 
training features. Equation (16) formalizes this noise injection mechanism, ensuring that the generator retains 
adaptive flexibility in generating more realistic and generalizable samples.

	 xnorm · σ = x − µ � (17)

Ensuring that input features exhibit uniform scales and distributions is essential for stabilizing the training 
process and enhancing model performance. To achieve this, the dataset undergoes a normalization step, which 
standardizes both real and synthetic inputs before they are fed into the network. Equation (17) formalizes this 
transformation, where the mean µ and standard deviation σ are computed to rescale the data. This preprocessing 
method facilitates faster training convergence, ensuring that the model can effectively learn from data with 
varying magnitudes.

	
ift > Tmaxor

∣∣∣L(t)
D − L(t−1)

D

∣∣∣ < ε, end process� (18)

To prevent unnecessary computational overhead and mitigate the risk of overfitting, a stopping criterion is 
implemented in the GAN training process. This condition is met when the discriminator’s loss variation falls 
below a predefined threshold ε or when the training reaches a maximum iteration limit Tmax​. Equation (18) 
formalizes this stopping mechanism, ensuring that training terminates once improvements become negligible, 
thereby enhancing computational efficiency and preventing excessive optimization cycles.
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Enhancing optimization models through GAN-Generated data
To enhance decision-making under uncertainty, the integration of GAN-generated scenarios within the 
optimization framework plays a pivotal role. These scenarios provide insights into potential variations in solar 
energy availability and demand, allowing the PV system to maintain high operational efficiency across a diverse 
range of conditions. The following equations outline a systematic methodology for incorporating these generated 
scenarios into the optimization model, ensuring an optimal balance between performance, risk management, 
and operational adaptability.

	
ws =

(∑
s′ ∈ S e−γ D(x′

s ,x)
)−1

· e−γ D(xs,x)� (19)

To determine the relevance of each scenario within the optimization framework, a weight coefficient ws​ is 
assigned based on the computed distance metric D between a generated scenario xs and a reference scenario x̂. 
The parameter γ regulates the impact of this distance, influencing the degree to which each scenario contributes 
to the optimization process. Equation (19) formalizes this weighting mechanism, ensuring that high-probability 
or crucial scenarios exert a stronger influence on decision-making, thereby enhancing the robustness of the 
optimization model.

	
Z′ =

(∑
s∈ S ws

)−1
·

∑
s∈ S ws · Z (xs)� (20)

To address the uncertainty and variability present in GAN-generated scenarios, the objective function is 
reformulated into a weighted aggregation of scenario-specific objectives. The revised objective, denoted as Z′

, computes a normalized weighted average of the individual objective values Z (xs), where each scenario s is 
assigned a weight ws that reflects its relative importance based on similarity metrics defined in the preceding 
formulation. This modification ensures that more probable or representative scenarios have a greater influence 
on the optimization outcome. By integrating this weighted approach, the model enhances its robustness and 
adaptability, enabling more reliable decision-making across a broad spectrum of possible future conditions in 
photovoltaic system operations.

Equations  (19) and (20) introduce the method by which the synthetic scenarios generated by GANs are 
embedded into the optimization process. By assigning importance weights to each scenario and aggregating 
their respective objective values, the model translates statistical data variations into operational decisions. This 
integration allows the PV optimization system to account for uncertainty without relying solely on predefined 
worst-case scenarios, leading to more balanced and flexible decision-making.

	 ∀ s ∈ S, gi(x, u, s) ≤ 0, ∀ i ∈ J � (21)

To enhance adaptability across various operational scenarios, Eq. (21) introduces a refinement to the constraint 
function gi, ensuring that the PV system effectively adjusts to different environmental and control conditions. 
Each constraint, formulated based on the system state variables x and control parameters, is evaluated under 
specific scenarios s, ensuring that all potential future states are integrated into the overall decision-making 
framework. By incorporating this adjustment, the system achieves greater flexibility and robustness, enabling it 
to efficiently navigate a broad spectrum of scenario-driven challenges.

	 ρ (s) = κ × σ 2 (xs)� (22)

To integrate risk considerations into the optimization process, this equation defines a parameter that quantifies 
risk based on the degree of fluctuation observed within different scenarios. By assessing the dispersion of possible 
outcomes, the model can incorporate a mechanism to either mitigate uncertainty or strategically leverage 
variability. The level of sensitivity to these fluctuations is determined by a risk aversion factor, which directly 
influences decision-making by adjusting the extent to which variability is accounted for in the optimization 
strategy. This formulation enables a balance between stability and adaptability, aligning with predefined strategic 
objectives and tolerance for uncertainty.

	
u∗

s = argmin
u

[
c(x, u) + ρ max(0, g(x, u, s))2]

� (23)

To achieve optimal decision-making in different scenarios, a strategy is formulated to minimize operational 
expenses while adhering to system constraints. The model evaluates various control actions, selecting the one 
that yields the best performance under the given conditions. This process ensures that each chosen action meets 
predefined feasibility criteria while maintaining efficiency. By incorporating scenario-specific constraints, the 
methodology enhances adaptability, allowing the system to dynamically adjust its operations based on real-time 
conditions. As a result, performance optimization is achieved without compromising operational stability.

Although the GAN-generated scenarios inherently capture stochastic variability in solar irradiance, 
temperature, and load demand, we further examined the uncertainty distribution of key performance indicators 
to provide quantitative insight into the robustness of the model outputs. Specifically, for each performance metric 
(e.g., energy cost, emissions, efficiency), we evaluated the results across 1,000 generated scenarios and calculated 
the mean, standard deviation, and 95% confidence intervals. For example, the average post-optimization energy 
cost was estimated at $0.103/kWh, with a 95% confidence interval of [$0.097, $0.109], indicating low variance 
and strong stability across scenarios. In addition, the system efficiency fluctuated within a narrow range (± 2.5%) 
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across different scenario clusters, reinforcing the reliability of the optimization under varying operational 
conditions. These results confirm that the proposed GAN-enhanced framework is not only effective on average 
but also robust to data-driven uncertainty. In future work, we plan to incorporate probabilistic scenario 
weighting and Bayesian uncertainty estimation techniques to enrich the framework’s capability for risk-aware 
decision-making and interpretability.

	
R = min

s∈ S
{φ (xs)}� (24)

To evaluate the system’s resilience under varying conditions, a robustness metric is introduced to measure 
performance across different scenarios. This approach assesses how the state variables respond under diverse 
operating conditions, ensuring that the worst-case scenario is accounted for. By considering the lowest 
performance level observed among all scenarios, the model derives a conservative estimate of system stability. 
This guarantees that even in highly uncertain environments, the operational strategy remains robust and capable 
of maintaining efficiency under challenging circumstances.

	
∆ ψ = ∂ Z ′

∂ s
� (25)

To assess how variations in different scenarios influence overall system performance, a sensitivity analysis is 
conducted. This approach identifies the degree to which changes in specific conditions impact the effectiveness 
of the optimization process. By analyzing these sensitivities, system operators can recognize which scenarios 
exert the most significant influence on performance outcomes. This insight enables better resource allocation 
and targeted operational adjustments, ensuring that interventions focus on areas with the greatest potential to 
enhance stability and efficiency.

	
Ceff (s) =

∑
T
t=1 ct (xt, ut)∑

T
t=1 pt (xt)

� (26)

To evaluate the economic viability of different operational strategies, a cost-effectiveness metric is introduced. 
This measure quantifies the balance between total expenditures, including operational and maintenance costs, 
and the resulting benefits such as energy output or financial savings. By assessing this ratio across multiple 
scenarios, the optimization framework aids in identifying the most financially sustainable strategies. This 
approach ensures that decision-makers can allocate resources efficiently to maximize return on investment while 
adapting to varying operational conditions.

	 Pr (gi (x, u, s) > 0) ≤ ε� (27)

Incorporating probabilistic constraints plays a crucial role in managing uncertainties within scenario forecasting. 
This method ensures that operational and safety limitations are met with a high probability, reducing the 
likelihood of violations under uncertain conditions. By addressing the inherent unpredictability of scenario 
variations, this approach enhances system resilience, providing a structured mechanism to accommodate 
fluctuations while maintaining regulatory compliance. Through this probabilistic framework, the system is 
better equipped to handle deviations and uncertainties effectively.

	 Θ (t+1) = Θ (t) − η · ∇ Θ L(Θ , S)� (28)

Equation  (28) introduces refinements to the optimization process, enabling effective integration and 
management of various scenarios generated by the GAN. Within this framework, model parameters undergo 
iterative adjustments through a gradient-based optimization strategy, where the learning rate governs the 
magnitude of updates. The gradient of the loss function, computed with respect to the parameters and scenario 
variables, directs these updates. This continual adjustment process enhances the model’s adaptability, allowing it 
to better capture scenario-induced complexities and improve predictive performance as well as decision-making 
effectiveness.

In the proposed framework, the GAN serves as a critical data-driven component for uncertainty modeling 
and scenario generation. Its primary role is to produce diverse, high-resolution synthetic time series that 
reflect possible future variations in solar irradiance, temperature, and electricity demand. These scenarios are 
statistically consistent with historical patterns yet incorporate stochastic variability that deterministic forecasts 
often fail to capture. The GAN interfaces directly with the optimization module by supplying a set of realistic 
input trajectories that represent potential system states over the scheduling horizon. Instead of relying on a 
single deterministic forecast, the optimization engine is exposed to multiple synthetic scenarios generated by 
the GAN. The GAN architecture employed in this study consists of a five-layer fully connected feedforward 
network for both the generator and the discriminator. Each hidden layer contains 128 neurons with ReLU 
activation functions, while the output layers use linear activation for the generator and sigmoid activation for the 
discriminator to match the normalized data distribution. The latent input vector z is sampled from a standard 
Gaussian distribution and has a dimensionality of 100, ensuring sufficient expressive power for scenario 
synthesis. To ensure training stability, we adopted the Wasserstein GAN with Gradient Penalty (WGAN-GP), 
which mitigates the risk of vanishing gradients and promotes smoother convergence. The gradient penalty 
enforces the Lipschitz constraint on the discriminator without requiring weight clipping, thereby improving 
generalization and maintaining discriminator sensitivity throughout training. We used the Adam optimizer 
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with a learning rate of 0.0002, β₁ = 0.5, and β₂ = 0.9, and trained the model for 2,000 epochs with a batch size 
of 64. In addressing mode collapse, we monitored the diversity of generated scenarios through distributional 
comparisons (e.g., histogram overlap, KL divergence) and maintained a discriminator-to-generator update ratio 
of 5:1, following best practices from WGAN-GP literature. Visual inspection and statistical metrics confirmed 
that the generator successfully captured a wide range of operational patterns, avoiding redundancy or collapse 
into narrow output spaces. Additionally, early stopping based on validation divergence was employed to prevent 
overfitting and oscillatory behavior in late-stage training.

Each scenario is evaluated under the operational constraints and objective functions of the system model, 
enabling the formulation of a scenario-based robust optimization problem. Specifically, the GAN-generated 
data are injected into the optimization pipeline through scenario weights and probabilistic formulations, as 
detailed in Equations (19) through (21). These scenarios influence decisions related to power dispatch, storage 
operation, and cost-emission balancing by allowing the model to anticipate a range of possible future conditions. 
This integration ensures that the resulting control strategies are not only optimized for average cases but are also 
resilient to outliers, uncertainty, and variability. By decoupling data generation from deterministic forecasts and 
embedding learning-based uncertainty modeling into the optimization core, the GAN component enhances 
both the flexibility and robustness of the overall pipeline.

Case study
This study utilizes a dataset that records hourly variations in key energy-related parameters, including solar 
irradiance, temperature, and load demand, within a typical residential setting over a full year. The dataset is 
derived from a detailed meteorological and energy usage database covering multiple climate regions, ensuring a 
diverse and representative collection of scenarios. It comprises approximately 8,760 hourly records per parameter, 
capturing solar irradiance fluctuations from 0 to 1,000 watts per square meter, temperature variations between 
− 5 °C and 35 °C, and residential electricity demand ranging from 0.5 to 10 kilowatts27–32. The extensive nature of 
this dataset plays a crucial role in training GAN models to generate diverse and realistic energy scenarios, which 
are fundamental for conducting thorough optimization analyses.

The execution of computational tasks takes place on a high-efficiency computing cluster equipped with 
NVIDIA Tesla V100 GPUs, specifically designed to handle complex data-intensive simulations and deep 
learning computations. The system is based on a Linux environment and runs Python 3.8, leveraging key 
machine learning and optimization libraries, including TensorFlow 2.4 and Pyomo, for implementing GAN 
models. During each experimental run, especially when training GANs, a dedicated GPU is allocated to enhance 
processing efficiency. Training durations range between 12 and 48 h, influenced by the structural complexity and 
depth of the network architecture.

To effectively manage uncertainties and fluctuations in renewable energy systems, particularly photovoltaic 
applications, a GAN-Enhanced Optimization framework is implemented by integrating machine learning with 
operational methodologies. This framework utilizes a GAN structure, where a generator and a discriminator 
function as deep neural networks composed of five sequential layers. These layers follow a 128-256-512-256-
128 configuration and incorporate ReLU activation functions to enhance computational efficiency. The training 
dataset comprises 8,760 hourly entries recorded over a full year, encompassing key energy parameters such as 
solar irradiance, ambient temperature, and electrical load. The model is optimized using the Adam algorithm, 
configured with a learning rate of 0.0002 and a batch size of 64. To further refine data quality, a Wasserstein 
loss function with gradient penalty is applied. The optimization strategy is designed to enhance solar energy 
utilization while simultaneously minimizing operational expenses, balancing grid loads, and ensuring 
compliance with constraints related to power distribution, energy storage, and grid regulations20,33. The training 
process was conducted over 2,000 epochs, with each epoch involving alternate updates of the discriminator 
and generator networks. Specifically, the discriminator was updated five times for every generator update, 
following the standard training ratio recommended in Wasserstein GAN literature to ensure stability. The Adam 
optimizer was used for both networks, with a learning rate of 0.0002, β₁ = 0.5, and β₂ = 0.9, which provided 
stable convergence throughout training. A mini-batch size of 64 was maintained to balance convergence speed 
and memory efficiency. During training, one major challenge encountered was mode collapse, a common issue 
in GANs where the generator produces limited diversity in outputs. To mitigate this, the model incorporated a 
Wasserstein loss function with gradient penalty, which improves training stability and promotes better coverage of 
the data distribution. The gradient penalty enforces the Lipschitz constraint on the discriminator without relying 
on weight clipping, thus avoiding common pitfalls such as vanishing gradients. Additionally, we monitored 
loss curves and visual diversity metrics across epochs to ensure that the generator maintained diversity in the 
synthesized scenarios. These strategies collectively enhanced the model’s robustness and reliability in generating 
high-fidelity operational data for downstream optimization.

To assess accuracy, the generated scenarios are compared with actual data, ensuring that deviations remain 
within 10%, as measured by mean absolute error (MAE) and root mean square error (RMSE). Economic and 
environmental evaluations indicate that the proposed approach can potentially lower energy expenses by up to 
20% while reducing carbon emissions by 30%. These findings highlight the framework’s efficiency and overall 
effectiveness. The trained GAN generates 1,000 artificial scenarios, which are subsequently processed within 
the optimization framework. The optimization problem is tackled using the Gurobi solver, with each execution 
requiring approximately 150 s. This configuration facilitates swift scenario-based analysis.

Figure 2 visually represents the interdependencies among key variables in a residential energy system over a 
year. The histograms on the diagonal reveal the distributions of solar irradiance, temperature, and load demand, 
indicating a broad variability with solar irradiance peaking around mid-range values, temperatures centering 
around moderate climates, and load demands showing a normal distribution skewed towards lower energy 
requirements. The scatter plots elucidate the relationships between these variables: as temperature increases, 

Scientific Reports |        (2025) 15:14851 9| https://doi.org/10.1038/s41598-025-98724-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


solar irradiance also tends to rise, suggesting a climatic influence on solar energy potential. Additionally, there 
is a discernible positive correlation between solar irradiance and load demand, indicating that higher sunlight 
availability might drive up energy usage, possibly due to increased cooling needs or greater energy harvesting 
capability.

In Fig. 3, the box plots delineating the distribution of temperature, solar irradiance, and load demand across 
different times of the day—morning, afternoon, and evening—reveal pivotal daily patterns essential for energy 
management. Morning times show the coolest temperatures and lowest irradiance, aligning with minimal 
energy demands. This escalates significantly in the afternoon as temperatures and irradiance peak, indicating a 
spike in load demand, likely due to increased air conditioning usage and solar energy generation. Evening times 
reflect a reduction in both temperature and irradiance, with a corresponding decrease in energy demand.

Fig. 2.  Correlation patterns of solar exposure, temperature variations, and power demand in residential 
environments.
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In Fig. 4, The density plot with contour lines between temperature and solar irradiance vividly illustrates 
the strong positive correlation between these two variables. Areas of higher density, marked by brighter colors, 
indicate more frequently occurring conditions, primarily higher irradiance accompanying higher temperatures. 
This visualization is crucial for predicting solar energy output, as it directly relates to the prevailing temperatures, 
suggesting that solar panels will produce more power on hotter days.

To ensure the credibility of the optimization framework, we conducted a statistical verification of the 
rationality of the GAN-generated energy scenarios. Specifically, we compared the distributional characteristics 
of the generated data against the real-world historical dataset using multiple statistical metrics, including Mean 
Absolute Error (MAE), Root Mean Square Error (RMSE), and Kullback-Leibler (KL) divergence. For solar 
irradiance, the MAE between the synthetic and real data was 21.3 W/m2, and the RMSE was 28.7 W/m2. The 
KL divergence was computed to be 0.045, indicating a high degree of similarity in the probabilistic distribution. 
Similarly, for load demand, the MAE and RMSE were 0.31 kW and 0.43 kW, respectively, with a KL divergence of 
0.038. These results confirm that the generated data maintain fidelity to real-world patterns. Furthermore, visual 
histogram comparisons and distribution overlap analyses were conducted for each key variable (solar irradiance, 
temperature, and load). The GAN model was found to accurately capture both seasonal and diurnal variations 
inherent in the real dataset. This verification confirms the statistical validity and operational relevance of the 
generated scenarios, reinforcing the reliability of their use in the proposed optimization framework.

Table 1 presents the optimization outcomes under four representative environmental scenarios generated by 
the trained GAN model. These scenarios were selected to span a wide range of solar irradiance levels, reflecting 
seasonal and weather-related variability in typical residential environments. The GAN was trained on a full-
year dataset containing 8,760 hourly samples, and its outputs were verified using distributional similarity 
analysis to ensure that the generated conditions are statistically consistent with real-world patterns. Each 
scenario is characterized by distinct average values of solar irradiance, ambient temperature, and load demand. 
For example, Scenario S1 corresponds to a mild climate condition with an average irradiance of 250.6  W/
m2, temperature of 18.3 °C, and moderate load demand of 5.2 kW. In contrast, Scenario S4 represents a high-
energy case with an irradiance of 980.3 W/m2 and peak demand of 9.7 kW under hot conditions (33.2  °C), 
illustrating a typical summer high-load situation. These inputs were generated by the GAN and confirmed to 
maintain close alignment with original dataset distributions based on mean absolute error and Kullback-Leibler 
divergence metrics. The table also reports the system’s response under each condition, including energy cost and 
carbon emissions. Notably, as solar irradiance increases, the system achieves improved cost-efficiency and lower 
emissions—demonstrated by a cost drop from $0.13/kWh in S1 to $0.07/kWh in S4, and emissions reduction 

Fig. 3.  Distribution of load demand by time of day.
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from 830 to 710 tons/year. These results validate the model’s capability to adapt its operational strategies based 
on diverse, yet realistic environmental profiles, effectively balancing performance, cost, and sustainability goals.

Table 2 provides a comparative evaluation of key performance metrics before and after applying the proposed 
GAN-enhanced optimization framework. These metrics were selected to reflect not only technical performance 
but also economic and environmental impact, including average energy cost, carbon emissions, system 
efficiency, and operational downtime. The “before optimization” values represent baseline results derived from 
conventional scheduling strategies using historical data without the support of synthetic scenario generation. 
In contrast, the “after optimization” results are obtained using the full GAN-generated scenario set integrated 
within the two-stage robust optimization process. The generated scenarios were statistically verified to ensure 
their representativeness and consistency with historical patterns. By incorporating these realistic variations into 
the control strategy, the model was able to proactively adjust scheduling and energy allocation across uncertain 
conditions. As shown in the table, the average energy cost decreased from $0.15 to $0.10 per kWh, and carbon 
emissions dropped from 850 to 760 tons/year, demonstrating both economic and environmental benefits. 
Furthermore, system efficiency improved from 85 to 92%, while annual operational downtime was reduced by 
50%—from 120 to 60 h. These improvements underscore the effectiveness of the GAN-enhanced framework 
in managing uncertainty and enhancing the reliability of PV system operations under real-world conditions. 
It is worth noting that while Table 2 reports an average post-optimization system efficiency of 92% across all 
evaluated scenarios, peak performance in selected high-solar-availability conditions reached up to 96%. This 

Scenario ID Solar Irradiance (avg W/m2) Temperature (avg °C) Load Demand (avg kW) Energy Cost ($/kWh) Carbon Emissions (tons/year)

S1 250.6 18.3 5.2 0.13 830

S2 500.2 23.7 6.8 0.11 790

S3 750.8 29.4 8.1 0.09 750

S4 980.3 33.2 9.7 0.07 710

Table 1.  Optimization Results by Scenarios.

 

Fig. 4.  Density plot of temperature versus solar irradiance with contour lines.
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upper bound, referenced in the abstract, reflects the system’s optimal behavior under favorable environmental 
conditions and serves to illustrate the framework’s full potential under best-case operating profiles.

Figure 5 illustrates the temporal evolution of cumulative energy cost savings and carbon emission reductions 
achieved by the GAN-enhanced optimization model over a 12-month simulation period. The results are derived 
from scenario-based simulations using 1,000 synthetic operational profiles generated by a GAN trained on real-
world hourly energy data. Each monthly value represents the aggregated results from applying the optimization 
framework under varying environmental and load conditions for that month. The red line tracks the cumulative 
energy savings, starting at approximately $200 in the first month and steadily rising to nearly $2,400 by the end 
of the year. This upward trend, accompanied by minor month-to-month fluctuations, reflects the model’s ability 
to consistently identify cost-effective operational strategies despite variability in solar irradiance, temperature, 
and load demand. The blue line depicts the cumulative reduction in carbon emissions, beginning at around 10 
tons and reaching roughly 120 tons by year-end. This steady increase indicates the model’s environmental benefit 
in leveraging clean energy more efficiently. The observed patterns validate the practicality of the GAN-generated 
scenarios, which preserve the statistical structure of historical data and effectively represent realistic fluctuations. 
More importantly, the results highlight the model’s capacity to maintain performance and sustainability under 
uncertainty. By integrating synthetic but statistically credible data into the control strategy, the system achieves 
tangible improvements in both financial and ecological outcomes, reinforcing its relevance to real-world 
applications.

Figure 6 presents a heat map–based comparative analysis of energy cost and carbon emissions across five 
representative operational scenarios, each generated using the GAN-trained scenario generator. These scenarios 
were designed to capture diverse environmental and load conditions by sampling from the latent space of the 
GAN model, which had been trained on a full year of real-world solar, temperature, and load demand data. The 
intent is to examine how different system states affect optimization outcomes under realistic yet varied operating 
conditions. The results span a wide range of energy costs, from $0.07 to $0.15 per kWh, and carbon emissions, 
from 670 to 900 tons per year. Scenario 1 demonstrates the most favorable performance, achieving the lowest 
energy cost ($0.07/kWh) and emissions (670 tons), reflecting optimal alignment between solar availability, 
demand, and storage utilization. In contrast, Scenario 5 exhibits the highest cost ($0.15/kWh) and emissions 
(900 tons), indicating either unfavorable environmental conditions or operational configurations that stress 
system performance. Scenarios 2, 3, and 4 show intermediate outcomes, with Scenario 2 offering a practical 
balance between cost ($0.11/kWh) and emissions (700 tons), making it a potentially desirable trade-off point 
for grid operators. These results underscore the optimization model’s sensitivity and adaptability to different 
operating environments. The use of GAN-generated scenarios, verified for statistical consistency with historical 
data, ensures that such analyses remain grounded in realistic conditions. Overall, this figure highlights how 
scenario-based optimization enables informed decision-making by identifying conditions under which the 

Fig. 5.  Cumulative energy savings and carbon emission reductions over time.
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system performs best or needs further adjustment, ultimately guiding both technical improvements and policy 
recommendations.

Figure 7 offers a detailed visualization of how energy efficiency in photovoltaic systems fluctuates throughout 
the day and across different seasons. The time of day, spanning from early morning to late evening, is represented 
on the x-axis, while the y-axis displays the months from January to December. This configuration provides an 
extensive visualization of performance trends over the entire year. The z-axis denotes the efficiency percentage, 

Fig. 7.  Seasonal and diurnal variations in photovoltaic energy efficiency.

 

Fig. 6.  Comparative analysis of energy costs and carbon emissions across operational scenarios.

 

Scientific Reports |        (2025) 15:14851 14| https://doi.org/10.1038/s41598-025-98724-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


which is color-coded to enhance visual interpretation: warmer colors (reds and oranges) indicate higher 
efficiencies, and cooler colors (blues) represent lower efficiencies. The plot reveals a clear peak in efficiency 
around midday across all months, with efficiency levels reaching up to 85% during these hours, particularly 
evident in the transitional months of April, May, September, and October. This peak corresponds to the highest 
solar irradiance received when the sun is at its zenith. Conversely, the efficiency significantly drops to as low 
as 30% during early morning and late evening hours, illustrating the limited solar power capture at these 
times. Seasonally, the summer months (June to August) display high efficiency that spans broader daily hours, 
reflecting longer daylight periods and higher overall solar exposure. In contrast, the winter months (November 
to February) show not only reduced efficiency but also a shorter duration of effective energy production, aligning 
with shorter days and lower solar angles. This analysis is crucial for optimizing energy management strategies 
in photovoltaic systems, as it highlights the need for energy storage solutions or alternative energy sources to 
maintain stable power supply during low-efficiency periods.

Figure 8 presents two 3D surface plots that illustrate the interplay between solar irradiance, load demand, 
and their respective impacts on cost savings and emission reductions. The left plot, focusing on cost savings, 
depicts a nuanced landscape where savings fluctuate with varying solar irradiance and load demand levels. As 
the solar irradiance increases from 100 W/m2 to 1000 W/m2, there is a notable rise in cost savings, which are also 
modulated by the load demand that ranges from 1 kW to 10 kW. The savings exhibit a maximum of around 27%, 
achieved under high irradiance and moderate load conditions, suggesting that optimal cost efficiency occurs 
not just at high energy input but when load demand balances the available solar power. The right plot, detailing 
emission reductions, shows a similar but more pronounced trend where emission reductions intensify with 
higher solar irradiance and increase with load demand. This plot peaks at approximately 113 tons of emissions 
reduced, occurring in scenarios of high irradiance coupled with higher load demands. This indicates that more 
intensive energy usage under high solar availability leads to greater environmental benefits, highlighting the 
dual advantage of maximizing renewable energy uptake while significantly mitigating carbon footprints. These 
plots collectively underscore the critical influence of balancing energy production with consumption patterns to 
optimize both economic and environmental outcomes in photovoltaic grid integration.​.

Conclusion
The research presented in this paper marks a significant advancement in the integration and optimization of PV 
systems within power grids, driven by the innovative application of GANs and robust optimization techniques. 
Throughout the year-long study, the developed GAN-enhanced optimization framework has demonstrated 
remarkable capabilities in handling the variability and unpredictability of solar energy, leading to significant 
improvements in grid management and operational efficiency. The findings of this study highlight significant 
improvements in key performance indicators, demonstrating a 20% reduction in average energy costs, a 30% 
decline in carbon emissions, and an 8.5% boost in overall system efficiency. Additionally, the annual operational 
downtime has been minimized from 120 to 60 h, emphasizing the model’s reliability and practical advantages. 
The ability of the model to dynamically adapt to varying conditions and optimize performance based on real-
time data has been validated through rigorous testing, with scenario-based results confirming the effectiveness 
of the model in real-world applications. The integration of AI-driven techniques within the framework of 
renewable energy management not only contributes to the technical literature but also provides a scalable, 
efficient solution that aligns with global sustainability goals. This research paves the way for future developments 
in grid management technologies, emphasizing the critical role of advanced computational methods in achieving 
an economically viable and environmentally sustainable energy future.

Looking forward, several avenues for future research emerge, particularly in light of the current framework’s 
limitations. One notable limitation of using GANs for energy scenario generation is the risk of mode collapse, 
where the generator fails to represent the full diversity of realistic scenarios. Although we have employed the 

Fig. 8.  Optimization of cost savings and emission reductions across solar irradiance and load demands.
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Wasserstein loss with gradient penalty to mitigate this risk, ensuring scenario diversity remains an ongoing 
challenge—especially when modeling extreme weather events or rare operational conditions that are 
underrepresented in the training data. Furthermore, GANs are inherently data-driven and require a substantial 
amount of high-quality historical data for effective training. This limits their applicability in regions with sparse 
or noisy measurements, and may affect generalization performance when deployed in new or evolving grid 
environments. Additionally, the current framework does not incorporate physics-informed constraints during 
GAN training, which could lead to the generation of scenarios that, while statistically plausible, may violate 
physical feasibility in real-world energy systems. To address these issues, future work will explore the integration 
of hybrid models that combine GANs with physics-based simulation or domain-specific priors to improve 
scenario realism and constraint adherence. Another promising direction involves leveraging conditional or 
hierarchical GAN architectures to better control scenario generation based on seasonal, locational, or policy-
driven parameters. Moreover, extending the model to handle multi-source renewable systems (e.g., PV plus 
wind and hydro) and incorporating online retraining mechanisms will further enhance adaptability in dynamic 
grid environments. Lastly, we plan to conduct more extensive uncertainty quantification and explainability 
analysis to ensure the reliability and interpretability of AI-assisted energy optimization in practical deployments.
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