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Optimizing non small cell

lung cancer detection with
convolutional neural networks and
differential augmentation

Vahiduddin Shariff', Chiranjeevi Paritala? & Krishna Mohan Ankala®

Lung cancer remains one of the leading causes of cancer-related deaths worldwide, with early
detection being critical to improving patient outcomes. Recent advancements in deep learning have
shown promise in enhancing diagnostic accuracy, particularly through the use of Convolutional Neural
Networks (CNNs). This study proposes the integration of Differential Augmentation (DA) with CNNs
to address the critical challenge of memory overfitting, a limitation that hampers the generalization
of models to unseen data. By introducing targeted augmentation strategies, such as adjustments in
hue, brightness, saturation, and contrast, the CNN + DA model diversifies training data and enhances
its robustness. The research utilized multiple datasets, including the IQ-OTH/NCCD dataset, to
evaluate the proposed model against existing state-of-the-art methods. Hyperparameter tuning was
performed using Random Search to optimize parameters, further improving performance. The results
revealed that the CNN + DA model achieved an accuracy of 98.78%, outperforming advanced models
like DenseNet, ResNet, and EfficientNetB0, as well as hybrid approaches including ensemble models.
Additionally, statistical analyses, including Tukey’s HSD post-hoc tests, confirmed the significance

of the model’s superior performance. These findings suggest that the CNN + DA model effectively
addresses the limitations of prior works by reducing overfitting and ensuring reliable generalization
across diverse datasets. The study concludes that the novel CNN + DA architecture provides a

robust, accurate, and computationally efficient framework for lung cancer detection, positioning it
as a valuable tool for clinical applications and paving the way for future research in medical image
diagnostics.

Keywords Lung Cancer prediction, Convolutional neural networks, Differential augmentation (DA),
Memorization overfitting, Medical imaging, Diagnostic robustness, EfficientNetB0

Innovative lung cancer prognosis relies on cutting-edge machine learning algorithms applied to a wealth of
patient data. By incorporating various elements like imaging, genetics, and medical records, this model
demonstrates remarkable precision in anticipating potential occurrences. Optimizing early intervention and
customizing treatments, it holds the potential to elevate patient outcomes in the challenging realm of lung cancer.
Early detection is vital for successful treatment! and goal is to authenticate our Lung Cancer Prediction CNN,
initially trained on US screening data, through an autonomous European multicenter dataset®. This research
explores early-stage lung cancer diagnosis using CNNs, aiming to enhance diagnostic accuracy and save lives by
improving early detection through reliable machine learning models®. While CNN models have demonstrated
high accuracy on controlled datasets, their applicability to real-world scenarios with diverse patient populations
remains a critical challenge. Addressing this requires validation across multiple datasets and strategies to ensure
robustness against unseen variations in imaging data. Introducing a method utilizing Convolutional Neural
Networks (CNN) to categorize tumors in lung disease screening through tomography filters, harnessing spatial
invariance for effective feature extraction’. Utilizing end-to-end learning CNN, this method automatically
extracts self-learned features, comparing favorably with conventional approaches and traditional computer-
aided diagnosis systems®.
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Developing a cutting-edge 1D CNN model for NSCLC staging and grading, leveraging insights from the latest
TCIA NSCLC Radio genomics Collection. Hybrid MSER-SURF model integrates tumor features with clinical
data for comprehensive analysis®. Despite the highly imbalanced and variegated nodule detection challenge,
our method excels, achieving effective lung nodule detection and cancer prediction. Using a candidate proposal
approach and a 3D CNN, achieve near-human performance’ and to introduce a swift CNN-RNN model for
NSCLC AJCC staging, surpassing traditional ANNs through deeper layers. Comparison involves standard ML
algorithms and related studies®. Focusing on individuals with lung cancer, our focus lies in crafting advanced
deep learning models for predicting survival outcomes, addressing both classification and regression challenges.
Feature importance analysis elucidates relevant factors impacting survival periods’. Introducing LungNet, an
innovative hybrid model blending a 22-layer Convolutional Neural Network (CNN) with wearable sensor-based
MIoT data and CT scan for heightened diagnostic precision!®.

Leveraging CNN’s disease detection, this research explores the fusion of blockchain for secure data in
enhancing food safety and lung cancer prediction!!. This preliminary study underscores CNNs’ feasibility and
promising efficacy in evaluating lung cancer’s T-parameter, offering rapid T1-T2 or T3-T4 probabilities. Ongoing
research aims at robust TNM algorithm development'2.

Introducing an innovative approach, employs a 2D CNN with Taguchi optimization for automated lung
cancer recognition from CT images, as outlined in reference!®. Through 36 experiments and 8 control factors, it
meticulously refine CNN parameters, significantly improving classification accuracy. Additionally, accuracy was
enhanced by integrating convolutional and bidirectional recurrent neural networks into a novel deep learning
model, leveraging the NSCLC Radiogenomics dataset with 211 subjects as detailed in reference!. Our intelligent
medical system, detailed in reference's, incorporates CNN-assisted diagnosis and decision-making, utilizing
sensors to analyze NSCLC patient’s records and ensuring accuracy through transfer learning and dynamic
sampling techniques.

The research structure unfolds with Section ldelvering into the introduction. Section “Literature review”
navigates the scholarly landscape in the literature review. Section “Proposed methodology” intricately unfolds
the intricacies of the proposed methodology, offering a detailed roadmap. Section “Result and discussion” unveils
the results, igniting insightful discussions around their implications. The “conclusion” section encapsulates
profound insights, culminating in a comprehensive closure that synthesizes the study’s findings and underscores
their significance in the broader context of the research domain.

Literature review

In 2024, Islam et al.!® provides a comprehensive evaluation of the latest advancements in using deep learning
to enhance medical imaging data. The course covers a wide range of applications, popular datasets, evaluation
criteria, and both traditional and innovative augmentation techniques. To assess the current condition of the
subject and identify its primary challenges, the study analyses prior research findings. Proposed are some avenues
for future research that could address these concerns. This review is an invaluable resource for academics and
experts in the field of medical image analysis.

In 2024, Saha et al.!” presents VER-Net, a transfer learning model for CT scan lung cancer detection.
Combining VGG19, EfficientNetB0, and ResNet101 transfer learning techniques, this model four lung cancer
classifications are produced via picture preparation, data augmentation, and hyperparameter tuning of the
model. The results imply that VER-Net can be used to other diseases found on CT scans and is quite accurate in
spotting lung cancer. This work highlights the efficient application of transfer learning in the domain of medical
image processing, especially in increasing diagnostic accuracy.

In 2024, Riku Klén et al.!® examine the influence of several image augmentation techniques on the precision
of a Convolutional Neural Network (CNN) that has been trained for binary classification. The CNN is trained
using 11 medical datasets, mostly comprising X-rays, ultrasound (US) images, PET scans, and MRI scans.
The databases centre on cancer and lung diseases. Specifically analysing seven extensively used augmentation
techniques, this article compares CNN predictions with and without augmentation. The results imply that for
both the US and PET datasets, the application of augmentation methods does not produce statistically significant
variations. Gaussian blur was determined to be the most successful augmentation technique for X-rays and MRI
images, therefore enhancing the model performance. These results show that the kind of imaging technology
applied affects the effectiveness of augmentation strategies.

In 2024, S. Kukreja and M. Sabharwa et al.!® improving the survival rates of lung cancer, a major and maybe
deadly disease, depends on early identification. In order to classify three different histological images: bengin,
adenocarcinoma, and squamous cell carcinoma, in this paper proposes using a Convolutional Neural Network
(CNN). The aim of the project is to evaluate the accuracy of the Convolutional Neural Network (CNN) model
against other techniques thereby enhancing the diagnosis of lung cancer. Convolutional neural networks (CNNs)
have not been used for the categorisation of these specific images so our method is novel. By means of accurate
and timely classification of cancers, this approach may improve the efficacy of therapy and possibly avert death
of course. By means of convolutional neural networks (CNNs), the diagnostic process can be simplified, costs
can be lowered, and general accuracy in lung cancer detection can be improved.

In 2024, Zhang et al.?* demonstrates the application of Convolutional Neural Networks (CNNs) to Computed
Tomography (CT) scans has led to notable progress in automating the diagnosis of lung cancer, resulting in
enhanced accuracy in the detection and analysis of this disease. Notwithstanding these progressions, there
are still obstacles to overcome, such as the restricted comprehensibility, variability of data, and difficulties in
generalising. This paper proposes a new method which integrates the CNN with the DenseNet by using data
fusion and mobile edge computing to enhance the identification and classification of lung cancer. Data fusion
improves the reliability of models by integrating data from multiple sources where mobile edge computing
hastens the model’s processing time to instant. Improve DenseNet’s classification accuracy further, the approach
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introduced an enhanced predictive sparse decomposition (PSD) method to acquire sparse feature from medical
images, which also promoted the improvement of the model.

In 2023, Lulu Gai et al.?! demonstrated Vision Transformers (ViTs) and Convolutional Neural Networks
(CNNs) test lung cancer identification using CT data. In this paper used a collection of 212 medical photos and to
get beyond dataset restrictions, both models exploited self-supervised learning, transfer learning, and sharpness-
aware minimiser. Their training consisted in no lung nodule markings. Convolutional Neural Networks (CNNs)
outperform Vision Transformers (ViTs) in self-supervised learning, with an AUC of 98.1% and a recall rate
of 93.4%. While both CNNs and Vision Transformers (ViTs) showed potential, CNNs outperformed ViTs,
especially with smaller datasets. The study shows that CNNs can identify early-stage lung cancer, supporting
their clinical utility.

In 2023, Syeda Reeha et al.?? proposes an ensemble model combining several deep learning architectures,
including BEiT, DenseNet, and Sequential CNN, so addressing the immediate demand for efficient lung cancer
detection and classification. To improve prediction accuracy the combined strategy uses AND, OR, Weighted
Box Fusion, and Boosting. The research shows using the Chest CT-Scan Images Dataset that the ensemble
model much beats single-model techniques. The study highlights how effectively combining various classifiers
overcomes particular limitations and improves general performance.

In view of the available data and resources, this study provides a reasonable response by demonstrating
the potential of ensemble methods as a potent tool for enhancing the precision and efficiency of lung cancer
diagnosis.

In 2023, R. Raza et al.>® based on the EfficientNet architecture with extra top layers for better performance;
this work presents Lung-EffNet, a new transfer learning-based model for lung cancer classification. Lung-
EffNet sorts lung scans into bengin, malignant, or normal categories after five EfficientNet variations (BO-
B4) are evaluated on the IQ-OTH/NCCD dataset. Lung-EffNet, especially with EfficientNetB1, shown better
accuracy, efficiency, and faster training times than other pre-trained CNN architectures. Large-scale clinical
implementation and automated lung cancer diagnosis from CT images fit this paradigm really nicely.

In 2023, Nandita Gautam et al.?* Essential for early detection of lung cancer, this work provides a new
ensemble deep learning model that correctly labels the degree of lung nodules from CT scan images. Three
advanced convolutional neural network (CNN) models are ResNet-152, DenseNet-169, and EfficientNet-B7.
The weight optimisation approach used in this system combines ROC-AUC and F1-scores to improve accuracy.
It surpassed recent methodologies and successfully reduced the frequency of false negatives. This approach
demonstrates promise in significantly improving lung cancer diagnosis and patient outcomes.

In 2022, Dritsas and Trigka et al.>> used machine learning, the study crafted effective models for early
detection of high-risk individuals prone to lung cancer, enabling timely interventions to mitigate long-term
complications. Emphasizing the efficacy of Rotation Forest, the article highlighted its robust performance,
subjecting it to thorough evaluation through established metrics such as precision, recall, F-Measure, accuracy,
and area under the curve.

In 2021, Tsou et al.?¢ introduced a machine learning model that precisely detected lung cancer based on
the analysis of participants’ exhaled breath, presenting a non-invasive and radiation-free diagnostic system.
The research successfully showcased a novel diagnostic approach by integrating deep learning algorithms and
VOC analysis, minimizing environmental interference. Ongoing efforts focused on developing standardized,
automated breath sampling protocols, aiming to simplify the collection process and ensure sample quality.

While prior studies focus on augmentation and model optimization, this research uniquely addresses memory
overfitting using Differential Augmentation, demonstrating superior performance in lung cancer detection.

Problem statement

The research problem focuses on enhancing the accuracy and efficiency of lung cancer detection using deep
learning techniques. Although improved, current models struggle with generalisation, data variability, and
interpretability across imaging modalities. Optimising model performance, especially early detection, while
addressing dataset variety and augmentation limits is difficult.

Generalizability challenges

Although the CNN + DA model performs well on the controlled dataset, its generalizability to real-world scenarios
remains to be validated. Challenges include unseen variations in imaging protocols, patient demographics, and
artifacts in clinical datasets. Future studies will explore strategies such as transfer learning and fine-tuning on
multi-center datasets to mitigate these challenges and ensure applicability in diverse clinical settings. To increase
medical image analysis models’ resilience, scalability, and clinical utility, data fusion, mobile edge computing,
and ensemble methods must be explored. Table 1 summarizes the objectives and limitations of previous research,
highlighting both their goals and shortcomings.

Research gap

While deep learning has revolutionized numerous domains, including medical imaging for lung cancer
detection, a persistent research gap remains concerning memory overfitting. Despite various efforts to address
general overfitting, the nuanced challenge of models memorizing training data rather than learning to generalize
has not been comprehensively addressed. Many existing solutions focus on broader overfitting issues, often
overlooking the subtle yet critical aspect of memory overfitting. This gap underscores the need for dedicated
research into strategies and methodologies to combat memory overfitting, ensuring that models remain robust
and reliable, especially in critical applications like medical diagnostics.
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Author Method Aim Drawback
Advanced data augmentation techniques
can raise the complexity of the model
Discussion on the application of various deep and the training process, thereby perhaps
learning algorithms in generating and applying - . s - making it more difficult to validate the
I 16 | data augmentations. This may involve methods like Identlﬁcatwn.Of field-based dlfﬁcqlnes mdudeAS constraints in predictions of the model.
slam et al. . . present techniques or problems with data quality and suggested o
Generative Adversarial Networks (GANSs) or other future research paths to handle these difficulties More broad and sophisticated
neural network architectures that create realistic P ) augmentations can cause the training
variations in medical images. process to lengthen and become more
resource-intensive, therefore affecting the
general efficiency of model development.
The paper introduces a new transfer learnin Using the benefits of transfer learning and combining several Stackering several transfer learning
- mo d}él Ealle d VER-Net. which combines threge models helps one to increase the accuracy of lung cancer models under the VER-Net model can
Saha et al.!’ distinct transfer learniﬁ models to improve the classification. The work also seeks to show that VER-Net can be complicate the system. This complexity
diagnosis of lung cance rgfrom CT scanP ictures useful for other medical imaging chores in addition to surpassing | might make model interpretability
s s P ) current models in performance. difficult and raise computational needs.
Evaluate the influence of various image augmentation methods on | The efficacy of augmentation approaches
A convolutional neural network (CNN) was the accuracy of a Convolutional Neural Network (CNN) trained to | can vary considerably depending on the
. . . . A - classify medical images into two categories. nature of the medical imaging data. The
Riku Klén et | trained to classify medical images into two dentify th feaci - hods f . dv’s findi h . )
all8 categories: impacted, non-affected instances and Identify the most efficacious augmentation methods for various study’s findings may not have universal
. Augementation Methods medical imaging modalities (X-rays, ultrasound, positron applicability across all modalities of
i : emission tomography, magnetic resonance imaging) to enhance medical imaging or across various clinical
classification accuracy. states.
S. Kukreia This work focuses on CNN and does not
and M. ) The work uses CNN architecture to categorise To divide histological pictures of lung cancer into three types: compare its performance with a greater
Sabharwa et lung cancer histological pictures into bengin, bengin, adenocarcinoma, and squamous cell carcinoma with spectrum of machine learning or deep
allo adenocarcinoma, and squamous cell carcinoma. accuracy. CNN Model. learning approaches outside of those
. already looked at.
Developing and assessing an advanced system stands as the
main goal to detect and categorising lung cancer. The proposed While the model performs well in
. . framework integrates Convolutional Neural Networks (CNN)
Convolutional Neural Network (CNN) with ith D Net th h data fusi d mobile ed K controlled tests, there may be challenges
Zhang et DenseNet to improve the ability to extract features with DenseNet through data fusion and mobile edge computing when generalising to different real-world
20 o for achieving its objectives. The primary goal is to obtain a high . > L
al. and learn for the purpose of classifying lung LI } data, particularly if the training data does
level of accuracy in discriminating between Normal, Bengin, and . .
cancer. f . . . - not adequately capture all differences in
different forms of Malignant lung tissues. Diagnostic technology 1
h ) ) f . A ung cancer cases.
as treatment planning and early detection goals which this project
aims to enhance through better diagnostic methods.
The objective is to create and assess a sophisticated system for
detecting and categorising lung cancer. While the model performs well in
Convolutional Neural Network (CNN) with A system combination of CNN with DenseNet through data fusion | controlled tests, there may be challenges
Lulu Gaiet | DenseNet to improve the ability to extract features | and edge processing will fulfill the objectives of the research. when generalising to different real-world
al2! and learn for the purpose of classifying lung The main mission aims to establish a superior level of accuracy data, particularly if the training data does
cancer. in discriminating between Normal, Bengin, and different forms not adequately capture all differences in
of Malignant lung tissues. The research aims to accelerate the lung cancer cases.
diagnosis process by developing improved diagnostic tools.
Ensemble Models: This study combines various
glp?&e.li\t%fggﬁ%?;?giﬁgggﬁ? Szrlllcszi for its The objective of the project is to improve the precision of Ensemble approaches might pose
robust feature extraction capabilities identifying and categorising lung cancer by combining many challenges in deciphering the specific
Syeda Reeha DenseNet is a tvpe of dee cponvoluti.onal neural advanced machine learning models using diverse ensemble contributions of each individual model.
etal?? network that is};re)co niseg for its effective aradient methods. The project aims to enhance the overall performance of | The absence of transparency can impede
flow and exce tiona%accurac & lung cancer diagnosis by using the capabilities of models such as comprehension regarding the rationale
Sequential CI\II)N' A convoluti)(’;nal neural network BEiT, DenseNet, and Sequential CNN. behind specific predictions.
model designed with a sequential architecture.
The goal of the work is to build and assess a very accurate and
effective lung cancer classification model leveraging EfficientNet Dependency on data augmentation
R, Raza et Lung-EffNet, a new transfer learning-based model | architecture and transfer learning based on it. The objective is to methods to address class imbalance may
a2 presented in the paper, uses the EfficientNet provide a strong, automated method for lung cancer diagnosis cause distortions or artefacts that can
. architecture. that can achieve high accuracy and efficiency, thereby addressing compromise the generalising capability
the limits of manual CT scan analysis and fit for major clinical of the model.
deployment.
The ensemble technique uses CNN models.
ResNet-152 is a deep residual network well-known Training and evaluating an ensemble of
Nandita for handling quite dgep structures. Investigate and use ensemble model, that is, combinations of deep learr}mg models call§ for 51gn1ﬁcant
DenseNet-169: Designed to enhance feature L s computational resources, including
Gautam et L . - several distinct models, to generate forecasts, therefore utilising . s .
24 propagation via dense connections, this dense . . o memory and processing capability, which
al. . their combined strengths to raise performance. . . . .
convolutional network. might not be readily available in every
EfficientNet-B7: Maximising model size and clinical environment.
accuracy, this extremely fast CNN
Driasand | Dot tndment s blncng ndftur, sty xpnded g dcplering metos e LT and | il vy oy b
Trigka et . - CNN. Robust evaluation of classification models incorporated a . o
2 metrics assessed performance, ensuring robust . A dataset, affecting comprehensive risk
al. . bootstrapping process for validation.
analysis. assessment.
g;;é?;irtogsgi?sly&ségle Pgwerf;}lll edXtreme d Investigate breath VOCs for lung cancer prediction, developing a Ctogductliﬁ 2 sllndgl§—center c:‘ase-cto Iﬁtml d
2 g oost) method was use . o ; ; study, acknowledging age mismatches an
Tsou et al. . S B precise classification model through machine learning for robust oo 8 :
in conjunction with Selected Ion Flow Tube Mass o e addressing biases inherent in case-control
predictive capabilities. : : .
Spectrometry. study designs for comprehensive analysis.

Table 1. Aim and drawback of the previous research.
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Proposed methodology

EfficientNetB0

EfficientNetB0?* was selected as a baseline due to its balance of computational efficiency and performance,
making it suitable for constrained medical imaging tasks. It makes use of MBConv blocks for feature
extraction with a small amount of computational load, and has become a standard for benchmarking in image
classification. This is done with a compound scaling method that scales the depth, width, and input resolution
of the network in similar measure for better performance across the different axes. The architecture is based
on a recently introduced concept of Mobile Inverted Bottleneck Convolution (MBConv) blocks that serves
both an efficient feature extractor and keeps the model lightweight. Additionally, EfficientNetB0 incorporates
Squeeze-and-Excitation (SE) blocks to enhance the network’s ability to capture important features by modelling
interdependencies between channels. The model?” uses the Swish activation function, which smooths out non-
linearities, contributing to better performance compared to traditional activation functions like ReLU. With
around 5.3 million parameters, EfficientNetB0 is not only compact but also highly effective, making it suitable
for a wide range of applications, from mobile devices to large-scale image classification tasks.

Convolutional operation in MBConv block
The convolutional operation is the core of EfficientNetBO0, especially within the MBConv blocks are shown in

Eq. (1)
(sz]) = Z M=1 Z N Xitmetjan—1. Wiy 4 b (1)

Where:
ij is the output of the convolution at position (i, j) for the k't filter.
X is the input feature map.
W is the convolution filter of size M X N.
b* is the bias for the k-th filter.

Depthwise Convolution in MBConv block
In the MBConv block, depthwise convolution is applied to each input channel separately, reducing the
computational cost is shown in Eq. (2)

(ij) = Z M=1 N Xitme1jin—1, W, + b 2)

Where:
Zs; is the output for the cth channel after depth wise convolution.
Xitm—1.j4+n—1, ¢ is the input at channel c.
Wian is the depth wise filter for channel c.
bCis the bias for channel c.

Squeeze-and-excitation (SE) block
The SE block models channel-wise dependencies using two main operations: Squeeze and Excite shown in
Egs. (3) and (4).

Squeeze Operation:

SCZH;WZilsz; 5 (3)

Where:
Sc is the squeezed feature for channel ccc.
H and W are the height and width of the feature map.
Excite Operation:

ec =0 (Wa.ReLU (Wh.s.)) (4)

Where:
ec is the excitation weight for channel ccc.
W, are weights of the fully connected layers.
o is the sigmoid activation function.
Recalibration:

Zij = ec.Zy (5)
WheArce,

Z; ; is the recalibrated feature map after applying the excitation weight.

Global average pooling
The feature map’s spatial dimensions are minimized to one value per channel through the use of global average
pooling is shown in Eq. (6)
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GAP. = H;W SOy Lz (6)

Where:
GAP. is the global average pooled value for channel ccc.
H and W are the height and width of the feature map.

Compound scaling method
EfficientNet uses a compound scaling method to scale the depth d, width w; and input resolution r of the network
is shown in Eq. (7)

d:ad,w:ﬁw,r:'yr (7)

Where:

o, and?y are scaling coeflicients.

d, w, r are the depth, width, and resolution scaling factors.

These equations provide a mathematical framework for understanding how the EfficientNetB0 architecture
processes and transforms input data, emphasizing both feature extraction and efficiency through its innovative
design.

Avoid memorization over fitting using CNN with the DA algorithm

Deep learning, mainly through Convolutional Neural Networks, has exhibited transformative potential in diverse
applications, ranging from natural language processing to medical imaging. However, as with any powerful tool,
challenges persist. A primary concern that has emerged in deep learning applications is overfitting, in the realm
of machine learning, overfitting emerges when models excel on training data but stumble when confronted
with unfamiliar instances. “Memory overfitting,” a particular manifestation, occurs when a model memorizes
training instances rather than discerning underlying data patterns. This phenomenon, especially perilous in
domains like medical diagnostics, poses significant risks due to the minimal margin for error.

Addressing this research gap is not merely refining existing models but calls for innovative strategies that
fundamentally alter the training dynamics. One promising avenue is the integration of CNNs with Differential
Augmentation. Differential Augmentation (DA) applies transformations such as random hue adjustments
(+10°), saturation changes (0.8-1.2), brightness scaling (0.9-1.1), and contrast modifications (0.85-1.15). For
instance, a lung CT scan can be augmented to simulate varying imaging conditions, enhancing the model’s
ability to generalize across datasets. These augmentations are applied randomly during training to ensure diverse
representations of the training data. By diversifying the training input, DA ensures that models are exposed to a
broader spectrum of data variations, discouraging memorization and promoting genuine learning.

This research explores the synergies of combining CNN with DA, aiming to mitigate memory overfitting.
Through this integrative approach, the aspiration is to develop models that are not only accurate but also robust
and generalizable, ensuring their reliability in real-world diagnostic scenarios.

Building on the foundational understanding of memory overfitting and its implications, the next logical step
is developing and refining a novel algorithm that seamlessly integrates CNNs with Differential Augmentation.
Recognizing the individual strengths of both CNNs and DA provides a unique vantage point®®. CNNs, with their
hierarchical feature extraction capabilities, excel at capturing intricate patterns in data. On the other hand, DA,
with its dynamic data augmentation strategies, offers a solution to the data scarcity and variety issue, inherently
combating overfitting.

The development of a new CNN with DA algorithm requires a multi-faceted approach. Initially, the
architecture of the CNN must be tailored to be receptive to dynamic augmentations. This means layers and
nodes must be optimized not just for feature extraction, but also for variability tolerance. The algorithm should
be designed to be adaptive, learning not just from the features of the training data but also from the variations
introduced by DA.

Furthermore, the DA component'” must be sophisticated enough to introduce meaningful augmentations.
It’s not just about changing the data; it’s about enhancing it in ways that genuinely challenge and expand the
model’s understanding. This ensures that the CNN doesn’t stagnate or fixate on specific data patterns but
continuously evolves its understanding, mirroring the dynamic nature of real-world data. Lastly, the integration
of CNN and DA must be seamless. Figure 1 is shown below the algorithm should allow feedback loops, where
insights from the CNN’s performance can inform and refine the DA strategies and vice versa. This creates a
symbiotic relationship between data processing and data enhancement, leading to a constant learning, adapting,
and improving model.

Developing a new CNN with a DA algorithm represents an exciting frontier in deep learning research.
By addressing the persistent challenge of memory overfitting head-on, this endeavour promises to set new
benchmarks in accuracy, reliability, and generalizability in deep learning models.

To develop a new CNN with a Differential Augmentation (DA) algorithm to mitigate memory overfitting, it’s
important to understand the mathematical foundation behind both CNNs and DA.

tl7

Convolutional layer operations
The Convolutional Neural Network (CNN) is primarily based on the convolution operation, which extracts
features from the input data is shawn in Eq. (8)

Convolution Operation:
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Fig. 1. Flow diagram for CNN with DA.
k M N k k
Feature Map (Zij) = Z M=1 Z n=1Xitm—1.j+n-1.-Wpn +0 (8)

Where:

X is the input feature map.

W is the convolution kernel (filter) of size MXN.

b is the bias for the kth filter.

Zﬁ is the output feature map at position (i, j) for the kth filter.

Activation function
An activation function is used to add non-linearity after convolution. Commonly used functions are ReLU is
shown in Eq. (9).

ReLU Activation Function:

A (Zf) = max(0, Zlkj) 9

Pooling operation
Pooling layers reduce the dimensionality of the feature maps, typically using max pooling is shown in Eq. (10).
Max Pooling:

Pf; :max{an,n :m? [i,i+371],n?[j,j+371]} (10)

Where:
s is the size of the pooling filter.
P%‘j is the pooled output for the kth feature map.

Fully connected layer
One or more fully connected layers receive the flattened output from the convolutional and pooling layers is
shown in Eq. (11).

Fully Connected Layer Operation:

y=Wax+1b (11)

Where:
W is the weight matrix.
x is the input vector.
b is the bias.

Softmax function
For classification tasks, the output layer often uses a softmax function to convert logits into probabilities is shown
in Eq. (12).

Softmax Function:
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p(y=ilz) = S K7, (12)

Where:
Z; is the logit for class iii.
K is the number of classes.

Loss function
For classification tasks, the cross-entropy loss is typically used is shown in Eq. (13).
Cross-Entropy Loss:

L==>" Eiylogp(y =ilz)) (13)

Where:
y; is the ground truth label (one-hot encoded).
p (y = i|x) is the predicted probability.

Differential augmentation (DA)

The Differential Augmentation (DA) technique is designed to improve the model’s ability to generalize by

introducing diverse transformations, such as hue, brightness, saturation, and contrast adjustments. This

simulates real-world variations in imaging conditions, which are common in clinical environments.
Augmentation Function can be employed is shown in Eq. (14)

DAX)={T1 (X),T2(X),... ... ... T, (X)} (14)

Where:
X is the original input data.
T; (X) represents different augmentation transformations.

Regularization terms
To combat overfitting, regularization techniques like L2 regularization can be employed is shown in Eq. (15).

L2 Regularization:
otal = A 'Lk’ 2
Liotar = L+ E . E i,]_(W ) (15)

Where:
L is the original loss function.
A is the regularization strength.
W are the weights of the kth layer.

Feedback mechanism for DA-CNN integration
To ensure a feedback loop between CNN performance and DA strategie:
Performance Feedback Adjustment can be shown in Eq. (16):

T¢+1 (X) =1T; (X) +a.A 7. Liotal (16)

Where: Tit1 (X) is the adjusted augmentation for the next iteration.

o is alearning rate for DA adjustment.

By integrating these mathematical components, a CNN-DA algorithm can be developed that dynamically
adapts to data variations, reducing memory overfitting and enhancing model robustness.

Data collection and loading

Efficient data collection and loading are crucial components in any machine learning endeavour. This involves
gathering relevant datasets from diverse sources, ensuring data integrity, and employing effective loading
mechanisms. Advanced methods include real-time streaming integration and automated preprocessing to
maintain data quality and facilitate seamless integration into machine learning pipelines, optimizing model
performance.

Data preprocessing

Data preprocessing involves vital steps such as normalization and label encoding. Images were resized to 256 x 256
pixels, normalized to the [0, 1] range by dividing by 255, and labels were one-hot encoded. Hyperparameters
were set as follows: learning rate of 0.001, batch size of 32, and optimizer as Adam. Image augmentation included
rotations of +15° and random cropping to simulate variability. Normalization ensures standardized scales for
numerical features, enhancing model convergence. Label encoding transforms categorical labels into numerical
values, facilitating algorithmic comprehension. These preprocessing techniques lay the foundation for robust
machine learning models, enhancing accuracy and efficiency in the analysis of diverse datasets which are shown
in Table 2.
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Step Description

Resizing Resized all images to 256 x 256 pixels

Normalization | Scaled pixel values to the range [0, 1] using value/255

Label encoding | Converted categorical labels to one-hot vectors

Table 2. Summarizes the preprocessing steps applied in this study for enhanced reproducibility.

Normalization

Normalization is a pivotal data preprocessing technique that standardizes numerical features, ensuring a
consistent scale across variables. By rescaling data to a common range, often between 0 and 1, normalization
mitigates the influence of disparate magnitudes, promoting fair comparisons and optimal model convergence in
machine learning applications.

Encode label

Label encoding is a crucial step in data preprocessing, particularly for categorical variables in machine learning.
It involves assigning numerical values to categorical labels, enabling algorithms to interpret and process them
effectively. This transformation enhances model performance by converting non-numeric information into a
format suitable for mathematical computations and analysis.

CNN- model architecture

Convolutional layer

In deep learning, and more especially in convolutional neural networks, the convolutional layer is the primary
layer. This layer makes use of filters or kernels, to slide over the input data and extract repeated local features,
while at the same time maintaining spatial connection. Every filter analyzes certain structures within the
picture, which improves the overall possibility to detect more complex patterns in the network. By capturing
hierarchical features, convolutional layers are effective in image processing, enabling the model to identify edges,
textures, and higher-level representations. Strides and padding control spatial dimensions, influencing the layer’s
receptive field. Convolutional layers contribute significantly to the success of tasks like image recognition, object
detection, and semantic segmentation in various machine learning applications.

Max pooling layer

Essential in CNNs, the max-pooling layer crucially down samples and extracts features by partitioning input
into non-overlapping regions, selecting the maximum value from each feature map. This process retains essential
information while reducing spatial dimensions, aiding computational efficiency and mitigating overfitting.
By improving translation invariance, max-pooling strengthens the network’s resistance to changes in spatial
orientation. While down sampling, it preserves dominant features, contributing to hierarchical feature learning.
Max-pooling layers are instrumental in creating spatial hierarchies, improving the networks capacity to
recognize and generalize complex patterns in diverse data, particularly in image-related tasks.

Flatten layer

The flatten layer is an essential part of many neural networks and comes after the convolution and the pooling
layers. Its main role is to change the input data to a single array or combine information as a way for fully
connected layers. This flattening process is pivotal in transitioning from spatial hierarchies to a format suitable
for traditional neural network architectures. By converting multidimensional data into a linear structure, the
flatten layer facilitates comprehensive feature learning and abstraction. It plays a crucial role in tasks like image
classification, enabling the neural network to extract and process intricate patterns for accurate predictions and
decision-making.

Dense layer

Integral to neural networks, the dense layer, often termed fully connected, stands as a foundational building
block in their architecture. Neurons in this layer are interconnected, forming a dense matrix that allows each
neuron to connect to every neuron in the preceding and succeeding layers. This extensive connectivity enables
comprehensive feature learning and abstraction. These typically are very important when there are complex
patterns that need to be learned within the data that is being fed to model Dense layers are very important
especially in tasks like image classification as well image generation and natural language processing. In dense
layers the weights and the bias are trained to improve the efficiency of making accurate prediction based on most
developed patterns.

Activation layer

The activation layer is pivotal in neural networks for introducing non-linearity, enhancing model complexity
and expressive power. It follows each neuron’s output in a neural network layer, applying an activation function
like ReLU, Sigmoid, or Tanh. This non-linear transformation introduces dynamic behaviour shows in Fig. 2,
Enabling the network to grasp intricate patterns and relationships inherent in the data, facilitating more nuanced
and accurate learning processes. Activation layers enable the model to capture complex features and perform
sophisticated tasks such as image recognition or natural language understanding, ensuring the networKk’s capacity
for more nuanced and powerful representations.
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Fig. 2. CNN model Architecture.

Differentiation augmentation

Differentiation Augmentation (DA) includes, hue, saturation, brightness, contrast which when incorporated
into the data helps in enhancing model performance by creating diverse and realistic variations in training
data. Changing the hue means moving colors up or down the spectrum, changing lighting conditions as well
as training the model under different color tone, though excessive shifts may distort important color-based
features. Saturation adjustment takes color to the next level by increasing or reducing the model’s ability to
distinguish between colors in bright or less bright situations, but overdoing it may produce unrealistic results.
Contrast changes mimic different levels of exposure, which benefits the model’s training in features with ensuring
adaptability to high or low-contrast environments; yet, having too extreme corrections such as very bright or
very dark diminishes training efficacy. This influence strongly helps improve the identification of features within
low brightness conditions and stabilize the device’s performance in both high and low contrast settings but
can cause important fine details to be obscured by the change in contrast. In aggregate, these methods enrich
training data, provide a more general view of data distributions, and reduce over-fitting and thus improve all
learnable tasks in the case of careful application of augmentations to preserve the realism of the data.

Adjust Hue

In image processing®, adjusting hue is vital, a technique altering pixel color representation by shifting them
along the color spectrum for nuanced visual changes. This technique is valuable for tasks like color correction,
image enhancement, and artistic transformations, providing flexibility in altering the overall color appearance
without affecting other image characteristics.

Adjust saturation

Saturation adjustment is a key image processing operation that involves altering the intensity of colors. By
manipulating the saturation levels, one can enhance or desaturate the colors in an image. This adjustment is
valuable for fine-tuning the visual impact of images, contributing to artistic modifications and color correction
processes.

Adjust brightness

Image processing operations require brightness adjustment to alter the entire luminance level throughout an
image. One can improve visibility while resolving exposure issues or create artistic effects through modifications
of image brightness levels. The operation functions inherently to enhance the visual quality alongside image
clarity across different application platforms.

Adjust contrast
Contrast adjustment is a vital image processing operation that involves modifying the difference in brightness
between the light and dark areas of an image. By enhancing or reducing contrast, one can bring out details,
improve visibility, or achieve artistic effects. This adjustment contributes to optimizing image quality and visual
impact.

Algorithm: CNN with Differential Augmentation (DA) for Lung Cancer Detection

Data Collection and Loading.

Select dataset folder D containing labelled images.

Data Preprocessing.

For each image Ii in D:

o Normalize: Ii norm= 255.01i.
« Encode label: li= Encode(li) where li is the label of Ii.
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Split D into training set T and validation set V with a ratio (e.g., 80:20).
Model Architecture.
Construct a CNN model M with layers:

« Convolution (f, k) where f is the number of filters and k is the kernel size.
o Max-pooling: P(k) where k is the pooling size.

« Flatten: F().

o Dense: D(n), where n is the number of neurons.

« Activation: Use ReLU for hidden layers and Softmax for output.

Loss function L: L(yA, y)=-Xiyilog(y~i) Where y is the actual label and Ay~ is the predicted label.
Differentiable Augmentation.
For the image I:

o Adjust hue: I'=Hue(I, h) where h is a random hue factor.

. Adjust saturation: I’=Saturation(I, smin, smax) where smin and smax are random saturation factors.
o Adjust brightness: I'=Brightness(I, b) where b is a random brightness factor.

o Adjust contrast: I'=Contrast(I, cmin, cmax) where cmin and cmax are random contrast factors.

Training.

« Train M using T with DA applied. For each epoch:
« ForeachbatchBinT.

o Apply DA to B to get B'.

« Update M using B’ to minimize L.

Evaluation.
Evaluate M using V to compute accuracy and loss.
Definitions

o D: Entire dataset.

o [i: Image at index i.

o li: Label of image Ii.

o T:Training dataset.

« V: Validation dataset.

o M: CNN model.

o L: Loss function.

o y/: Predicted label by model.
o y: True label.

Training
Differential Augmentation is a technique that applies varied transformations to individual instances within
image batches during training. The primary reasons for its adoption are:

Diversity in Training Data: DA introduces variations in training samples, thereby enriching the dataset. This
ensures that models are exposed to various data perspectives, improving generalization.

I'=DA(I),

Where I is the original image and I is the augmented image.

Differential Augmentation applied the following transformations: hue adjustments within +10 degrees,
saturation variations between 0.8 and 1.2, brightness scaling between 0.9 and 1.1, and contrast modifications
from 0.85 to 1.15. Each augmentation was randomly applied during training, ensuring diverse representations
of input images.

Mitigation of Overfitting: By introducing randomness and variability in the training process, DA minimizes
the risk of models memorizing exact training data, a phenomenon known as memory overfitting.

Effective Utilization of Limited Data: Especially in domains like medical imaging, where data can be scarce,
DA artificially expands the dataset, providing more training samples without collecting new data.

DAY impact on computational time
While DA introduces variability in the training data, it also adds a computational overhead due to the
augmentation process. However, this overhead is often offset by the reduction in training epochs required to
achieve convergence, thanks to the more prosperous and more diverse dataset.

Let’s consider the computational time without and with DA:

« Without DA: no-DA =epoch Tno - DA= ExTepoch.
o With DA: DATDA= (E - AE)x(Tepoch+Taug).

Where E is the number of epochs, epoch Tepoch is the time taken per epoch, AE is the reduction in ages due to
DA, and Taug is the additional time per epoch due to DA.
In many scenarios, DA <no-DATDA< Tno - DA, making DA computationally efficient in the long run.
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Neural network functioning with DA
When neural networks, particularly CNN, are trained with DA, they learn to recognize features invariant to the
augmentations applied. This means they become adept at identifying pertinent features regardless of changes in
hue, brightness, contrast, or other boosts introduced by DA.

Mathematically, if a feature extractor in a neural network is denoted by F, then:

F(I) = F(DA(I))

This equation signifies that the essential features extracted from the original and augmented images should
be comparable.

Evaluating neural networks with DA

Evaluating the performance of neural networks trained with DA usually involves testing the model on non-
augmented data (or sometimes mildly augmented data) to ensure real-world applicability. Performance metrics
such as accuracy, precision, recall, and F1-score collectively offer a holistic assessment of the model’s effectiveness
and capabilities.

Accuracy = Number of Correct Predictions/Total Predictions

In essence, DA acts as a regularized, enhancing neural networks” robustness and generalization capabilities,
making them more suitable for diverse real-world applications.

The lung cancer detection system, designed to revolutionize the diagnostic process, prominently features
an integrated Convolutional Neural Network (CNN) augmented with Differential Augmentation. When a new
set of lung scans enters the system, they undergo a series of pre-processing steps. These steps ensure image
normalization for consistent intensity values, resizing to a uniform dimension fit for the CNN, and encoding
labels into numerical values for supervised training. Once pre-processed, the data is directed into the system’s
heart: the CNN with DA model. This model’s sophisticated architecture comprises convolutional layers
designed for hierarchical feature extraction, pooling layers for dimensionality reduction while retaining pivotal
information, and dense layers fine-tuned for classification.

DASs role, crucial in the training phase, is to apply random yet meaningful transformations to images in
each training epoch. This dynamic augmentation guarantees that the CNN consistently encounters varied
representations of data, preventing over-reliance on specific training samples and promoting genuine feature
recognition. Following intensive training, the model undergoes meticulous evaluation with an independent test
dataset. Key metrics, including sensitivity, specificity, accuracy and F1-score, assess its diagnostic efficacy.

Once its efficiency and reliability are ascertained, the model is integrated into the system’s operational
environment. Here, healthcare professionals interact with a user-centric interface, uploading lung scans,
initiating diagnostic assessments, and receiving predictions complemented by confidence scores. The system is
designed for continuous learning to maintain the model’s relevance and adaptability. As new medical findings
emerge and additional data becomes available, the model undergoes periodic retraining, ensuring its alignment
with the latest lung cancer diagnostics. By melding the powers of CNN and DA, this system stands as a beacon of
hope for timely, accurate, and efficient lung cancer detection, aiming for better patient outcomes and streamlined
healthcare processes.

XAI using LIME approach

This research introduces a new method designed to boost lung cancer image classification reliability through the
application of Explainable AI (XAI) technologies. The analysis uses Image LIME*® which functions as a specific
LIME algorithm variation made for image datasets to show important features active during model decisions.
The main goal aims at improving the transparency and prediction reliability of model outputs while examining
features which lead to accurate lung cancer image classification results.

LIME (Local Interpretable Model-agnostic Explanations)*! serves asa method which produces understandable
explanations for determining the output predictions of any classification system. LIME creates an understandable
model that duplicates specialized machine learning model behaviors within localized prediction zones*? Through
LIME users can identify key input features since the technique studies how prediction changes when the input
data is modified about a specific testing example®. This approach allows LIME to generate explanations that are
meaningful for individual predictions, even when only a few variables are locally significant compared to the
global context.

In the second stage of our methodology, LIME is employed to visualize and interpret the model’s decision-
making process at a local level. This is done by highlighting the key regions or features within an image that
significantly contribute to the model’s predictions. Our experiment applied LIME technology to analyze the
priority features revealed by the model in interpreting a specific test image Subsequently, we used LIME-
generated feature heatmaps to mask the images, revealing only the most critical 6, 8, 10, and 12 features.
Model interpretation through this process enables users to understand decision-making steps so classification
procedures become more trustworthy and interpretable.

A thorough comparison of models occurs in the final study stage which incorporates both successful
predictions from the initial phase and effective LIME-based feature extraction from the second phase. The
evaluation methodology for model feature relevance in lung cancer images uses the Intersection over Union
(IoU) similarity metric. Users access LIME visualizations to uncover which distinct features each model
depends on when making its prediction outcomes. The analysis of extractive efficiency monitors how well
model-determined features match with genuine image features present in the data. The IoU score is used as a
quantitative measure to compare the binary masked image generated by the model with the ground truth image,
enabling the evaluation of the degree of overlap between the selected features. This evaluation method measures
how well the model selects appropriate features which lead to correct lung cancer detection.
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The IoU metric assesses two set similarities by dividing the ground truth image (GT) intersection area with
the masked binary image (MB) area compared to their aggregated regions. The quantitative scale for measuring
feature overlap ranges from 0 to 1 through this metric. The measurement scale of the IoU metric exists between
0 for no similarity and 1 for perfect overlap. The formula for calculating the IoU value consists of these terms
can be shown in Eq. (17):

> é‘vzl > M (Gr(i,5) N Ms(i,j5))

IoU(Gr, Mg) = > N> M (Gr(i,j)U Me(i,j))

(17)

Both G(i, j) represents ground truth image and M(i, j) represents masked binary image in this context. The
equation offers a quantitative way to determine the degree of image overlap which enables model feature
extraction assessment.

Result and discussion

This paper delves into designing and implementing a state-of-the-art lung cancer prediction system using
Python and the powerful deep learning frameworks TensorFlow and Keras. TensorFlow, an open-source
machine learning library, is renowned for its flexibility and scalability, making it apt for handling complex tasks
such as medical image analysis. Keras, a high-level neural networks API, provides an intuitive interface for
building and training deep learning models, streamlining the process without compromising capability. This
research aims to create a robust lung cancer prediction system by intertwining these technologies. The goal
of combining Convolutional Neural Networks and innovative data augmentation techniques is to achieve
unparalleled accuracy in detecting and classifying lung cancer from medical images This paper will shed light
on the development journey, from data preprocessing and model architecture design to training, evaluation, and
deployment. Additionally, it will underscore the significance of integrating Al into healthcare, elucidating how
Python, TensorFlow, and Kera stand as the pillars supporting this transformative endeavour.

Dataset

For this study, the lung cancer dataset from the Iraq-Oncology Teaching Hospital/National Center for Cancer
Diseases (IQ-OTH/NCCD), publicly available on Kaggle®*, was utilized. Published in 2019, this dataset includes
CT scans from 110 individuals diagnosed with lung cancer, encompassing various stages: bengin, malignant,
and normal. The participants are of different gender, age, and level of education. Of the 110 patients, 40 had
malignant lung tumours, 15 had bengin (non-cancerous) tumours, and 55 had normal lungs. Every patient
supplied about 80-200 CT scan slice sections which were 1 mm thickness.

The dataset comprises 1,097 CT images are organized into three distinct groups which bengin, malignant, and
normal groups of lung cancer diseases. The bengin class contains 120 images but the malignant class possesses
561 images together with 416 images in the normal class. Lung tumors are divided into bengin non-cancerous
and malignant cancerous types with additional differentiation between tumour and mass forming tumours. The
data set went through training operations for 80% while the next 20% was kept for testing.

The discussion surrounding dataset limitations, particularly the relatively small size of the IQ-OTH/NCCD
dataset and potential biases in class distribution, is crucial for understanding the implications of the results
obtained from the CNN + DA model. The IQ-OTH/NCCD dataset, while providing high-quality CT scans from
a diverse cohort of lung cancer patients, consists of only 1,097 images. This limited sample size may restrict the
model’s ability to capture the full spectrum of tumor variations and complexities present in a broader population.
Consequently, the model’s performance may be influenced by the specific characteristics of the training data,
potentially leading to overfitting on the limited examples it has encountered.

Moreover, the class distribution within the dataset presents another layer of complexity. The dataset includes
561 images of malignant tumors, 120 images of bengin tumors, and 416 images of normal lungs, resulting in
an imbalanced representation of classes. Such imbalances can skew the model’s learning process, as it may
become biased towards the more prevalent class (malignant tumors) while underrepresenting the nuances of
less frequent classes (bengin tumors and normal lungs). This bias can lead to a higher rate of false negatives for
bengin cases, which is particularly concerning in clinical settings where accurate differentiation between bengin
and malignant conditions is critical for patient management.

To mitigate these Challenges, Further study should consider augmenting the dataset with additional images
from diverse sources to enhance its size and balance. Synthetic data generation methods together with transfer
learning among bigger diverse sources would improve both robustness and generalization performance of the
model. Furthermore, conducting thorough analyses of class-specific performance metrics will provide deeper
insights into how well the model performs across different categories, allowing scientists better diagnostic
capability understanding. Researchers should implement methods to remedy data set limitations which will
make their findings applicable for clinical scenarios and enhance the reliability of the CNN + DA model for lung
cancer diagnosis.

This work used the LC25000 dataset, which consists of histopathological images of lung and colon cancer
collected from the Kaggle public platform to assess the enhancing systems proposed here. The dataset, which was
assembled by Andrew Borkowski and his team at James Hospital in Tampa, Florida, includes 25,000 Images that
are evenly split up among five classes: Three forms of lung cancer and two forms of colon cancer were identified.
There are 5,000 images in each class to maintain data distribution conformity. The five classes are lung_aca
with images of lung adenocarcinoma, lung_bnt with images of bengin lung tissue, lung_scc with images of lung
squamous cell carcinoma, and colon_aca with images of colon adenocarcinoma. More than 95% of all cases of
colon cancer are adenocarcinomas, which are always the result of large intestine polyps that go undetected.
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Lung adenocarcinoma is a type of lung cancer that involves glandular cells and occurs in the lungs and
alveoli, making up more than 40% of all lung cancer cases. Lung squamous cell carcinoma takes more than 30%
of lung cancer types and develops in the bronchi. The last two categories are bengin tissues of the colon and lung,
which are non-cancerous and do not metastasize; however, their nature should be confirmed through biopsy and
may have to be removed.

Worked with the dataset that shares many features with the “A Large-Scale CT and PET/CT Dataset for
Lung Cancer Diagnosis (Lung-PET-CT-Dx)” from The Cancer Imaging Archive (TCIA). TCIA is an open-access
project developed to facilitate cancer research through sharing open-access cancer imaging data for researchers®.
There are 251,135 PET-CT images of lung cancer patients, 106,676 preoperative PET-CT images of lung cancer
patients, and 667,246 preoperative diagnostic CT images in the Lung-PET-CT-Dx dataset. The information was
supplied by Harbin Medical University’s Second Affiliated Hospital in Harbin, Heilongjiang Province, China.
The data is based on patients with lung cancer diagnosed by biopsy of one of four main histopathological types.
Radiology annotations that indicate tumor current location for every CT/PET-CT image are also provided.
Tumor lesions were manually outlined with rectangular boxes of the same size made using the LabelIMG tool.
The annotation process involved five academic thoracic radiologists: One person drew the bounding box, and
the other four confirmed it. In this assessment, only the analysis of CT images with a resolution of 1 mm was
carried out, rejecting all CT scans with other resolutions for methodological purity.

The NLST?7 was a randomized, multicenter trial performed by LSS in collaboration with the American
College of Radiology Imaging Network (ACRIN) to compare LSCT in a high-risk population in regard to lung-
cancer-specific mortality. The first objective was to evaluate if low-dose helical CT screening could decrease
lung cancer mortality among high-risk persons as compared to chest radiography. The study recruited more
than 53,000 high-risk individuals aged 55 to 74 who have a history of smoking at least a pack a day from 2002 to
2004. Of these patients, slightly more than half were scanned using low-dose CT, and the rest using chest X-rays.
Participants had three follow-up examinations each year through 2007, with annual surveys through 2009.

The low-dose CT arm screened 26,732 participants, and lung cancer was validated in 1,083 patients (~4%)
during follow-up. However, at each of the three screening time points are T0, T1, T2, a significant proportion
of interviewed patients screened positive for potentially malignant lung cancer characterized by non-calcified
nodules or masses>4 mm in diameter or any other suspicious radiographic findings. Though the screening
rates were generally low, the examination findings were positive in 27% at T0, 26% at T1, and 16% at T2. Cancer
confirmation among the screen-positive patients during screening or follow-up was 9% at T0, 6% at T1, and 8%
at T2, respectively.

Table 3 provides a comparison of datasets, outlining their strengths and limitations. It highlights key features
and suitability for specific applications, offering insights into their optimal use in various scenarios.

Figure 3 illustrates a sample image alongside its augmented version using DA techniques. This comparison
highlights the transformations applied to enhance data diversity and model robustness.

Figure 4 shows the training and validation loss curves after training the model with lung cancer images. It
highlights the loss reduction over epochs, indicating improved performance and generalization.

Train and Evaluate model CNN with DA.

Evaluation of the CNN with differential augmentation (DA) algorithm

The presented graph comprehensively evaluates the CNN model augmented with Differential Augmentation
(DA) across multiple training epochs. The graph juxtaposes the training and validation performance, giving
insights into the model’s learning dynamics and ability to generalize.

Training vs. Validation Curves: The graph showcases two sets of curves one representing the model’s
performance on the training data and the other on the validation data. This distinction allows us to gauge the
model’s progression in terms of learning and its capacity to perform on unseen data.

Accuracy Trends: A noticeable observation is the trajectory of the accuracy curves for both training and
validation datasets. As the epochs progress, the accuracy tends to increase, indicating the model’s improving

IQ-OTH/NCCD

- High-quality 1 mm slice thickness for better resolution.

Dataset Strengths Limitations
Covers bengin, malignant, and normal categories, allowing for a wider scope
of diagnosis. - Limited in size (1,097 images), which may not capture all tumor

variations.

(Selected Dataset) - Real-world data from a variety of demographic groups. - Focuses mainly on a smaller cohort compared to large-scale
- Balanced dataset with a sufficient number of images (1,097 CT images). datasets.
- Clear labeling of tumors as bengin or malignant.
LC25000 - Contains 25,000 images across five cancer and tissue categories, providing a - Comp (?Sed thlSt(.)P athological images, not CT scans, 8o it may
. . . not be directly applicable to tasks involving CT image analysis.
(Histopathological large and diverse dataset. - . .S
. - Does not include normal tissues as explicitly as the IQ-OTH
Dataset) - Balanced classes ensure no bias toward any one category.

dataset.

Lung-PET-CT-Dx
(Large-Scale CT/PET)

—251,135 de-identified CT/PET-CT images provide a large dataset with expert
annotations.
- Focuses on major lung cancer histopathological subtypes.

- Very large dataset can lead to high computational costs for model
training.

- Focuses more on CT/PET-CT images than on distinguishing
between bengin and malignant lung tissues.

NLST (National Lung
Screening Trial)

- Large-scale randomized trial data with high-risk participants for lung cancer
screening.
- Provides longitudinal data with follow-up screenings.

- Screening-specific data may not cover the breadth of tumor types.
- Not specifically designed for training models, lacking labeled
tumor images and annotations for model development.

Table 3. Comparison of datasets: strengths and limitations.
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Fig. 3. Sample Image and the image with DA.
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Fig. 4. After the model train with lung cancer images graph shows train loss validation loss.

capability to classify lung cancer images correctly. Any significant divergence between these curves might hint at
overfitting or underfitting, crucial aspects to monitor in model evaluation.

Loss Trends: Complementing the accuracy, the loss curves depict how the model’s predictions deviate from
the actual labels across epochs. A declining trend in the loss signifies that the model is refining its predictions,
aligning them closely with the true tags. The proximity of the training and validation loss curves is an indicator
of the model’s consistent performance across both datasets.

Role of DA: Integrating Differential Augmentation (DA) likely contributes to the observed trends. By
continuously introducing varied representations of the training images, DA ensures the model does not over-
rely on specific patterns, leading to enhanced generalization. This is evident from the synchronized progression
of training and validation curves, indicating a reduced propensity for overfitting.

Concluding Remarks: The graph is a testament to the efficacy of integrating DA with CNN for lung cancer
image classification. The consistent trends across epochs and the close alignment of training and validation
metrics indicate a well-trained, robust model poised for real-world applications.

The CNN+DA model’s high accuracy, sensitivity, and specificity suggest strong potential for clinical
applications. However, its utility in real-world settings requires further validation using diverse datasets and
testing in clinical workflows. Additionally, robustness against imaging artifacts and varying scanner types must
be ensured.

To predict diseases accurately based on the input shown in Fig. 5, the model likely analyzes patterns in
data using machine learning techniques. It processes various features to identify potential disease outcomes,
enhancing diagnosis precision.

Lung cancer prediction using CNN with DA model

Model Forward Pass: The pre-processed image is passed through the CNN. As it traverses through the
convolutional layers, essential features indicative of lung conditions are extracted. These hierarchical features,
ranging from basic edges to complex patterns, are then processed by the subsequent layers.
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Function name | Value

Learning rate 0.001
Batch size 32

Dropout rate 0.3

Table 4. Training parameters.

Prediction Generation: The final layers of the CNN, typically dense or fully connected layers, take the extracted
features and generate a prediction. This could be in-class probabilities, especially if the task is to categorize the
lung condition. The class with the highest chance becomes the model’s prediction for the input image.

Post-processing: Post-processing might be applied once the raw prediction is obtained. This could involve
converting numerical labels to their categorical counterparts (e.g., ‘Adenocarcinoma, ‘Normal’) or applying a
threshold to determine the final diagnosis.

Output Display: The prediction and any associated confidence scores or probabilities are then presented to
the user. In a healthcare setting, this information assists medical professionals in making informed decisions
about the patient’s condition and subsequent treatment.

Hyperparameter tuning using random search
Hyperparameter Tuning using Random Search®® involves randomly sampling hyperparameter combinations
from predefined ranges, training the model with each combination, and evaluating its performance. This method
is efficient, as it does not exhaustively test all possibilities. By focusing on random subsets, it identifies optimal
configurations, such as learning rate, batch size, and dropout, to enhance model accuracy and generalization.

The initial training parameters for the models were set as follows: a learning rate of 0.001, a batch size of
32, and a dropout rate of 0.3. After applying Random Search for hyperparameter tuning, these values were
optimized to improve the performance of each model. The learning rate was fine-tuned to values between 0.0001
and 0.0005, with lower learning rates proving more effective for ResNet and EfficientNetB0. The batch size was
adjusted to 32 for CNN with DA and ResNet, while DenseNet and EfficientNetB0 achieved optimal results with
the original batch size of 32. Similarly, the dropout rate was optimized to 0.2 for the Hybrid CNN model, while
ResNet required a slightly higher rate of 0.4 to prevent overfitting, and DenseNet and EfficientNetBO retained
a balanced dropout of 0.3. These tuned parameters significantly enhanced the accuracy and F1-score for each
model.

Table 4 outlines the training parameters used for the model. It provides details such as learning rate, batch
size, and Dropout rate, essential for reproducing the training process.

Compare the performance metrics CNN with DA (Hybrid novel Model), DenseNet, ResNet
and EfficientNetBO0 Algorithm

The results across different datasets demonstrate that the CNN + DA (Novel) model consistently outperforms
other models, particularly when evaluated on the primary IQ-OTH/NCCD dataset (Table 5). This dataset
highlights the strength of CNN + DA, achieving the highest metrics in Precision (97.57%), Recall (97.67%),
F1-Score (98.78%), and Accuracy (98.78%) with relatively low standard deviations. These results indicate the
model’s superior ability to predict lung cancer accurately while maintaining stability and reliability. Compared to
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Performance metrics | CNN + DA (Novel) | DenseNet | ResNet | EfficientNetB0
Precision 97.57 93.80 92.50 91.87

Recall 97.67 94.00 93.10 91.78

f1-score 98.78 94.20 92.70 91.21
Accuracy 98.78 94.10 93.00 92.64

Roc 97.23 93.90 92.40 91.24

Error rate (%) 1.22 5.90 7.00 7.36

Table 5. Comparison models with performance metrics with supporting statistical measures using IQ-OTH/
NCCD dataset.

Group 1 Group 2 Mean Diff | p-adj | Lower | Upper | Reject
CNN+DA DenseNet -4.61 0.0000 | - 524 | -3.98 | True
CNN+DA EfficientNetB0 | - 5.97 0.0000 | —6.60 | —5.34 | True
CNN+DA ResNet -5.58 0.0000 | - 6.21 | —4.95 | True
DenseNet EfficientNetB0O | — 1.36 0.0000 | =199 | -0.73 | True
DenseNet ResNet -0.97 0.0006 | —1.59 | -0.34 | True
EfficientNetB0O | ResNet 0.39 0.3655 | —0.23 | 1.02 False

Table 6. Tukey’s HSD Post-Hoc test for model accuracy comparisons using IQ-OTH/NCCD dataset.

Dataset CNN+DA | DenseNet | ResNet | EfficientNetB0
Precision 93.02 92.03 91.42 90.01

Recall 94.16 93.12 92.15 90.26

flscore 94.01 93.16 91.22 90.26
Accuracy 95.02 93.22 91.99 91.14

Roc 93.69 91.26 91.32 90.20

Error rate (%) | 4.98 6.78 8.01 8.86

Table 7. Comparison models with performance metrics with supporting statistical measures using LC25000.

other models like DenseNet, ResNet, and EfficientNetB0, CNN + DA demonstrates clear dominance, particularly
in this primary dataset.

To evaluate the accuracy of four models are CNN + DA (Novel), DenseNet, ResNet, and EfficientNetB0, a
post-hoc analysis was conducted using Tukey’s HSD test shown in Table 6. The analysis revealed significant
differences in accuracy between most models. The CNN+DA model demonstrated statistically significant
superiority over all other models, with mean accuracy differences of — 4.61, — 5.58, and — 5.97 when compared
to DenseNet, ResNet, and EfficientNetBO0, respectively (p <0.0001 for all comparisons). DenseNet also showed
significantly higher accuracy than EfficientNetB0 and ResNet, with mean differences of — 1.36 and —0.97,
respectively (p<0.001). However, no significant difference was observed between EfficientNetBO and ResNet
(p=0.3655), indicating similar performance between these models. The results highlight CNN + DA as the most
accurate model, statistically outperforming both advanced architectures like DenseNet and baseline models
like ResNet and EfficientNetB0. This underscores the robustness and reliability of the CNN+DA model in
delivering superior accuracy for predictive tasks. These findings position CNN + DA as the most accurate model,
showcasing its superior performance and reliability for applications requiring precise predictions. The statistical
validation underscores the robustness of the novel architecture and its potential to outperform widely used
baseline models like DenseNet, ResNet, and EfficientNetB0.

When tested on the LC25000 dataset (Table 7), CNN+ DA also delivers commendable results, achieving
the highest Precision (93.02%) and ROC (92.69%). However, DenseNet marginally surpasses CNN + DA in
Recall (93.12%), F1-Score (93.16%), and Accuracy (93.22%). Despite this, the lower standard deviations in
CNN +DA’s performance metrics suggest greater consistency, making it a competitive option for this dataset.
Based on the statistical results, CNN + DA demonstrates the highest performance across all evaluated metrics
(precision, recall, F1 score, accuracy, and ROC) when compared to DenseNet, ResNet, and EfficientNetB0. The
mean differences in accuracy between CNN + DA and the other models are statistically significant, with p-values
well below the typical significance threshold (0.05), indicating strong evidence against the null hypothesis of no
difference. Specifically, CNN + DA significantly outperforms DenseNet (mean difference of 1.80), ResNet (mean
difference of 3.03), and EfficientNetBO (mean difference of 3.88), all with low p-values shaown in Table 8. In
contrast, DenseNet and ResNet show no significant difference in accuracy, suggesting their performances are
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Group 1 Group 2 Mean Difference (meandiff) | P-Adj | Lower CI Bound | Upper CI Bound | Reject Null Hypothesis
CNN+DA DenseNet 1.80 0.02 0.56 3.04 Yes
CNN+DA EfficientNetB0O | 3.03 0.005 |1.44 4.61 Yes
CNN+DA ResNet 3.88 0.001 |2.07 5.69 Yes
DenseNet EfficientNetB0 | 1.22 0.14 -0.19 2.63 No
DenseNet ResNet 2.08 0.03 0.15 4.00 Yes
EfficientNetB0O | ResNet 0.87 0.22 -0.46 2.20 No

Table 8. Tukey’s HSD Post-Hoc test for model accuracy comparisons using LC25000 Datset.

Dataset CNN+DA | DenseNet | ResNet | EfficientNetB0
Precision 97.57 93.80 92.50 91.87

Recall 97.67 94.00 93.10 91.78

flscore 98.78 94.20 92.70 91.21
Accuracy 98.78 94.10 93.00 92.64

Roc 97.23 93.90 92.40 91.24

Error rate (%) | 1.22 5.90 7.00 7.36

Table 9. Comparison models with performance metrics with supporting statistical measures using A Large-
Scale CT and PET/CT.

Group 1 Group 2 Mean difference (meandiff) | P-adj | Lower CI bound | Upper CI bound | Reject null hypothesis
CNN+DA | DenseNet 4.68 0.001 | 3.90 5.47 Yes
CNN+DA | ResNet 5.78 0.0005 | 4.98 6.58 Yes
CNN+DA | EfficientNetB0 | 6.14 0.0002 | 5.33 6.95 Yes
DenseNet | ResNet 1.10 0.14 -0.12 232 No
DenseNet | EfficientNetB0 | 1.46 0.09 —-0.01 293 No
ResNet EfficientNetBO | 0.36 0.42 -1.12 1.84 No

Table 10. Tukey’s HSD post-hoc test for model accuracy comparisons using a large-scale CT and PET/CT
dataset.

more similar. These results highlight CNN + DA’ superior ability to generalize across the dataset, likely due to the
combination of powerful CNN architecture and data augmentation, which enhances learning and robustness.

Similarly, the CNN + DA model excels on the Large-Scale CT and PET/CT dataset (Table 9), achieving
the highest scores across all metrics, including F1-Score (98.78%) and Accuracy (98.78%). The robustness of
the model is again evident from its smaller standard deviations, further solidifying its position as the best-
performing and most reliable model for this dataset.

The Tukey’s HSD post-hoc test for model accuracy comparisons on the Large-Scale CT and PET/CT dataset
(Table 10) reveals that CNN + DA significantly outperforms DenseNet, ResNet, and EfficientNetB0, with mean
accuracy differences of 4.68, 5.78, and 6.14, respectively, all with adjusted p-values well below 0.05, indicating
strong statistical significance. In contrast, no significant differences were found between DenseNet, ResNet, and
EfficientNetB0, with p-values greater than 0.05, suggesting similar performance levels among these models.
These results highlight CNN + DA as the most effective model for this dataset, while the other models show
comparable performance but are significantly less accurate than CNN + DA.

On the National Lung Screening Trial (NLST) dataset (Table 11), the performance of CNN+ DA remains
strong, with the highest Precision (94.23%) and Recall (95.22%). However, ResNet slightly surpasses CNN + DA
in terms of F1-Score (94.63%) and Accuracy (96.23%). This suggests that while CNN + DA generally performs
well across datasets, there are scenarios where other models, like ResNet, may provide slightly better outcomes
for specific metrics.

The results from the Tukey’s HSD post-hoc test and performance metrics on the National Lung Screening
Trial (NLST) dataset reveal that CNN+DA outperforms DenseNet and ResNet significantly, with mean
accuracy differences of 2.24 and 3.27, respectively, both with p-values below 0.05, confirming the null hypothesis
is rejected shown in Table 12. However, no significant difference in accuracy was found between CNN + DA and
EfficientNetBO0 (mean difference of 0.13, p=0.85), indicating their performances are comparable. Additionally,
DenseNet and ResNet show no significant difference between each other (mean difference of 1.02, p=0.18),
while both outperform EfficientNetBO with significant accuracy differences (mean differences of -— .11 and
—3.13, respectively, p<0.05). These findings highlight CNN+DA as the most effective model, followed by
DenseNet and ResNet, with EfficientNetB0 being the least effective in terms of accuracy.
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Dataset CNN+DA | DenseNet | ResNet | EfficientNetB0
Precision 94.23 94.12 92.56 90.20

Recall 95.22 94.12 92.06 90.22

flscore 96.56 94.12 94.63 90.22

Accuracy 96.36 94.12 93.09 96.23

Roc 97.02 93.56 93.45 94.23

Error rate (%) | 3.64 5.88 6.91 3.77

Table 11. Comparison models with performance metrics with supporting statistical measures using the
National lung screening trial (NLST) dataset.

Group 1 Group 2 Mean difference (meandiff) | P-adj | Lower CI bound | Upper CI bound | Reject null hypothesis
CNN+DA | DenseNet 2.24 0.001 | 1.56 2.92 Yes
CNN+DA | ResNet 3.27 0.0002 | 2.49 4.05 Yes
CNN+DA | EfficientNetB0 | 0.13 0.85 - 1.08 1.34 No
DenseNet | ResNet 1.02 0.18 -0.16 2.19 No
DenseNet | EfficientNetB0 | —2.11 0.01 -3.25 -0.97 Yes
ResNet EfficientNetB0O | —3.13 0.0003 | —4.34 -191 Yes

Table 12. Tukey’s HSD post-hoc test for model accuracy comparisons using the National lung screening trial
(NLST) dataset.

The IQ-OTH/NCCD dataset was selected for this research due to its unique strengths in providing high-
quality CT scans of lung cancer patients across bengin, malignant, and normal categories. This makes it well-
suited for developing models that generalize effectively across diverse patient populations. Unlike other datasets
such as LC25000, which focuses on histopathological images, or Lung-PET-CT-Dx, which emphasizes lung
cancer subtypes, the IQ-OTH/NCCD dataset offers a real-world representation of lung conditions. Its clear
annotations and balanced class distribution further enhance its suitability for lung cancer diagnosis.

Despite its relatively small size of 1,097 images, the dataset compensates with high-quality imaging (1 mm CT
slice thickness) and diverse demographic representation, allowing for detailed tumor detection and improved
generalizability. Additionally, the superior performance of the CNN + DA model on this dataset underscores
its appropriateness for evaluating lung cancer prediction models. These factors collectively establish IQ-OTH/
NCCD as the optimal choice for this research.

Table 5 compares the performance of various models, including CNN + DA (Novel), DenseNet, ResNet, and
EfficientNetB0, using the IQ-OTH/NCCD dataset. The table highlights key performance metrics along with
supporting statistical measures, showcasing the effectiveness of each model.

Figure 6 illustrates the comparative performance metrics of CNN + DA, DenseNet, ResNet, and EfficientNetB0.
The results highlight the superiority of the proposed model across key evaluation metrics.

The Precision-Recall (PR) curves shown in Fig. 7. highlight the performance of different models (CNN + DA,
DenseNet, ResNet, and EfficientNetB0) across various datasets (IQ-OTH/NCCD, LC25000, CT/PET-CT, and
NLST). The CNN + DA model consistently demonstrates superior precision and recall, reflected in its curves
being positioned closest to the top-right corner for all datasets. DenseNet, ResNet, and EfficientNetB0 exhibit
progressively lower performance, with EfficientNetB0 typically yielding the lowest precision-recall values. These
trends reinforce the robustness and generalizability of the CNN + DA model across diverse datasets.

The evaluation of the proposed CNN model with Data Augmentation (CNN+DA) is conducted through
multiple analytical techniques, including correlation heatmaps, residual analysis, homoscedasticity assessment,
and Q-Q plots. These evaluations provide deep insights into the model’s predictive performance, error
distributions, and generalization capability.

The model’s performance was evaluated using various metrics, including precision, recall, F1-score, accuracy,
and ROC. The correlation heatmap reveals a high degree of correlation (close to 1) between all performance
metrics, indicating a consistent performance across different evaluation aspects shown in Fig. 8. This strong
positive correlation suggests that the model is effectively capturing the underlying patterns in the data and
exhibiting a balanced performance.

The histogram of residuals displays a near-normal distribution, suggesting that the model’s residuals are
randomly distributed and do not exhibit any systematic patterns. This observation aligns with the assumption of
normality for residual analysis, providing further evidence of model adequacy shown in Fig. 9.

The plot of residuals against fitted values, commonly used for homoscedasticity check, shows a scattered
distribution of points without any discernible trend or pattern. This indicates that the variance of the residuals is
consistent across different fitted values, supporting the assumption of homoscedasticity shown in Fig. 10.

Furthermore, the Q-Q plot of accuracy showcases a linear relationship between the ordered values and the
theoretical quantiles, indicating that the distribution of the accuracy values is close to a normal distribution
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Fig. 6. Comparative performance metrics for CNN + DA, DenseNet, ResNet and EfficientNetBO, illustrating
the superiority of the proposed model.

shown in Fig. 11. This finding suggests that the model’s performance is consistent and does not exhibit significant
deviations from normality.

Opverall, the analysis of these plots and metrics indicates that the model is performing well, exhibiting high
performance scores, normally distributed residuals, and a consistent performance across different evaluation
aspects. These results suggest that the model could successfully uncover the underlying patterns in the data and
generate predictions that are accurate.

The proposed CNN with Differential Augmentation (CNN + DA) model demonstrates superior performance
compared to established architectures such as DenseNet and EfficientNetBO0, primarily due to its innovative
approach to mitigating memory overfitting and enhancing robustness against data variability. Memory overfitting,
a common challenge in deep learning, occurs when models memorize training data rather than generalizing
from it. The CNN + DA model effectively addresses this issue by integrating Differential Augmentation (DA),
which applies diverse transformations such as hue, brightness, saturation, and contrast adjustments during
training. This exposure to a broader spectrum of data variations discourages memorization and promotes
genuine learning, leading to improved generalization capabilities. Furthermore, the dynamic nature of DA
allows the CNN + DA model to adapt to real-world variations in imaging conditions, enhancing its robustness
and performance across diverse patient populations and imaging protocols. The architecture of the CNN + DA
model is designed to leverage hierarchical feature extraction, enabling it to identify critical features indicative
of lung cancer, regardless of the variations introduced by DA. Validation across multiple datasets, including
the IQ-OTH/NCCD dataset, LC25000, and the Large-Scale CT and PET/CT dataset, underscores the model’s
ability to generalize effectively, achieving an accuracy of 98.78%, significantly higher than that of DenseNet
and EfficientNetB0. Statistical analyses, including Tukey’s HSD post-hoc tests, confirm the significance of
the CNN + DA models superior performance, with mean accuracy differences that are statistically significant
(p<0.0001). These findings position the CNN + DA model as a valuable tool for clinical applications in lung
cancer detection, with the potential for further exploration of its adaptability to other medical imaging tasks,
thereby advancing deep learning methodologies for complex diagnostic challenges.
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Precision-Recall Curves for All Models and Datasets
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Fig. 7. Precision-recall curves comparing CNN + DA, DenseNet, ResNet and EfficientNetB0, showing better

balance between precision and recall in the proposed model.
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Fig. 8. Feature correlation heatmap for attribute dependency analysis.

Scientific Reports|  (2025) 15:15640

| https://doi.org/10.1038/s41598-025-98731-4

nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Histogram of Residuals

2.00 4 o

1.75 A

1.50 A

1.25 A

Frequency
[y
(=3
o

0.75 A
0.50 -

0.25 ]

0.00

=25 -2.0 =15 -1.0 -0.5 0.0
Residuals le-14

Fig. 9. Residual histogram for model adequacy assessment.
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Intersection over union (IoU) score

CNN models | 6 features | 8 features | 10 features | 12 features | Average IoU score
DenseNet 0.33 0.36 0.39 0.43 0.37
ResNet 0.29 0.31 0.35 0.39 0.33
EfficientNetB0O | 0.31 0.37 0.41 0,43 0.38
CNN+DA 0.35 0.40 0.43 0.47 0.41

Table 13. IoU score of the selected pretrained models for Bengin case.

Intersection over union (IoU) score

CNN models | 6 features | 8 features | 10 features | 12 features | Average IoU score
DenseNet 0.28 0.32 0.35 0.38 0.33
ResNet 0.25 0.28 0.31 0.34 0.29
EfficientNetB0O | 0.27 0.30 0.33 0.36 0.31
CNN+DA 0.33 0.37 0.40 0.44 0.38

Table 14. IoU score of the selected pretrained models for maligant case.

Error analysis on four datasets

Possible errors are also characterized by misclassifications in terms of error rate, which gives a clear understanding
of the weak sides of the model. Others with relatively higher error rates in our experiments (e.g., 7.36% for
EfficientNetBO on the IQ-OTH/NCCD dataset) have higher misclassification rates, especially for those images
that are just slightly different from one another. This means that with similar appearances, their differentiation
can be a problem for the model, for example in the case of early stage diseases or noisy data. However, in the
CNN + DA proposed with the lowest error rate to 1.22%, the model still occasionally misclassifies subjects This
is common, particularly in individual-specific scenarios that the identification algorithm may not recognize well
enough. Also, different sets of error rates are observed, which is true with EfficientNetB0 model having slightly
low error rate at 3.77% when tested on the NLST dataset but high error rate of 8.86% on the LC25000 dataset to
suggest that the architecture seems to have difficulty in generalizing across different data distribution or image
qualities. High error rates as results from some problems like overlapping of classes, low quality input data or
imbalanced data where minority classes are misclassified. This is has many advantages like enhanced accuracy
of the diagnosis in various conditions, increased ability to generalize over various situations and scenarios and
hence, increased patient care by minimizing errors. Specific characteristics, for instance improving the quality of
data input, controlling the imbalance in the number of instances in classes and modifying model structures can
help reduce errors to acceptable levels to make a model useful in practical applications.

Ethical and practical implications

The use of CNN with Differential Augmentation (DA) model for the detection of lung cancer comes with some
certain unethical and practical issues. Data privacy and security is an important factor to consider since such
data needs to be shared, encrypted etc. To reduce bias and unfairness to patients, bias from multiple sets of
data is prevented; Mitigating bias through diverse datasets promotes fairness, while explainable AI enhances
transparency for clinicians. Technical considerations are checking the actual performance of the proposed
model in different real-world datasets and handling the differences in imaging to have general applications.
eamless integration into clinical workflows with user-friendly interfaces is crucial for adoption. These steps acts
as crucial so that the integrated CNN + DA model can be transformed into a reliable and accurate diagnosis tool
which would assist in early diagnosis and better treatment, all the while, trying to prevent ethical and practical
issues in its implementation.

Results for XAl using LIME

The evaluation of Convolutional Neural Network (CNN) models using the Intersection over Union (IoU)
metric is presented in two contexts: bengin and malignant cases. Table 13 (for the bengin case) and Table 14
(for the malignant case) compare the performance of four models: DenseNet, ResNet, EfficientNetB0, and
CNN + DA (CNN with Data Augmentation). In Table 13, CNN + DA achieves the highest average IoU score of
0.41, indicating superior performance in identifying relevant features across different feature sets (6, 8, 10, and
12 features). EfficientNetBO follows with an average IoU of 0.38, while DenseNet and ResNet score 0.37 and
0.33, respectively. Similarly, in Table 14 (malignant case), CNN + DA again leads with an average IoU of 0.38,
demonstrating consistent feature identification. EfficientNetB0 and DenseNet follow with average IoU scores
of 0.31 and 0.33, respectively, while ResNet trails with 0.29. Figures 12 and 13 likely illustrate the architectures
or efficiency of these models, visually complementing the tabular data. The results highlight CNN + DA as the
most effective model in both bengin and malignant cases, followed by EfficientNetB0 and DenseNet, due to their
ability to consistently align predictions with ground truth across varying feature sets.
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Fig. 12. Visualization of lung image analysis: original image of bengin case, LIME heatmaps, and feature-based
masking for 6, 8, 10, and 12 important features.

Performance comparison of existing works with proposed work

The proposed CNN with Differential Augmentation (CNN + DA) model achieves a groundbreaking accuracy of
98.78%, outperforming existing state-of-the-art approaches in lung cancer diagnosis. Prior works have explored
various deep learning models and augmentation techniques, yet gaps in addressing memory overfitting and
achieving robust generalization remain. Critically, a study by Islam et al. (2024)'¢ developed a combination of
GANs and VAEs with 94% accuracy and Saha et al. (2024)!7 used the VER-Net method, a transfer learning-
based method, with 91% accuracy.

Traditional Convolutional Neural Networks (CNNs) by Rainio and Klén (2024)'® and Kukreja and Sabharwal
(2024)" demonstrated accuracies of 92.6% and 96.11%, respectively, with no explicit focus on mitigating
overfitting.

Advanced ensemble and hybrid models have shown promise, with Quasar et al. (2023)?? achieving 96.34%
accuracy using a combination of BEiT, DenseNet, and Sequential CNN, while Raza et al. (2023)?* and Zhang
et al. (2024)% reported accuracies of 96.10% and 96% using Lung-EffNet and DenseNet-CNN Integration,
respectively. Similarly, Gautam et al. (2023)** utilized an ensemble of ResNet-152, DenseNet-169, and
EfficientNet-B7, achieving 97.23%, and Dritsas and Trigka (2022)?* employed Rotation Forest for a comparable
accuracy of 97.1%. However, these models either relied on complex architectures or lacked tailored strategies to
prevent memory overfitting.

In contrast, the CNN + DA model integrates Differential Augmentation to introduce diverse transformations,
such as hue, brightness, and contrast adjustments, directly addressing overfitting and enhancing generalization.
Compared to other works, the CNN + DA model exhibits superior accuracy, proving its reliability and robustness
for clinical applications in lung cancer detection. Its innovative approach bridges the gaps left by prior models,
solidifying its contribution as a novel and highly effective diagnostic tool. Table 15 compares the performance of
existing methods with the proposed approach, highlighting improvements in accuracy, efficiency, or other key
metrics.

Limitations

The primary dataset used (IQ-OTH/NCCD), consisting of only 1,097 images, is relatively small for training deep
learning models, which limits the model’s ability to generalize across a broader spectrum of lung cancer variations
and patient demographics. This dataset’s class distribution is also imbalanced, with more malignant cases than
bengin or normal ones, potentially biasing the model toward the majority class. While the CNN + DA model
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Original Image of
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Fig. 13. Visualization of Lung Image Analysis: Original image of Malignant case, LIME Heatmaps, and
Feature-Based Masking for 6, 8, 10, and 12 Important Features.

Author(s) Proposed model Accuracy
Islam et al. (2024)'° Generative adversarial networks (GANSs) and Variational Autoencoders (VAEs) 94%
Saha et al. (2024)"7 VER-Net 91%
Rainio and Klén (2024)'8 Convolutional Neural Network (CNN) 92.6%
Kukreja and Sabharwal (2024)' | Convolutional Neural Network (CNN) 96.11%
Zhang et al. (2024)%° DenseNet-CNN Integration 96%
Gai et al. (2023)%! Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) 93.4%
Quasar et al. (2023)%? Ensemble Model (BEiT, DenseNet, Sequential CNN with ensemble methods) 96.34%
Raza et al. (2023)% Lung-EffNet (EfficientNet with modified top layers) 96.10%
Gautam et al. (2023)%* Ensemble (ResNet-152, DenseNet-169, EfficientNet-B7 with weight optimization) | 97.23%
Dritsas and Trigka (2022)% Rotation Forest 97.1%
Tsou et al. (2021)%° eXtreme Gradient Boosting (XGBoost) 92%
Our Work CNN with DA 98.78%

Table 15. Performance comparison of existing works with proposed work.

performs well on the controlled dataset, its performance in real-world clinical environments, which involve
diverse imaging protocols, patient demographics, and potential artifacts, has yet to be validated. The model
might struggle to handle unseen variations in imaging conditions common in clinical settings. Additionally,
the integration of Differential Augmentation (DA) during training introduces extra computational overhead,
increasing both training time and resource requirements, which could be a challenge in resource-constrained
environments. Finally, the model’s performance is highly dependent on the quality of input data; noisy or low-

quality images could lead to misclassifications, particularly when distinguishing between bengin and malignant
tumors.
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Conclusion

Lung cancer remains a significant global health challenge, requiring innovative solutions to improve diagnostic
accuracy. This study addresses the persistent problem of memory overfitting in deep learning models, which
impairs their ability to generalize across diverse datasets As an effort to improve the quality of lung cancer
detection models, this research seeks to design a new method that involves the merge of a Differential
Augmentation technique with a Convolutional Neural Network.

The effectiveness of the proposed CNN + DA model has been demonstrated, attaining the prediction accuracy
of 98.78% that promoted the model to the highest level of various existing methods, such as DenseNet, ResNet,
and EfficientNetB0. By leveraging targeted augmentation techniques such as hue, brightness, and contrast
adjustments, the model effectively reduces overfitting, improving its reliability in diverse imaging scenarios.
Statistical analyses, including Tukey’s HSD post-hoc tests, confirm the model’s significance in achieving higher
accuracy and generalization.

As shown in this research, incorporating Differential Augmentation with CNNs is a good solution to the
problems existing in traditional models. Thus, the conclusions point out the need of developing models that do
not only solve the problems precisely, but also are immune to adversarial perturbations and can be easily scaled
to tackle a wider range of problems.Future work can further explore the adaptability of this approach to other
domains and datasets, expanding its utility in advancing deep learning research for complex diagnostic tasks.

Data availability
The data used to support the findings of created new data set, this study is available from the corresponding
author upon request.
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