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Lung cancer remains one of the leading causes of cancer-related deaths worldwide, with early 
detection being critical to improving patient outcomes. Recent advancements in deep learning have 
shown promise in enhancing diagnostic accuracy, particularly through the use of Convolutional Neural 
Networks (CNNs). This study proposes the integration of Differential Augmentation (DA) with CNNs 
to address the critical challenge of memory overfitting, a limitation that hampers the generalization 
of models to unseen data. By introducing targeted augmentation strategies, such as adjustments in 
hue, brightness, saturation, and contrast, the CNN + DA model diversifies training data and enhances 
its robustness. The research utilized multiple datasets, including the IQ-OTH/NCCD dataset, to 
evaluate the proposed model against existing state-of-the-art methods. Hyperparameter tuning was 
performed using Random Search to optimize parameters, further improving performance. The results 
revealed that the CNN + DA model achieved an accuracy of 98.78%, outperforming advanced models 
like DenseNet, ResNet, and EfficientNetB0, as well as hybrid approaches including ensemble models. 
Additionally, statistical analyses, including Tukey’s HSD post-hoc tests, confirmed the significance 
of the model’s superior performance. These findings suggest that the CNN + DA model effectively 
addresses the limitations of prior works by reducing overfitting and ensuring reliable generalization 
across diverse datasets. The study concludes that the novel CNN + DA architecture provides a 
robust, accurate, and computationally efficient framework for lung cancer detection, positioning it 
as a valuable tool for clinical applications and paving the way for future research in medical image 
diagnostics.
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Innovative lung cancer prognosis relies on cutting-edge machine learning algorithms applied to a wealth of 
patient data. By incorporating various elements like imaging, genetics, and medical records, this model 
demonstrates remarkable precision in anticipating potential occurrences. Optimizing early intervention and 
customizing treatments, it holds the potential to elevate patient outcomes in the challenging realm of lung cancer. 
Early detection is vital for successful treatment1 and goal is to authenticate our Lung Cancer Prediction CNN, 
initially trained on US screening data, through an autonomous European multicenter dataset2. This research 
explores early-stage lung cancer diagnosis using CNNs, aiming to enhance diagnostic accuracy and save lives by 
improving early detection through reliable machine learning models3. While CNN models have demonstrated 
high accuracy on controlled datasets, their applicability to real-world scenarios with diverse patient populations 
remains a critical challenge. Addressing this requires validation across multiple datasets and strategies to ensure 
robustness against unseen variations in imaging data. Introducing a method utilizing Convolutional Neural 
Networks (CNN) to categorize tumors in lung disease screening through tomography filters, harnessing spatial 
invariance for effective feature extraction4. Utilizing end-to-end learning CNN, this method automatically 
extracts self-learned features, comparing favorably with conventional approaches and traditional computer-
aided diagnosis systems5.
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Developing a cutting-edge 1D CNN model for NSCLC staging and grading, leveraging insights from the latest 
TCIA NSCLC Radio genomics Collection. Hybrid MSER-SURF model integrates tumor features with clinical 
data for comprehensive analysis6. Despite the highly imbalanced and variegated nodule detection challenge, 
our method excels, achieving effective lung nodule detection and cancer prediction. Using a candidate proposal 
approach and a 3D CNN, achieve near-human performance7 and to introduce a swift CNN-RNN model for 
NSCLC AJCC staging, surpassing traditional ANNs through deeper layers. Comparison involves standard ML 
algorithms and related studies8. Focusing on individuals with lung cancer, our focus lies in crafting advanced 
deep learning models for predicting survival outcomes, addressing both classification and regression challenges. 
Feature importance analysis elucidates relevant factors impacting survival periods9. Introducing LungNet, an 
innovative hybrid model blending a 22-layer Convolutional Neural Network (CNN) with wearable sensor-based 
MIoT data and CT scan for heightened diagnostic precision10.

Leveraging CNN’s disease detection, this research explores the fusion of blockchain for secure data in 
enhancing food safety and lung cancer prediction11. This preliminary study underscores CNNs’ feasibility and 
promising efficacy in evaluating lung cancer’s T-parameter, offering rapid T1-T2 or T3-T4 probabilities. Ongoing 
research aims at robust TNM algorithm development12.

Introducing an innovative approach, employs a 2D CNN with Taguchi optimization for automated lung 
cancer recognition from CT images, as outlined in reference13. Through 36 experiments and 8 control factors, it 
meticulously refine CNN parameters, significantly improving classification accuracy. Additionally, accuracy was 
enhanced by integrating convolutional and bidirectional recurrent neural networks into a novel deep learning 
model, leveraging the NSCLC Radiogenomics dataset with 211 subjects as detailed in reference14. Our intelligent 
medical system, detailed in reference15, incorporates CNN-assisted diagnosis and decision-making, utilizing 
sensors to analyze NSCLC patient’s records and ensuring accuracy through transfer learning and dynamic 
sampling techniques.

The research structure unfolds with Section 1delvering into the introduction. Section “Literature review” 
navigates the scholarly landscape in the literature review. Section “Proposed methodology” intricately unfolds 
the intricacies of the proposed methodology, offering a detailed roadmap. Section “Result and discussion” unveils 
the results, igniting insightful discussions around their implications. The “conclusion” section encapsulates 
profound insights, culminating in a comprehensive closure that synthesizes the study’s findings and underscores 
their significance in the broader context of the research domain.

Literature review
In 2024, Islam et al.16 provides a comprehensive evaluation of the latest advancements in using deep learning 
to enhance medical imaging data. The course covers a wide range of applications, popular datasets, evaluation 
criteria, and both traditional and innovative augmentation techniques. To assess the current condition of the 
subject and identify its primary challenges, the study analyses prior research findings. Proposed are some avenues 
for future research that could address these concerns. This review is an invaluable resource for academics and 
experts in the field of medical image analysis.

In 2024, Saha et al.17 presents VER-Net, a transfer learning model for CT scan lung cancer detection. 
Combining VGG19, EfficientNetB0, and ResNet101 transfer learning techniques, this model four lung cancer 
classifications are produced via picture preparation, data augmentation, and hyperparameter tuning of the 
model. The results imply that VER-Net can be used to other diseases found on CT scans and is quite accurate in 
spotting lung cancer. This work highlights the efficient application of transfer learning in the domain of medical 
image processing, especially in increasing diagnostic accuracy.

In 2024, Riku Klén et al.18 examine the influence of several image augmentation techniques on the precision 
of a Convolutional Neural Network (CNN) that has been trained for binary classification. The CNN is trained 
using 11 medical datasets, mostly comprising X-rays, ultrasound (US) images, PET scans, and MRI scans. 
The databases centre on cancer and lung diseases. Specifically analysing seven extensively used augmentation 
techniques, this article compares CNN predictions with and without augmentation. The results imply that for 
both the US and PET datasets, the application of augmentation methods does not produce statistically significant 
variations. Gaussian blur was determined to be the most successful augmentation technique for X-rays and MRI 
images, therefore enhancing the model performance. These results show that the kind of imaging technology 
applied affects the effectiveness of augmentation strategies.

In 2024, S. Kukreja and M. Sabharwa et al.19 improving the survival rates of lung cancer, a major and maybe 
deadly disease, depends on early identification. In order to classify three different histological images: bengin, 
adenocarcinoma, and squamous cell carcinoma, in this paper proposes using a Convolutional Neural Network 
(CNN). The aim of the project is to evaluate the accuracy of the Convolutional Neural Network (CNN) model 
against other techniques thereby enhancing the diagnosis of lung cancer. Convolutional neural networks (CNNs) 
have not been used for the categorisation of these specific images so our method is novel. By means of accurate 
and timely classification of cancers, this approach may improve the efficacy of therapy and possibly avert death 
of course. By means of convolutional neural networks (CNNs), the diagnostic process can be simplified, costs 
can be lowered, and general accuracy in lung cancer detection can be improved.

In 2024, Zhang et al.20 demonstrates the application of Convolutional Neural Networks (CNNs) to Computed 
Tomography (CT) scans has led to notable progress in automating the diagnosis of lung cancer, resulting in 
enhanced accuracy in the detection and analysis of this disease. Notwithstanding these progressions, there 
are still obstacles to overcome, such as the restricted comprehensibility, variability of data, and difficulties in 
generalising. This paper proposes a new method which integrates the CNN with the DenseNet by using data 
fusion and mobile edge computing to enhance the identification and classification of lung cancer. Data fusion 
improves the reliability of models by integrating data from multiple sources where mobile edge computing 
hastens the model’s processing time to instant. Improve DenseNet’s classification accuracy further, the approach 
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introduced an enhanced predictive sparse decomposition (PSD) method to acquire sparse feature from medical 
images, which also promoted the improvement of the model.

In 2023, Lulu Gai et al.21 demonstrated Vision Transformers (ViTs) and Convolutional Neural Networks 
(CNNs) test lung cancer identification using CT data. In this paper used a collection of 212 medical photos and to 
get beyond dataset restrictions, both models exploited self-supervised learning, transfer learning, and sharpness-
aware minimiser. Their training consisted in no lung nodule markings. Convolutional Neural Networks (CNNs) 
outperform Vision Transformers (ViTs) in self-supervised learning, with an AUC of 98.1% and a recall rate 
of 93.4%. While both CNNs and Vision Transformers (ViTs) showed potential, CNNs outperformed ViTs, 
especially with smaller datasets. The study shows that CNNs can identify early-stage lung cancer, supporting 
their clinical utility.

In 2023, Syeda Reeha et al.22 proposes an ensemble model combining several deep learning architectures, 
including BEiT, DenseNet, and Sequential CNN, so addressing the immediate demand for efficient lung cancer 
detection and classification. To improve prediction accuracy the combined strategy uses AND, OR, Weighted 
Box Fusion, and Boosting. The research shows using the Chest CT-Scan Images Dataset that the ensemble 
model much beats single-model techniques. The study highlights how effectively combining various classifiers 
overcomes particular limitations and improves general performance.

In view of the available data and resources, this study provides a reasonable response by demonstrating 
the potential of ensemble methods as a potent tool for enhancing the precision and efficiency of lung cancer 
diagnosis.

In 2023, R. Raza et al.23 based on the EfficientNet architecture with extra top layers for better performance; 
this work presents Lung-EffNet, a new transfer learning-based model for lung cancer classification. Lung-
EffNet sorts lung scans into bengin, malignant, or normal categories after five EfficientNet variations (B0–
B4) are evaluated on the IQ-OTH/NCCD dataset. Lung-EffNet, especially with EfficientNetB1, shown better 
accuracy, efficiency, and faster training times than other pre-trained CNN architectures. Large-scale clinical 
implementation and automated lung cancer diagnosis from CT images fit this paradigm really nicely.

In 2023, Nandita Gautam et al.24 Essential for early detection of lung cancer, this work provides a new 
ensemble deep learning model that correctly labels the degree of lung nodules from CT scan images. Three 
advanced convolutional neural network (CNN) models are ResNet-152, DenseNet-169, and EfficientNet-B7. 
The weight optimisation approach used in this system combines ROC-AUC and F1-scores to improve accuracy. 
It surpassed recent methodologies and successfully reduced the frequency of false negatives. This approach 
demonstrates promise in significantly improving lung cancer diagnosis and patient outcomes.

In 2022, Dritsas and Trigka et al.25 used machine learning, the study crafted effective models for early 
detection of high-risk individuals prone to lung cancer, enabling timely interventions to mitigate long-term 
complications. Emphasizing the efficacy of Rotation Forest, the article highlighted its robust performance, 
subjecting it to thorough evaluation through established metrics such as precision, recall, F-Measure, accuracy, 
and area under the curve.

In 2021, Tsou et al.26 introduced a machine learning model that precisely detected lung cancer based on 
the analysis of participants’ exhaled breath, presenting a non-invasive and radiation-free diagnostic system. 
The research successfully showcased a novel diagnostic approach by integrating deep learning algorithms and 
VOC analysis, minimizing environmental interference. Ongoing efforts focused on developing standardized, 
automated breath sampling protocols, aiming to simplify the collection process and ensure sample quality.

While prior studies focus on augmentation and model optimization, this research uniquely addresses memory 
overfitting using Differential Augmentation, demonstrating superior performance in lung cancer detection.

Problem statement
The research problem focuses on enhancing the accuracy and efficiency of lung cancer detection using deep 
learning techniques. Although improved, current models struggle with generalisation, data variability, and 
interpretability across imaging modalities. Optimising model performance, especially early detection, while 
addressing dataset variety and augmentation limits is difficult.

Generalizability challenges
Although the CNN + DA model performs well on the controlled dataset, its generalizability to real-world scenarios 
remains to be validated. Challenges include unseen variations in imaging protocols, patient demographics, and 
artifacts in clinical datasets. Future studies will explore strategies such as transfer learning and fine-tuning on 
multi-center datasets to mitigate these challenges and ensure applicability in diverse clinical settings. To increase 
medical image analysis models’ resilience, scalability, and clinical utility, data fusion, mobile edge computing, 
and ensemble methods must be explored. Table 1 summarizes the objectives and limitations of previous research, 
highlighting both their goals and shortcomings.

Research gap
While deep learning has revolutionized numerous domains, including medical imaging for lung cancer 
detection, a persistent research gap remains concerning memory overfitting. Despite various efforts to address 
general overfitting, the nuanced challenge of models memorizing training data rather than learning to generalize 
has not been comprehensively addressed. Many existing solutions focus on broader overfitting issues, often 
overlooking the subtle yet critical aspect of memory overfitting. This gap underscores the need for dedicated 
research into strategies and methodologies to combat memory overfitting, ensuring that models remain robust 
and reliable, especially in critical applications like medical diagnostics.
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Author Method Aim Drawback

Islam et al.16

Discussion on the application of various deep 
learning algorithms in generating and applying 
data augmentations. This may involve methods like 
Generative Adversarial Networks (GANs) or other 
neural network architectures that create realistic 
variations in medical images.

Identification of field-based difficulties includes constraints in 
present techniques or problems with data quality and suggested 
future research paths to handle these difficulties.

Advanced data augmentation techniques 
can raise the complexity of the model 
and the training process, thereby perhaps 
making it more difficult to validate the 
predictions of the model.
More broad and sophisticated 
augmentations can cause the training 
process to lengthen and become more 
resource-intensive, therefore affecting the 
general efficiency of model development.

Saha et al.17

The paper introduces a new transfer learning 
model called VER-Net, which combines three 
distinct transfer learning models to improve the 
diagnosis of lung cancer from CT scan pictures.

Using the benefits of transfer learning and combining several 
models helps one to increase the accuracy of lung cancer 
classification. The work also seeks to show that VER-Net can be 
useful for other medical imaging chores in addition to surpassing 
current models in performance.

Stackering several transfer learning 
models under the VER-Net model can 
complicate the system. This complexity 
might make model interpretability 
difficult and raise computational needs.

Riku Klén et 
al.18

A convolutional neural network (CNN) was 
trained to classify medical images into two 
categories: impacted, non-affected instances and 
Augmentation Methods.

Evaluate the influence of various image augmentation methods on 
the accuracy of a Convolutional Neural Network (CNN) trained to 
classify medical images into two categories.
Identify the most efficacious augmentation methods for various 
medical imaging modalities (X-rays, ultrasound, positron 
emission tomography, magnetic resonance imaging) to enhance 
classification accuracy.

The efficacy of augmentation approaches 
can vary considerably depending on the 
nature of the medical imaging data. The 
study’s findings may not have universal 
applicability across all modalities of 
medical imaging or across various clinical 
states.

S. Kukreja 
and M. 
Sabharwa et 
al.19

The work uses CNN architecture to categorise 
lung cancer histological pictures into bengin, 
adenocarcinoma, and squamous cell carcinoma.

To divide histological pictures of lung cancer into three types: 
bengin, adenocarcinoma, and squamous cell carcinoma with 
accuracy. CNN Model.

This work focuses on CNN and does not 
compare its performance with a greater 
spectrum of machine learning or deep 
learning approaches outside of those 
already looked at.

Zhang et 
al.20

Convolutional Neural Network (CNN) with 
DenseNet to improve the ability to extract features 
and learn for the purpose of classifying lung 
cancer.

Developing and assessing an advanced system stands as the 
main goal to detect and categorising lung cancer. The proposed 
framework integrates Convolutional Neural Networks (CNN) 
with DenseNet through data fusion and mobile edge computing 
for achieving its objectives. The primary goal is to obtain a high 
level of accuracy in discriminating between Normal, Bengin, and 
different forms of Malignant lung tissues. Diagnostic technology 
has treatment planning and early detection goals which this project 
aims to enhance through better diagnostic methods.

While the model performs well in 
controlled tests, there may be challenges 
when generalising to different real-world 
data, particularly if the training data does 
not adequately capture all differences in 
lung cancer cases.

Lulu Gai et 
al.21

Convolutional Neural Network (CNN) with 
DenseNet to improve the ability to extract features 
and learn for the purpose of classifying lung 
cancer.

The objective is to create and assess a sophisticated system for 
detecting and categorising lung cancer.
A system combination of CNN with DenseNet through data fusion 
and edge processing will fulfill the objectives of the research. 
The main mission aims to establish a superior level of accuracy 
in discriminating between Normal, Bengin, and different forms 
of Malignant lung tissues. The research aims to accelerate the 
diagnosis process by developing improved diagnostic tools.

While the model performs well in 
controlled tests, there may be challenges 
when generalising to different real-world 
data, particularly if the training data does 
not adequately capture all differences in 
lung cancer cases.

Syeda Reeha 
et al.22

Ensemble Models: This study combines various 
models to identify and classify lung cancer.
BEiT: A Vision Transformer model utilised for its 
robust feature extraction capabilities.
DenseNet is a type of deep convolutional neural 
network that is recognised for its effective gradient 
flow and exceptional accuracy.
Sequential CNN: A convolutional neural network 
model designed with a sequential architecture.

The objective of the project is to improve the precision of 
identifying and categorising lung cancer by combining many 
advanced machine learning models using diverse ensemble 
methods. The project aims to enhance the overall performance of 
lung cancer diagnosis by using the capabilities of models such as 
BEiT, DenseNet, and Sequential CNN.

Ensemble approaches might pose 
challenges in deciphering the specific 
contributions of each individual model. 
The absence of transparency can impede 
comprehension regarding the rationale 
behind specific predictions.

R. Raza et 
al.23

Lung-EffNet, a new transfer learning-based model 
presented in the paper, uses the EfficientNet 
architecture.

The goal of the work is to build and assess a very accurate and 
effective lung cancer classification model leveraging EfficientNet 
architecture and transfer learning based on it. The objective is to 
provide a strong, automated method for lung cancer diagnosis 
that can achieve high accuracy and efficiency, thereby addressing 
the limits of manual CT scan analysis and fit for major clinical 
deployment.

Dependency on data augmentation 
methods to address class imbalance may 
cause distortions or artefacts that can 
compromise the generalising capability 
of the model.

Nandita 
Gautam et 
al.24

The ensemble technique uses CNN models. 
ResNet-152 is a deep residual network well-known 
for handling quite deep structures.
DenseNet-169: Designed to enhance feature 
propagation via dense connections, this dense 
convolutional network.
EfficientNet-B7: Maximising model size and 
accuracy, this extremely fast CNN

Investigate and use ensemble model, that is, combinations of 
several distinct models, to generate forecasts, therefore utilising 
their combined strengths to raise performance.

Training and evaluating an ensemble of 
deep learning models calls for significant 
computational resources, including 
memory and processing capability, which 
might not be readily available in every 
clinical environment.

Dritsas and 
Trigka et 
al.25

Dataset underwent class balancing and feature 
ranking. Various machine learning models and 
metrics assessed performance, ensuring robust 
analysis.

Study expanded using deep learning methods like LSTM and 
CNN. Robust evaluation of classification models incorporated a 
bootstrapping process for validation.

The model’s predictive accuracy may be 
influenced by factors not included in the 
dataset, affecting comprehensive risk 
assessment.

Tsou et al.26

For improved analysis, the powerful eXtreme 
Gradient Boosting (XGBoost) method was used 
in conjunction with Selected Ion Flow Tube Mass 
Spectrometry.

Investigate breath VOCs for lung cancer prediction, developing a 
precise classification model through machine learning for robust 
predictive capabilities.

Conducted a single-center case-control 
study, acknowledging age mismatches and 
addressing biases inherent in case-control 
study designs for comprehensive analysis.

Table 1.  Aim and drawback of the previous research.
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Proposed methodology
EfficientNetB0
EfficientNetB023 was selected as a baseline due to its balance of computational efficiency and performance, 
making it suitable for constrained medical imaging tasks. It makes use of MBConv blocks for feature 
extraction with a small amount of computational load, and has become a standard for benchmarking in image 
classification. This is done with a compound scaling method that scales the depth, width, and input resolution 
of the network in similar measure for better performance across the different axes. The architecture is based 
on a recently introduced concept of Mobile Inverted Bottleneck Convolution (MBConv) blocks that serves 
both an efficient feature extractor and keeps the model lightweight. Additionally, EfficientNetB0 incorporates 
Squeeze-and-Excitation (SE) blocks to enhance the network’s ability to capture important features by modelling 
interdependencies between channels. The model27 uses the Swish activation function, which smooths out non-
linearities, contributing to better performance compared to traditional activation functions like ReLU. With 
around 5.3 million parameters, EfficientNetB0 is not only compact but also highly effective, making it suitable 
for a wide range of applications, from mobile devices to large-scale image classification tasks.

Convolutional operation in MBConv block
The convolutional operation is the core of EfficientNetB0, especially within the MBConv blocks are shown in 
Eq. (1)

	
(
Zk

ij

)
=

∑
M
M=1

∑
N
n=1Xi+m−1.j+n−1.W k

mn + bk � (1)

Where:
Zk

ij  is the output of the convolution at position (i, j) for the kth filter.
X  is the input feature map.
W  is the convolution filter of size M X N.
bk  is the bias for the k-th filter.

Depthwise Convolution in MBConv block
In the MBConv block, depthwise convolution is applied to each input channel separately, reducing the 
computational cost is shown in Eq. (2)

	
(
Zc

ij

)
=

∑
M
M=1

∑
N
n=1Xi+m−1.j+n−1, c.W c

mn + bc� (2)

Where:
Zc

ij is the output for the cth channel after depth wise convolution.
Xi+m−1.j+n−1, c is the input at channel c.
Wc

mn is the depth wise filter for channel c.
bcis the bias for channel c.

Squeeze-and-excitation (SE) block
The SE block models channel-wise dependencies using two main operations: Squeeze and Excite shown in 
Eqs. (3) and (4).

Squeeze Operation:

	
Sc = 1

HXW

∑
H
i=1

∑
W
j=1Zc

ij � (3)

Where:
Sc is the squeezed feature for channel ccc.
H and W are the height and width of the feature map.

Excite Operation:

	 ec = σ (W2.ReLU (W1.sc))� (4)

Where:
ec is the excitation weight for channel ccc.
W2 are weights of the fully connected layers.
σ  is the sigmoid activation function.
Recalibration:

	 Ẑc
i,j = ec.Zc

ij � (5)

Where,
Ẑ

c
i,j is the recalibrated feature map after applying the excitation weight.

Global average pooling
The feature map’s spatial dimensions are minimized to one value per channel through the use of global average 
pooling is shown in Eq. (6)
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GAP c = 1

HXW

∑
H
i=1

∑
W
j=1Ẑc

ij � (6)

Where:
GAPc is the global average pooled value for channel ccc.
H and W are the height and width of the feature map.

Compound scaling method
EfficientNet uses a compound scaling method to scale the depth d, width w, and input resolution r of the network 
is shown in Eq. (7)

	 d = α d, w = β w, r = γ r � (7)

Where:
α ,β and γ are scaling coefficients.
d, w, r are the depth, width, and resolution scaling factors.

These equations provide a mathematical framework for understanding how the EfficientNetB0 architecture 
processes and transforms input data, emphasizing both feature extraction and efficiency through its innovative 
design.

Avoid memorization over fitting using CNN with the DA algorithm
Deep learning, mainly through Convolutional Neural Networks, has exhibited transformative potential in diverse 
applications, ranging from natural language processing to medical imaging. However, as with any powerful tool, 
challenges persist. A primary concern that has emerged in deep learning applications is overfitting, in the realm 
of machine learning, overfitting emerges when models excel on training data but stumble when confronted 
with unfamiliar instances. “Memory overfitting,” a particular manifestation, occurs when a model memorizes 
training instances rather than discerning underlying data patterns. This phenomenon, especially perilous in 
domains like medical diagnostics, poses significant risks due to the minimal margin for error.

Addressing this research gap is not merely refining existing models but calls for innovative strategies that 
fundamentally alter the training dynamics. One promising avenue is the integration of CNNs with Differential 
Augmentation. Differential Augmentation (DA) applies transformations such as random hue adjustments 
(± 10°), saturation changes (0.8–1.2), brightness scaling (0.9–1.1), and contrast modifications (0.85–1.15). For 
instance, a lung CT scan can be augmented to simulate varying imaging conditions, enhancing the model’s 
ability to generalize across datasets. These augmentations are applied randomly during training to ensure diverse 
representations of the training data. By diversifying the training input, DA ensures that models are exposed to a 
broader spectrum of data variations, discouraging memorization and promoting genuine learning.

This research explores the synergies of combining CNN with DA, aiming to mitigate memory overfitting. 
Through this integrative approach, the aspiration is to develop models that are not only accurate but also robust 
and generalizable, ensuring their reliability in real-world diagnostic scenarios.

Building on the foundational understanding of memory overfitting and its implications, the next logical step 
is developing and refining a novel algorithm that seamlessly integrates CNNs with Differential Augmentation. 
Recognizing the individual strengths of both CNNs and DA provides a unique vantage point28. CNNs, with their 
hierarchical feature extraction capabilities, excel at capturing intricate patterns in data. On the other hand, DA, 
with its dynamic data augmentation strategies, offers a solution to the data scarcity and variety issue, inherently 
combating overfitting.

The development of a new CNN with DA algorithm requires a multi-faceted approach. Initially, the 
architecture of the CNN must be tailored to be receptive to dynamic augmentations. This means layers and 
nodes must be optimized not just for feature extraction, but also for variability tolerance. The algorithm should 
be designed to be adaptive, learning not just from the features of the training data but also from the variations 
introduced by DA.

Furthermore, the DA component17 must be sophisticated enough to introduce meaningful augmentations. 
It’s not just about changing the data; it’s about enhancing it in ways that genuinely challenge and expand the 
model’s understanding. This ensures that the CNN doesn’t stagnate or fixate on specific data patterns but 
continuously evolves its understanding, mirroring the dynamic nature of real-world data. Lastly, the integration 
of CNN and DA must be seamless. Figure 1 is shown below the algorithm should allow feedback loops, where 
insights from the CNN’s performance can inform and refine the DA strategies and vice versa. This creates a 
symbiotic relationship between data processing and data enhancement, leading to a constant learning, adapting, 
and improving model.

Developing a new CNN with a DA algorithm represents an exciting frontier in deep learning research. 
By addressing the persistent challenge of memory overfitting head-on, this endeavour promises to set new 
benchmarks in accuracy, reliability, and generalizability in deep learning models.

To develop a new CNN with a Differential Augmentation (DA) algorithm to mitigate memory overfitting, it’s 
important to understand the mathematical foundation behind both CNNs and DA.

Convolutional layer operations
The Convolutional Neural Network (CNN) is primarily based on the convolution operation, which extracts 
features from the input data is shawn in Eq. (8)

Convolution Operation:
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F eature Map

(
Zk

ij

)
=

∑
M
M=1

∑
N
n=1Xi+m−1.j+n−1.W k

mn + bk � (8)

Where:
X is the input feature map.
W is the convolution kernel (filter) of size MXN.
bk is the bias for the kth filter.
Zk

ij is the output feature map at position (i, j) for the kth filter.

Activation function
An activation function is used to add non-linearity after convolution. Commonly used functions are ReLU is 
shown in Eq. (9).

ReLU Activation Function:

	 A
(
Zk

ij

)
= max(0, Zk

ij)� (9)

Pooling operation
Pooling layers reduce the dimensionality of the feature maps, typically using max pooling is shown in Eq. (10).

Max Pooling:

	 P k
ij = max

{
Zk

m,n : m? [i, i + s − 1] , n?[j, j + s − 1]
}

� (10)

Where:
s is the size of the pooling filter.
Pk

ij is the pooled output for the kth feature map.

Fully connected layer
One or more fully connected layers receive the flattened output from the convolutional and pooling layers is 
shown in Eq. (11).

Fully Connected Layer Operation:

	 y = W.x + b� (11)

Where:
W is the weight matrix.
x is the input vector.
b is the bias.

Softmax function
For classification tasks, the output layer often uses a softmax function to convert logits into probabilities is shown 
in Eq. (12).

Softmax Function:

Fig. 1.  Flow diagram for CNN with DA.

 

Scientific Reports |        (2025) 15:15640 7| https://doi.org/10.1038/s41598-025-98731-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	
p (y = i|x) = eZi∑

K
j=1Zj

� (12)

Where:
Zi​ is the logit for class iii.
K is the number of classes.

Loss function
For classification tasks, the cross-entropy loss is typically used is shown in Eq. (13).

Cross-Entropy Loss:

	
L = −

∑
K
i=1yilog(p (y = i|x))� (13)

Where:
yi is the ground truth label (one-hot encoded).
p (y = i|x) is the predicted probability.

Differential augmentation (DA)
The Differential Augmentation (DA) technique is designed to improve the model’s ability to generalize by 
introducing diverse transformations, such as hue, brightness, saturation, and contrast adjustments. This 
simulates real-world variations in imaging conditions, which are common in clinical environments.

Augmentation Function can be employed is shown in Eq. (14)

	 DA (X) = {T1 (X) , T2 (X) , . . . . . . . . . Tn (X)}� (14)

Where:
X is the original input data.
Ti (X) represents different augmentation transformations.

Regularization terms
To combat overfitting, regularization techniques like L2 regularization can be employed is shown in Eq. (15).

L2 Regularization:

	
Ltotal = L + λ

∑
k

∑
i,j

(W k
i,j)2� (15)

Where:
L is the original loss function.
λ  is the regularization strength.
Wk

i,j are the weights of the kth layer.

Feedback mechanism for DA-CNN integration
To ensure a feedback loop between CNN performance and DA strategie:

Performance Feedback Adjustment can be shown in Eq. (16):

	 Ti+1 (X) = Ti (X) + α .∆ T .Ltotal� (16)

Where: Ti+1 (X) is the adjusted augmentation for the next iteration.
α  is a learning rate for DA adjustment.
By integrating these mathematical components, a CNN-DA algorithm can be developed that dynamically 

adapts to data variations, reducing memory overfitting and enhancing model robustness.

Data collection and loading
Efficient data collection and loading are crucial components in any machine learning endeavour. This involves 
gathering relevant datasets from diverse sources, ensuring data integrity, and employing effective loading 
mechanisms. Advanced methods include real-time streaming integration and automated preprocessing to 
maintain data quality and facilitate seamless integration into machine learning pipelines, optimizing model 
performance.

Data preprocessing
Data preprocessing involves vital steps such as normalization and label encoding. Images were resized to 256 × 256 
pixels, normalized to the [0, 1] range by dividing by 255, and labels were one-hot encoded. Hyperparameters 
were set as follows: learning rate of 0.001, batch size of 32, and optimizer as Adam. Image augmentation included 
rotations of ± 15° and random cropping to simulate variability. Normalization ensures standardized scales for 
numerical features, enhancing model convergence. Label encoding transforms categorical labels into numerical 
values, facilitating algorithmic comprehension. These preprocessing techniques lay the foundation for robust 
machine learning models, enhancing accuracy and efficiency in the analysis of diverse datasets which are shown 
in Table 2.
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Normalization
Normalization is a pivotal data preprocessing technique that standardizes numerical features, ensuring a 
consistent scale across variables. By rescaling data to a common range, often between 0 and 1, normalization 
mitigates the influence of disparate magnitudes, promoting fair comparisons and optimal model convergence in 
machine learning applications.

Encode label
Label encoding is a crucial step in data preprocessing, particularly for categorical variables in machine learning. 
It involves assigning numerical values to categorical labels, enabling algorithms to interpret and process them 
effectively. This transformation enhances model performance by converting non-numeric information into a 
format suitable for mathematical computations and analysis.

CNN- model architecture
Convolutional layer
In deep learning, and more especially in convolutional neural networks, the convolutional layer is the primary 
layer. This layer makes use of filters or kernels, to slide over the input data and extract repeated local features, 
while at the same time maintaining spatial connection. Every filter analyzes certain structures within the 
picture, which improves the overall possibility to detect more complex patterns in the network. By capturing 
hierarchical features, convolutional layers are effective in image processing, enabling the model to identify edges, 
textures, and higher-level representations. Strides and padding control spatial dimensions, influencing the layer’s 
receptive field. Convolutional layers contribute significantly to the success of tasks like image recognition, object 
detection, and semantic segmentation in various machine learning applications.

Max pooling layer
Essential in CNNs, the max-pooling layer crucially down samples and extracts features by partitioning input 
into non-overlapping regions, selecting the maximum value from each feature map. This process retains essential 
information while reducing spatial dimensions, aiding computational efficiency and mitigating overfitting. 
By improving translation invariance, max-pooling strengthens the network’s resistance to changes in spatial 
orientation. While down sampling, it preserves dominant features, contributing to hierarchical feature learning. 
Max-pooling layers are instrumental in creating spatial hierarchies, improving the network’s capacity to 
recognize and generalize complex patterns in diverse data, particularly in image-related tasks.

Flatten layer
The flatten layer is an essential part of many neural networks and comes after the convolution and the pooling 
layers. Its main role is to change the input data to a single array or combine information as a way for fully 
connected layers. This flattening process is pivotal in transitioning from spatial hierarchies to a format suitable 
for traditional neural network architectures. By converting multidimensional data into a linear structure, the 
flatten layer facilitates comprehensive feature learning and abstraction. It plays a crucial role in tasks like image 
classification, enabling the neural network to extract and process intricate patterns for accurate predictions and 
decision-making.

Dense layer
Integral to neural networks, the dense layer, often termed fully connected, stands as a foundational building 
block in their architecture. Neurons in this layer are interconnected, forming a dense matrix that allows each 
neuron to connect to every neuron in the preceding and succeeding layers. This extensive connectivity enables 
comprehensive feature learning and abstraction. These typically are very important when there are complex 
patterns that need to be learned within the data that is being fed to model Dense layers are very important 
especially in tasks like image classification as well image generation and natural language processing. In dense 
layers the weights and the bias are trained to improve the efficiency of making accurate prediction based on most 
developed patterns.

Activation layer
The activation layer is pivotal in neural networks for introducing non-linearity, enhancing model complexity 
and expressive power. It follows each neuron’s output in a neural network layer, applying an activation function 
like ReLU, Sigmoid, or Tanh. This non-linear transformation introduces dynamic behaviour shows in Fig. 2, 
Enabling the network to grasp intricate patterns and relationships inherent in the data, facilitating more nuanced 
and accurate learning processes. Activation layers enable the model to capture complex features and perform 
sophisticated tasks such as image recognition or natural language understanding, ensuring the network’s capacity 
for more nuanced and powerful representations.

Step Description

Resizing Resized all images to 256 × 256 pixels

Normalization Scaled pixel values to the range [0, 1] using value/255

Label encoding Converted categorical labels to one-hot vectors

Table 2.  Summarizes the preprocessing steps applied in this study for enhanced reproducibility.
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Differentiation augmentation
Differentiation Augmentation (DA) includes, hue, saturation, brightness, contrast which when incorporated 
into the data helps in enhancing model performance by creating diverse and realistic variations in training 
data. Changing the hue means moving colors up or down the spectrum, changing lighting conditions as well 
as training the model under different color tone, though excessive shifts may distort important color-based 
features. Saturation adjustment takes color to the next level by increasing or reducing the model’s ability to 
distinguish between colors in bright or less bright situations, but overdoing it may produce unrealistic results. 
Contrast changes mimic different levels of exposure, which benefits the model’s training in features with ensuring 
adaptability to high or low-contrast environments; yet, having too extreme corrections such as very bright or 
very dark diminishes training efficacy. This influence strongly helps improve the identification of features within 
low brightness conditions and stabilize the device’s performance in both high and low contrast settings but 
can cause important fine details to be obscured by the change in contrast. In aggregate, these methods enrich 
training data, provide a more general view of data distributions, and reduce over-fitting and thus improve all 
learnable tasks in the case of careful application of augmentations to preserve the realism of the data.

Adjust Hue
In image processing29, adjusting hue is vital, a technique altering pixel color representation by shifting them 
along the color spectrum for nuanced visual changes. This technique is valuable for tasks like color correction, 
image enhancement, and artistic transformations, providing flexibility in altering the overall color appearance 
without affecting other image characteristics.

Adjust saturation
Saturation adjustment is a key image processing operation that involves altering the intensity of colors. By 
manipulating the saturation levels, one can enhance or desaturate the colors in an image. This adjustment is 
valuable for fine-tuning the visual impact of images, contributing to artistic modifications and color correction 
processes.

Adjust brightness
Image processing operations require brightness adjustment to alter the entire luminance level throughout an 
image. One can improve visibility while resolving exposure issues or create artistic effects through modifications 
of image brightness levels. The operation functions inherently to enhance the visual quality alongside image 
clarity across different application platforms.

Adjust contrast
Contrast adjustment is a vital image processing operation that involves modifying the difference in brightness 
between the light and dark areas of an image. By enhancing or reducing contrast, one can bring out details, 
improve visibility, or achieve artistic effects. This adjustment contributes to optimizing image quality and visual 
impact.

Algorithm: CNN with Differential Augmentation (DA) for Lung Cancer Detection
Data Collection and Loading.
Select dataset folder D containing labelled images.
Data Preprocessing.
For each image Ii​ in D:

•	 Normalize: Ii norm​​= 255.0Ii​​.
•	 Encode label: li​= Encode(li​) where li​ is the label of Ii​.

Fig. 2.  CNN model Architecture.
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Split D into training set T and validation set V with a ratio (e.g., 80:20).
Model Architecture.
Construct a CNN model M with layers:

•	 Convolution (f, k) where f is the number of filters and k is the kernel size.
•	 Max-pooling: P(k) where k is the pooling size.
•	 Flatten: F().
•	 Dense: D(n), where n is the number of neurons.
•	 Activation: Use ReLU for hidden layers and Softmax for output.

Loss function L: L(y^​, y)=−∑i​yi​log(y^​i​) Where y is the actual label and ^y^​ is the predicted label.
Differentiable Augmentation.
For the image I:

•	 Adjust hue: I′=Hue(I, h) where h is a random hue factor.
•	 Adjust saturation: I′=Saturation(I, smin​, smax​) where smin​ and smax​ are random saturation factors.
•	 Adjust brightness: I′=Brightness(I, b) where b is a random brightness factor.
•	 Adjust contrast: I′=Contrast(I, cmin​, cmax​) where cmin​ and cmax​ are random contrast factors.

Training.

•	 Train M using T with DA applied. For each epoch:
•	 For each batch B in T.
•	 Apply DA to B to get B′.
•	 Update M using B′ to minimize L.

Evaluation.
Evaluate M using V to compute accuracy and loss.
Definitions

•	 D: Entire dataset.
•	 Ii​: Image at index i.
•	 li​: Label of image Ii​.
•	 T: Training dataset.
•	 V: Validation dataset.
•	 M: CNN model.
•	 L: Loss function.
•	 y^​: Predicted label by model.
•	 y: True label.

Training
Differential Augmentation is a technique that applies varied transformations to individual instances within 
image batches during training. The primary reasons for its adoption are:

Diversity in Training Data: DA introduces variations in training samples, thereby enriching the dataset. This 
ensures that models are exposed to various data perspectives, improving generalization.

I′ = DA (I) ,
Where I is the original image and I′ is the augmented image.
Differential Augmentation applied the following transformations: hue adjustments within ± 10 degrees, 

saturation variations between 0.8 and 1.2, brightness scaling between 0.9 and 1.1, and contrast modifications 
from 0.85 to 1.15. Each augmentation was randomly applied during training, ensuring diverse representations 
of input images.

Mitigation of Overfitting: By introducing randomness and variability in the training process, DA minimizes 
the risk of models memorizing exact training data, a phenomenon known as memory overfitting.

Effective Utilization of Limited Data: Especially in domains like medical imaging, where data can be scarce, 
DA artificially expands the dataset, providing more training samples without collecting new data.

DA’s impact on computational time
While DA introduces variability in the training data, it also adds a computational overhead due to the 
augmentation process. However, this overhead is often offset by the reduction in training epochs required to 
achieve convergence, thanks to the more prosperous and more diverse dataset.

Let’s consider the computational time without and with DA:

•	 Without DA: no-DA = epoch Tno - DA​= E×Tepoch​.
•	 With DA: DATDA​= (E − ΔE)×(Tepoch​+Taug​).

Where E is the number of epochs, epoch Tepoch​ is the time taken per epoch, ΔE is the reduction in ages due to 
DA, and Taug​ is the additional time per epoch due to DA.

In many scenarios, DA < no-DATDA​< Tno - DA​, making DA computationally efficient in the long run.
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Neural network functioning with DA
When neural networks, particularly CNNs, are trained with DA, they learn to recognize features invariant to the 
augmentations applied. This means they become adept at identifying pertinent features regardless of changes in 
hue, brightness, contrast, or other boosts introduced by DA.

Mathematically, if a feature extractor in a neural network is denoted by F, then:
F (I) = F (DA (I))
This equation signifies that the essential features extracted from the original and augmented images should 

be comparable.

Evaluating neural networks with DA
Evaluating the performance of neural networks trained with DA usually involves testing the model on non-
augmented data (or sometimes mildly augmented data) to ensure real-world applicability. Performance metrics 
such as accuracy, precision, recall, and F1-score collectively offer a holistic assessment of the model’s effectiveness 
and capabilities.

Accuracy = Number of Correct Predictions/Total Predictions
In essence, DA acts as a regularized, enhancing neural networks’ robustness and generalization capabilities, 

making them more suitable for diverse real-world applications.
The lung cancer detection system, designed to revolutionize the diagnostic process, prominently features 

an integrated Convolutional Neural Network (CNN) augmented with Differential Augmentation. When a new 
set of lung scans enters the system, they undergo a series of pre-processing steps. These steps ensure image 
normalization for consistent intensity values, resizing to a uniform dimension fit for the CNN, and encoding 
labels into numerical values for supervised training. Once pre-processed, the data is directed into the system’s 
heart: the CNN with DA model. This model’s sophisticated architecture comprises convolutional layers 
designed for hierarchical feature extraction, pooling layers for dimensionality reduction while retaining pivotal 
information, and dense layers fine-tuned for classification.

DA’s role, crucial in the training phase, is to apply random yet meaningful transformations to images in 
each training epoch. This dynamic augmentation guarantees that the CNN consistently encounters varied 
representations of data, preventing over-reliance on specific training samples and promoting genuine feature 
recognition. Following intensive training, the model undergoes meticulous evaluation with an independent test 
dataset. Key metrics, including sensitivity, specificity, accuracy and F1-score, assess its diagnostic efficacy.

Once its efficiency and reliability are ascertained, the model is integrated into the system’s operational 
environment. Here, healthcare professionals interact with a user-centric interface, uploading lung scans, 
initiating diagnostic assessments, and receiving predictions complemented by confidence scores. The system is 
designed for continuous learning to maintain the model’s relevance and adaptability. As new medical findings 
emerge and additional data becomes available, the model undergoes periodic retraining, ensuring its alignment 
with the latest lung cancer diagnostics. By melding the powers of CNN and DA, this system stands as a beacon of 
hope for timely, accurate, and efficient lung cancer detection, aiming for better patient outcomes and streamlined 
healthcare processes.

XAI using LIME approach
This research introduces a new method designed to boost lung cancer image classification reliability through the 
application of Explainable AI (XAI) technologies. The analysis uses Image LIME30 which functions as a specific 
LIME algorithm variation made for image datasets to show important features active during model decisions. 
The main goal aims at improving the transparency and prediction reliability of model outputs while examining 
features which lead to accurate lung cancer image classification results.

LIME (Local Interpretable Model-agnostic Explanations)31 serves as a method which produces understandable 
explanations for determining the output predictions of any classification system. LIME creates an understandable 
model that duplicates specialized machine learning model behaviors within localized prediction zones32 Through 
LIME users can identify key input features since the technique studies how prediction changes when the input 
data is modified about a specific testing example33. This approach allows LIME to generate explanations that are 
meaningful for individual predictions, even when only a few variables are locally significant compared to the 
global context.

In the second stage of our methodology, LIME is employed to visualize and interpret the model’s decision-
making process at a local level. This is done by highlighting the key regions or features within an image that 
significantly contribute to the model’s predictions. Our experiment applied LIME technology to analyze the 
priority features revealed by the model in interpreting a specific test image Subsequently, we used LIME-
generated feature heatmaps to mask the images, revealing only the most critical 6, 8, 10, and 12 features. 
Model interpretation through this process enables users to understand decision-making steps so classification 
procedures become more trustworthy and interpretable.

A thorough comparison of models occurs in the final study stage which incorporates both successful 
predictions from the initial phase and effective LIME-based feature extraction from the second phase. The 
evaluation methodology for model feature relevance in lung cancer images uses the Intersection over Union 
(IoU) similarity metric. Users access LIME visualizations to uncover which distinct features each model 
depends on when making its prediction outcomes. The analysis of extractive efficiency monitors how well 
model-determined features match with genuine image features present in the data. The IoU score is used as a 
quantitative measure to compare the binary masked image generated by the model with the ground truth image, 
enabling the evaluation of the degree of overlap between the selected features. This evaluation method measures 
how well the model selects appropriate features which lead to correct lung cancer detection.
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The IoU metric assesses two set similarities by dividing the ground truth image (GT) intersection area with 
the masked binary image (MB) area compared to their aggregated regions. The quantitative scale for measuring 
feature overlap ranges from 0 to 1 through this metric. The measurement scale of the IoU metric exists between 
0 for no similarity and 1 for perfect overlap. The formula for calculating the IoU value consists of these terms 
can be shown in Eq. (17):

	
IoU(GT , MB) =

∑
N
j=1

∑
M
i=1 (GT ( i, j) ∩ MB(i, j ))∑

N
j=1

∑
M
i=1 (GT ( i, j) ∪ MB(i, j ))

� (17)

Both GT(i, j) represents ground truth image and MB(i, j) represents masked binary image in this context. The 
equation offers a quantitative way to determine the degree of image overlap which enables model feature 
extraction assessment.

Result and discussion
This paper delves into designing and implementing a state-of-the-art lung cancer prediction system using 
Python and the powerful deep learning frameworks TensorFlow and Keras. TensorFlow, an open-source 
machine learning library, is renowned for its flexibility and scalability, making it apt for handling complex tasks 
such as medical image analysis. Keras, a high-level neural networks API, provides an intuitive interface for 
building and training deep learning models, streamlining the process without compromising capability. This 
research aims to create a robust lung cancer prediction system by intertwining these technologies. The goal 
of combining Convolutional Neural Networks and innovative data augmentation techniques is to achieve 
unparalleled accuracy in detecting and classifying lung cancer from medical images This paper will shed light 
on the development journey, from data preprocessing and model architecture design to training, evaluation, and 
deployment. Additionally, it will underscore the significance of integrating AI into healthcare, elucidating how 
Python, TensorFlow, and Kera stand as the pillars supporting this transformative endeavour.

Dataset
For this study, the lung cancer dataset from the Iraq-Oncology Teaching Hospital/National Center for Cancer 
Diseases (IQ-OTH/NCCD), publicly available on Kaggle34, was utilized. Published in 2019, this dataset includes 
CT scans from 110 individuals diagnosed with lung cancer, encompassing various stages: bengin, malignant, 
and normal. The participants are of different gender, age, and level of education. Of the 110 patients, 40 had 
malignant lung tumours, 15 had bengin (non-cancerous) tumours, and 55 had normal lungs. Every patient 
supplied about 80–200 CT scan slice sections which were 1 mm thickness.

The dataset comprises 1,097 CT images are organized into three distinct groups which bengin, malignant, and 
normal groups of lung cancer diseases. The bengin class contains 120 images but the malignant class possesses 
561 images together with 416 images in the normal class. Lung tumors are divided into bengin non-cancerous 
and malignant cancerous types with additional differentiation between tumour and mass forming tumours. The 
data set went through training operations for 80% while the next 20% was kept for testing.

The discussion surrounding dataset limitations, particularly the relatively small size of the IQ-OTH/NCCD 
dataset and potential biases in class distribution, is crucial for understanding the implications of the results 
obtained from the CNN + DA model. The IQ-OTH/NCCD dataset, while providing high-quality CT scans from 
a diverse cohort of lung cancer patients, consists of only 1,097 images. This limited sample size may restrict the 
model’s ability to capture the full spectrum of tumor variations and complexities present in a broader population. 
Consequently, the model’s performance may be influenced by the specific characteristics of the training data, 
potentially leading to overfitting on the limited examples it has encountered.

Moreover, the class distribution within the dataset presents another layer of complexity. The dataset includes 
561 images of malignant tumors, 120 images of bengin tumors, and 416 images of normal lungs, resulting in 
an imbalanced representation of classes. Such imbalances can skew the model’s learning process, as it may 
become biased towards the more prevalent class (malignant tumors) while underrepresenting the nuances of 
less frequent classes (bengin tumors and normal lungs). This bias can lead to a higher rate of false negatives for 
bengin cases, which is particularly concerning in clinical settings where accurate differentiation between bengin 
and malignant conditions is critical for patient management.

To mitigate these Challenges, Further study should consider augmenting the dataset with additional images 
from diverse sources to enhance its size and balance. Synthetic data generation methods together with transfer 
learning among bigger diverse sources would improve both robustness and generalization performance of the 
model. Furthermore, conducting thorough analyses of class-specific performance metrics will provide deeper 
insights into how well the model performs across different categories, allowing scientists better diagnostic 
capability understanding. Researchers should implement methods to remedy data set limitations which will 
make their findings applicable for clinical scenarios and enhance the reliability of the CNN + DA model for lung 
cancer diagnosis.

This work used the LC25000 dataset35, which consists of histopathological images of lung and colon cancer 
collected from the Kaggle public platform to assess the enhancing systems proposed here. The dataset, which was 
assembled by Andrew Borkowski and his team at James Hospital in Tampa, Florida, includes 25,000 Images that 
are evenly split up among five classes: Three forms of lung cancer and two forms of colon cancer were identified. 
There are 5,000 images in each class to maintain data distribution conformity. The five classes are lung_aca 
with images of lung adenocarcinoma, lung_bnt with images of bengin lung tissue, lung_scc with images of lung 
squamous cell carcinoma, and colon_aca with images of colon adenocarcinoma. More than 95% of all cases of 
colon cancer are adenocarcinomas, which are always the result of large intestine polyps that go undetected.
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Lung adenocarcinoma is a type of lung cancer that involves glandular cells and occurs in the lungs and 
alveoli, making up more than 40% of all lung cancer cases. Lung squamous cell carcinoma takes more than 30% 
of lung cancer types and develops in the bronchi. The last two categories are bengin tissues of the colon and lung, 
which are non-cancerous and do not metastasize; however, their nature should be confirmed through biopsy and 
may have to be removed.

Worked with the dataset that shares many features with the “A Large-Scale CT and PET/CT Dataset for 
Lung Cancer Diagnosis (Lung-PET-CT-Dx)” from The Cancer Imaging Archive (TCIA). TCIA is an open-access 
project developed to facilitate cancer research through sharing open-access cancer imaging data for researchers36. 
There are 251,135 PET-CT images of lung cancer patients, 106,676 preoperative PET-CT images of lung cancer 
patients, and 667,246 preoperative diagnostic CT images in the Lung-PET-CT-Dx dataset. The information was 
supplied by Harbin Medical University’s Second Affiliated Hospital in Harbin, Heilongjiang Province, China. 
The data is based on patients with lung cancer diagnosed by biopsy of one of four main histopathological types. 
Radiology annotations that indicate tumor current location for every CT/PET-CT image are also provided. 
Tumor lesions were manually outlined with rectangular boxes of the same size made using the LabelIMG tool. 
The annotation process involved five academic thoracic radiologists: One person drew the bounding box, and 
the other four confirmed it. In this assessment, only the analysis of CT images with a resolution of 1 mm was 
carried out, rejecting all CT scans with other resolutions for methodological purity.

The NLST37 was a randomized, multicenter trial performed by LSS in collaboration with the American 
College of Radiology Imaging Network (ACRIN) to compare LSCT in a high-risk population in regard to lung-
cancer-specific mortality. The first objective was to evaluate if low-dose helical CT screening could decrease 
lung cancer mortality among high-risk persons as compared to chest radiography. The study recruited more 
than 53,000 high-risk individuals aged 55 to 74 who have a history of smoking at least a pack a day from 2002 to 
2004. Of these patients, slightly more than half were scanned using low-dose CT, and the rest using chest X-rays. 
Participants had three follow-up examinations each year through 2007, with annual surveys through 2009.

The low-dose CT arm screened 26,732 participants, and lung cancer was validated in 1,083 patients (~ 4%) 
during follow-up. However, at each of the three screening time points are T0, T1, T2, a significant proportion 
of interviewed patients screened positive for potentially malignant lung cancer characterized by non-calcified 
nodules or masses ≥ 4  mm in diameter or any other suspicious radiographic findings. Though the screening 
rates were generally low, the examination findings were positive in 27% at T0, 26% at T1, and 16% at T2. Cancer 
confirmation among the screen-positive patients during screening or follow-up was 9% at T0, 6% at T1, and 8% 
at T2, respectively.

Table 3 provides a comparison of datasets, outlining their strengths and limitations. It highlights key features 
and suitability for specific applications, offering insights into their optimal use in various scenarios.

Figure 3 illustrates a sample image alongside its augmented version using DA techniques. This comparison 
highlights the transformations applied to enhance data diversity and model robustness.

Figure 4 shows the training and validation loss curves after training the model with lung cancer images. It 
highlights the loss reduction over epochs, indicating improved performance and generalization.

Train and Evaluate model CNN with DA.

Evaluation of the CNN with differential augmentation (DA) algorithm
The presented graph comprehensively evaluates the CNN model augmented with Differential Augmentation 
(DA) across multiple training epochs. The graph juxtaposes the training and validation performance, giving 
insights into the model’s learning dynamics and ability to generalize.

Training vs. Validation Curves: The graph showcases two sets of curves one representing the model’s 
performance on the training data and the other on the validation data. This distinction allows us to gauge the 
model’s progression in terms of learning and its capacity to perform on unseen data.

Accuracy Trends: A noticeable observation is the trajectory of the accuracy curves for both training and 
validation datasets. As the epochs progress, the accuracy tends to increase, indicating the model’s improving 

Dataset Strengths Limitations

IQ-OTH/NCCD 
(Selected Dataset)

Covers bengin, malignant, and normal categories, allowing for a wider scope 
of diagnosis.
- High-quality 1 mm slice thickness for better resolution.
- Real-world data from a variety of demographic groups.
- Balanced dataset with a sufficient number of images (1,097 CT images).
- Clear labeling of tumors as bengin or malignant.

- Limited in size (1,097 images), which may not capture all tumor 
variations.
- Focuses mainly on a smaller cohort compared to large-scale 
datasets.

LC25000 
(Histopathological 
Dataset)

- Contains 25,000 images across five cancer and tissue categories, providing a 
large and diverse dataset.
- Balanced classes ensure no bias toward any one category.

- Composed of histopathological images, not CT scans, so it may 
not be directly applicable to tasks involving CT image analysis.
- Does not include normal tissues as explicitly as the IQ-OTH 
dataset.

Lung-PET-CT-Dx 
(Large-Scale CT/PET)

− 251,135 de-identified CT/PET-CT images provide a large dataset with expert 
annotations.
- Focuses on major lung cancer histopathological subtypes.

- Very large dataset can lead to high computational costs for model 
training.
- Focuses more on CT/PET-CT images than on distinguishing 
between bengin and malignant lung tissues.

NLST (National Lung 
Screening Trial)

- Large-scale randomized trial data with high-risk participants for lung cancer 
screening.
- Provides longitudinal data with follow-up screenings.

- Screening-specific data may not cover the breadth of tumor types.
- Not specifically designed for training models, lacking labeled 
tumor images and annotations for model development.

Table 3.  Comparison of datasets: strengths and limitations.
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capability to classify lung cancer images correctly. Any significant divergence between these curves might hint at 
overfitting or underfitting, crucial aspects to monitor in model evaluation.

Loss Trends: Complementing the accuracy, the loss curves depict how the model’s predictions deviate from 
the actual labels across epochs. A declining trend in the loss signifies that the model is refining its predictions, 
aligning them closely with the true tags. The proximity of the training and validation loss curves is an indicator 
of the model’s consistent performance across both datasets.

Role of DA: Integrating Differential Augmentation (DA) likely contributes to the observed trends. By 
continuously introducing varied representations of the training images, DA ensures the model does not over-
rely on specific patterns, leading to enhanced generalization. This is evident from the synchronized progression 
of training and validation curves, indicating a reduced propensity for overfitting.

Concluding Remarks: The graph is a testament to the efficacy of integrating DA with CNN for lung cancer 
image classification. The consistent trends across epochs and the close alignment of training and validation 
metrics indicate a well-trained, robust model poised for real-world applications.

The CNN + DA model’s high accuracy, sensitivity, and specificity suggest strong potential for clinical 
applications. However, its utility in real-world settings requires further validation using diverse datasets and 
testing in clinical workflows. Additionally, robustness against imaging artifacts and varying scanner types must 
be ensured.

To predict diseases accurately based on the input shown in Fig.  5, the model likely analyzes patterns in 
data using machine learning techniques. It processes various features to identify potential disease outcomes, 
enhancing diagnosis precision.

Lung cancer prediction using CNN with DA model
Model Forward Pass: The pre-processed image is passed through the CNN. As it traverses through the 
convolutional layers, essential features indicative of lung conditions are extracted. These hierarchical features, 
ranging from basic edges to complex patterns, are then processed by the subsequent layers.

Fig. 4.  After the model train with lung cancer images graph shows train loss validation loss.

 

Fig. 3.  Sample Image and the image with DA.
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Prediction Generation: The final layers of the CNN, typically dense or fully connected layers, take the extracted 
features and generate a prediction. This could be in-class probabilities, especially if the task is to categorize the 
lung condition. The class with the highest chance becomes the model’s prediction for the input image.

Post-processing: Post-processing might be applied once the raw prediction is obtained. This could involve 
converting numerical labels to their categorical counterparts (e.g., ‘Adenocarcinoma’, ‘Normal’) or applying a 
threshold to determine the final diagnosis.

Output Display: The prediction and any associated confidence scores or probabilities are then presented to 
the user. In a healthcare setting, this information assists medical professionals in making informed decisions 
about the patient’s condition and subsequent treatment.

Hyperparameter tuning using random search
Hyperparameter Tuning using Random Search38 involves randomly sampling hyperparameter combinations 
from predefined ranges, training the model with each combination, and evaluating its performance. This method 
is efficient, as it does not exhaustively test all possibilities. By focusing on random subsets, it identifies optimal 
configurations, such as learning rate, batch size, and dropout, to enhance model accuracy and generalization.

The initial training parameters for the models were set as follows: a learning rate of 0.001, a batch size of 
32, and a dropout rate of 0.3. After applying Random Search for hyperparameter tuning, these values were 
optimized to improve the performance of each model. The learning rate was fine-tuned to values between 0.0001 
and 0.0005, with lower learning rates proving more effective for ResNet and EfficientNetB0. The batch size was 
adjusted to 32 for CNN with DA and ResNet, while DenseNet and EfficientNetB0 achieved optimal results with 
the original batch size of 32. Similarly, the dropout rate was optimized to 0.2 for the Hybrid CNN model, while 
ResNet required a slightly higher rate of 0.4 to prevent overfitting, and DenseNet and EfficientNetB0 retained 
a balanced dropout of 0.3. These tuned parameters significantly enhanced the accuracy and F1-score for each 
model.

Table 4 outlines the training parameters used for the model. It provides details such as learning rate, batch 
size, and Dropout rate, essential for reproducing the training process.

Compare the performance metrics CNN with DA (Hybrid novel Model), DenseNet, ResNet 
and EfficientNetB0 Algorithm
The results across different datasets demonstrate that the CNN + DA (Novel) model consistently outperforms 
other models, particularly when evaluated on the primary IQ-OTH/NCCD dataset (Table  5). This dataset 
highlights the strength of CNN + DA, achieving the highest metrics in Precision (97.57%), Recall (97.67%), 
F1-Score (98.78%), and Accuracy (98.78%) with relatively low standard deviations. These results indicate the 
model’s superior ability to predict lung cancer accurately while maintaining stability and reliability. Compared to 

Function name Value

Learning rate 0.001

Batch size 32

Dropout rate 0.3

Table 4.  Training parameters.

 

Fig. 5.  Once the input the predict the accurately model diseases.
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other models like DenseNet, ResNet, and EfficientNetB0, CNN + DA demonstrates clear dominance, particularly 
in this primary dataset.

To evaluate the accuracy of four models are CNN + DA (Novel), DenseNet, ResNet, and EfficientNetB0, a 
post-hoc analysis was conducted using Tukey’s HSD test shown in Table 6. The analysis revealed significant 
differences in accuracy between most models. The CNN + DA model demonstrated statistically significant 
superiority over all other models, with mean accuracy differences of − 4.61, − 5.58, and − 5.97 when compared 
to DenseNet, ResNet, and EfficientNetB0, respectively (p < 0.0001 for all comparisons). DenseNet also showed 
significantly higher accuracy than EfficientNetB0 and ResNet, with mean differences of −  1.36 and − 0.97, 
respectively (p < 0.001). However, no significant difference was observed between EfficientNetB0 and ResNet 
(p = 0.3655), indicating similar performance between these models. The results highlight CNN + DA as the most 
accurate model, statistically outperforming both advanced architectures like DenseNet and baseline models 
like ResNet and EfficientNetB0. This underscores the robustness and reliability of the CNN + DA model in 
delivering superior accuracy for predictive tasks. These findings position CNN + DA as the most accurate model, 
showcasing its superior performance and reliability for applications requiring precise predictions. The statistical 
validation underscores the robustness of the novel architecture and its potential to outperform widely used 
baseline models like DenseNet, ResNet, and EfficientNetB0.

When tested on the LC25000 dataset (Table  7), CNN + DA also delivers commendable results, achieving 
the highest Precision (93.02%) and ROC (92.69%). However, DenseNet marginally surpasses CNN + DA in 
Recall (93.12%), F1-Score (93.16%), and Accuracy (93.22%). Despite this, the lower standard deviations in 
CNN + DA’s performance metrics suggest greater consistency, making it a competitive option for this dataset. 
Based on the statistical results, CNN + DA demonstrates the highest performance across all evaluated metrics 
(precision, recall, F1 score, accuracy, and ROC) when compared to DenseNet, ResNet, and EfficientNetB0. The 
mean differences in accuracy between CNN + DA and the other models are statistically significant, with p-values 
well below the typical significance threshold (0.05), indicating strong evidence against the null hypothesis of no 
difference. Specifically, CNN + DA significantly outperforms DenseNet (mean difference of 1.80), ResNet (mean 
difference of 3.03), and EfficientNetB0 (mean difference of 3.88), all with low p-values shaown in Table 8. In 
contrast, DenseNet and ResNet show no significant difference in accuracy, suggesting their performances are 

Dataset CNN + DA DenseNet ResNet EfficientNetB0

Precision 93.02 92.03 91.42 90.01

Recall 94.16 93.12 92.15 90.26

f1score 94.01 93.16 91.22 90.26

Accuracy 95.02 93.22 91.99 91.14

Roc 93.69 91.26 91.32 90.20

Error rate (%) 4.98 6.78 8.01 8.86

Table 7.  Comparison models with performance metrics with supporting statistical measures using LC25000.

 

Group 1 Group 2 Mean Diff p-adj Lower Upper Reject

CNN + DA DenseNet − 4.61 0.0000 − 5.24 − 3.98 True

CNN + DA EfficientNetB0 − 5.97 0.0000 − 6.60 − 5.34 True

CNN + DA ResNet − 5.58 0.0000 − 6.21 − 4.95 True

DenseNet EfficientNetB0 − 1.36 0.0000 − 1.99 − 0.73 True

DenseNet ResNet − 0.97 0.0006 − 1.59 − 0.34 True

EfficientNetB0 ResNet 0.39 0.3655 − 0.23 1.02 False

Table 6.  Tukey’s HSD Post-Hoc test for model accuracy comparisons using IQ-OTH/NCCD dataset.

 

Performance metrics CNN + DA(Novel) DenseNet ResNet EfficientNetB0

Precision 97.57 93.80 92.50 91.87

Recall 97.67 94.00 93.10 91.78

f1-score 98.78 94.20 92.70 91.21

Accuracy 98.78 94.10 93.00 92.64

Roc 97.23 93.90 92.40 91.24

Error rate (%) 1.22 5.90 7.00 7.36

Table 5.  Comparison models with performance metrics with supporting statistical measures using IQ-OTH/
NCCD dataset.
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more similar. These results highlight CNN + DA’s superior ability to generalize across the dataset, likely due to the 
combination of powerful CNN architecture and data augmentation, which enhances learning and robustness.

Similarly, the CNN + DA model excels on the Large-Scale CT and PET/CT dataset (Table  9), achieving 
the highest scores across all metrics, including F1-Score (98.78%) and Accuracy (98.78%). The robustness of 
the model is again evident from its smaller standard deviations, further solidifying its position as the best-
performing and most reliable model for this dataset.

The Tukey’s HSD post-hoc test for model accuracy comparisons on the Large-Scale CT and PET/CT dataset 
(Table 10) reveals that CNN + DA significantly outperforms DenseNet, ResNet, and EfficientNetB0, with mean 
accuracy differences of 4.68, 5.78, and 6.14, respectively, all with adjusted p-values well below 0.05, indicating 
strong statistical significance. In contrast, no significant differences were found between DenseNet, ResNet, and 
EfficientNetB0, with p-values greater than 0.05, suggesting similar performance levels among these models. 
These results highlight CNN + DA as the most effective model for this dataset, while the other models show 
comparable performance but are significantly less accurate than CNN + DA.

On the National Lung Screening Trial (NLST) dataset (Table 11), the performance of CNN + DA remains 
strong, with the highest Precision (94.23%) and Recall (95.22%). However, ResNet slightly surpasses CNN + DA 
in terms of F1-Score (94.63%) and Accuracy (96.23%). This suggests that while CNN + DA generally performs 
well across datasets, there are scenarios where other models, like ResNet, may provide slightly better outcomes 
for specific metrics.

The results from the Tukey’s HSD post-hoc test and performance metrics on the National Lung Screening 
Trial (NLST) dataset reveal that CNN + DA outperforms DenseNet and ResNet significantly, with mean 
accuracy differences of 2.24 and 3.27, respectively, both with p-values below 0.05, confirming the null hypothesis 
is rejected shown in Table 12. However, no significant difference in accuracy was found between CNN + DA and 
EfficientNetB0 (mean difference of 0.13, p = 0.85), indicating their performances are comparable. Additionally, 
DenseNet and ResNet show no significant difference between each other (mean difference of 1.02, p = 0.18), 
while both outperform EfficientNetB0 with significant accuracy differences (mean differences of -−  .11 and 
− 3.13, respectively, p < 0.05). These findings highlight CNN + DA as the most effective model, followed by 
DenseNet and ResNet, with EfficientNetB0 being the least effective in terms of accuracy.

Group 1 Group 2 Mean difference (meandiff) P-adj Lower CI bound Upper CI bound Reject null hypothesis

CNN + DA DenseNet 4.68 0.001 3.90 5.47 Yes

CNN + DA ResNet 5.78 0.0005 4.98 6.58 Yes

CNN + DA EfficientNetB0 6.14 0.0002 5.33 6.95 Yes

DenseNet ResNet 1.10 0.14 − 0.12 2.32 No

DenseNet EfficientNetB0 1.46 0.09 − 0.01 2.93 No

ResNet EfficientNetB0 0.36 0.42 − 1.12 1.84 No

Table 10.  Tukey’s HSD post-hoc test for model accuracy comparisons using a large-scale CT and PET/CT 
dataset.

 

Dataset CNN + DA DenseNet ResNet EfficientNetB0

Precision 97.57 93.80 92.50 91.87

Recall 97.67 94.00 93.10 91.78

f1score 98.78 94.20 92.70 91.21

Accuracy 98.78 94.10 93.00 92.64

Roc 97.23 93.90 92.40 91.24

Error rate (%) 1.22 5.90 7.00 7.36

Table 9.  Comparison models with performance metrics with supporting statistical measures using A Large-
Scale CT and PET/CT.

 

Group 1 Group 2 Mean Difference (meandiff) P-Adj Lower CI Bound Upper CI Bound Reject Null Hypothesis

CNN + DA DenseNet 1.80 0.02 0.56 3.04 Yes

CNN + DA EfficientNetB0 3.03 0.005 1.44 4.61 Yes

CNN + DA ResNet 3.88 0.001 2.07 5.69 Yes

DenseNet EfficientNetB0 1.22 0.14 − 0.19 2.63 No

DenseNet ResNet 2.08 0.03 0.15 4.00 Yes

EfficientNetB0 ResNet 0.87 0.22 − 0.46 2.20 No

Table 8.  Tukey’s HSD Post-Hoc test for model accuracy comparisons using LC25000 Datset.
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The IQ-OTH/NCCD dataset was selected for this research due to its unique strengths in providing high-
quality CT scans of lung cancer patients across bengin, malignant, and normal categories. This makes it well-
suited for developing models that generalize effectively across diverse patient populations. Unlike other datasets 
such as LC25000, which focuses on histopathological images, or Lung-PET-CT-Dx, which emphasizes lung 
cancer subtypes, the IQ-OTH/NCCD dataset offers a real-world representation of lung conditions. Its clear 
annotations and balanced class distribution further enhance its suitability for lung cancer diagnosis.

Despite its relatively small size of 1,097 images, the dataset compensates with high-quality imaging (1 mm CT 
slice thickness) and diverse demographic representation, allowing for detailed tumor detection and improved 
generalizability. Additionally, the superior performance of the CNN + DA model on this dataset underscores 
its appropriateness for evaluating lung cancer prediction models. These factors collectively establish IQ-OTH/
NCCD as the optimal choice for this research.

Table 5 compares the performance of various models, including CNN + DA (Novel), DenseNet, ResNet, and 
EfficientNetB0, using the IQ-OTH/NCCD dataset. The table highlights key performance metrics along with 
supporting statistical measures, showcasing the effectiveness of each model.

Figure 6 illustrates the comparative performance metrics of CNN + DA, DenseNet, ResNet, and EfficientNetB0. 
The results highlight the superiority of the proposed model across key evaluation metrics.

The Precision-Recall (PR) curves shown in Fig. 7. highlight the performance of different models (CNN + DA, 
DenseNet, ResNet, and EfficientNetB0) across various datasets (IQ-OTH/NCCD, LC25000, CT/PET-CT, and 
NLST). The CNN + DA model consistently demonstrates superior precision and recall, reflected in its curves 
being positioned closest to the top-right corner for all datasets. DenseNet, ResNet, and EfficientNetB0 exhibit 
progressively lower performance, with EfficientNetB0 typically yielding the lowest precision-recall values. These 
trends reinforce the robustness and generalizability of the CNN + DA model across diverse datasets.

The evaluation of the proposed CNN model with Data Augmentation (CNN + DA) is conducted through 
multiple analytical techniques, including correlation heatmaps, residual analysis, homoscedasticity assessment, 
and Q-Q plots. These evaluations provide deep insights into the model’s predictive performance, error 
distributions, and generalization capability.

The model’s performance was evaluated using various metrics, including precision, recall, F1-score, accuracy, 
and ROC. The correlation heatmap reveals a high degree of correlation (close to 1) between all performance 
metrics, indicating a consistent performance across different evaluation aspects shown in Fig. 8. This strong 
positive correlation suggests that the model is effectively capturing the underlying patterns in the data and 
exhibiting a balanced performance.

The histogram of residuals displays a near-normal distribution, suggesting that the model’s residuals are 
randomly distributed and do not exhibit any systematic patterns. This observation aligns with the assumption of 
normality for residual analysis, providing further evidence of model adequacy shown in Fig. 9.

The plot of residuals against fitted values, commonly used for homoscedasticity check, shows a scattered 
distribution of points without any discernible trend or pattern. This indicates that the variance of the residuals is 
consistent across different fitted values, supporting the assumption of homoscedasticity shown in Fig. 10.

Furthermore, the Q-Q plot of accuracy showcases a linear relationship between the ordered values and the 
theoretical quantiles, indicating that the distribution of the accuracy values is close to a normal distribution 

Group 1 Group 2 Mean difference (meandiff) P-adj Lower CI bound Upper CI bound Reject null hypothesis

CNN + DA DenseNet 2.24 0.001 1.56 2.92 Yes

CNN + DA ResNet 3.27 0.0002 2.49 4.05 Yes

CNN + DA EfficientNetB0 0.13 0.85 − 1.08 1.34 No

DenseNet ResNet 1.02 0.18 − 0.16 2.19 No

DenseNet EfficientNetB0 − 2.11 0.01 − 3.25 − 0.97 Yes

ResNet EfficientNetB0 − 3.13 0.0003 − 4.34 − 1.91 Yes

Table 12.  Tukey’s HSD post-hoc test for model accuracy comparisons using the National lung screening trial 
(NLST) dataset.

 

Dataset CNN + DA DenseNet ResNet EfficientNetB0

Precision 94.23 94.12 92.56 90.20

Recall 95.22 94.12 92.06 90.22

f1score 96.56 94.12 94.63 90.22

Accuracy 96.36 94.12 93.09 96.23

Roc 97.02 93.56 93.45 94.23

Error rate (%) 3.64 5.88 6.91 3.77

Table 11.  Comparison models with performance metrics with supporting statistical measures using the 
National lung screening trial (NLST) dataset.
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shown in Fig. 11. This finding suggests that the model’s performance is consistent and does not exhibit significant 
deviations from normality.

Overall, the analysis of these plots and metrics indicates that the model is performing well, exhibiting high 
performance scores, normally distributed residuals, and a consistent performance across different evaluation 
aspects. These results suggest that the model could successfully uncover the underlying patterns in the data and 
generate predictions that are accurate.

The proposed CNN with Differential Augmentation (CNN + DA) model demonstrates superior performance 
compared to established architectures such as DenseNet and EfficientNetB0, primarily due to its innovative 
approach to mitigating memory overfitting and enhancing robustness against data variability. Memory overfitting, 
a common challenge in deep learning, occurs when models memorize training data rather than generalizing 
from it. The CNN + DA model effectively addresses this issue by integrating Differential Augmentation (DA), 
which applies diverse transformations such as hue, brightness, saturation, and contrast adjustments during 
training. This exposure to a broader spectrum of data variations discourages memorization and promotes 
genuine learning, leading to improved generalization capabilities. Furthermore, the dynamic nature of DA 
allows the CNN + DA model to adapt to real-world variations in imaging conditions, enhancing its robustness 
and performance across diverse patient populations and imaging protocols. The architecture of the CNN + DA 
model is designed to leverage hierarchical feature extraction, enabling it to identify critical features indicative 
of lung cancer, regardless of the variations introduced by DA. Validation across multiple datasets, including 
the IQ-OTH/NCCD dataset, LC25000, and the Large-Scale CT and PET/CT dataset, underscores the model’s 
ability to generalize effectively, achieving an accuracy of 98.78%, significantly higher than that of DenseNet 
and EfficientNetB0. Statistical analyses, including Tukey’s HSD post-hoc tests, confirm the significance of 
the CNN + DA model’s superior performance, with mean accuracy differences that are statistically significant 
(p < 0.0001). These findings position the CNN + DA model as a valuable tool for clinical applications in lung 
cancer detection, with the potential for further exploration of its adaptability to other medical imaging tasks, 
thereby advancing deep learning methodologies for complex diagnostic challenges.

Fig. 6.  Comparative performance metrics for CNN + DA, DenseNet, ResNet and EfficientNetB0, illustrating 
the superiority of the proposed model.
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Fig. 8.  Feature correlation heatmap for attribute dependency analysis.

 

Fig. 7.  Precision-recall curves comparing CNN + DA, DenseNet, ResNet and EfficientNetB0, showing better 
balance between precision and recall in the proposed model.
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Fig. 11.  Q-Q plot of accuracy for normality assessment.

 

Fig. 10.  Residuals vs. fitted values plot for homoscedasticity check.

 

Fig. 9.  Residual histogram for model adequacy assessment.
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Error analysis on four datasets
Possible errors are also characterized by misclassifications in terms of error rate, which gives a clear understanding 
of the weak sides of the model. Others with relatively higher error rates in our experiments (e.g., 7.36% for 
EfficientNetB0 on the IQ-OTH/NCCD dataset) have higher misclassification rates, especially for those images 
that are just slightly different from one another. This means that with similar appearances, their differentiation 
can be a problem for the model, for example in the case of early stage diseases or noisy data. However, in the 
CNN + DA proposed with the lowest error rate to 1.22%, the model still occasionally misclassifies subjects This 
is common, particularly in individual-specific scenarios that the identification algorithm may not recognize well 
enough. Also, different sets of error rates are observed, which is true with EfficientNetB0 model having slightly 
low error rate at 3.77% when tested on the NLST dataset but high error rate of 8.86% on the LC25000 dataset to 
suggest that the architecture seems to have difficulty in generalizing across different data distribution or image 
qualities. High error rates as results from some problems like overlapping of classes, low quality input data or 
imbalanced data where minority classes are misclassified. This is has many advantages like enhanced accuracy 
of the diagnosis in various conditions, increased ability to generalize over various situations and scenarios and 
hence, increased patient care by minimizing errors. Specific characteristics, for instance improving the quality of 
data input, controlling the imbalance in the number of instances in classes and modifying model structures can 
help reduce errors to acceptable levels to make a model useful in practical applications.

Ethical and practical implications
The use of CNN with Differential Augmentation (DA) model for the detection of lung cancer comes with some 
certain unethical and practical issues. Data privacy and security is an important factor to consider since such 
data needs to be shared, encrypted etc. To reduce bias and unfairness to patients, bias from multiple sets of 
data is prevented; Mitigating bias through diverse datasets promotes fairness, while explainable AI enhances 
transparency for clinicians. Technical considerations are checking the actual performance of the proposed 
model in different real-world datasets and handling the differences in imaging to have general applications. 
eamless integration into clinical workflows with user-friendly interfaces is crucial for adoption. These steps acts 
as crucial so that the integrated CNN + DA model can be transformed into a reliable and accurate diagnosis tool 
which would assist in early diagnosis and better treatment, all the while, trying to prevent ethical and practical 
issues in its implementation.

Results for XAI using LIME
The evaluation of Convolutional Neural Network (CNN) models using the Intersection over Union (IoU) 
metric is presented in two contexts: bengin and malignant cases. Table 13 (for the bengin case) and Table 14 
(for the malignant case) compare the performance of four models: DenseNet, ResNet, EfficientNetB0, and 
CNN + DA (CNN with Data Augmentation). In Table 13, CNN + DA achieves the highest average IoU score of 
0.41, indicating superior performance in identifying relevant features across different feature sets (6, 8, 10, and 
12 features). EfficientNetB0 follows with an average IoU of 0.38, while DenseNet and ResNet score 0.37 and 
0.33, respectively. Similarly, in Table 14 (malignant case), CNN + DA again leads with an average IoU of 0.38, 
demonstrating consistent feature identification. EfficientNetB0 and DenseNet follow with average IoU scores 
of 0.31 and 0.33, respectively, while ResNet trails with 0.29. Figures 12 and 13 likely illustrate the architectures 
or efficiency of these models, visually complementing the tabular data. The results highlight CNN + DA as the 
most effective model in both bengin and malignant cases, followed by EfficientNetB0 and DenseNet, due to their 
ability to consistently align predictions with ground truth across varying feature sets.

CNN models

Intersection over union (IoU) score

6 features 8 features 10 features 12 features Average IoU score

DenseNet 0.28 0.32 0.35 0.38 0.33

ResNet 0.25 0.28 0.31 0.34 0.29

EfficientNetB0 0.27 0.30 0.33 0.36 0.31

CNN + DA 0.33 0.37 0.40 0.44 0.38

Table 14.  IoU score of the selected pretrained models for maligant case.

 

CNN models

Intersection over union (IoU) score

6 features 8 features 10 features 12 features Average IoU score

DenseNet 0.33 0.36 0.39 0.43 0.37

ResNet 0.29 0.31 0.35 0.39 0.33

EfficientNetB0 0.31 0.37 0.41 0,43 0.38

CNN + DA 0.35 0.40 0.43 0.47 0.41

Table 13.  IoU score of the selected pretrained models for Bengin case.
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Performance comparison of existing works with proposed work
The proposed CNN with Differential Augmentation (CNN + DA) model achieves a groundbreaking accuracy of 
98.78%, outperforming existing state-of-the-art approaches in lung cancer diagnosis. Prior works have explored 
various deep learning models and augmentation techniques, yet gaps in addressing memory overfitting and 
achieving robust generalization remain. Critically, a study by Islam et al. (2024)16 developed a combination of 
GANs and VAEs with 94% accuracy and Saha et al. (2024)17 used the VER-Net method, a transfer learning-
based method, with 91% accuracy.

Traditional Convolutional Neural Networks (CNNs) by Rainio and Klén (2024)18 and Kukreja and Sabharwal 
(2024)19 demonstrated accuracies of 92.6% and 96.11%, respectively, with no explicit focus on mitigating 
overfitting.

Advanced ensemble and hybrid models have shown promise, with Quasar et al. (2023)22 achieving 96.34% 
accuracy using a combination of BEiT, DenseNet, and Sequential CNN, while Raza et al. (2023)23 and Zhang 
et al. (2024)20 reported accuracies of 96.10% and 96% using Lung-EffNet and DenseNet-CNN Integration, 
respectively. Similarly, Gautam et al. (2023)24 utilized an ensemble of ResNet-152, DenseNet-169, and 
EfficientNet-B7, achieving 97.23%, and Dritsas and Trigka (2022)25 employed Rotation Forest for a comparable 
accuracy of 97.1%. However, these models either relied on complex architectures or lacked tailored strategies to 
prevent memory overfitting.

In contrast, the CNN + DA model integrates Differential Augmentation to introduce diverse transformations, 
such as hue, brightness, and contrast adjustments, directly addressing overfitting and enhancing generalization. 
Compared to other works, the CNN + DA model exhibits superior accuracy, proving its reliability and robustness 
for clinical applications in lung cancer detection. Its innovative approach bridges the gaps left by prior models, 
solidifying its contribution as a novel and highly effective diagnostic tool. Table 15 compares the performance of 
existing methods with the proposed approach, highlighting improvements in accuracy, efficiency, or other key 
metrics.

Limitations
The primary dataset used (IQ-OTH/NCCD), consisting of only 1,097 images, is relatively small for training deep 
learning models, which limits the model’s ability to generalize across a broader spectrum of lung cancer variations 
and patient demographics. This dataset’s class distribution is also imbalanced, with more malignant cases than 
bengin or normal ones, potentially biasing the model toward the majority class. While the CNN + DA model 

Fig. 12.  Visualization of lung image analysis: original image of bengin case, LIME heatmaps, and feature-based 
masking for 6, 8, 10, and 12 important features.
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performs well on the controlled dataset, its performance in real-world clinical environments, which involve 
diverse imaging protocols, patient demographics, and potential artifacts, has yet to be validated. The model 
might struggle to handle unseen variations in imaging conditions common in clinical settings. Additionally, 
the integration of Differential Augmentation (DA) during training introduces extra computational overhead, 
increasing both training time and resource requirements, which could be a challenge in resource-constrained 
environments. Finally, the model’s performance is highly dependent on the quality of input data; noisy or low-
quality images could lead to misclassifications, particularly when distinguishing between bengin and malignant 
tumors.

Author(s) Proposed model Accuracy

Islam et al. (2024)16 Generative adversarial networks (GANs) and Variational Autoencoders (VAEs) 94%

Saha et al. (2024)17 VER-Net 91%

Rainio and Klén (2024)18 Convolutional Neural Network (CNN) 92.6%

Kukreja and Sabharwal (2024)19 Convolutional Neural Network (CNN) 96.11%

Zhang et al. (2024)20 DenseNet-CNN Integration 96%

Gai et al. (2023)21 Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) 93.4%

Quasar et al. (2023)22 Ensemble Model (BEiT, DenseNet, Sequential CNN with ensemble methods) 96.34%

Raza et al. (2023)23 Lung-EffNet (EfficientNet with modified top layers) 96.10%

Gautam et al. (2023)24 Ensemble (ResNet-152, DenseNet-169, EfficientNet-B7 with weight optimization) 97.23%

Dritsas and Trigka (2022)25 Rotation Forest 97.1%

Tsou et al. (2021)26 eXtreme Gradient Boosting (XGBoost) 92%

Our Work CNN with DA 98.78%

Table 15.  Performance comparison of existing works with proposed work.

 

Fig. 13.  Visualization of Lung Image Analysis: Original image of Malignant case, LIME Heatmaps, and 
Feature-Based Masking for 6, 8, 10, and 12 Important Features.
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Conclusion
Lung cancer remains a significant global health challenge, requiring innovative solutions to improve diagnostic 
accuracy. This study addresses the persistent problem of memory overfitting in deep learning models, which 
impairs their ability to generalize across diverse datasets As an effort to improve the quality of lung cancer 
detection models, this research seeks to design a new method that involves the merge of a Differential 
Augmentation technique with a Convolutional Neural Network.

The effectiveness of the proposed CNN + DA model has been demonstrated, attaining the prediction accuracy 
of 98.78% that promoted the model to the highest level of various existing methods, such as DenseNet, ResNet, 
and EfficientNetB0. By leveraging targeted augmentation techniques such as hue, brightness, and contrast 
adjustments, the model effectively reduces overfitting, improving its reliability in diverse imaging scenarios. 
Statistical analyses, including Tukey’s HSD post-hoc tests, confirm the model’s significance in achieving higher 
accuracy and generalization.

As shown in this research, incorporating Differential Augmentation with CNNs is a good solution to the 
problems existing in traditional models. Thus, the conclusions point out the need of developing models that do 
not only solve the problems precisely, but also are immune to adversarial perturbations and can be easily scaled 
to tackle a wider range of problems.Future work can further explore the adaptability of this approach to other 
domains and datasets, expanding its utility in advancing deep learning research for complex diagnostic tasks.

Data availability
The data used to support the findings of created new data set, this study is available from the corresponding 
author upon request.
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