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Unprecedented extreme climate events cause devastating infrastructure outages within power 
systems. Comprehensive outage identification is essential for the identification of critical components 
to ensure the uninterrupted power supply in a secure manner to withstand extreme weather events. 
Accurate outage identification, however, requires simulations of a large number of outage scenarios 
necessitating highly scalable computations thus challenging classical computing paradigms. Quantum 
computing provides a promising resolution by exploiting exponential scalability achieved through 
superposition and entanglement of voltage states. This paper devises a quantum contingency analysis 
(QCA) method to identify outage scenarios on Noisy Intermediate-Scale Quantum (NISQ) devices. 
Advanced quantum circuits incorporating Pauli-twirling, dynamic decoupling, and matrix-free 
measurement are designed to mitigate hardware-induced errors. A preconditioned hybrid method is 
devised to alleviate the computation burden of parameter optimization of quantum gates. Case studies 
identify line and generation outages via QCA in typical power systems. Our research underscores that 
quantum computing exhibits exponential scalability in identifying power grid outages and critical 
components.

The intensity and frequency of extreme weather events such as tornadoes, wildfires, and snowstorms, 
exacerbated by climate change and global warming, frequently result in infrastructure outages within electric 
power systems1,2. These failures such as line and generation outages, further cause unprecedented damage to 
human life and the economy3,4. This can be exemplified by a severe meteorological event in February 2021 - a 
winter storm in Texas - which instigated widespread blackouts and resulted in an estimated economic impact of 
at least 195 billion USD5.

Fundamentally, extreme events cause power infrastructure failures and trigger a sequence of grid emergencies 
such as voltage drop, overloading, and even system collapse, ultimately disrupting household services6,7. 
Identifying vulnerable components and potential grid outages in a preventive manner is a crucial challenge in 
mitigating and addressing the adverse effects of extreme events.

Contemporary power systems, however, span vast geographical areas and are characterized by a significant 
number of generators, transmission lines, and transformer stations, as shown in Fig. 1. Contingency Analysis 
(CA) is crucial for secure planning and operations of power grids in the wake of extreme weather events8,9 by 
proactively identifying latent outage emergencies through simulating power flows10,11. The complexity involved 
requires the utilization of advanced and scalable computational resources. Upon the detection of security 
concerns, CA provides warnings that signal the necessity for the development of preventive strategies12. Scalable 
and accurate CA is thus critical for power system operations with major implications for society.

Several CA methods have been developed including methods 1. prioritizing the impactful scenarios through 
techniques like sensitivity analysis13,14. 2. distributing computational effort by leveraging parallel computing to 
speed up computations15. 3. simplifying power flow calculations for quicker assessments through approximation 
methods and incremental analyses16. Machine learning and data-driven approaches offer an alternative to 
detailed simulations and aim to quickly predict contingencies by using models trained on historical data17,18. 
Hybrid methods combine analytical and numerical approaches to focus on the most critical contingencies, while 
real-time monitoring and adaptive analysis continuously assess the grid19. However, with the expansion of power 
grids as well as the increasing severity, impact, and frequency of extreme weather events, the complexity of the 
analysis increases accordingly thereby posing significant scalability challenges for classical-computing-based 
approaches.

1Department of Electrical Engineering, SUNY Maritime College, Bronx 10465, NY, USA. 2Department of Electrical 
and Computer Engineering, Stony Brook University, Stony Brook 11794, NY, USA. 3Department of Electrical and 
Computer Engineering, University of Connecticut, Storrs 06269, CT, USA. email: p.zhang@stonybrook.edu

OPEN

Scientific Reports |        (2025) 15:15148 1| https://doi.org/10.1038/s41598-025-98776-5

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-98776-5&domain=pdf&date_stamp=2025-4-29


In contrast to classical computing, quantum computing is emerging as a disruptive technology paradigm 
possessing an immense potential for exponential scalability20–22. Distributed quantum computation technology 
offers a framework to transition from small-scale quantum devices to large-scale quantum computers, significantly 
enhancing scalability23. Additionally, quantum information opens up fundamentally new possibilities for the 
development of high-performance quantum architectures and telecommunication networks24,25. This study aims 
to address several key considerations: harnessing quantum supremacy for scalability in contingency analysis, 
formulating contingency analysis within the quantum framework for efficient quantum algorithm exploitation, 
and mitigating the inherent challenges posed by Noisy Intermediate-Scale Quantum (NISQ) computers. The 
above considerations are addressed through Quantum Contingency Analysis (QCA) thus pioneering the 
exploitation of quantum computing for contingency analysis with major implications for secure operations of 
power systems.

The QCA employs a batched quantum power flow solver, which involves the reformulation of power system 
models into quantum language, and the optimization of a quantum circuit leveraging quantum entanglement 
and superposition for exponential scalability. In practical quantum-computing applications of QCA on real 
quantum computers, our study addresses measurement and noise issues, which are critical in the application of 
quantum computing. The improved quantum circuit design, along with hybrid quantum/classical computing 
techniques, enhances the QCA’s capability to handle a large number of power flows and identify latent outage 
emergencies such as power outages of key components whose failure could lead to serious consequences. We 
have validated the QCA effectiveness on a quantum simulator as well as on real IBM quantum computers.

Results
Power flow identification through QCA
A prominent feature of quantum technology is exponential-scale computation capability operationalized in this 
study through quantum bits (qubits) to represent the status of vectors26. Each qubit is a superposition of quantum 
states |0⟩ and |1⟩27 and an n-qubit quantum state of voltage amplitude VVV  can be modeled as |VVV ⟩ =

∑2n

k
νk|k⟩

, where |k⟩ is the kth quantum basis state and νk  is the corresponding probability amplitude; in essence, each 
additional qubit can double information processing capability. Quantum computers thus provide an opportunity 
for modeling power flow and performing contingency analysis in an exponentially scalable fashion.

Fig. 1.  Comprehensive quantum contingency analysis architecture for power systems.
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We use a Variational Quantum Linear Solver (VQLS) algorithm28 to enable the exponentially scalable linear 
iteration process of power flow FFF (xxx) under different outage scenarios shown in Fig. 1. The underlying idea is 
to construct a Variational Quantum Circuit (VQC) governed by a sequence of classical parameters to generate 
voltage variables ∆xxx which include differences of voltage amplitudes ∆VVV  and voltage angles ∆θθθ such that the 
updated part (left side of power flow iteration formulation) is proportional to measurement (right side) in (1):

	
|ΨΨΨ⟩ = JJJ |∆xxx⟩√

⟨∆xxx|JJJT JJJ |∆xxx⟩
= |∆FFF (xxx)⟩.� (1)

More details are discussed in the Materials and Methods section ‘Quantum-encoded reformulation.’
The efficacy of the QCA method is initially illustrated in a five-node transmission system shown in Fig. 2A. 

This system is comprised of two generators: the first is equipped at node 1, which delivers a constant output, 
and the second is located at node 5, which is responsible for supporting system losses. Node 5 is set as the 
slack bus, ensuring voltage stability and power balance within the network, while the remain of nodes are 
configured as PQ buses. We established a batched quantum power flow model using an 8-dimensional vector 
space to capture power flows under both normal and generator outage scenarios. Each scenario requires a four-
dimensional vector space for power flow descriptions necessitating a total of log2 8 = 3 qubits. To derive power 
flow solutions for each scenario, a variational quantum circuit is established utilizing Ry , Rz , and SX quantum 
gates. Additionally, CNOT gates are implemented to facilitate the entanglement among various qubits. This 
model leverages quantum entanglement and superposition principles, represented by a 3-qubit quantum circuit 
illustrated in Fig. 2B. The circuit is optimized to access the quantum states of voltage differences ∆VVV .

To maintain the positivity of the measurement output, the quantum states of ∆VVV  are decomposed into every 
foundational basis state. Consequently, ∆VVV  is expansively redefined in its basis states as |∆VVV ⟩ =

∑2n

k
νk|k⟩, as 

shown in Fig. 2C, where each qubit is geometrically represented by a Bloch sphere; for brevity, two basis states 
(out of eight) are illustrated. Following the optimization of the quantum circuit, the quantum states of each 
decomposed quantum basis |k⟩ are measured and the corresponding amplitudes are shown in Fig. 2D. Each 
measurement outcome in Fig. 2D corresponds to a quantum sphere in Fig. 2C. Amplitudes of QCA’s quantum 
states denotes normalized difference of electrical variables ∆xxx including voltage amplitudes ∆V  and voltage 

Fig. 2.  Quantum state profiles under generation outage and normal operation scenarios. (A) 5-node 
transmission system topology. Scenario 1: a normal operation scenario; Scenario 2: the generator outage 
scenario where the generator at node 1 fails. (B) Quantum circuit under scenarios 1 and 2. (C) Quantum 
spheres. |∆FFF (xxx)⟩ is decomposed as basis states |k⟩ from |000⟩ to |111⟩ on quantum spheres. (D) Quantum 
state outputs of optimized QCA quantum circuits for different basis and the comparison with CCA solutions.
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angles ∆θ on basis states. The measurements closely match those obtained by Classical Quantum Analysis 
(CCA)29 (classical amplitudes are also shown in Fig. 2D). This alignment underscores the effectiveness of QCA 
through quantum computing.

Table 1 provides a summary of the power flow profiles obtained through QCA under normal operational 
conditions of the power grid. In the normal operating scenario, both voltage magnitudes and angles are within 
the voltage constraint requirements. Meanwhile, the QCA voltage results are close to the CCA voltage results, 
thereby underscoring the accuracy of the QCA approach.

Generation outages detection via QCA
The previous results validate the effectiveness of QCA under the normal operation of power grids. However, 
to detect underlying contingencies, QCA must be identifiable to component (both generator and line) outages. 
We first detect the voltage profiles under the generator 1 outage scenario. The |∆FFF (xxx)⟩ for generation outages 
consist of the four decomposed quantum basis vectors on quantum spheres including |100⟩, |101⟩, |110⟩, and 
|111⟩ in Fig. 2C. By optimizing the corresponding circuit, the measurement output enables to accurately describe 
the quantum state of ∆VVV . The QCA quantum states are identical to the CCA results.

Table 1 presents the detected voltage profiles under the generator outage scenario. Compared with the voltage 
profiles under normal operation, the detected voltage magnitude at node 4 is decreased to 0.9881 p.u. due to 
a lack of power support from the generator 1, thereby indicating its importance on the voltage support of the 
power system. Since generator 5 can balance the power loss of the system, capacitors can be installed to prevent 
voltage drops under the generator 1 failure scenario.

Line outages detection via QCA
To identify line outages, a predefined list of line outage scenarios is systematically developed for parallel 
detection. This list includes outages of lines 1-5, 2-5, 1-2, and 1-3 as shown in Fig. 3A. For these four line 
outage scenarios, a 16-dimensional vector representation of ∆VVV  is formulated within a 4-qubit quantum 
circuit. Correspondingly, |∆FFF (xxx)⟩ is decomposed into 16 basis states on the quantum sphere, as shown in 
Fig. 3B. Following the optimization of the quantum circuit, the quantum states for each sphere are measured 
(corresponding amplitudes are shown in Fig. 3C). The QCA quantum states are identical to the CCA results, 
which validates the effectiveness of QCA for line outage scenarios through quantum computing.

Figure 4A and C summarize the voltage angles and magnitudes of the power grid under different line outage 
scenarios. A single-line outage can have different impacts on voltages. For example, the line 1-2 outage results 
in low voltage magnitudes at nodes 3 and 4, dropping to 0.9726 p.u. and 0.9745 p.u., respectively. Additionally, 
Figure 4B and D provide a comparative analysis of the voltage angle and magnitude deviations from the normal 
operations under different line outage scenarios. Notably, the line 1-5 outage is identified as the most critical 
impact on the power grid’s operation. This outage causes voltage magnitude drops at nodes 3 and 4 by 0.1930 
p.u. and 0.2160 p.u., respectively, which may trigger a load-shedding strategy to facilitate the grid’s recovery to 
stable conditions.

Figure 5A displays the topology of the IEEE 118-node system, including specific outage locations for pre-
determined line outage scenarios. The IEEE 118 system comprises 64 PQ buses, 53 PV buses, 186 transmission 
lines, and 54 generators. Additionally, bus 69 is set as the slack bus, serving as the reference point for balancing 
the power mismatches across the network. A total of ten line outages are simulated using the QCA approach. 
As the system scale increases, the complexity of parameter optimization as well as that of Jacobian matrix 
decomposition increases if the contingency analysis is performed by using linear iterations. We have developed a 
preconditioned hybrid quantum solver for large systems to overcome the above challenges (see ‘Error mitigation 
by hybrid quantum/classical computing’ in the Materials and Methods for details). Accordingly, Fig. 5B and C 
present the voltage amplitudes and angles across the 118-node system under 11 predefined outage scenarios 
and 1 normal operation condition. QCA indicates that the outage of line 11-13 has the most serious impact 
on the system’s voltage amplitude, notably reducing node 13’s voltage amplitude to 0.9 p.u. Furthermore, the 
outage of line 22-23 leads to a significant decrease in both voltage amplitude and angle at node 22. These 
findings are instrumental in identifying the most vulnerable components of the 118-node system in the event 
of extreme conditions. Preventive strategies such as installing backup generation and capacitors are required in 
the vulnerable locations of the system. As importantly, the advantage of quantum computing is its theoretical 
requirement of only ⌈log21298⌉ = 11 qubits to solve the 11 outage scenarios, compared with the 6490 bits 
required by classical computing. This significant reduction in computational requirements underscores the 
potential of QCA for exponential scalability in outage identification within large-scale power systems.

 Node

Generator outage Normal operation

VVV /p.u. error/e−6 θθθ/p.u. error/e−5 VVV /p.u. error/e−6 θθθ/p.u. error/e−5

1 1.0226 0.0782 –0.0528 0.1514 1.0364 0.0096 –0.0460 0.1519

2 0.9979 0.1403 –0.0898 0.1669 1.0087 0.0892 –0.0839 0.0596

3 0.9957 0.1607 –0.0960 0.1665 1.0072 0.1291 –0.0896 0.0446

4 0.9881 0.1923 –0.1122 0.1247 1.0015 0.1897 –0.1044 0.0287

5 1.0600 – 0.0000 – 1.0600 – 0.0000 –

Table 1.  Voltage profiles on generation outage and normal operation scenarios.

 

Scientific Reports |        (2025) 15:15148 4| https://doi.org/10.1038/s41598-025-98776-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


To validate the effectiveness of QCA in practical system, we conducted the QCA method within New England 
power system30 which includes 10 generators and 46 branches (See Fig.6A). This test case involved six predefined 
line outage scenarios, specifically targeting outages at lines 1-2, 2-25, 4-14, 6-11, 10-13, and 25-26 as shown in 
Fig. 6A. Accordingly, Figs. 6B and C, detail the resulting voltage amplitude and angle profiles throughout the 
system. It can be seen that each line outage leads to distinct variations in the voltage profiles. For instance, the 
outage of line 10-13 leads to a decline of the voltage magnitude at bus 12, dropping from 1.0000 p.u. to 0.9984 
p.u., because of the interruption in power support from line 10-13. Conversely, the bus 24 voltage in case 2 is 
increased from 1.0380 p.u. to 1.0798 p.u. because of the power flow redistribution. Thus, these results from the 
contingency analysis underscore the need for preventive strategies to mitigate potential system vulnerabilities.

Outage identification on real noisy quantum devices
Having demonstrated the efficiency of QCA under different outage scenarios, the demonstration of the practical 
viability and efficiency of QCA when deployed on current quantum computing platforms such as IBM quantum 
hardware IBM_lagos is essential. This IBM_lagos device, a 7-qubit system with a 32-quantum volume, is 
characterized by a median CNOT error of 1.127e−2, a median SX error of 2.397e−4 and a median readout error 

Fig. 3.  Quantum state profiles under different line outage scenarios. (A) Line outages in transmission system 
topology including Scenario 1: line 1-5 outage; Scenario 2: line 2-5 outage; Scenario 3: line 1-2 outage; Scenario 
4: line 1-3 outage. (B) Quantum spheres. The |∆FFF (xxx)⟩ integrated four line outages is decomposed as basis 
states |k⟩ on quantum spheres. (C) Quantum state outputs of optimized QCA circuits under different basis 
states and the comparison with CCA solutions.
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of 1.580e−2. Its basis gates include CNOT, ID, RZ, SX, and X gates, as detailed in Fig. 5B. The quantum shots 
are configured to 10000 in all experiments. Figure 5A and C illustrate the original quantum circuit alongside its 
modified counterpart, which incorporates specific mitigation methods.

Figure 5D illustrates the impacts of the noise in real hardware on QCA results and the performance of the 
mitigation methods that are used to relieve different errors in QCA results. The ‘ideal’ results in Fig. 5D reveal 
the measurement outputs of ∆VVV  for the decomposed basis states |010⟩ and |110⟩ on the quantum simulator. 
The ‘real raw’ results show the deviation impacts of the noise of real quantum hardware on QCA results. These 
hardware-induced errors cause slight deviations between the measurements obtained from the real quantum 
device and ideal solutions. To relieve the quantum errors, ‘real mitigate’ measurement results illustrate the 
enhanced efficacy of the modified quantum circuit, which incorporates the Pauli-twirling method to diminish 
coherent errors and a dynamic coupling technique to mitigate both dephasing and coherent errors. To further 
minimize the deviations, ‘real mitigate+’ is employed to correct the impact of measurement errors on the 
results by avoiding constructing and inverting the full error matrix Fig. 7.

Discussion
This paper has explored the application of variational quantum computing technology for the identification 
of power outages, highlighting its potential for exponential scalability with a linear increase in quantum 
qubits. Leveraging the VQLS algorithm, we have developed a quantum contingency analysis technique. After 
reformulating contingency analysis models into the quantum language, facilitating their compatibility with 
variational quantum computing algorithms, our research focused on evaluating the effectiveness of the devised 
quantum contingency analysis in identifying voltage profiles under various generator and line outages in 
power systems. The results demonstrated that the QCA method can harness quantum supremacy to produce 
exponentially scaled voltage vectors, significantly enhancing the capability to identify multiple outage scenarios 
with minimal quantum computing resources.

Unlike classical approaches such as the conjugate gradient method (CG)33 or purely quantum techniques 
such as Harrow-Hassidim-Lloyd method (HHL)34,35, the computational complexity of the QCA method does 
not have a rigid formula due to its hybrid quantum nature. However, the complexity of QCA is influenced by 
several different factors: 1) the properties of the Jacobian Matrix JJJ  specifically its size and condition number can 
increase the number of required quantum gates as these attributes scale up. Additionally, 2) as the complexity of 
the system grows, more complex variational quantum circuits are required which increases the iterations for cost 
function optimization and impacts the convergence efficiency of the method. Thus, the optimization algorithm 
may also affect the convergence performance of the QCA method.

However, quantum approaches such as HHL and VQLS offer enhanced resource efficiency with qubit 
consumption increasing logarithmically log2(N) with the problem size due to quantum superposition. In 
contrast, classical computing requires linearly increasing bit consumption 64N for double-precision floating-
point problems, indicating potentially superior scalability in quantum-based methods. The VQLS method 
utilizes variational quantum circuits that simplify quantum circuit construction and enhance noise resilience. 
Additionally, VQLS employs shallow quantum circuits to map power flow solutions in various contingency 
scenarios, which reduces circuit depth. These features make the VQLS-based QCA method advantageous in the 
NISQ era.

The exploration of detecting power system outages remains a novel frontier in quantum science, necessitating 
the integration of the physical nature of power systems into quantum computing. The QCA method effectively 
captures potential outages that could have severe impacts on power grids. The future application of QCA to 

Fig. 4.  Voltage profiles under different line outages. (A) Voltage angles under different line outages. (B) 
Voltage angle deviations between line outages and normal operation. (C) Voltage magnitudes under line 
outages. (D) Voltage magnitude deviations between line outages and normal operation. Scenario 1: line 1-5 
outage; Scenario 2: line 2-5 outage; Scenario 3: line 1-2 outage; Scenario 4: line 1-3 outage.
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ultra-scale systems and complex outage scenarios, such as N − m − m contingency analysis, requires further 
investigation due to several challenges as follows,

From a hardware perspective, current NISQ computers encounter limitations in supporting high-volume, 
deep quantum circuits for complex quantum algorithms. These constraints are primarily oriented from inherent 
quantum noise, limited coherence times, and high error rates prevalent in NISQ devices, which collectively 
impact computational accuracy and scalability. Additionally, the performance of quantum algorithms is also 
influenced by the number of qubits, their connectivity, and the availability of basic quantum gates on NISQ 
devices. For instance, if a QCA variational quantum circuit requires quantum gates that do not exist or connections 
between unlinked qubits, it necessitates recompilation into an equivalent quantum circuit that is compatible 
with available hardware. This recompilation process inevitably increases the depth of the QCA circuits, further 
complicating their implementation and potentially affecting their efficiency. Finally, the repetitive calculation 
for high-accuracy solutions on these quantum computers may lead to increased time consumption. From the 
algorithm perspective, the scaling up of system sizes can lead to a rise in both the number and complexity of 
quantum circuits. This expansion complicates the optimization of circuit parameters due to an enlarged search 
space for the optimal settings of quantum gates. Thus, there is an increasing need for more adaptive optimization 
algorithms to enhance the efficiency and reduce computational overhead in large-scale quantum computing 
environments.

Fig. 5.  Voltage profiles of the 118-node system under line outages and normal operation scenarios. (A) System 
topology and the locations of line outages. (B) Voltage amplitudes under the line outages and normal operation 
scenarios. Scenarios 1-10: line outages, Scenario 11: normal operation. (C) Voltage angles under the line 
outages and normal operation scenarios.
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To improve the QCA performance, we have devised a preconditioned hybrid quantum/classical computing 
approach to alleviate the computational burden associated with the decomposition of the Jacobian matrix 
and parameter optimization. Furthermore, we have established modified quantum circuits incorporating 
various quantum error mitigation methods, including Pauli-twirling36, dynamic decoupling37, and matrix-free 
measurement38 to relieve hardware-induced errors. In the future research, more hybrid quantum algorithms 
such as variants39 of VQLS can be implemented in special operation scenarios. We anticipate that enhanced 
methodologies will yield even more powerful and efficient QCA capabilities for broader application in complex 
power system analysis.

Fig. 7.  Quantum measurement outputs for transmission generation outages on the quantum simulator 
and real quantum computer (IBM_lagos). (A) Original quantum circuit. Dl: delay gate. (B) Topology 
of IBM_lagos. (C) Modified quantum circuit with Pauli-twirling and dynamic decoupling method. (D) 
quantum measurement results. ideal: measurement results on the quantum simulator. real raw: measurement 
results on the original quantum circuit. real mitigate: measurement results on the modified quantum circuit. 
real mitigate+: measurement results on the modified quantum circuit with matrix-free measurement error 
mitigation.

 

Fig. 6.  Voltage profiles of the New England system under line outages and normal operation scenarios. (A) 
System topology and the locations of line outages (The system topology can be found in the references30,31, the 
system map is printed from @2025 Google which can be found from link32). (B) Voltage amplitudes under the 
line outages and normal operation scenarios. Scenarios 1-6: line outages, Scenario 7: normal operation. (C) 
Voltage angles under the line outages and normal operation. scenarios.
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Methods
Power flow model
To capture underlying outages, the static state of system operation must be identified in real power grids40. Power 
flow formulates the steady-state energy flow based on the system model. Here, we use active/reactive power flow 
formulations FFF (θθθ,VVV ) to calculate the voltage profile on each node i (i ∈ N ), comprising a N-node power grid:

	 FFF (θθθ,VVV ) = SSSg − SSSl − ȲYY (θθθ) · VVV ◦ VVV .� (2)

where, VVV  and θθθ denote voltage magnitude and voltage angel vectors of the system; SSSg = [PPP g,QQQg]T  and 
SSSl = [PPP l,QQQl]T  are the generation and load power vectors, respectively; ◦ means Hadamard product; ȲYY (θθθ) is 
the extended admittance matrix.

We derive the fast decoupled power flow for contingency analysis on the fact that transmission grid voltage 
angles are mainly related to active power and voltage magnitudes to reactive power. For the nonlinear power flow 
equations, a set of power flow linear iterations is required until convergence:

	 ∆FFF (θθθ,VVV ) = JJJ · [∆θθθ, ∆VVV ]T � (3)

∆FFF , ∆θθθ and ∆VVV  denote the power mismatches, voltage angle differences and voltage magnitude differences; 
JJJ  denotes the Jacobian matrix. A full description of the power flow model is given in the supplementary 
materials41. With the calculated results, we can compare the power profiles on each node with the operating 
requirements to identify the outages and vulnerable components in the power grids.

Quantum-encoded reformulation
The quantum-encoded reformulation uses a variational quantum linear solver28 to search the solutions of the 
power flow linear iteration (3). The main target of this method is to establish a variational quantum circuit 
specified by a set of classical parameters so that the left-hand side of each linear iteration (3) is proportional to 
the right-hand side of (3). Mathematically, at each outage scenario, the corresponding formulation is established 
as (1). The corresponding Algorithm is summarized which mainly consists of outage scenario information 
updating, VQLS input preparation, and variational quantum circuit optimization in Fig. 1. To reach the power 
outage profiles, the algorithm first updates the deviations of power injections and the Jacobian matrix using 
(2). Then, the updated Jacobian matrix is encoded by a series of quantum Pauli gates42 as shown in Fig. 1. The 
VQC circuit43 is designed to describe the solution of (3) by a series of quantum gates. By optimizing the cost 
function44, VQC outputs are expected to get closer to the true values.

Error mitigation methods
While the quantum-encoded reformulation is theoretically capable of performing contingency analyses, practical 
implementation may encounter obstacles, which originate from two primary sources: quantum errors inherent 
in quantum computers, and classical errors arising from the optimization performance of quantum gates. Both 
quantum and classical computing techniques necessitate error mitigation techniques to ensure the effectiveness 
of contingency analyses in practical applications.

Error mitigation on quantum circuit design
The paper36 establishes Pauli-twirling-based VQC to mitigate quantum coherent errors for practical 
implementation. The Pauli-twirling-based VQC effectively averages out off-diagonal coherent errors across the 
Pauli basis, thereby enhancing the overall fidelity of the VQC circuit. Furthermore, Pauli-twirling helps mitigate 
the impact of coherent errors associated with gate-rescaling, thus avoiding conclusions potentially incompatible 
with the laws of physics. In the designed VQCs, the physical connectivity and circuit structure inevitably introduce 
idling times for qubits, which introduce dephasing and coherent errors. To address this, dynamic decoupling37 
is employed in the VQC to identify idle periods of qubits and replace these idle intervals with specifically 
timed gate sequences. In particular, we incorporate the sequence τ/4 − Rx(π) − τ/2 − Rx(−π) − τ/4 for 
each idling period, where, Rx denotes Rx gate, τ  represents the idling time minus the duration of two Rx(π) 
pulses. To correct measurement errors in VQC circuits, we utilize a matrix-free measurement error mitigation 
method38. This approach effectively addresses measurement errors without the necessity of constructing and 
inverting a full error matrix. This method becomes increasingly important for large-scale quantum systems, 
where the size of the error matrix grows exponentially with the number of qubits.

Error mitigation by hybrid quantum/classical computing
As the scale of the power system expands, the decomposition of the Jacobian matrix and the optimization of 
parameters within quantum circuits become increasingly complex. To address this challenge, our paper develops 
a quantum preconditioned optimizer. The core principle of this method involves utilizing a preconditioned 
matrix MMM  within an iterative optimization process45,46, aiming to minimize the errors in ∆xxx. This strategy 
distinguishes from traditional approaches that compute the Jacobian matrix to determine ∆xxx, thereby relieving 
the decomposition and parameter optimization burdens. The preconditioned errors sss are updated as:

	
|ΨΨΨk⟩ = MMM |sssk⟩√

⟨sssk|MMMT MMM |sssk⟩
= |Ĥ (xxx, ∆xxx)k⟩,� (4)
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where, |·⟩ denotes quantum state which is formulated via its basis state. For instance, |∆VVV ⟩ =
∑2n

k
νk|k⟩

; Ĥ (xxx, ∆xxx)k  is a residual vector at kth iteration, which can be initialized as FFF (xxx) − JJJ∆xxx and updated as 
Ĥ (xxx, ∆xxx)k+1 = Ĥ (xxx, ∆xxx)k + ρkJJJpppk  in which the residual are adjusted to minimize and reach convergence 
iteratively; ΨΨΨk  denotes the normalized state of the residual; sssk  denotes the preconditioned errors; pppk  refers to 
the search direction and can be updated pppk+1 = sssk+1 + Ĥ (xxx, ∆xxx)T

k+1sssk+1(Ĥ (xxx, ∆xxx)T
k sssk)−1pppk ; ρk  is a 

coefficient, and can be obtained as ρk = Ĥ (xxx, ∆xxx)T
k sssk(pppT

k JJJpppk)−1. Then, ∆xxxk+1 can be updated by using the 
gradient descent rule ∆xxxk+1 = ∆xxxk + ρkpppk . This function continues until solutions of (3) are obtained. More 
variants of error correction methods are developed to relieve the noise impacts47.

Data availability
The simulation datasets used during the current study are available from the corresponding author upon rea-
sonable request.
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