
Multiple strategy enhanced hybrid 
algorithm BAGWO combining 
beetle antennae search and 
grey wolf optimizer for global 
optimization
Fan Zhang1,2, Chuankai Liu1,2, Peng Liu1,2, Shuiting Ding1,2, Tian Qiu1,2, Jiajun Wang1,2 & 
Huipeng Du1,2

This study proposes BAGWO, a novel hybrid optimization algorithm that integrates the Beetle 
Antennae Search algorithm (BAS) and the Grey Wolf Optimizer (GWO) to leverage their complementary 
strengths while enhancing their original strategies. BAGWO introduces three key improvements: 
the charisma concept and its update strategy based on the sigmoid function, the local exploitation 
frequency update strategy driven by the cosine function, and the switching strategy for the antennae 
length decay rate. These improvements are rigorously validated through ablation experiments. 
Comprehensive evaluations on 24 benchmark functions from CEC 2005 and CEC 2017, along with 
eight real-world engineering problems, demonstrate that BAGWO achieves stable convergence and 
superior optimization performance. Extensive testing and quantitative statistical analyses confirm that 
BAGWO significantly outperforms competing algorithms in terms of solution accuracy and stability, 
highlighting its strong competitiveness and potential for practical applications in global optimization.
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HBSA	� Historically Best Search Agent
IGWO	� Improved Grey Wolf Optimizer
IA	� Immune Algorithm
LHS	� Latin Hypercube Sampling
LSO	� Light Spectrum Optimizer
MFO	� Moth-Flame Optimization algorithm
MVO	� Multi-Verse Optimizer
NFL	� No Free Lunch
PSO	� Particle Swarm Optimization
PVD	� Pressure Vessel Design problem
SA	� Simulated Annealing
SCA	� Sine-Cosine Algorithm
SPD	� Step-Cone Pulley Design problem
SRD	� Speed Reducer Design problem
SSA	� Sparrow Search Algorithm
TCSD	� Tension/Compression Spring Design problem
TLBO	� Teaching-Learning-Based Optimization
TTD	� Three-Bar Truss Design problem
WBD	� Welded Beam Design problem
WCA	� Water Cycle Algorithm
WOA	� Whale Optimization Algorithm
YYPO	� Yin-Yang-Pair Optimization

Optimization is the act of finding the best solution from a decision space given certain constraints and objectives 
(single or multi-objective)1. In real-world production practices, it is often faced with numerous optimization 
problems, such as minimizing cost, risk and time and maximizing efficiency, profit and quality2,These 
optimization problems are prevalent in agricultural production, mechanical design and machining, production 
scheduling, path planning, aviation and aerospace, water conservancy infrastructure and various other aspects 
of production and daily life, significantly impacting our lives.

Optimization problems can be categorized into single-objective optimization and multi-objective optimization 
based on the number of optimization objectives. Multi-objective optimization is often more complex than single-
objective optimization, which can be simplified into single-objective optimization problems using methods such 
as the objective constraint method, weighted sum method, and objective programming method3. In this paper, 
we focus on studying algorithms for solving single-objective optimization problems. Optimization problems 
can be classified into constrained optimization problems and unconstrained optimization problems according 
to the presence or absence of constraints. The most common way to solve constrained optimization problems is 
to transform them into unconstrained optimization problems using the penalty function method4. Optimization 
problems can be categorized into linear optimization problems and nonlinear optimization problems based 
on the characteristics of constraints and the objective function. In nonlinear optimization problems, the 
relationship between the constraints, the objective function, and the decision variables is nonlinear. Solving 
nonlinear optimization problems is typically more challenging than solving linear optimization problems. 
Real-life optimization problems frequently involve nonlinear optimization problems. The objective function 
corresponding to the optimization problem can be classified into unimodal functions and multimodal functions 
based on the number of extreme in the feasible domain. A unimodal function has only one global extremum 
in the feasible domain, which is typically the optimal solution being sought. On the other hand, multimodal 
functions have multiple extremes in the feasible domain, which makes it easier to get trapped in local extremes 
when solving for the optimal value. Many objective functions in real-world continuity optimization problems 
are multimodal functions. There are many classifications of optimization problems. The classification and 
recognition of optimization problems are helpful in selecting the appropriate optimization methods to solve 
them.

In order to solve optimization problems, deterministic optimization methods such as linear and nonlinear 
programming methods were first developed. These methods utilize functional features or gradient information 
of optimization problems to find optimal solutions and are commonly employed in solving optimization 
problems5. In contrast, non-deterministic (stochastic) optimization algorithms solve optimization problems 
based on stochastic properties, which are characterized by their simplicity, ease of implementation, independence 
from gradient information during optimization, and their effectiveness in optimizing multimodal functions. 
Therefore, they are increasingly used to solve optimization problems across various domains. In recent decades, 
non-deterministic optimization algorithms have garnered significant attention and have rapidly developed. 
They are increasingly utilized to solve optimization problems. When using a non-deterministic optimization 
algorithm to solve an optimization problem, there is no need to be concerned about the form of the optimization 
objective function or compute the gradient information. This is because the problem being optimized can be 
viewed as a black box, where deterministic inputs can be provided to obtain deterministic outputs without 
needing to consider the internal workings of the black box. By this method, the complexity of solving the 
optimization problem is significantly simplified. It is only necessary to ensure that the input to the black box 
meets the optimization constraints, and this can be achieved through the use of a penalty function. Figure 1 
illustrates the schematic diagram of the black box model.

Among the non-deterministic optimization algorithms, the most concerning is the metaheuristic algorithm. 
Metaheuristic algorithms are optimization algorithms used to address complex issues that cannot be solved 
using standard approaches6. Metaheuristic algorithms rely on two key search mechanisms in the optimization 
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process: exploration and exploitation. Exploration involves visiting regions that have not been previously 
explored in the feasible solution globally, aiming to cover as many regions as possible. It helps in escaping local 
optima. Exploitation, on the other hand, involves a detailed search of explored regions, particularly those likely 
to contain globally optimal solutions. It is beneficial for enhancing the quality and accuracy of optimization 
results. Exploration and exploitation are two contrasting search processes. Emphasizing the exploration process 
improves the likelihood of reaching the vicinity of the actual global optimum, but the quality and stability of 
the optimization results may not be guaranteed. Emphasizing the exploitation process enhances the quality of 
the optimization results but also increases the likelihood of getting trapped in a local optimum and prematurely 
converging. Therefore, the essence of metaheuristic algorithms lies in balancing exploration and exploitation to 
obtain or approximate the optimal solution. Fortunately, nature is always the best teacher, providing numerous 
sources of inspiration for metaheuristic algorithms. Many researchers have developed numerous practical 
metaheuristic algorithms by drawing inspiration from biological behaviors or natural physical phenomena. 
These algorithms can be classified into the following categories based on their sources of inspiration5,7:

	(1)	 Evolution-based: It simulates the process of natural evolution of organisms. According to Darwin’s concept 
of “survival of the fittest,” superior variations and their descendants are more likely to survive and repro-
duce. Typical algorithms include Genetic Algorithm (GA)8, Differential Evolution (DE)9, Evolution Strate-
gy (ES)10, and so on.

	(2)	 Swarm-based: It simulates the social behavior of birds, insects and animals. Typical algorithms include 
Particle Swarm Optimization (PSO)11, Sparrow Search Algorithm (SSA)12, Artificial Fish Swarm Algorithm 
(AFSA)13, Artificial Bee Colony (ABC)14, Whale Optimization Algorithm (WOA)15, Grey Wolf Optimizer 
(GWO)16, Chameleon Swarm Algorithm (CSA)5, and so on.

	(3)	 Physics-based: It simulates the laws of nature and natural physical phenomena. Typical algorithms include 
Gravitational Search Algorithm (GSA)17, Light Spectrum Optimizer (LSO)7, Simulated Annealing (SA)18, 
Water Cycle Algorithm (WCA)19, Chemical Reaction Optimization (CRO)20, and so on.

	(4)	 Human-based: It simulates human body systems, human brain thinking, and human behavior in society. 
Typical algorithms include Immune Algorithm (IA)21, Teaching-Learning-Based Optimization (TLBO)22, 
Artificial Neural Network (ANN)23, and so on.

	(5)	 Others: It includes metaheuristic algorithms that are not inspired by biological behavior or natural physi-
cal phenomena. Typical algorithms include Sine-Cosine Algorithm (SCA)24, Yin-Yang-Pair Optimization 
(YYPO)25, Five-Elements Cycle Optimization (FECO)26, and so on.

The “No Free Lunch” (NFL) theorem states that there is no single metaheuristic algorithm that can solve all types 
of optimization problems optimally. Each optimization algorithm has its own scope of application27,28. Some 
metaheuristic algorithms optimize well for unimodal functions but generally perform poorly for multimodal 
functions. Typical algorithms include GWO, WOA, and others. In contrast, some algorithms optimize well 
for multimodal functions but perform poorly for unimodal functions. Typical algorithms include the Firefly 
Algorithm (FA)29, Beetle Antennae Search algorithm (BAS)30, and so on. Therefore, integrating the existing 
unimodal function-solving advantage algorithms and multimodal function-solving advantage algorithms is an 
effective approach to improve the comprehensive optimization capability of optimization algorithms without 
violating the NFL theorem. As mentioned in Mirjalili’s paper24, the research on metaheuristic algorithms is 
mainly divided into three main directions: improving the current techniques, hybridizing different algorithms, 
and proposing new algorithms. Among them, improving the current techniques and hybridizing different 
algorithms are two crucial ways to improve the performance of the algorithms and broaden the use scenarios. 
There are numerous instances supporting this notion. For improving the current techniques, typical algorithms 
include IGWO31, MPSO32, IGA33, etc. For hybridizing different algorithms, typical algorithms include, but are 
not limited to BAS-PSO34, WPO35, SCCSA36, SA-PSO37, etc. However, these improvements or hybridization 
methods do not work well for both unimodal and multimodal problems at the same time. The purpose of this 

Fig. 1.  Simple/Complex optimization problems are regarded as black boxes.
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paper is to hybridize and improve two algorithms that have advantages in solving unimodal and multimodal 
functions, respectively, in order to improve the overall optimization performance of the proposed hybrid 
algorithm. It provides a competitive and viable option for solving practical optimization problems.

GWO was proposed by Mirjalili16et al. in 2014 and is inspired by the social hierarchy of grey wolves and the 
collaborative process of prey hunting. Since its introduction in 2014, GWO has gained widespread adoption 
in both academic and engineering fields due to its excellent optimization performance and straightforward 
implementation. However, Makhadmeh38et al. pointed out that the original GWO faces challenges such as a 
tendency to fall into local optima, high parameter sensitivity, and insufficient global optimization capabilities. 
Over the past decade, researchers have conducted extensive studies to enhance the optimization capabilities 
and applicability of the original GWO. In 2024, Makhadmeh and Mirjalili, the inventor of GWO, systematically 
summarized the development of GWOand its improved versions over the last ten years38. This paper organizes their 
research findings into two main categories for single-objective optimization improvements: Modified versions 
and Hybridized versions, as shown in Table 1. Modified versions have significantly enhanced the performance of 
GWO by incorporating various strategies such as chaos mechanisms, opposition-based learning, and adaptive 
strategies, making it more effective in handling complex optimization problems. However, these improvements 
also introduce challenges such as increased computational complexity and heightened parameter sensitivity, 
which require careful consideration in practical applications. Hybridized versions, on the other hand, combine 
GWO with other optimization algorithms to leverage their respective strengths, demonstrating exceptional 
performance in tackling complex, multi-objective, and large-scale optimization problems. Nevertheless, their 
higher implementation complexity and computational costs may limit their applicability. In the future, the 
development of GWO will focus on structured population design, adaptive parameter adjustment, and hybrid 
strategy optimization. These improvements are expected to further enhance the algorithm’s performance and 
applicability.

BAS is a metaheuristic algorithm proposed in 2017 by Jiang30et al., which is inspired by the foraging and 
mate-seeking behavior of beetles. BAS has the advantages of fewer parameters, better global search capability, 
being not easy to fall into local optima, and straightforward programming implementation. Due to its simple 
principles and efficient implementation, BAS has been widely adopted and continuously refined in both academic 
and engineering fields. Chen39 et al. systematically reviewed recent advancements in BAS, categorizing its single-
objective optimization improvement strategies into four main classes, as shown in Table 2. These methods have 
demonstrated significant optimization results within their respective applicable scopes. Chen39 et al. further 
highlighted that integrating BAS with other high-performance algorithms represents a promising approach to 
enhancing its global search capabilities, indicating a fruitful direction for future research.

From the above analysis of GWO and BAS, it is evident that BAS boasts advantages such as a simple structure, 
fewer parameters, and strong global search capabilities, particularly excelling in optimizing multimodal 
functions, although its local search ability is relatively weak. On the other hand, GWO also features a simple 
structure and fewer parameters, with strong local search capabilities, but its global search ability is somewhat 
limited. The two algorithms complement each other’s strengths. Based on the analysis and future prospects 
presented in the studies by Makhadmeh38and Chen39, integrating the two algorithms with complementary 
characteristics and designing improvement strategies tailored to their respective features holds promise for 
developing a highly competitive global optimization algorithm. Therefore, this study integrates BAS and GWO, 
proposing improvement strategies for BAS’s antenna length update, GWO’s population summoning mechanism, 
and the balance between exploration and exploitation, resulting in a high-performance new algorithm named 
BAGWO. This paper will conduct a detailed study and discussion on the design, improvement strategies, and 
overall performance of BAGWO.

The main research and contributions of this paper are listed as follows:

	(1)	 A novel algorithm named BAGWO is proposed by hybridizing GWO and BAS. This algorithm replaces 
grey wolves with beetles and simplifies the hierarchical structure. Key improvements include the swarm 
position update strategy, the local exploitation frequency switching strategy, and the beetle antenna length 
update strategy. Experimental results demonstrate that BAGWO significantly outperforms BAS and GWO 
in comprehensive optimization performance, with ablation tests further confirming the effectiveness of 
these enhancements.

	(2)	 BAGWO incorporates three improvement strategies: it prioritizes global exploration in the early stages to 
increase the likelihood of approaching the global optimum, while focusing on local exploitation in the later 
stages to enhance the stability and precision of the optimization results. Extensive experiments validate the 
effectiveness of this design approach.

	(3)	 The optimization performance of BAGWO is rigorously evaluated using 24 benchmark functions from 
CEC2005 and CEC2017, as well as eight challenging real-world engineering problems. Statistical analy-
sis shows that BAGWO exhibits strong competitiveness in comprehensive optimization performance and 
global optimization compared to other widely-used optimization algorithms.

The remainder of this paper is structured as follows. In Sect. 2, a brief overview of the fundamental principles 
and core characteristics of GWO and BAS is provided. In Sect. 3, the BAGWO, formed by integrating and 
improving GWO and BAS, is introduced, along with a detailed description of the improvement strategies, 
algorithm principles, and pseudocode. In Sect. 4, the optimization performance of the proposed BAGWO is 
tested by CEC benchmark functions, and the test results are analyzed using statistical methods. In Sect. 5, the 
proposed BAGWO is applied to real-world engineering problems. Finally, in Sect. 6, the proposed BAGWO is 
summarized, and future applications are outlined.
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Improvement approach Specific improvement strategies Pros and cons
Related 
algorithms

Modified 
versions

Binary GWO Use S-shaped and V-shaped transfer functions to convert continuous 
GWO to binary version for feature selection, text classification, etc.

Pros: suitable for binary search spaces.
Cons: may lose diversity in continuous problems.

BGWO, 
BIGWO, 
SCGWO, 
RL-GWO, 
EOCSGWO, 
etc.

Adaptive GWO Dynamically adjust GWO parameters with adaptive mechanisms for 
neural network training, power system optimization, etc.

Pros: balances exploration and exploitation.
Cons: increased computational complexity. cmaGWO, etc.

Chaotic GWO Introduce chaotic mapping mechanisms to enhance diversity and 
avoid local optima.

Pros: improves global search ability.
Cons: sensitive to chaotic map selection. SCGWO, etc.

Dynamic GWO Dynamically adjust wolf positions or population size with nonlinear 
operators to enhance flexibility and tracking ability.

Pros: adapts to complex search spaces.
Cons: may slow convergence in simple problems. VAGWO, etc.

Opposition-based 
GWO

Introduce opposition-based learning strategies to enhance exploration 
and avoid local optima.

Pros: enhances exploration.
Cons: may increase computational cost.

RL-GWO, 
EOCSGWO, 
etc.

Structured 
population GWO

Divide the population into subgroups to enhance diversity and search 
capabilities.

Pros: improves diversity.
Cons: complex implementation.

AP-TLB-
IGWO, etc.

Fractional GWO Combine fractional-order techniques for multi-view video super-
resolution, natural gas and coal consumption prediction, etc.

Pros: handles complex systems.
Cons: high computational cost. FGWO, etc.

Mutation-based 
GWO

Introduce mutation operations to enhance local search and 
convergence speed.

Pros: improves local search.
Cons: risk of premature convergence. MGWO, etc.

Greedy strategy 
GWO

Combine greedy selection and crossover operations for multi-
objective power flow optimization, economic load dispatch, etc.

Pros: fast convergence.
Cons: may get stuck in local optima.

G-SCNHGWO, 
etc.

Hybrid strategy 
GWO

Combine with other optimization algorithms to enhance global search 
and convergence speed.

Pros: balances exploration and exploitation.
Cons: increased complexity. DE-GWO, etc.

Hybridized 
versions

Combined with 
Local Search

Combine with local search algorithms to enhance local search 
capabilities.

Pros: improves local search.
Cons: may slow global search.

MbGWOSFS, 
etc.

Combined 
with swarm 
intelligence

Combine with swarm intelligence algorithms (e.g., Jaya optimizer, 
symbiotic organisms search) to enhance global search capabilities.

Pros: enhances global search.
Cons: may increase computational cost.

DA-GWO, CS-
GWO, etc.

Combined with 
evolutionary 
algorithms

Combine with evolutionary algorithms to enhance population 
diversity and global search capabilities.

Pros: improves diversity.
Cons: complex implementation.

EGWO-GA, 
etc.

Combined with 
other algorithms Combine with other algorithms for specific optimization problems. Pros: tailored for specific problems.

Cons: limited generalizability.
ELM-GWO, 
etc.
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Improvement approach Specific improvement strategies Pros and cons Related algorithms

Parameter adjustment Adjusts step size, beetle spacing, introduces beetle 
populations.

Pros: Enhances global/local search.
Cons: High complexity, sensitive to parameters.

VSBAS, BSAS, BASL, 
etc.

Adaptive mechanisms Uses inertia weights, elite selection, fallback 
mechanisms.

Pros: Fast convergence, robust.
Cons: Complexity, local optima risk.

BAS-ADAM, WSBAS, 
EBAS, ENBAS, FBAS, 
etc.

Hybrid heuristics Combines PSO, ABC, FPA, GA, ACO, etc. for 
global/local search.

Pros: Combines strengths, versatile.
Cons: High complexity, tuning needed.

BSO, BAS-PSO, BAPSO, 
MBAS, BAS-ABC, etc.

Deep learning Optimizes neural networks (BP, CNN, ELM) 
with BAS.

Pros: Improves training speed/accuracy.
Cons: High complexity, resource-heavy.

BASNNC, BASZNN, 
BAS-CNN, etc.
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Background
This section briefly introduces the BAS and the GWO, discusses the inspiration behind the two algorithms and 
the abstract model, and provides the necessary background knowledge for the content in Sect. 3.

Beetle antennae search algorithm
As shown in Fig. 2(a), which depicts the foraging process of the beetle, the length of the beetle’s antennae tends 
to be longer than its body length. When foraging for food or searching for a mate, the beetles use two antennae 
to randomly explore the nearby area. When a higher odor concentration is detected on one side, the beetles 
adjust their body in that direction and move. Conversely, they adjust their body in the opposite direction and 
move towards the higher odor concentration until reaching the vicinity of food or a mate. Using the example of 
searching for food, the action steps of a beetle can be broken down as follows:

	(1)	 A beetle arrives in an area where food is available.
	(2)	 The orientation of the beetle’s head is stochastic, utilizing information from the left and right antennae to 

detect the concentration of food odors in the directions of both antennae.
	(3)	 The beetle rotates its body towards the side with a higher odor concentration on the antennae and moves 

forward a certain distance.
	(4)	 Repeat steps (2) and (3) until food is found.

The BAS optimization algorithm model can be obtained through the bionic principle of the beetle’s foraging 
behavior. As shown in Fig. 2(b) the beetle’s body is abstracted as a center of mass, the left and right antennae are 
line segments of the same length extending from the center of mass in opposite directions, and the length of a 
single antennae is c. The process of beetle foraging can be described as follows:

	(1)	 The initial time t0 initializes the initial position (x0, y0) of the beetle, defines the length of the antennae at 
the initial time of the beetle as c0, and the orientation θ  of the beetle’s head is randomly given.

	(2)	 At time ti, the beetle detects the food position through its antennae, and calculates the positions (xl
i, yl

i) 
and (xr

i, yr
i) of the left and right antennae respectively. The calculation formulas of the antennae positions 

are as shown in Eq. (1).

	

{
xl

i, yl
i = p (xi, yi, ci, θ i, l)

xr
i, yr

i = p (xi, yi, ci, θ i, r) � (1)

Here, θ i is the angle of the beetle antennae relative to the coordinate system at time ti, and the function 
p (xi, yi, ci, θ i, m) represents the calculation function of the beetle antennae coordinate. The m in the 
function input is used to judge the left and right of the antennae.

	(3)	 Obtaining the food concentration at both antennae ends, the beetle then moves a distance di along the an-
tennae on the side with the higher food concentration and randomizes the orientation of the beetle’s head, 
and the concentration of the odor (also known as fitness) is calculated as shown in Eq. (2).

	 o = o (x, y) � (2)

Where o (x, y) represents the fitness function and (x, y) represents the position at the antennae’ end.

	(4)	 Update the length ci of the beetle antennae and the step length di of the beetle ‘s movement. The update 
formula is as shown in Eq. (3) and Eq. (4).

	 ci = q (ci−1) � (3)

Fig. 2.  Beetle antennae search algorithm model.
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	 di = g (di−1) � (4)

Where the functions q (ci−1) and g (di−1) are the length update function of the beetle antennae and the 
step length update function of the beetle, respectively.

	(5)	 Repeat steps (2) and (4) until the optimization results reach a certain accuracy ϵ , or reach the maximum 
number of iteration times N.

	(6)	 One of the conditions for the solution to reach the iteration termination of precision ϵ  is as follows.

	
∣∣o (

xl
i, yl

i

)
− o (xr

i, yr
i)

∣∣ ≤ ϵ � (5)

	(7)	 Output the optimization result (xb, yb) and its corresponding fitness o (xb, yb) and the actual number of 
iteration times Na, the solution is finished.

BAS shows good application potential in optimization problems with its unique advantages. The main features 
of the algorithm include40,41:

	(1)	 Avoiding local optima: Compared with the gradient descent algorithm, BAS can effectively escape local 
optimal solutions by randomly adjusting the search direction and incorporating an appropriate step length 
update rule. This enhances the likelihood of discovering the global optimal solution.

	(2)	 Easy to implement: The structure and implementation process of BAS are very simple. Compared with the 
gradient descent algorithm, BAS does not need the gradient information of the objective function, which 
simplifies the calculation process.

	(3)	 Suitable for low-dimensional optimization problems: When dealing with low-dimensional optimization 
problems, BAS performs particularly well. Without knowing the details of the objective function, it can 
perform effective optimization calculations, especially for solving multimodal optimization problems.

	(4)	 Easy to integrate with other algorithms: Due to its simple form, BAS is easy to combine with other algo-
rithms to form new hybrid optimization algorithms without significantly increasing the complexity of the 
algorithm.

Grey Wolf optimizer
As a carnivore that feeds on small to medium-sized prey such as goats, bison, and hares, the grey wolf often hunts 
prey predominantly as a group. Similar to the hierarchy that exists in human society, there are different social 
classes within the grey wolf group, which can be classified as α -wolf, β -wolf, δ -wolf, and ω -wolf according to 
the class, in order from high to low, as shown in Fig. 3(a)16. Where α -wolf is the leader of a pack of grey wolves 
and is responsible for directing the hunting process of the entire pack, β -wolf is the subordinate of α -wolf and 
takes orders from α -wolf and helps α -wolf in decision making and directing other lower ranked wolves, δ
-wolf is the subordinate of β - and α -wolf, and is responsible for overseeing and directing ω -wolf, and ω -wolf 
are the lowest ranked wolves in the pack of grey wolves, and are subservient to the dominance and directing of 
the other ranked wolves16,42.

When hunting prey, grey wolf packs can be broken down into the processes of stalking and approaching the 
prey, encircling the prey, and attacking the prey until it is captured. The hunting process of grey wolf packs can 
be specifically broken down into the following steps:

	(1)	 Prey found in an area.

Fig. 3.  Grey wolf optimizer model16.
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	(2)	 Stalking, approaching prey.
	(3)	 Chasing, surrounding, and harassing prey until it stops moving.
	(4)	 Attacking prey.

Through the bionics principle of grey wolf predation, the GWO model can be obtained. The specific algorithm 
details can be viewed in the article written by Mirjalili16 et al. in 2014. As shown in Fig. 3(b), the optimization 
procedure of GWO is as follows:

	(1)	 Initialize the grey wolves’ position and the parameters a, A, C  in the algorithm.
	(2)	 update the position of each grey wolf.
	(3)	 Update the fitness of each grey wolf.
	(4)	 loop procedure (2)-(3) until the maximum number of iterations is reached.
	(5)	 Output the optimal calculation results.

GWO solves the optimization problems by simulating the group hunting behavior of grey wolves. It has unique 
characteristics and has been widely used in practical engineering applications. The main features of the algorithm 
include:

	(1)	 The parameters are less, and the implementation is relatively simple: the number of parameters involved in 
the grey wolf algorithm is small, and the parameter adjustment is simple.

	(2)	 Excellent local search ability: The algorithm has excellent local search ability, especially suitable for the 
optimization of unimodal functions, and has satisfactory results.

	(3)	 Without gradient information: GWO does not need to calculate the derivative during the operation, and is 
suitable for the optimization of various types of non-differentiable or derivative difficult to obtain problems.

	(4)	 Poor global search ability and sensitive to the initial distribution: GWO in the global optimization problem 
solving is general, especially for the multimodal functions’ optimization effect is not as good as its unimodal 
functions’ optimization effect; In addition, GWO is sensitive to the initial distribution of the swarm, the 
different initial distribution of the swarm has an impact on its optimization performance.

In summary, GWO has the advantages of few parameters, relatively easy to implement, and no derivative 
information is required in the solution process. It is especially suitable for solving unimodal function optimization 
problems, but the disadvantage is that the effect of solving multimodal function problems is general, and it is 
sensitive to the initial distribution of the swarm.

Proposed BAGWO
In this section, we introduce the newly proposed hybrid optimization algorithm, which combines the advantages 
of BAS and GWO. The comprehensive optimization performance of the hybrid algorithm is expected to surpass 
that of the two original algorithms. The direction of movement during the exploration of the BAS is determined 
by the information received at the two antennae. The optimization process does not require the use of gradient 
information, making it highly effective in optimizing low-dimensional problems and multimodal functions. In 
addition, since the BAS is simple enough, combining it with other algorithms does not significantly increase 
the complexity. GWO has fewer parameters, is relatively easy to implement, has good local search ability, and 
has an exceptional optimization effect on unimodal functions. It can be seen that BAS and GWO complement 
each other’s advantages and are very suitable for cross-integration to enhance the two algorithms. The enhanced 
algorithm can yield significant optimization benefits for both unimodal and multimodal functions.

The combination of BAS and GWO forms BAGWO. The advantages of GWO and BAS are preserved in 
BAGWO, with enhancements to the exploration and exploitation strategies of BAGWO. The optimization 
solving process within BAGWO can be divided into two distinct phases based on the collective and individual 
behaviors of search agents in the swarm: global exploration phase and local exploitation phase.

Global exploration phase: As shown in Fig. 4(a), the schematic diagram illustrates the principle of BAGWO. 
In BAGWO, the search agent is replaced from a grey wolf to a beetle. The position updating method of each 
search agent in the respective swarm during the search for the optimal solution precisely mirrors the position 
updating method of a beetle in the BAS. This method ensures that the search agents consistently moves towards 
a non-inferior solution during the position updating process. Unlike GWO, each search agent in BAGWO is 
treated as an equal individual without social hierarchy. When updating its position, a search agent moves toward 
the direction indicated by the Historically Best Search Agent (HBSA), responding to its calling and attraction. 
The HBSA refers to the agent with the best fitness value since the start of the optimization process, continuously 
updated and tracked during the search. Through this global exploration mechanism, all search agents update 
their positions under the guidance of the HBSA while performing local exploitation. This approach helps focus 
the search on the region containing the actual global optimum and improves global optimization performance.

Local exploitation phase: A single search agent in the BAGWO swarm during local exploitation is illustrated 
in Fig. 4(b), where dm,j  represents the step length of the search agent as it moves and k represents the number 
of times for local exploitation under a certain number of iterations. It can be seen that in the local exploitation 
process, the search agent can only exploit in a region centered on the starting movement point with a radius of ∑

k
j=1dm,j  (The subscript m denotes the index of the search agent within the swarm, while j represents the 

current number of local exploitation), and each search agent of the swarm performs such a local exploitation 
process. In the process of local exploitation, each search agent moves according to how beetles update their 
positions in BAS. They determine the direction of movement based on the fitness information received from 
their two antennae. While effectively exploring the local region, this approach also helps to escape from local 
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optima. After the local exploitation process of all search agents in the swarm, the HBSA is updated and recorded 
to update the historical global optimal solution.

The HBSA’s position at iteration times i is denoted as Xi
b, and the corresponding fitness is F i

b, the position 
of the search agents in the swarm after the execution of the local exploitation process is 

{
Xi

1, Xi
2, · · · , Xi

m

}
, and the corresponding fitness is 

{
F i

1 , F i
2 , · · · , F i

m

}
, the update formula for the position of HBSA Xi

b is 
shown in Eqs. (6) and (7). Equation (6) represents that after all search agents in the swarm complete one round 
of searching, both their current fitness values and the historical best fitness value from the previous iteration are 
sorted. This process identifies the best fitness value F i+1

b  for the current iteration. Equation (7), on the other 
hand, utilizes this best fitness value F i+1

b  obtained from Eq. (6) to derive the corresponding historical position 
Xi+1

b  of the search agent (expressed through an inverse function). It is essential to note that the Xi+1
b  we aim 

to solve for must be based on the actual trajectory data of the BAGWO optimizer’s search process. 

	 F i+1
b = min

(
F i

1 , F i
2 , · · · , F i

m, F i
b

)
� (6)

	 Xi+1
b = f

(
F i+1

b

)−1 � (7)

In BAGWO, not only are the characteristics of BAS and GWO combined, but also the charisma (newly proposed 
concept), antennae length switching strategy, and the switching strategy of the frequency of local exploitation 
have been researched and improved to varying degrees. These improvements enhance the comprehensive 
optimization performance of BAGWO. In the following subsections, the specific details of these improvements 
will be elaborated.

Hybrid algorithm improvement strategy
The charisma and its update strategy
The charisma, derived from GWO, indicates the leadership or influence of the α-wolf over other grey wolves. 
In this paper, the charisma refers to the HBSA’s ability to attract search agents within the BAGWO framework, 
represented as a real number between 0 and 1. A charisma closer to 1 means that the HBSA strongly draws 
search agents towards its position, causing them to move there immediately when the charisma is 1. Conversely, 
as the charisma approaches 0, the HBSA’s attraction diminishes, leading search agents to return to their original 
positions, remaining stationary when the charisma equals 0.

For swarm intelligence optimization algorithms, the trade-off between exploration and exploitation 
is a crucial consideration. Exploration signifies the algorithm’s ability to conduct a global search to explore 
unexplored regions, while exploitation represents the algorithm’s local search capability to meticulously exploit 
already explored regions. The actual computational results demonstrate that emphasizing exploration in the 
early stage and exploitation in the later stage is conducive to improving the algorithm’s capability to discover 
the true optimal solution. Therefore, it is necessary to adjust the charisma based on the number of iterations. A 
smaller charisma should be used when the number of iterations is small, and a larger charisma when the number 
of iterations is large, until it reaches 1.0.

In mathematics, the sigmoid function is referred to as a growth curve due to its S-shaped curve. When the 
input is small, the output is close to 0, while a large input yields an output close to 1. Therefore, the sigmoid 
function is particularly suitable for representing the relationship between the charisma ρ  and the number 
of iterations N i, and the functional relationship between the two is given directly in Eq. (8). Nu in Eq. (8) 

Fig. 4.  Position update in BAGWO.
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represents the maximum number of iterative running times, s represents the shape coefficient. The larger s 
is, the more drastic the change of the charisma ρ  is, and vice versa, the gentler the change is. h represents the 
final charisma, which is a parameter that determines the final level of charisma. The smaller the value of h, the 
larger the range of swarm aggregation at the maximum number of iterations Nu, which is beneficial for global 
exploration but detrimental to local exploitation, potentially affecting the stability of the optimization results. 
Conversely, as the value of h approaches 1, the range of swarm aggregation becomes smaller at the maximum 
number of iterations Nu, which aids in local exploitation during the later stages of the algorithm and helps 
improve solution stability, but also increases the probability of falling into local optimum solutions. The trend of 
the charisma is shown in Fig. 5(a), and in the BAGWO proposed in this paper, the value of the shape factor s is 
set to 100 by default, and the value of the final charisma h is typically around 1, commonly approximated as 0.99. 

	
ρ =

[
1 + s

(
1−h

s

) Ni

Nu

]−1

� (8)

Switching strategy of antennae length decay rate
In BAGWO, the antenna length of the search agent represents the ratio of the detection and perception distance 
to the distance between the upper and lower bounds of the decision variables during the optimization process. 
This ratio is a relative value between 0 and 1. When this value is 1, it means that the distance of the search agent’s 
unilateral antenna length c is equal to the distance between the upper and lower bounds of the decision variables. 
It is important to note that in the native BAS algorithm, the antenna length c is an absolute value, which differs 
from the concept presented in this paper.

To enhance the accuracy of the optimization solution, it is necessary for the antennae length of the search 
agents to decrease progressively throughout the iterative optimization process. There are various methods 
to adjust the antennae length, among which the commonly used formula is shown in Eq. (9)30, in which ci 
represents the unilateral antennae length of the search agents when the number of iterations is i, σ  represents 
the decay rate of the search agents’ antennae length (It represents the rate of change in the antennae length of the 
search agent), and cd represents the minimum antennae length. Equation (9) can be simplified to the form of 
Eq. (10) when cd is set to be 0, in which cu represents the initial antennae length of the beetle. 

	 ci = σ · ci−1 + cd � (9)

	 ci = cu · σ i−1 � (10)

After benchmarking, it was found that there are limitations in updating the antennae length using the approach 
shown in Eqs. (9) and (10). Some benchmark functions are well-optimized when the Antennae Length Decay 
Rate (ALDR) σ  is large, while others are well-optimized when the ALDR is small. In order to solve the matching 
problem of the ALDR σ  is small. In order to solve the matching problem of the ALDR σ , the approach shown 
in Fig. 5(b) is adopted. A larger ALDR σ 1 is used before a certain iteration times Ns, and a smaller ALDR 
σ 2 is used after Ns. The corresponding antennae length for an iteration times of Ns is the switching point 
antennae length, denoted by cs. In the actual parameter setting, since the solution accuracy is often related to 
the final antennae length, and people are more sensitive to the value of antennae length than the ALDR σ , It is 
more intuitive to express the antennae length updating formula as a function of the final antennae length and 
the number of iterations as shown in Eq. (11), where cs can be calculated by Eq. (12), and the coefficients a and 
b in Eq. (11) represent the pre- and post- antennae length factors, which can be calculated by Eq. (13) and Eq. 
(14), respectively.

Fig. 5.  The charisma, beetle antennae length, and the frequency of local exploitation variation over iterations.
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ci =

{
cu

(
a

cu

) i−1
Ns i < Ns

cs
(

b
cs

) i−Ns
Nu−Ns i ≥ Ns

� (11)

	 cs = cu
(

a
cu

) Ns−2
Ns � (12)

	 a = Nu
−1 � (13)

	 b = 10−0.7928Nu
0.5031 � (14)

There is a connection between the parameter selection of Ns and the maximum iteration times Nu, when the 
maximum iteration times Nu is small, in order to ensure enough exploration times to avoid falling into a local 
optimum, Ns should take a larger value. Conversely, when the maximum iteration times Nu is large, it can be 
ensured that the solution space is sufficiently explored, and a relatively small value of Ns should be taken to 
ensure that the solution space is sufficiently exploited. Equation (15) is the empirical relationship between Ns 
and Nu, and the middle square bracket in the formula indicates upward rounding. 

	
Ns =

[
Nu · 2−0.6342Nu

0.1775
]

� (15)

The frequency of local exploitation update strategy
In order to make the algorithm focus on exploration in the early stage, faster and better to reach the actual 
optimal solution neighborhood and to reduce the running cost of the algorithm to some extent. Another useful 
improvement is to couple the frequency of local exploitation with the number of iterations of the algorithm, 
and the function relationship between the two is in the form of cosine function, as shown in Fig. 5(c). Through 
this mechanism, the swarm is able to maintain extensive global exploration during the early iterations. As the 
iteration progresses and the charisma value h increases, the swarm gradually shifts its focus towards local 
exploitation. Consequently, the frequency of local exploitation can be appropriately reduced in this phase. Local 
exploitation is a process of searching for the optimal solution only within the local area of the search space, and 
it is a concept in contrast to global exploration. The specific functional relationship is shown in Eq. (16), where 
N i represents the current iteration times, Nu represents the maximum iteration running times, ku represents 
the local maximum exploitation times, which is a constant, and k represents the frequency of local exploitation 
corresponding to the current iteration times. The square brackets in Eq. (16) represent upward rounding, so 
the variation rule of the frequency of local exploitation with the number of iterations is actually shown as the 
horizontal line in Fig. 5(c), and the number of horizontal lines is equal to ku. 

	
k = [ku · cos

(
π
2 · Ni

Nu

)
] � (16)

Summary of parameters in BAGWO
Summarizing the above introduction, there are a total of five parameters that need to be set when BAGWO is 
actually used, which are described as follows.

	(1)	 B, Number of search agents in the swarm: In general, the more search agents in the swarm, the better the 
optimization performance of the algorithm. However, this improvement comes at the cost of increased time 
consumption. Considering the balance between the effectiveness of the solution to the optimization prob-
lem and the time consumption, it is generally recommended that the number of search agents falls within 
the range of 5 to 50, with 30 being a commonly accepted value.

	(2)	 cu, Initial antennae length: The initial length of the search agent’s antennae is a relative value ranging from 
0 to 1. The greater the value, the larger the initial exploration space. A commonly used value is 1.0.

	(3)	 Nu, Maximum number of iteration times: If the number of iterations exceeds Nu, the algorithm stops 
running and outputs the calculation results.

	(4)	 h, Final charisma value: The charisma when the number of iterations reaches the maximum number of 
iteration times Nu, which generally takes the value of 0.99.

	(5)	 ku, The maximum frequency of local exploitation for each search agent: The smaller the value of ku, the 
faster the algorithm optimizes the solution. However, the corresponding optimization performance will de-
crease to some extent. Conversely, the larger ku is, the better the optimization performance, but the speed 
of optimizing the solution will decrease. Considering the balance between the effectiveness and time con-
sumption of the optimization problem solution, the value of the maximum frequency of local exploitation 
is generally recommended to be between 2 and 20.

In practical applications, the selection of algorithm parameters varies based on the specific requirements of the 
tasks being optimized. For tasks that are not sensitive to computation time, high configuration parameters can 
be selected. in this case, the optimization performance of BAGWO can be released enough. For optimization 
tasks that are time-sensitive, low configuration parameters should be chosen, in this case, the optimization 
performance of BAGWO is somewhat limited, but it still yields acceptable results.
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Computational procedures and pseudo-code of BAGWO
A detailed description of how BAGWO is formed and improved is given above, this subsection presents the 
detailed computational procedures and pseudo-code of BAGWO. The detailed procedures are given below.

	(1)	 Define the objective function f (X) to be solved for optimization, where X  is the decision variable of 
the optimization problem, a n-dimensional vector, and the upper and lower bounds corresponding to the 
decision variable X  are Xu and Xd, respectively.

	(2)	 Initialize the algorithm parameters, and assign initial values to the number of search agents B, the initial 
antennae length cu, the maximum iteration times Nu, the final charisma value h, and the local initial 
exploration times ku for BAGWO.

	(3)	 The initial distribution of the swarm was sampled using the Latin Hypercube Sampling (LHS) method to 
obtain the initial decision variable values X0. It should be noted that random uniform sampling is also an 
optional sampling method.

	(4)	 Calculate anterior antennae length coefficient a by Eq. (13). Determine the iteration times Ns by Eq. (15), 
corresponding to the transition of antennae length decay rate.

	(5)	 Calculate initial antennae length decay rate, contained within Eq. (11).
	(6)	 Update the frequency of local exploitation of the search agents k by Eq. (16).
	(7)	 For each search agent in the swarm, update its position by the movement mode of the beetle in BAS. For any 

search agent in the swarm, the specific steps are as follows:

	 a)	 Randomly initialize the orientation of the search agent, use an n-dimensional vector to represent this 
orientation, and normalize it.

	 θ = r
||r|| � (17)

In the Eq. (17), r is the generated random n-dimensional vector, θ  is the result of normalization, the norm in 
the equation is the Euclidean norm.

	b)	 Calculate the left antenna end position X l,i and the right antenna end position Xr,i of the search agent.

	

Xr,i
m,j = Xi

m,j + ciθ (Xu − Xd)
X l,i

m,j = Xi
m,j − ciθ (Xu − Xd) � (18)

In Eq. (18), Xi
m,j is the position of the search agent center, i in the superscript represents the number of current 

iteration times, j represents the frequency of local exploitation, and m represents the serial number of search 
agent in the swarm.

	c)	 Then the fitness f
(
Xr,i

m,j

)
, f

(
X l,i

m,j

)
 corresponding to the end of the left and right antennae of the search 

agent can be calculated.
	d)	 Calculate the new position of the search agent according to the fitness.

	1)	 If min
(
f

(
Xr,i

m,j

)
, f

(
X l,i

m,j

))
< F i

m

	 F i
m = min

(
f

(
Xr,i

m,j

)
, f

(
X l,i

m,j

))
� (19)

	 Xi
m,j+1 = Xi

m,j − 2ciθ (Xu − Xd) s
(
f

(
Xr,i

m,j

)
− f

(
X l,i

m,j

))
� (20)

	2)	 If min
(
f

(
Xr,i

m,j

)
, f

(
X l,i

m,j

))
≥ F i

m

	 Xi
m,j+1 = Xi

m,j − 0.5ciθ (Xu − Xd) s
(
f

(
Xr,i

m,j

)
− f

(
X l,i

m,j

))
� (21)

In Eq. (20) and Eq. (21), s (x) is the symbol function, F i
m represents the fitness of the m-th search agent in the 

global iteration times i.

	e)	 Repeat steps a) to d) until the local exploitation is completed for k times, j = j + 1.

	(8)	 The position Xi+1
b  and the fitness F i+1

b  of the HBSA are updated according to Eqs. (6) and (7) with i in 
the superscript representing the current iteration times.

	(9)	 Summons the search agents in the swarm to move in the direction of the HBSA. For any search agent in the 
swarm, the formula for the movement of the search agent is as follows.

	 Xi+1
m = Xi

m + ρ
(
Xi+1

b − Xi
m

)
� (22)

	(10)	 If N i = Ns, Calculate hind antennae length coefficient b by Eq. (14), Update antennae length decay rate, 
contained within Eq. (11).

	(11)	 Update the charisma according to Eq. (8).
	(12)	 Update the antennae length of the search agents according to Eq. (11).

Scientific Reports |        (2025) 15:15460 13| https://doi.org/10.1038/s41598-025-98816-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	(13)	 Runs the above steps (6)-(12) until the maximum number of iteration times Nu is reached or other itera-
tion convergence conditions are satisfied.

	(14)	 Output the final optimal result, Xb and Fb.

The pseudo-code is shown in Algorithm 1. The MATLAB source code and other resources on BAGWO are 
available at https://github.com/auroraua/BAGWO.

Algorithm 1: BAGWO

Results and discussion
In this section, the proposed BAGWO and other common competitive optimization algorithms are tested on 24 
benchmark functions, and the test results are analyzed using statistical analysis methods. The algorithms involved 
in the comparison, their parameter settings, benchmark functions selection, statistical analysis methods, and 
conclusions are described in detail below.

Benchmark functions selection
The Congress on Evolutionary Computation (CEC) is held annually to explore the topic of evolutionary 
computation from theory to practical application. During the annual CEC meeting, a set of benchmark 
functions is introduced to assess the performance of different optimization algorithms in an objective and 
fair manner. In unconstrained single-objective optimization, benchmark functions mainly include unimodal 
functions, multimodal functions, hybrid functions, and compositional functions16,36, The differences between 
each function are as follows:

	(1)	 Unimodal functions: In a given interval, this type of function has only one strictly real-valued local maxima 
or local minima. These functions are primarily utilized to assess the convergence speed and optimization 
capability of the algorithm.

	(2)	 Multimodal functions: In a given interval, this type of function has multiple real-valued local maximum 
or local minimum. These functions are primarily used to assess the local optimal escape ability and global 
exploration ability of the algorithm.

	(3)	 Hybrid functions: This type of function is a hybrid of several different unimodal and multimodal functions 
that exhibit distinct characteristics in various regions. It is primarily used to examine the ability of optimi-
zation algorithms to flexibly switch between different search stages, search areas, and search strategies.
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	(4)	 Compositional functions: This type of function is formed by combining several different unimodal or mul-
timodal functions according to specific rules, resulting in a completely new and complex function. The op-
timization difficulty of these combined functions is generally greater than that of the above three categories 
of benchmark functions. A small but essential set of combined functions is placed within the benchmark 
function collection to challenge the performance of optimization algorithms and to identify those algo-
rithms that still perform well under complex conditions.

Algorithms involved in the comparison and their parameter settings
In order to evaluate the performance and effectiveness of the proposed BAGWO, 14 commonly used competitive 
optimization algorithms are selected, including classic algorithms such as DE, GA, PSO, SA. It also includes 
competitive recently proposed algorithms such as GWO, IGWO, CSA, BAS, Dragonfly Algorithm (DA)47, 
Grasshopper Optimization Algorithm (GOA)48, Moth-Flame Optimization algorithm (MFO)45, Multi-Verse 
Optimizer (MVO)44, SCA, WOA. Table 4 shows the parameter settings of BAGWO and 14 other algorithms in 
this paper. Apart from the parameters for the BAGWO algorithm, the parameters for the other algorithms are set 
to the default values used or recommended in their original algorithm publications. It is important to note that 
due to many algorithms involved in the comparisons, adjusting their parameters would increase the complexity 
of the problem; therefore, their parameter settings remain unchanged throughout all the benchmark tests in this 
paper. For the BAGWO algorithm, setting the parameter cu to 1.0 aims to maximize the search range during 
its initial run. The value h=0.99 is the conventional default parameter mentioned in Sect. 3.1.1, while ku = 10 
indicates that each search agent can perform a maximum of 10 local exploitations during the initial optimization 
phase. A smaller ku may result in insufficient local exploration, so 10 is considered a more suitable value.

Table 5 shows the feature classification of all comparative algorithms involved in this study. It can be observed 
that the vast majority belong to swarm-based algorithms, which are also commonly used in practical applications.

BAGWO optimization performance evaluation and comparison
In this subsection, the optimization performance of the proposed BAGWO is evaluated using the CEC 
benchmark functions, and the test results are compared with 14 other commonly used optimization algorithms 
to comprehensively assess the optimization performance of the BAGWO. In the process of evaluation and 
analysis, statistical analysis methods are used to quantitatively analyze and evaluate the results.

Comparison of calculation results between BAGWO and other algorithms
Among the 24 benchmark functions selected in this paper, the input dimensions of the five benchmark functions 
F8–F12 are fixed, while the input dimensions of the 19 benchmark functions F1–F7 and F13–F24 are variable. 
The size of the input dimension represents the number of decision variables. In the comparative analysis of 
the test results in this section, the dimension of the benchmark functions with variable input dimension is 
set to 30, which is also the number of dimensions often selected in many similar works. In Table 3, detailed 
information on all benchmark functions was provided, where F1–F4 are unimodal, F5–F16 are multimodal, 
F17–F20 are hybrid, and F21–F24 are compositional functions, and Table  4 contains the parameter settings 
for all comparison algorithms participating in the study. In order to minimize the impact of random factors 
in each optimization process, each benchmark function is repeated 30 times when evaluating the optimization 
performance of the algorithm. and the average value and standard deviation of the calculated data are used to 
objectively represent the optimization result of the optimization algorithm on a specific benchmark function. 
The optimization problems addressed in this paper aim to minimize the value. Therefore, the lower the average 
value, the better the optimization performance of the algorithm, and the smaller the standard deviation, the 
greater the numerical stability of the optimization algorithm. The use of average value and standard deviation 
can reduce the influence of random factors on the calculation results to a certain extent. However, it should be 
noted that the larger outliers of the calculation results may deteriorate the average value and standard deviation. 
The boxplot can display the median, quartiles, and outliers in the data. Therefore, the box plot can be used 
as a valuable tool for comprehensively and intuitively analyzing and comparing the calculated data. However, 
in order to objectively and quantitatively analyze and evaluate the performance of the algorithms, statistical 
analysis methods will be mentioned and utilized later.

As depicted in Fig.  6, the comparison diagram illustrates the optimal fitness calculation process of 15 
optimization algorithms, including BAGWO, for 24 benchmark functions. The calculation results of BAGWO 
are represented by red dotted lines in the figure. From the qualitative analysis of the comparison curve data in 
the graph, it can be seen that BAGWO has the best comprehensive optimization performance, especially in the 
8 benchmark functions of F3, F4, F7, F8, F15, F17, F19 and F21. The optimization results are significantly better 
than those of other optimization algorithms. In addition, the optimization effect is in a dominant position in the 
11 benchmark functions of F9, F10, F11, F12, F13, F14, F16, F20, F22, F23 and F24. Moreover, the optimization 
effect is also significant in other benchmark functions not explicitly mentioned. In Fig.  6, it can also be 
observed that BAGWO demonstrates superior convergence compared to the other 14 algorithms. It can rapidly 
approach the global optimal value area within a small number of iterations, thus validating the effectiveness 
of the “exploration and development” strategy proposed in this paper. In addition, it can be observed that the 
comprehensive optimization effect of BAGWO is superior to that of GWO, BAS and IGWO, further confirming 
the effectiveness and outstanding performance of BAGWO.

Figure 7 shows the boxplot of the optimization results of the algorithms participating in the comparison 
across 24 benchmark functions. The reason for using boxplot is that they can intuitively present the data 
distribution of multiple optimization results from different algorithms across various benchmark functions, as 
well as key statistical information such as the median and interquartile range. In the same boxplot, the central 
red horizontal line indicates the median of the optimization results; the lower its position, the better the average 
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Functions Source Dim Range fmin Function type

F1 CEC 2005 F1 10/30/50/100 [−100, 100 ]dim 0 unimodal

F2 CEC 2005 F3 10/30/50/100 [−100, 100 ]dim 0 unimodal

F3 CEC 2005 F6 10/30/50/100 [−100, 100 ]dim 0 unimodal

F4 CEC 2017 F1 10/30/50/100 [−100, 100 ]dim 100 unimodal

F5 CEC 2005 F8 10/30/50/100 [−500, 500 ]dim −418.98 × 30 multimodal

F6 CEC 2005 F10 10/30/50/100 [−32, 32 ]dim 0 multimodal

F7 CEC 2005 F12 10/30/50/100 [−50, 50 ]dim 0 multimodal

F8 CEC 2005 F14 2 [−65.536, 65.536] ≈ 0.998 multimodal

F9 CEC 2005 F16 2 [−5, 5 ]dim ≈ −1.0316 multimodal

F10 CEC 2005 F19 3 [0, 1 ]dim ≈ −3.86 multimodal

F11 CEC 2005 F21 4 [0, 10 ]dim ≈ −10.1532 multimodal

F12 CEC 2005 F23 4 [0, 10 ]dim ≈ −10.5364 multimodal

F13 CEC 2017 F4 10/30/50/100 [−100, 100 ]dim 400 multimodal

F14 CEC 2017 F6 10/30/50/100 [−100, 100 ]dim 600 multimodal

F15 CEC 2017 F8 10/30/50/100 [−100, 100 ]dim 800 multimodal

F16 CEC 2017 F11 10/30/50/100 [−100, 100 ]dim 1100 multimodal

F17 CEC 2017 F13 10/30/50/100 [−100, 100 ]dim 1300 hybrid

F18 CEC 2017 F15 10/30/50/100 [−100, 100 ]dim 1500 hybrid

F19 CEC 2017 F17 10/30/50/100 [−100, 100 ]dim 1700 hybrid

F20 CEC 2017 F19 10/30/50/100 [−100, 100 ]dim 1900 hybrid

F21 CEC 2017 F21 10/30/50/100 [−100, 100 ]dim 2200 compositional

F22 CEC 2017 F25 10/30/50/100 [−100, 100 ]dim 2500 compositional

F23 CEC 2017 F27 10/30/50/100 [−100, 100 ]dim 2700 compositional

F24 CEC 2017 F29 10/30/50/100 [−100, 100 ]dim 2900 compositional
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Algorithm Parameters Algorithm category

All algorithms Swarm size B = 30, Iterations N = 500
BAGWO cu = 1.0, h = 0.99, ku = 10
DE β = [0.2, 0.8], pcr = 0.2

Classic algorithms
GA pc = 0.8, pm = 0.05
PSO vmax = 6, wmax = 0.9, wmin = 0.6, c1 = 2, c2 = 2

SA τ f = 10−10

BAS σ d = 0.95, σ d,min = 0.001, σ δ = 0.95, d0 = 3.0, σ 0 = 0.8

Recently proposed algorithms

CSA ρ = 1.0, p1 = 2.0, p2 = 2.0, c1 = 2.0, c2 = 1.8, α = 4.0, β = 3.0, γ = 2.0
DA β = 1.5
GOA cmin = 0.00004, cmax = 1.0
GWO a = [2,0](The variable adecreases linearly from 2 to 0.)

IGWO a = [2,0](The variable adecreases linearly from 2 to 0.)

MFO a = [−1, −2](The variable adecreases linearly from − 1 to −2.)

MVO W EP max = 1.0, W EP min = 0.2
SCA a = 2
WOA a = [2,0] , b = 1(The variable adecreases linearly from 2 to 0.)

 

Scientific Reports |        (2025) 15:15460 17| https://doi.org/10.1038/s41598-025-98816-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Features Name

Evolution-based DE, GA

Swarm-based BAS, CSA, DA, GOA, GWO, IGWO, MFO, PSO, WOA, BAGWO

Physics-based SA

Others MVO, SCA
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optimization performance of the algorithm. The length of the box in the vertical direction reflects the degree 
of dispersion of the optimization results: a longer box signifies poorer stability of the optimization results, 
which corresponds to worse performance of the respective algorithm on the current benchmark function. 
In simple terms, algorithms with a lower red line position and shorter boxes in the boxplot demonstrate 
better performance on the current benchmark function, providing a visual and qualitative assessment of the 
comprehensive optimization performance of the algorithms. In qualitative analysis, it can be observed from the 

Fig. 6.  Comparison of the optimization performance of the BAGWO with 14 other algorithms across 24 
benchmark functions when the function dimension is 30 (F8–F12 input dimensions fixed).
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boxplot that the optimization results of BAGWO are concentrated. The median and average values are low in the 
figure, indicating superiority over other algorithms in the calculation results of most benchmark functions. In 
Table A.1 and Table A.3 of Supplementary Material, the average value and standard deviation of the calculation 
results for 15 algorithms across 24 benchmark functions are presented, using the same data source as Fig. 7, it is 
evident that the optimization results of BAGWO are significantly superior in most benchmark functions. Based 
on the data in Figs. 6 and 7, the data in the Supplementary Material, and the corresponding qualitative analysis 
conclusions, it can be seen that the optimization performance of BAGWO is superior to that of the other 14 
algorithms included in the comparison. BAGWO demonstrates better accuracy, stability, and convergence speed 

Fig. 7.  Box plot analysis for benchmark functions F1–F24.
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in solving the optimization problem. However, to ensure the validity of this conclusion, the next section will 
further quantitatively analyze the calculation results across various dimensions.

Convergence behavior analysis
Improvement strategies for the BAGWO are discussed in Sect. 3 of this paper, including the improvement of 
the charisma, the improvement of the switching strategy for ALDR, the improvement of the frequency of local 
exploitation, and the improvement of the initial distribution of the swarm. The conclusions of the qualitative 

Fig. 8.  Search history and trajectory of the first particle in the first dimension (F1–F3, F5–F9).

 

Scientific Reports |        (2025) 15:15460 21| https://doi.org/10.1038/s41598-025-98816-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


analysis in the previous subsection validate the effectiveness of the improvement. This subsection will analyze 
how the improvement works. A total of 14 benchmark functions are selected here, namely F1–F9, F14–F16, F22, 
F23. Figures 8 and 9 depict the trends of various parameters as the number of iterations increases during the 
optimization process of BAGWO in these benchmark functions. The meanings of the subgraphs represented 
in the figures, in order of columns from left to right, are as follows: the subgraph of the benchmark functions 
dimension is 2D, the contour subgraph shows the historical optimization process of the swarm in the two-
dimensional space, the historical trajectory subgraph of the one-dimensional optimization variable, the 
convergence process subgraph of the best fitness, and the convergence process subgraph of the average fitness 
of the swarm. From the one-dimensional history trajectory graph in the third column and the swarm search 
history graph in the second column in Figs. 8 and 9, it can be seen that the search agents in the swarm change 
their positions drastically when the number of iterations is small. During this drastic change of position, the 
swarm mainly focuses on exploration, which corresponds to the left tail of the function curve of the sigmoid 
function of the charisma. At this time, the charisma value is small, and the frequency of local exploitation is also 
large. Therefore, the probability of the swarm moving in the region near the optimal solution is high. As the 
number of iterations increases, the rate of change in position rapidly levels off, at this time the charisma value 
gradually increases, the swarm is more and more focused on exploitation, and it gradually tends to exploit the 
region near the global optimum until the global optimal solution is found. From the above analysis, it can be 
seen that the BAGWO enables the swarm to quickly locate the region where the optimal solution is found in 

Fig. 9.  Search history and trajectory of the first particle in the first dimension (F4, F14–F16, F22, F23).
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the exploration-oriented process. The swarm then exploits this region in detail during the exploitation-oriented 
process, achieving a balanced exploration and exploitation in BAGWO. This balance enhances accuracy, stability, 
and convergence speed.

To further verify the convergence characteristics of BAGWO, this study employs a quantitative analysis 
method to compare the convergence speed of BAGWO with other comparative algorithms across 24 benchmark 
functions. Based on the convergence criteria derived from the iterative solving process, the algorithm is 
considered to have reached a stable convergence state when the relative error between the current iteration 
result RL at step L and the final iteration result RN  exactly does not exceed 0.1% of the relative error between 

Fig. 10.  Boxplot of convergence speeds of the algorithms.
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the initial iteration result R0 and the final iteration result RN . This convergence criterion, as shown in Eq. (23), 
provides a quantitative basis for the convergence analysis of the algorithm. 

	
RL − RN

R0 − RN
⩽ 0.001� (23)

 

The box plot shown in Fig. 10 illustrates the minimum number of iterations required for different algorithms 
to reach a stable convergence state when solving 24 benchmark functions, calculated according to Eq. (23). It 
should be noted that the data in the figure represent the results of each algorithm independently running 30 
times on each benchmark function. Furthermore, the convergence speed discussed in this paper is based on the 
stability of the algorithm’s final output results, rather than the actual global optimal solution of the optimization 
problem. As can be seen from Fig. 10, BAGWO is able to achieve stable convergence within 100–200 iterations 
in most cases (with a maximum iteration limit of 500), which is a reasonable and efficient convergence speed. 
An excessively fast convergence speed may lead the algorithm to get stuck in a local optimal solution, while a 
slow convergence could affect the stability and accuracy of the solution. It is noteworthy that the number of 
iterations required for BAGWO to achieve stable convergence on the same benchmark functions demonstrates a 
high degree of stability, with its standard deviation significantly lower than that of other comparative algorithms, 
which is beneficial for the stability of the final optimization results. This stable and efficient convergence 
characteristic exhibited by BAGWO is closely related to the three improvement strategies proposed in Sect. 3.1. 
This conclusion is further validated by the experimental results in Sect. 4.4 and 4.5.

Optimization performance comparison in different dimensions
The previous qualitative analysis of the benchmark functions’ results was conducted with a dimension of 30. 
However, in practical applications, the dimension of the optimization problems varies based on the number of 
decision variables. Therefore, it is essential to investigate whether the optimization performance of BAGWO 
deteriorates compared to other algorithms across different dimensions. This research is crucial for the future 
practical implementation of BAGWO. In this subsection, the optimization effects of 15 algorithms with 
dimensions of 10, 30, 50, and 100 on 24 benchmark functions are studied, respectively. The results are shown 
in Fig. 11, it can be observed that in F1, F4, F8, F9, F10, F11, F12, and F13, the optimization effect of BAGWO 
remains essentially unchanged, in the remaining benchmark functions, although the optimization effect is 
slightly deteriorated (except for F5), the degree of deterioration is not significant compared to other algorithms 
participating in the comparison, and the ranking of optimization ability remains basically unchanged.

A detailed statistical result of the number for algorithms that have a dominant solving position among 
benchmark functions across different dimensions is presented in Table 6. For more detailed data on different 
algorithms in different dimensions, please refer to Tables A.2, Tables A.3, Tables A.4, and Tables A.5 in the 
Supplementary Material. Based on the above analysis, when the number of decision variables in the optimization 
problems changes, the relative optimization performance of BAGWO remains essentially unchanged compared 
to other algorithms. This stability is crucial for the practical application of BAGWO in optimization problems.

Comparative analysis of BAGWO time-consuming
In the solution of optimization problems, in addition to the need for optimal performance, computational time 
consumption is also a crucial consideration for optimization problems with high time complexity or significant 
computational costs. Figure 12 illustrates the time taken by the 15 algorithms included in the comparison to 
complete a round of F1–F24 benchmark functions based on the parameter settings outlined in Table  4 and 
various dimensions. It can be observed that as the number of dimensions increases, the time consumption of 
various algorithm optimization solutions also increases. Among these solutions, GOA takes the most time. The 
proposed BAGWO does not offer an advantage in terms of time consumption under the current parameter 
settings. However, this does not indicate that BAGWO is not superior in computation time. The optimization 
algorithm’s time consumption is often related to the number of calls to the optimization objective function in 
a round of iterations. The frequency of local exploitation in Sect. 3.3 of this paper directly affects the number 
of calls to the optimization objective function, and thus influences the time consumption of the optimization 
computation process.

In the parameter setting of Table 4, the frequency of local exploitation ku of BAGWO is 10. When the value 
of k decreases, the time consumption of the optimization process will decrease, but this may affect the accuracy 
and stability of the optimization algorithm. Therefore, under the five local exploitation cases of k = 2, k = 3, 
k = 5, k = 8, k = 10, the time consumed by BAGWO to complete a round of F1–F24 benchmark functions 
and the optimization results of F1–F24 benchmark functions are taken respectively. In the optimization 
calculation process, each benchmark function runs 30 times. Figure 13 illustrates the impact of the frequency 
of local exploitation k on consumption time. The square of the correlation coefficient of the fitting line of the 
curve is R2 = 0.9999, indicating that the frequency of local exploitation k has a strong linear relationship 
with the consumption time. Figure  14 illustrates the average value of 30 optimization results of benchmark 
functions under different frequencies of local exploitation. It can be seen that the frequency of local exploitation 
significantly influences the optimization results of F2, F17, F18, and F20, while having a relatively minor impact 
on the optimization results of other benchmark functions. Therefore, for time-sensitive optimization problems, 
selecting a lower frequency of local exploitation k can maintain a good optimization effect with a high probability 
while reducing time consumption. For general time-insensitive optimization problems, the parameter settings 
in Table 4 can be utilized.

During the execution of optimization algorithms, a critical factor affecting computational cost is the number 
of times the algorithm calls the objective function of the optimization problem. Therefore, it is necessary to 
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specifically compare and analyze the frequency of objective function calls between BAGWO, BAS, and GWO. 
For consistency in analysis, assuming that the maximum number of iterations is Nuand the number of search 
agents in the swarm is B.

For the BAS algorithm, as it is not a swarm intelligence algorithm and requires calculating the objective 
function values at both ends of the left and right antennae during each iteration, the total number of objective 
function calls is 2Nu. Regarding the GWO algorithm, since each search agent invokes the objective function 
only once per iteration, the total number of objective function calls amounts to BNu. As for BAGWO, which 

Fig. 11.  Comparison of optimization performance of various algorithms under different dimensions.
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Algorithm name

Dominant quantity

Dim = 10 Dim = 30 Dim = 50 Dim = 100

BAGWO 14 14 12 12

BAS 0 0 0 0

CSA 1 0 0 0

DA 0 0 0 0

DE 3 0 0 0

GA 0 0 0 0

GOA 0 0 0 0

GWO 0 1 1 1

IGWO 2 1 1 1

MFO 0 0 0 0

MVO 0 0 0 1

PSO 1 4 2 1

SA 0 2 6 5

SCA 1 0 0 0

WOA 2 2 2 3
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incorporates features of BAS, each search agent invokes the objective function twice during a single computation. 
However, due to the adoption of a cosine-based local exploitation update strategy, the calculation of how many 
times the objective function is called per iteration by a single search agent becomes more complex. It can be 
demonstrated that when ku ≥ 1, the average number of times the objective function is called by each search 
agent in a single iteration falls between ku + 1 and 2ku. Consequently, the total number of objective function 
calls for BAGWO ranges from (ku + 1)BNu to 2kuBNu. Thus, for any given optimization problem, the 
number of objective function calls made by BAGWO is at least (ku + 1)B/2 times that of the BAS algorithm 
and at least ku + 1 times that of GWO. This analysis further confirms that BAGWO is suitable for optimization 
problems where computational cost is less of a concern.

Non-parametric statistical analysis
The optimization performance of the algorithms is compared by the average value and standard deviation of the 
test results of the benchmark functions, this is a very intuitive comparison method. However, the conclusion 
obtained by this method is not comprehensive, because the test results of each algorithm after each execution 
may not be consistent, this may cause the existence of outliers to cause the average value and standard deviation 
of the calculate results to be high. In addition, the optimization performance of the algorithms through the 
average value and standard deviation are compared by the test results of a single benchmark function. It is hard 
to say that the proposed BAGWOis necessarily superior to a certain algorithm. Therefore, it is very necessary 
to study whether it is certain that the proposed algorithm is superior to other algorithms43. Fortunately, the 
mentioned problems can be solved by statistical analysis.

Fig. 13.  Average time consumption under different frequencies of local exploitation conditions.

 

Fig. 12.  Average computation time for algorithms to calculate F1–F24 under different dimensions.
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Because the distribution of the test results of the optimization algorithms are unknown and the number of 
samples are relatively small, non-parametric test methods are used in statistical analysis, among which Friedman 
test and Wilcoxon rank-sum test are the most commonly used.

Wilcoxon rank-sum test
The Wilcoxon rank-sum test is utilized to determine if there is a significant difference between the medians of two 
related samples. It is employed to assess the performance of the proposed algorithm against other algorithms. The 
test is conducted at a significance level of 5%. After conducting the test, we obtain a p-value for each comparison. 
The p-value represents the probability of observing the current data or more extreme data under the premise that 
the null hypothesis (there is no difference in the medians of the two results) holds. When comparing BAGWO 
with another algorithm, if the p-value is less than the significance level of 0.05, we reject the null hypothesis, 
which means that there is a statistically significant difference in the median performance between BAGWO and 
that algorithm. In the Wilcoxon rank-sum test statistical results, the symbol “+” indicates that BAGWO has 
better optimization performance than the algorithms being compared, the symbol “=” indicates that BAGWO 
has comparable optimization performance to the algorithms being compared, and the symbol “-” indicates that 
BAGWO has worse optimization performance than the algorithms being compared. In Table 7, the optimization 
performance comparison results of BAGWO are presented in comparison with other algorithms across various 
dimensions (10, 30, 50, 100). It can be seen from the table that the optimization performance of BAGWO is 
significantly superior to that of other algorithms compared across various dimensions.

Friedman test
The Friedman test is used to determine if the overall distribution, represented by more than two groups of 
samples, is the same. It is used to test for differences between the test results of the proposed BAGWO and other 
algorithms. The algorithm’s optimization performance is ranked on average, and the test is conducted at a 5% 
significance level. Like the Wilcoxon rank-sum test, here, strict statistical judgments are also made through 
the p-value of the optimization result comparison data. If the p-value is less than the 5% significance level we 
set (p < 0.05), we can reject the null hypothesis, which means that we have sufficient evidence to show that the 
optimization performance distributions of different algorithms are not the same, and the ranking advantage of 
BAGWO is not merely by chance. Table 8 presents the optimization performance comparison results of BAGWO 
relative to other algorithms across different dimensions (10, 30, 50, 100, respectively). It can be seen from the 
table that the optimization performance of BAGWO ranks first in various dimensions.

The results of the Friedman test and Wilcoxon rank-sum test quantitatively demonstrate that the proposed 
BAGWO shows excellent comprehensive optimization performance. Combined with the qualitative analysis 
conclusions in the previous section, it is evident that compared with other algorithms participated in the 
comparison, BAGWO exhibits excellent accuracy, stability, and convergence speed. However, it should be 
noted that although the CEC benchmark functions provide a fair and unified testing platform for evaluating 
algorithm performance, these functions do not cover a wide range of unconstrained optimization problems. 
Of course, this is understandable, as testing on all possible optimization problems is impractical. Therefore, the 
conclusion regarding the superior performance of BAGWO in this section still requires further validation and 
substantiation through testing on more optimization problems in the future.

Sensitivity analyses of BAGWO parameters
As indicated in Sect. 3.2, BAGWO has three specific parameters: Initial antennae length cu, Final charisma 
value h, and the maximum frequency of local exploitation for each search agent ku. In previous computations, 
these parameters were set to cu = 1.0, h = 0.99, and ku = 10. To investigate the impact of these three distinct 

Fig. 14.  Average optimization results under different frequencies of local exploitation conditions.
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Compared algorithms
BAGWO vs.

Different dimensions (+/=/-)

10 30 50 100

BAS 24/0/0 24/0/0 24/0/0 24/0/0

CSA 22/1/1 23/1/0 22/2/0 24/0/0

DA 24/0/0 24/0/0 24/0/0 24/0/0

DE 17/5/2 19/3/2 19/3/2 20/3/1

GA 24/0/0 24/0/0 24/0/0 24/0/0

GOA 24/0/0 24/0/0 24/0/0 24/0/0

GWO 23/0/1 23/0/1 22/0/2 22/0/2

IGWO 17/4/3 18/4/2 20/1/3 19/3/2

MFO 21/3/0 20/4/0 20/3/1 22/2/0

MVO 24/0/0 24/0/0 23/1/0 23/0/1

PSO 24/0/0 21/0/3 20/2/2 23/1/0

SA 21/2/1 20/1/3 18/1/5 16/3/5

SCA 23/1/0 24/0/0 24/0/0 24/0/0

WOA 22/1/1 21/0/3 20/0/4 20/0/4

Overall (+/=/-) 310/17/9 309/13/14 304/13/19 309/12/15

Dominant ratio 92.26% 91.96% 90.48% 91.96%
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Compared algorithms

Average rank under different 
dimensions

Average rank Ranking10 30 50 100

BAGWO 2.223 2.115 2.242 2.151 2.183 1

BAS 14.351 14.183 14.086 13.996 14.154 15

CSA 5.917 6.734 6.896 6.933 6.620 6

DA 10.62 10.725 10.874 10.763 10.746 12

DE 4.389 5.563 5.946 6.59 5.622 4

GA 13.093 13.854 14.028 14.074 13.762 14

GOA 8.418 8.302 8.123 8.4 8.311 10

GWO 7.609 6.993 7.026 6.697 7.081 8

IGWO 3.679 3.708 4.081 4.199 3.917 2

MFO 6.928 7.944 8.38 8.932 8.046 9

MVO 7.697 6.643 6.417 6.108 6.716 7

PSO 7.589 6.374 5.896 5.634 6.373 5

SA 7.044 5.375 4.832 4.607 5.465 3

SCA 10.675 11.872 11.992 11.989 11.632 13

WOA 9.766 9.615 9.182 8.928 9.373 11
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parameter settings on BAGWO’s performance, sensitivity analyses were conducted on cu, h, and ku individually. 
During these analyses, all other conditions remained consistent with those described in Sect. 4.3.1: number of 
search agents in the swarm B = 30, a maximum number of iterations Nu = 500, and tests performed on 24 
selected CEC benchmark functions with a dimensionality of 30. Each benchmark function was executed 30 
times to minimize the effect of random errors.

For the sensitivity analysis of cu, the following values were examined: 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0. 
For h, the values were 0, 0.2, 0.4, 0.6, 0.8, 0.9, 0.99, 0.999, 0.9999, and 0.99999. For ku, the values tested were 1, 
2, 4, 6, 8, and 10. When analyzing the sensitivity of one parameter, the other two parameters were kept at their 
original settings as specified in Table 4.

The results from these analyses were processed using the Friedman test and compared with the statistical 
analysis outcomes presented in Table 8 for the average rank at dimension of 30, which serves as the Baseline. 
The findings, illustrated in Fig. 15, reveal that variations in the values of cu, h, and ku significantly affect the 
overall optimization performance of BAGWO. Specifically, changes in parameter h have the least impact, while 
changes in cu have a moderate effect, and ku exhibits the most significant influence. Notably, when cu is less 
than 0.2, the overall optimization performance of BAGWO decreases substantially. Similarly, when h is below 
0.99, there is a slight decline in performance, and for ku, smaller values lead to a more pronounced decrease 
in performance. Moreover, the parameters selected in Table 4 demonstrate excellent performance for BAGWO. 
This analysis provides valuable insights into the selection of parameters for BAGWO.

Ablation experiments on BAGWO
The ablation experiment is a crucial method commonly used to verify the effectiveness of algorithm and model 
components49. Its characteristic lies in the application of the control variable method, specifically disabling and 
removing certain functions and modules. Subsequently, a comprehensive performance comparison is carried out 
between the original algorithm (or model) and the ablated version, precisely evaluating the specific contributions 
and achievements of these functions and modules to the improvement of the system performance. This article 
focuses on the BAGWO, which is a hybrid and improved version of the GWO and the BAS. Three improvement 
strategies which mentioned in subsection 3.1 have been integrated. In this subsection, a comprehensive analysis 
of these three improvement strategies is conducted through ablation experiments, and the specific impacts of 
these improvements on the optimization performance of the BAGWO algorithm are analyzed via quantitative 
statistical analysis methods.

In this subsection, in order to conduct the ablation experiment on BAGWO, three improvement strategies 
will be removed from BAGWO respectively, as follows:

	1)	 The BAGWO with “The charisma and its update strategy” removed is called BAGWO_A, aiming to investi-
gate the impact and contribution of this strategy on the performance of BAGWO;

	2)	 The BAGWO with “Switching strategy of antennae length decay rate” removed is named BAGWO_B, which 
is used to explore the influence and contribution of this strategy on the performance of BAGWO;

	3)	 The BAGWO with “The frequency of local exploitation update strategy” removed is named BAGWO_C, in 
order to examine the impact and contribution of this strategy on the performance of BAGWO.

Based on the 24 benchmark functions selected in Sect. 4.1, we perform optimization calculations for BAGWO, 
BAGWO_A, BAGWO_B, and BAGWO_C at different decision variable dimensions. Each algorithm is run 30 
times on each benchmark function. Subsequently, the Wilcoxon rank-sum test is used to perform statistical 
analysis on the optimization calculation results, and the test is conducted at a 5% significance level. The symbol 
and meaning of the Wilcoxon rank-sum test are the same as those in Sect. 4.4.1. The statistical results are shown 
in Table 9.

Based on the statistical analysis results presented in Table 9, the following conclusions can be drawn:

	1)	 Compared to BAGWO_A, which removes “The charisma and its update strategy”, BAGWO demonstrates 
significant performance improvements in the majority (over 50%) of the 24 benchmark functions. Although 
performance degradation is observed in some benchmark functions, this does not imply that the strategy 

Fig. 15.  Sensitivity analyses of BAGWO parameters based on Friedman test average rankings.
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Compared algorithms
BAGWO vs.

Different dimensions (+/=/-)

10 30 50 100

BAGWO_A 15/1/8 13/4/7 16/5/3 18/1/5

BAGWO_B 17/7/0 20/4/0 19/5/0 19/5/0

BAGWO_C 20/4/0 21/3/0 21/3/0 21/3/0
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is ineffective or unexplainable. Specifically, when BAGWO’s final charisma value h is set relatively high, 
the gradual decrease in charisma value leads the algorithm to exhibit a stronger propensity for local search 
during later iterations. This characteristic, while enhancing local exploitation, may consequently impose 
certain limitations on the algorithm’s global exploration capabilities. It is noteworthy that these conclusions 
are based on a final charisma value of h = 0.99, and adjusting the value of h could optimize the strategy’s 
performance. Essentially, the BAGWO_A algorithm corresponds to the case where h = 0.

	2)	 Compared to BAGWO_B, which removes “Switching strategy of antennae length decay rate”, BAGWO shows 
significant performance enhancements in the vast majority of benchmark functions without any instances of 
performance degradation, fully demonstrating the effectiveness of this strategy.

	3)	 Compared to BAGWO_C, which removes “The frequency of local exploitation update strategy”, BAGWO 
achieves notable performance improvements in nearly all tested benchmark functions, with no cases of per-
formance deterioration observed. This further validates the universal effectiveness of the strategy.

Based on the abovementioned analysis results, we have validated the effectiveness of the three improvement 
strategies in BAGWO. To further quantify the contribution of each strategy to the algorithm’s performance 
enhancement, this study conducted Friedman tests, with the results presented in Table  10. It is particularly 
noteworthy that the ranking of strategy contributions is inversely related to the statistical ranking in Table 10, 
and this ordering solely reflects the relative contribution levels of the three improvement strategies. The statistical 
analysis results demonstrate that in the performance improvement of BAGWO, “Switching strategy of antennae 
length decay rate” contributes most significantly, followed by “The frequency of local exploitation update 
strategy”, while “The charisma and its update strategy” shows relatively smaller contribution. The strategies 
validated in this study hold potential for enhancing the performance of other algorithms in future research.

BAGWO for classical engineering problems
In this section, the optimization effect of the proposed BAGWO in real-world engineering optimization 
problems are compared and verified. Optimization problems in the real world often come with various equality 
or inequality constraints, which significantly compress and partition the search space of feasible solutions for 
decision variables, greatly increasing the difficulty of optimization. The eight engineering problems selected 
in this section are typical representatives of such issues and are widely used as benchmark functions when 
evaluating and comparing the performance of various single-objective optimization algorithms. Therefore, 
this paper selects these eight engineering problems to comprehensively assess and test the performance of the 
BAGWO algorithm in handling real-world optimization problems. The algorithm demonstrates excellent overall 
optimization performance in these practical engineering optimization problems, indicating that it is likely to 
achieve good optimization results in other similar unknown engineering problems as well.

Eight engineering optimization problems commonly used in the literature are selected for this purpose. These 
cases include the Tension/Compression Spring Design problem (TCSD), Pressure Vessel Design problem (PVD), 
Welded Beam Design problem (WBD), Speed Reducer Design problem (SRD), Three-bar Truss Design problem 
(TTD), Cantilever Beam Design problem (CBD), Gear Train Design problem (GTD), Step-cone Pulley Design 
problem (SPD). The schematic diagrams of the eight engineering optimization cases are shown in Fig. 16, the 
characteristics of the eight engineering optimization problems mentioned are summarized as shown in Table 11. 
It can be observed that among the eight engineering problems, only the GTD problem is a discrete optimization 
problem, while the others are all continuous optimization problems. It should be noted that the minimum values 
corresponding to the fmin column in Table 11 represent the best-known values. However, based on the needs of 
comparing different algorithms, we have used varying levels of numerical precision.

All eight engineering optimization problems mentioned above are constrained optimization problems. When 
solving constrained optimization problems, it is necessary to address the constraints. According to research 
on constraint handling methods in evolutionary computation, constraint handling methods mainly include 
penalty function methods, feasibility rule methods, multi-objective methods, and so on. Among them, feasibility 
rule methods and multi-objective methods are primarily used for multi-objective constrained optimization 
problems. While they can also be applied to single-objective optimization, their handling is more complex and 
less frequently utilized. The penalty function method has a simple principle and is easy to implement; it can 
transform constrained optimization problems into unconstrained optimization problems, thereby simplifying 
the difficulty of solving the optimization problem. It is widely used for constraint handling in single-objective 
optimization problems. Therefore, the penalty function method is chosen as the constraint handling approach 
in this context.

The penalty function method involves adding a penalty function to the objective function, which transforms 
the constrained problem into an unconstrained one. Equation (24) is a common penalty function processing 
method. Gi (X) is an inequality constraint, Hj (X) is an equality constraint, p is the number of inequality 
constraints, q is the number of equality constraints, ai and bj  are positive constants and penalty function 
coefficients, m and n are equal to 1 or 2. For the penalty function method shown in Eq. (24), when the 
candidate solution violates any constraint, the objective function value will increase, so that it is discarded in 
the optimization process. The setting of the penalty function coefficients ai and bj  directly affects the final 
optimization results. If the values are set too low, the penalty strength is weak, making it easy for the algorithm 
to enter the infeasible region, which increases the risk of converging to an infeasible solution. Conversely, if the 
values are set too high, the algorithm may excessively avoid the infeasible areas, focusing only on satisfying the 
constraints while discarding potentially high-quality solutions. This can lead to getting trapped in local regions 
too early, reducing the global search capability and increasing the likelihood of missing the global optimal 
solution. Therefore, it is important to choose appropriate penalty coefficients. After referencing other related 
literature and conducting practical tests, this paper sets the penalty function coefficient a and b for the PVD 
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Compared algorithms

Average rank under different 
dimensions

Average rank Ranking10 30 50 100

BAGWO 1.713 1.572 1.458 1.401 1.536 1

BAGWO_A 2.199 1.863 2.075 2.27 2.102 2

BAGWO_B 3.257 3.666 3.622 3.433 3.495 4

BAGWO_C 2.831 2.899 2.845 2.895 2.868 3
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problem at 108. Since the GTD problem is a constraint-free problem, there is no need to set a coefficient. The 
coefficients for the remaining six problems are all set at 106. 

	 min F (X) = f (X) ±
(∑ p

i=1aiGi (X) +
∑ q

j=1bjHj (X)
)

� (24)

s.t. Gi (X) = max(0, gi (X) )m Hj (X) = |hj (X) |n

Fig. 16.  Eight engineering problems.
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Problems Full Name Dims nG nH fmin(Approximate value) Opt. Type

TCSD Tension/Compression spring design problem 3 4 0 0.012666 Continuous

PVD Pressure vessel design problem 4 4 0 5884.39 Continuous

WBD Welded beam design problem 4 7 0 1.692768 Continuous

SRD Speed reducer design problem 7 11 0 2994.47 Continuous

TTD Three-bar truss design problem 2 3 0 263.8915 Continuous

CBD Cantilever beam design problem 5 1 0 1.339957 Continuous

GTD Gear train design problem 4 1 1 0.0 Discrete

SPD Step-cone pulley design problem 5 8 3 16.0856 Continuous
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In all the algorithms’ parameter settings related to the engineering optimization test, the maximum number of 
iterations for the algorithm is set to 500, and the number of search agents in the swarm is set to 30. The parameter 
settings for the all algorithms are detailed in Table 4. Similar to the evaluation of the optimization effectiveness of 
the benchmark functions in Sect. 4, in order to comprehensively evaluate the optimization effectiveness of the 15 
optimization algorithms, including BAGWO, for the eight engineering problems, each optimization algorithm 
was run independently on each engineering optimization problem 30 times. The optimization effectiveness was 
then comprehensively evaluated using the mean, standard deviation, and statistical methods.

Engineering optimization design case introduction
Tension/Compression spring design problem
In the TCSD problem, the optimization objective is to minimize the weight of the spring while satisfying 
constraints such as shear stress, deflection, and frequency limits. It is a classic optimization problem in mechanical 
engineering and has been widely used as a benchmark to evaluate the performance of optimization algorithms. 
The structure is schematically shown in Fig. 16(a). This problem contains three decision variables, wire diameter 
( d), mean coil diameter ( D), and the number of active coils ( N ), and the mathematical description of this 
optimization problem is shown below.

Consider: Variable X = [x1, x2,x3] = [d, D, N ] ;
Minimize: 

	 f (X) = (x3 + 2) x2x2
1 � (25)

Subject to: 

	

g1 (X) = 1 − x3x3
2

71785x4
1

≤ 0

g2 (X) = 4x2
2−x1x2

12566(x2x3
1−x4

1) + 1
5108x1

− 1 ≤ 0
g3 (X) = 1 − 140.45x1

x2
2x3

≤ 0
g4 (X) = x1+x2

1.5 − 1 ≤ 0

� (26)

Variable range: 0.05 ≤ x1 ≤ 2; 0.25 ≤ x2 ≤ 1.3; 2 ≤ x3 ≤ 15;

Pressure vessel design problem
The PVD problem was first proposed by Kannan et al. in 199450. Pressure vessels are widely used in industries 
such as chemical engineering, petroleum, natural gas, and energy. Optimizing their design can significantly 
reduce manufacturing costs, enhance safety, and minimize material waste. The optimization objective is to 
minimize the manufacturing cost of the pressure vessel while satisfying constraints such as pressure limits and 
geometric requirements. A schematic diagram of its structure is shown in Fig. 16(b). This problem contains four 
decision variables, thickness of the shell ( Ts), thickness of the head ( Th), inner radius ( R), and length of the 
cylindrical shape ( L), and the mathematical description of this optimization problem is shown below.

Consider: Variable X = [x1, x2,x3,x4] = [Ts, Th, R, L] ;
Minimize: 

	 f (X) = 0.6224x1x3x4 + 1.7781x2x2
3 + 3.1661x2

1x4 + 19.84x2
1x3 � (27)

Subject to: 

	

g1 (X) = −x1 + 0.0193x3 ≤ 0
g2 (X) = −x2 + 0.00954x3 ≤ 0

g3 (X) = −π x2
3x4 − 4π x3

3
3 + 1, 296, 000 ≤ 0

g4 (X) = x4 − 240 ≤ 0

� (28)

Variable range: 0 ≤ xi ≤ 99, i = 1,2; 10 ≤ xi ≤ 200, i = 3,4

Welded beam design problem
The WBD problem is crucial in the design of welded beams, which are widely used in construction, bridge 
engineering, and heavy machinery manufacturing. Optimizing the design can enhance structural strength, 
reduce material costs, and simplify manufacturing processes. Due to its multi-constraint nature, this problem is 
extensively used to evaluate the optimization capabilities of algorithms. The objective of the WBD problem is to 
minimize the manufacturing cost of the welded beam while satisfying constraints such as bending stress, shear 
stress, and deflection limits. A schematic diagram of its structure is shown in Fig. 16(c). This problem contains 
four decision variables, thickness of weld ( h), length of attached part of bar ( l), the height of the bar ( t), and 
thickness of the bar ( b), constraints include shear stress ( τ ), bending stress in the beam ( σ ), buckling load on 
the bar ( Pc), end deflection of the beam ( δ ), and so on, and the mathematical description of this optimization 
problem is shown below.

Consider: Variable X = [x1, x2,x3,x4] = [h, l, t, b] ;
Minimize:

	 f (X) = 1.10471x2
1x2 + 0.04811x3x4 (14.0 + x2) � (29)
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Subject to: 

	

g1 (X) = τ (X) − τ max ≤ 0
g2 (X) = σ (X) − σ max ≤ 0
g3 (X) = δ (X) − δ max ≤ 0

g4 (X) = x1 − x4 ≤ 0
g5 (X) = P − Pc (X) ≤ 0
g6 (X) = 0.125 − x1 ≤ 0

g7 (X) = 1.10471x2
1x2 + 0.04811x3x4 (14.0 + x2) − 5.0 ≤ 0

� (30)

Variable range: 0.1 ≤ xi ≤ 2, i = 1,4; 0.1 ≤ xi ≤ 10, i = 2,3
Other variables: 

	

τ (X) =
√

(τ ′ )2 + 2τ ′ τ ′ ′ x2
2R

+ (τ ′ ′ )2

τ ′ = p√
2x1x2

τ ′ ′ = MR
J

M = P
(
L + x2

2

)

R =
√

x2
2

4 +
(

x1+x2
2

)2

J = 2
[√

2x1x2

[
x2

2
4 +

(
x1+x3

2

)2
]]

σ (X) = 6P L
x2

3x4

δ (X) = 6P L3

Ex2
3x4

Pc (X) = 4.013E
√

x2
3x6

4
4L2

(
1 − x3

2L

√
E

4G

)

P = 6000
L = 14

δ max = 0.25
E = 30 × 106

G = 12 × 106

τ max = 13, 600
σ max = 30, 000

� (31)

Speed reducer design problem
The SRD problem is a complex multi-constrained optimization problem, widely used to evaluate the 
optimization capabilities of algorithms due to its numerous constraints. The speed reducer, as a core component 
of mechanical transmission systems, is extensively applied in industries such as automotive, aerospace, and 
industrial machinery. Optimizing its design can improve transmission efficiency, reduce noise, and minimize 
energy loss. The objective of the SRD problem is to minimize the weight of the speed reducer while satisfying 
constraints such as gear strength, shaft durability, and geometric requirements51. A schematic diagram of its 
structure is shown in Fig. 16(d). This problem contains seven decision variables, face width ( b), module of teeth 
( m), number of teeth in the pinion ( z), length of the first shaft between bearings ( l1), length of the second 
shaft between bearings ( l2), the diameter of the first shafts ( d1) and the diameter of second shafts ( d2), and the 
mathematical description of this optimization problem is shown below.

Consider: Variable X = [x1, x2, x3, x4, x5, x6, x7] = [b, m, z, l1, l2, d1, d2] ;
Minimize: 

	 f (X) = 0.7854x1x2
2

(
3.3333x2

3 + 14.9334x3 − 43.0934
)

− 1.508x1
(
x2

6 + x2
7
)

+ 7.4777
(
x3

6 + x3
7
)

+ 0.7854
(
x4x2

6 + x5x2
7
)

� (32)

Subject to: 

	

g1 (X) = 27
x1x2

2x3
− 1 ≤ 0

g2 (X) = 397.5
x1x2

2x2
3

− 1 ≤ 0

g3 (X) = 1.9x3
4

x2x4
6x3

− 1 ≤ 0

g4 (X) = 1.93x4
3

x2x4
7x3

− 1 ≤ 0

g5 (X) = [(745(x4/x2x3))2+16.9× 106]
1
2

110x3
6

− 1 ≤ 0

g6 (X) = [(745(x5/x2x3))2+157.5× 106]
1
2

85x3
7

− 1 ≤ 0
g7 (X) = x2x3

40 − 1 ≤ 0
g8 (X) = 5x2

x1
− 1 ≤ 0

g9 (X) = x1
12x2

− 1 ≤ 0
g10 (X) = 1.5x6+1.9

x4
− 1 ≤ 0

g11 (X) = 1.1x7+1.9
x5

− 1 ≤ 0

� (33)
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Variable rang: 
2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3, 7.3 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9 , 5.0 ≤ x7 ≤ 5.5

Three-bar truss design problem
The TTD problem is a classic structural optimization problem, with the objective of minimizing the weight 
of the truss structure while satisfying constraints such as stress limits, displacement limits, and geometric 
requirements52. The three-bar truss structure plays a significant role in civil engineering and architectural 
applications, including bridges, towers, and roof structures. Optimizing its design can enhance structural 
stability, reduce material consumption, and lower construction costs. A schematic diagram of its structure is 
illustrated in Fig. 16(e). This problem contains two decision variables, edge rod length ( A1), central rod length 
( A2), and the mathematical description of this optimization problem is shown below.

Consider: Variable X = [x1, x2] = [A1, A2];
Minimize: 

	 f (X) =
(
2
√

2x1 + x2
)

l � (34)

Subject to: 

	

g1 (X) =
√

2x1+x2√
2x2

1+2x1x2
P − σ ≤ 0

g2 (X) = x2√
2x2

1+2x1x2
P − σ ≤ 0

g3 (X) = 1√
2x2

1+2x1x2
P − σ ≤ 0

� (35)

Variable range: 0 ≤ xi ≤ 99, i = 1,2;
Other variables: l = 100; P = 2; σ = 2;

Cantilever beam design problem
The CBD problem is a classic engineering optimization problem, with the objective of minimizing the weight 
of the cantilever beam while satisfying constraints such as stress limits, deflection limits, and geometric 
requirements42. Cantilever beams are widely utilized in fields such as architecture, mechanical engineering, 
and aerospace, with applications including aircraft wings, bridges, and robotic arms. Optimizing their design 
can enhance structural strength, reduce material consumption, and lower manufacturing costs. A schematic 
diagram of the CBD structure is shown in Fig. 16(f). This problem contains five decision variables corresponding 
to the side lengths of the different arm beams, the cantilever side lengths from the fixed end to the cantilever end 
are denoted by x1, x2, x3, x4, x5 respectively, and the mathematical description of this optimization problem 
is shown below.

Consider: Variable X = [x1, x2, x3, x4, x5] ;
Minimize:

	 f (X) = 0.0624 (x1 + x2 + x3 + x4 + x5) � (36)

Subject to: 

	
g (X) = 61

x3
1

+ 27
x3

2
+ 19

x3
3

+ 7
x3

4
+ 1

x3
5

− 1 ≤ 0 � (37)

Variable range: 0.01 ≤ xi ≤ 100, i = 1,2, 3,4, 5;

Gear train design problem
The GTD problem is a classic discrete optimization problem, aiming to minimize the gear ratio error in 
gear transmission systems53. Gear transmission systems play a crucial role in industries such as automotive, 
mechanical manufacturing, and energy. Optimizing their design can improve transmission efficiency, reduce 
noise, and extend service life. The objective of the gear transmission design problem is to determine the optimal 
number of gear teeth to achieve the desired gear ratio while satisfying the constraint that the number of gear 
teeth must be a positive integer, as illustrated in Fig. 16(g). This problem contains four decision variables, gear 
A tooth count ( Ta), gear B tooth count ( Tb), gear C tooth count ( Tc), gear D tooth count ( Td), and the 
mathematical description of this optimization problem is shown below.

Consider: Variable X = [x1, x2, x3, x4] = [Ta, Tb, Tc, Td] ;
Minimize:

	 f (X) =
(

1
6.931 − x2x3

x1x4

)2 � (38)

Subject to: xi ∈ N+, i = 1,2, 3,4;
Variable range: 12 ≤ xi ≤ 60, i = 1,2, 3,4;

Step-cone pulley design problem
The SPDproblem is a complex engineering optimization problem involving multiple equality and inequality 
constraints. Its objective is to minimize the weight of the step-cone pulley while satisfying constraints related 
to transmission ratio, geometry, and strength1,54. Step-cone pulleys play a vital role in mechanical transmission 
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systems, transferring power between shafts via a belt mechanism. They are widely used in applications such as 
machine tools, textile machinery, and conveyor equipment. Optimizing their design can enhance transmission 
efficiency, reduce energy loss, and lower manufacturing costs. A schematic diagram of the system is shown in 
Fig. 16(h). This problem contains five decision variables, pulley width ( w), diameters of the four stepped pulleys 
( d1, d2, d3, d4), and the mathematical description of this optimization problem is shown below.

Consider: Variable X = [x1, x2, x3, x4, x5] = [w, d1, d2, d3, d4] ;
Minimize: 

	
f (X) = ρ w

[
d2

1

[
11 +

(
N1
N

)2
]

+ d2
2

[
1 +

(
N2
N

)2
]

+ d2
3

[
1 +

(
N3
N

)2
]

+ d2
4

[
1 +

(
N4
N

)2
]]

� (39)

Subject to: 

	

h1 (X) = C1 − C2 = 0
h2 (X) = C1 − C3 = 0
h3 (X) = C1 − C4 = 0

gi=1,2,3,4 (X) = −Ri ≤ 2
gi=5,6,7,8 (X) = (0.75 × 745.6998) − Pi−1 ≤ 0

� (40)

Variable range: 0 ≤ xi ≤ 60, i = 1,2; 0 ≤ xi ≤ 90, i = 3,4, 5
Other variables: 

	

Ci = π di
2

(
1 + Ni

N

)
+

(
Ni
N

−1
)2

4a
+ 2a, i = 1,2, 3,4

Ri = exp
(
µ

[
π − 2sin−1 [(

Ni
N

− 1
)

di
2a

]])
, i = 1,2, 3,4

Pi = stw (1 − Ri) π diNi
60 , i = 1,2, 3,4

t = 8
s = 1.75
µ = 0.35
ρ = 7200

a = 3

� (41)

Comparison of calculation results for engineering problems
The iterative process results for the engineering problems are illustrated in Fig.  17. As shown, BAGWO 
demonstrates good optimization performance across all problems, exhibiting relatively faster convergence rates 
compared to other benchmark algorithms while consistently ranking among the top performers in terms of 
final optimization results. The corresponding box plots in Fig. 18, which characterize the accuracy and stability 
of the computational results, reveal that BAGWO maintains excellent stability across all eight engineering 
problems without any noticeable performance degradation. This section primarily focuses on the qualitative 
analysis of the engineering problems. For a comprehensive quantitative analysis, please refer to Sect. 5.3, with 
detailed numerical data available in Table A.6 of the supplementary materials. It should be noted that due to 
the poor performance of the GA on these eight engineering problems, the data curves of different algorithms 
were compressed into a very small region, making it difficult to discern meaningful information. Therefore, the 

Fig. 17.  Convergence plots of eight engineering problems.
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data for the GA algorithm has been removed from Figs. 17 and 18. This is also clearly demonstrated in the data 
analysis of Sect. 5.3, where the overall performance of the GA algorithm is the worst.

Engineering optimization problems statistical analysis results
In this subsection, the optimization results of eight engineering problems are statistically analyzed and 
processed. Table A.6 in the Supplementary Material presents the mean and variance of the optimization results 
for the 14 algorithms across the eight engineering problems. It is observed that BAGWO exhibits the best 
optimization effect for four of the engineering problems, and its performance for the remaining four problems is 
also commendable. However, as mentioned in Sect. 4, the mean and standard deviation alone cannot provide a 
definitive comprehensive ranking of the optimization effectiveness of an algorithm when dealing with different 
optimization problem outcomes. Consequently, in this subsection, the Wilcoxon rank-sum test and Friedman 
test from the nonparametric statistical analysis method are also employed for a comprehensive comparison and 
analysis of the optimization performance.

Wilcoxon rank-sum test
The Wilcoxon rank-sum test is utilized to determine if there is a significant difference between the medians of 
two related samples. It is employed to assess the performance of the proposed algorithm against other algorithms. 
The test is conducted at a significance level of 5%. In the Wilcoxon rank-sum test statistical results, the symbol 
“+” indicates that BAGWO has better optimization performance than the algorithm being compared, the symbol 
“=” indicates that BAGWO has comparable optimization performance to the algorithm being compared, and the 
symbol “-” indicates that BAGWO has worse optimization performance than the algorithm being compared. In 
Table 12, the optimization performance comparison results of BAGWO are presented in comparison with other 
algorithms. From the statistical analysis data in the table, it is observed that the optimization performance of 
BAGWO is significantly superior to that of other algorithms involved in the comparison.

Friedman test
The Friedman test is used to determine if the overall distribution, represented by more than two groups of 
samples, is the same. It is also used to test for differences between the test results of the proposed BAGWO and 
other algorithms. The algorithm’s optimization performance is ranked on average, and the test is conducted at 
a 5% significance level. Table 13 presents the optimization performance comparison results of BAGWO relative 
to other algorithms. From the statistical analysis data, it can be seen that the comprehensive optimization 
performance ranking of BAGWO ranks first among the algorithms involved in the comparison.

The results of the Friedman test and Wilcoxon rank-sum test quantitatively demonstrate the superior 
comprehensive optimization performance of the proposed BAGWO in solving real-world engineering problems. 
Similarly, its effectiveness and outstanding optimization results in addressing constrained optimization 
problems are also confirmed. However, it should be noted that the real world presents a vast array of constrained 
optimization problems, and the constrained problems discussed in this chapter cannot represent all such cases. 
Therefore, the performance of BAGWO still needs to be tested and validated on a broader range of constrained 
optimization problems in the future. Nevertheless, based on the experimental data and analysis presented in this 
study, BAGWO has proven to be a highly competitive optimization algorithm.

Conclusion and future work
This paper proposes a novel hybrid optimization algorithm, BAGWO, which integrates and enhances the GWO 
and BAS. Three improvement strategies are introduced to boost its overall optimization performance, and ablation 
experiments confirm their effectiveness. Comprehensive evaluations on the CEC2005 and CEC2017 benchmark 

Fig. 18.  Boxplot of results for eight engineering problems.
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Compared Algorithms
BAGWO vs. better/comparable/worse (+/=/-)

BAS 8/0/0

CSA 4/1/3

DA 8/0/0

DE 6/1/1

GA 8/0/0

GOA 8/0/0

GWO 7/0/1

IGWO 5/0/3

MFO 6/1/1

MVO 8/0/0

PSO 6/1/1

SA 6/1/1

SCA 8/0/0

WOA 8/0/0

Overall (+/=/-) 96/5/11

Dominant ratio 85.71%
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Compared Algorithms Mean rank Rank

BAGWO 2.917 1

IGWO 3.431 2

CSA 3.529 3

DE 5.615 4

GWO 6.088 5

PSO 6.3 6

MFO 7.002 7

MVO 7.965 8

GOA 9.031 9

DA 9.313 10

SA 9.333 11

WOA 10.256 12

SCA 10.696 13

BAS 13.525 14

GA 15 15
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functions, along with eight real-world engineering problems, demonstrate that BAGWO outperforms other 
advanced algorithms in accuracy, stability, and convergence speed. It exhibits strong competitiveness in global 
optimization tasks and maintains robust performance across problems of varying dimensions, with relatively 
slow performance degradation, highlighting its adaptability to diverse optimization challenges.

While the CEC benchmark functions and engineering problems provide a fair evaluation framework, their 
scope remains limited and does not encompass all types of single-objective optimization problems. Despite 
this, due to the representativeness of the CEC benchmark functions and engineering optimization problems 
selected in this paper, the experimental data and statistical analysis presented in this paper still clearly establish 
BAGWO as a highly competitive algorithm, offering significant advantages in accuracy and stability for global 
optimization and providing an effective solution for real-world applications. It is worth noting that BAGWO’s 
competitive optimization performance comes at the cost of longer runtimes. Although reducing the frequency of 
local exploitation can alleviate this issue, it may lead to performance degradation in certain scenarios. As a result, 
BAGWO is particularly well-suited for optimization tasks where runtime sensitivity is not a critical constraint.

Overall, thanks to its competitive optimization performance, BAGWO has already been successfully 
applied to multi-design point optimization for variable cycle engines and parameter estimation under partial 
performance data. Making it a powerful mathematical tool for solving practical engineering challenges. In the 
future, BAGWO can be extended to other engineering optimization domains, such as robotics, unmanned aerial 
vehicles, and mechanical design optimization, further broadening its applicability and impact.

Data availability
Data is provided within the manuscript or supplementary information files.
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