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Acute myeloid leukemia (AML) is a malignant blood cancer resulting from leukemia stem cells (LSCs) 
supplanting normal stem cells. Platelet-derived growth factors (PDGFs) are important for LSCs 
but have not been studied in the development of AML. In this study, transcriptome data of PDGFs 
were sourced from The Cancer Genome Atlas (TCGA) and GTEx databases, and relevant differential 
expression and prognosis analysis were performed using R software packages and online tools 
(UCSC-Xena Shiny tools, GEPIA2, Kaplan-Meier Plotter databases, etc.). Then, we focused on PDGFD 
expression in AML, along with its clinical and diagnostic importance, drug resistance studies, and 
association with immunotherapy. The real-time quantitative polymerase chain reaction (RT-qPCR) 
was performed to verify the expression and clinical characteristics of PDGFD. Analyses of public data 
and clinical samples revealed that PDGFD expression was upregulated compared with other PDGF 
genes, and only this upregulation was associated with poor prognosis in AML. High expression of 
PDGFD showed a significant positive correlation with intermediate-high cytogenetic risk, NPM1 
mutation, FLT3-ITD mutation, and unfavorable prognosis. ROC curve analysis indicated that PDGFD 
holds substantial diagnostic potential for AML patients. Functional enrichment analysis revealed the 
role of PDGFD in calcium and Rap1 signaling pathways. Additionally, PDGFD expression exhibited a 
significant positive correlation with natural killer cells and dendritic cells. Furthermore, we propose 
that MiR-203-3p targeting PDGFD has potential anti-leukemic effects in AML. In conclusion, 
PDGFD serves as a possible diagnostic and prognostic biomarker, as well as a target for cellular 
immunotherapy in AML.
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Acute myeloid leukemia (AML) is a hematological malignancy noted for its high aggressiveness and 
heterogeneity. The pathogenesis of AML involves the accumulation of acquired genetic mutations and epigenetic 
modifications in hematopoietic progenitor cells, resulting in the emergence of leukemic stem cells (LSCs). These 
alterations disrupt normal cellular processes such as growth, proliferation, and differentiation1. Despite progress 
in prognostic risk assessment and targeted therapy, the mortality rate of AML continues to be elevated. The long-
term survival rates for patients aged under 60 years are below 40%, while for those over 60 years, the rates are 
less than 15%, leading to significant social and economic challenges2. Hence, elucidating the mechanisms that 
underlie the progression of AML, and the improvement of prognostic outcomes is paramount.
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Leukemia stem cells (LSCs) serve as the origin of naive myeloid progenitor cells, which amass in the 
bone marrow (BM), displacing healthy hematopoietic stem and progenitor cells (HSPCs), impairing regular 
hematopoiesis, and eventually disseminating to other tissues3. Regardless of the genetic mutations that initiate the 
illness, LSCs rely on various growth factors to sustain their malignant biological equilibrium4. Previous studies 
have found that the growth factors associated with this leukemic hematopoiesis process typically align with 
those observed in normal hematopoiesis. However, in individuals with preleukemic and leukemic conditions, 
the precise control of cytokines is compromised, leading to abnormal secretion of cytokines5–7. It is worth noting 
that the enhanced proliferation of patient-derived leukemic cells in response to elevated hematopoietic growth 
factors (HGFs) in vitro is associated with unfavorable clinical consequences in AML patients. These repercussions 
include reduced rates of complete remission, heightened risk of relapse, and decreased overall survival8. Over the 
recent decades, there have been some advances in academic research and drug development on growth factors. 
Particularly, IL-1b, IL-6 and CXCL12 are emerging as potential novel targets for drug development9.

Platelet-derived growth factor (PDGF) is a crucial component of hematopoietic factors, yet its impact on 
leukemia remains unexplored. PDGF is a versatile cytokine that promotes the growth and activities of various 
primary tissues. This family consists of four polypeptide chains (PDGF-A, -B, -C, and -D), linked by disulfide 
bonds to form five distinct homodimers or heterodimers10. The PDGF receptors (PDGFR-a and -b) are part of 
the receptor tyrosine kinase type III family, encompassing c-KIT, FLT3, and the macrophage-colony-stimulating 
factor receptor11. These ligands interact with and activate their cognate receptors to stimulate the proliferation, 
survival and migration of mesenchymal cells and other cell types12–14. Several reports suggest that PDGF receptors 
can potentially regulate the functions of hematopoietic cells, while PDGF ligands secreted by hematopoietic cells 
are implicated in numerous physiological and pathological processes beyond the hematopoietic system15. Foss 
et al. demonstrated that externally sourced PDGF and PF-4, such as those secreted by platelets, can regulate 
leukemic hematopoiesis and potentially modify the activity of residual AML cells in peripheral blood stem cell 
transplants16. However, the existing studies only detected the expression of PDGF factor in leukemia cell lines in 
laboratory settings, lacking clinical sample data support, and few studies have focused on influence of the PDGF 
gene on the prognosis of leukemia patients, which is the focus of our research.

Our research delved deeply into investigating the significance of the PDGF family in AML, with a particular 
focus on PDGFD. We investigated the function of the PDGF family in AML utilizing public data, revealing an 
overexpression of PDGFD in AML patients with particular genetic abnormalities. Bioinformatics investigation 
revealed that increased PDGFD gene expression is associated with poor prognosis and diminishes patient 
responsiveness to chemotherapy. Clinical data analysis validated certain conclusions from the bioinformatics 
study. The findings highlight the potential importance of PDGFD in promoting the development and advancement 
of AML, suggesting its relevance as a prognostic indicator and therapeutic target for AML treatment.

Methods
Flow diagram
Figure 1 displays the flowchart that illustrates the entire study.

Database acquisition
The pan-cancer analysis encompassed 33 independent TCGA cancer cohorts, consisting of 9703 tumor samples 
obtained via the UCSC-Xena browser (https://xenabrowser.net/)17. The UCSC-Xena Shiny tool ​(​​​h​t​t​p​s​:​/​/​g​i​t​h​u​
b​.​c​o​m​/​o​p​e​n​b​i​o​x​/​U​C​S​C​X​e​n​a​S​h​i​n​y​​​​​)​​​1​8​​​, which offered RNA transcriptional datasets of healthy individuals from 
the Genotype-Tissue Expression (GTEx), provided data on RNA sequencing and clinical characteristics of 173 
newly diagnosed AML patients from The Cancer Genome Atlas (TCGA) dataset.

The collection of tumor specimens and clinical information
The Ethics Committee of the First Affiliated Hospital of Soochow University provided approval for this study. 
The study collected bone marrow samples from 61 patients with primary acute myeloid leukemia and 18 healthy 
donors admitted to our hospital from 2017 to 2019. During the follow-up, we gathered comprehensive clinical 
data, encompassing age, gender, treatment protocol, and result (Supplementary Table S1). All experiments were 
performed according to regulations. Informed consent to participate in the study was obtained from patients.

Analysis of gene expression and survival prognosis
The expression differences of PDGF family members between AML patients and healthy individuals were 
analyzed based on the datasets: TCGA and GTEx (GEPIA2 project)19, and Leukemia MILE study (Bloodspot 
project)20. The Kaplan-Meier Plotter database (KM-Plotter; https://kmplot.com/)21 was commonly employed to 
assess the prognostic relevance of PDGFs in AML using information from TCGA.

Real-time quantitative polymerase chain reaction (RT-qPCR)
Bone marrow specimens were collected from 61 people diagnosed with primary AML and 18 volunteers. Total 
RNA was extracted via the Trizol reagent method, and the recovered RNA underwent reverse transcription 
utilizing the Reverse Transcription Reaction Kit (TaKaRa, Otsu, Japan) following the manufacturer’s guidelines. 
The RT-qPCR assay was conducted using SYBR Green Master Mix (TaKaRa) under the following cycling 
parameters: the first cycle was at 95 °C for 30 s, and then there were 40 cycles of a two-step protocol (95 °C for 
5 s and 60 °C for 30 s). The mRNA levels of the target genes were determined using the 2^−ΔCt method, with 
β-actin mRNA serving as the normalization standard. Supplementary Table S2 listed all primer sequences used.
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Correlation analysis of PDGFD with clinical factors in AML and construction of a nomogram
Clinical data from UALCAN (http://ualcan.path.uab.edu/analysis-prot.html)22 and gene mutation data from 
the TCGA website were used to examine the potential correlation between the PDGFD gene and AML clinical 
characteristics as well as other gene mutations. The efficacy of PDGFD in diagnosing AML was assessed by the 
receiver operating characteristic (ROC) curve. The prognostic significance of the PDGFD gene in AML was 
evaluated by univariate and multivariate Cox analyses. The prognostic nomogram was developed by integrating 
relevant variables identified in the univariate Cox survival model. ROC and calibration curves were generated at 
various intervals to assess the predictive and calibration capabilities.

Identification of genes expressed in relation to PDGFD
Genes co-expressed with PDGFD in the TCGA-LAML cohort were found utilizing the LinkedOmics database 
(http://www.linkedomics.orglogin.php)23. Next, differentially expressed genes (DEGs) were evaluated between 
the PDGFDhigh and PDGFDlow groups. The shared genes between the formers were identified utilizing the jVenn 
diagrams tool.

Functional analysis and gene set enrichment analysis
Functional enrichment analyses were conducted on the identified overlapping genes, utilizing tools such as Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)24–26. Gene Set Enrichment Analysis 
(GSEA) was employed to validate the functions linked to AML and investigate the potential signaling pathways 

Fig. 1.  The overall flow chart of our study. Step1: PDGFD was screened by pan-cancer analysis and analysis 
of the expression and prognostic significance in AML. Step2: Bioinformatics analysis of PDGFD, including 
clinical significance, immuno-infiltration, drug susceptibility, functional enrichment, single cell analysis, 
and prediction of target miRNA. Step3: Validation from clinical samples, including expression and clinical 
significance of PDGFD.
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that contribute to malignant phenotypes in people with differing levels of PDGFD expression. In all GSEA 
assessments, the “c2.cgp.v2022.1.Hs.symbols.gmt” gene set from the MSigDB database ​(​​​h​t​t​p​:​/​/​w​w​w​.​g​s​e​a​m​s​i​g​d​b​​​​​
)​​​2​7​​ was chosen as the standard reference set.

Analysis of tumor immune infiltration and prediction of immunotherapy efficacy
CIBERSORT method was employed to assess the proportions of 22 immune cell phenotypes in groups 
exhibiting high or low expression of PDGFD. Simultaneously, single sample gene set enrichment analysis 
(ssGSEA) was used to scrutinize the potential cancer phenotypes linked to PDGFD expression and to investigate 
the correlation between PDGFD and enrichment during specific phases of the anti-cancer immune cycle. The 
ESTIMATE algorithm was used to quantify the quantity of immunological and stromal components in each 
sample of the tumor microenvironment. The interaction between PDGFD and 10 immunological checkpoints 
(TIGIT, LAG3, HAVCR2, CTLA4, IGSF8, ITPRIPL1, SIGLEC15, PDCD1LG2, PDCD1, and CD274) was 
assessed through Spearman correlation analysis. The association between PDGFD and immune checkpoint 
genes was concurrently examined utilizing the CAMOIP database (https://www.camoip.net/)28. Moreover, 
ten other popular immune checkpoints targeting myeloid leukemia (CTLA-4, CD80, CD86, PDCD1, CD274, 
TIM3/HAVCR2, CD47, SIRPɑ, CD200, and CD200R) were retrieved from previous studies29. Correlation 
analysis was performed to determine the relationship between PDGFD expression and immune checkpoint 
genes. Somatic mutation data were utilized to calculate TMB scores and determine MSI scores for all samples. 
Spearman analysis was employed to investigate the relationship between PDGFD expression and TMB and MSI. 
The response to immune checkpoint inhibition was anticipated utilizing the TIDE (Tumor Immune Dysfunction 
and Exclusion) technique.

Single-cell analysis
We utilized single-cell datasets from the Tumor Immune Single Cell Hub (TISCH, ​h​t​t​p​:​/​/​t​i​s​c​h​.​c​o​m​p​-​g​e​n​o​m​i​c​s​.​
o​r​g​/​​​​​)​​​3​0​​ and the scCancerExplorer (https://bianlab.cn/scCancerExplorer)31, specifically GSE116256, GSE135851, 
GSE147989, and GSE154109 to investigate the presence of potential tumor antigens in immune cells within the 
bone marrow.

Pharmacological sensitivity assessment
A drug sensitivity study was performed to forecast drug reactions using the “pRRophetic” software package 
within the R programming environment, leveraging data from the Genomics of Drug Sensitivity in Cancer 
(GDSC) repository (https://www.cancerrxgene.org/)32.

Prediction of PDGFD-regulated MiRNAs
The target prediction databases Target Scan, miRDB, mirDIP, and miRWalk were utilized to ascertain the 
possible target miRNAs of PDGFD. The miRNAs identified through the predictions of these four databases were 
chosen for further examination.

Statistical analyses
Numerous online resources are available for providing extensive statistical support, including the use of R 
program (version 4.2.1) and GraphPad Prism 9 for statistical analysis and data visualization. All statistical 
evaluations were two-tailed, with significance determined at P < 0.05.

Results
Expression and prognosis of PDGFs in pan-cancers and AML
We evaluated the transcription levels of PDGFs in pan-cancer and AML alongside a preliminary investigation 
on prognosis (Supplementary Figs. S1, S2, and S3). The findings indicated that the expression of PDGFA and 
PDGFB was diminished in AML patients compared to healthy controls, while PDGFC and PDGFD (Fig. 2A 
and C) exhibited elevated transcription levels in AML (Supplementary Figs. S1A–D, S2A–D, and S3A–D). The 
datasets from TCGA project and Bloodspot both showed significantly up-regulated expression of PDGFRA and 
PDGFRB in AML (Supplementary Fig. S1E-F and S3E-F). Prognostic analysis showed that PDGFs are risky for 
most tumors (Supplementary Fig. S1H–M). However, in AML, only the PDGFD gene is a risky factor (Fig. 2B), 
while other PDGFs were either considered protective factors or exhibited no significant effect. Furthermore, the 
KM curve indicated that patients exhibiting PDGFD overexpression poorer survival (log-rank P < 0.001, Fig. 2D) 
and PDGFB underexpression experienced markedly similar results (log-rank P = 0.0037, Fig. S2I). Considering 
the findings above, we elected to prioritize the PDGFD gene as the subject of subsequent investigation.

Association of PDGFD expression with clinical attributes from the TCGA database
We further explored the clinical relevance of PDGFD in AML patients and employed the Wilcoxon rank sum 
test (Fig.  3A) to assess PDGFD expression across patients with varying clinical characteristics. PDGFD was 
markedly overexpressed in patients exhibiting high PB blasts (> 70%; P = 0.04), FAB non-M3 subtype (P < 0.05), 
intermediate-poor cytogenetic risk (P < 0.001), positive NPM1 mutation (P < 0.001), positive FLT3 mutation 
(P = 0.02), and negative RAS mutation (P < 0.05). We then conducted a logistic analysis to investigate the 
relationship between clinical factors of AML and the high-low dichotomy of PDGFD. High expression of PDGFD 
demonstrated a substantial positive correlation with elevated PB blasts (> 70%) (OR = 2.523; P = 0.006), non-M3 
subtype (OR = 15.77; P = 0.009), intermediate-poor risk karyotype (OR = 21.149; P < 0.001), FLT3 mutation 
(OR = 2.348; P = 0.021), and NPM1 mutation (OR = 16.364; P < 0.001) (Table 1). Gender, age, white blood cell 
counts, bone marrow blast percentages, RAS mutation status, and IDH1 mutation status did not differ between 
the PDGFDhigh and PDGFDlow groups (P > 0.05) (Table 1). Furthermore, the analysis of the mutational profile 
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revealed an increased frequency of NPM1 mutations in AML cases exhibiting elevated PDGFD expression 
(P < 0.001, Fig. 3B).

This study also examines the probable utility of PDGFD in distinguishing AML patients from healthy people. 
The analysis indicated the potential of PDGFD as a biomarker, evidenced by an AUC of 0.990 (Fig. 3C). And the 
investigation discovered that PDGFD demonstrated potential utility in identifying AML patients with NPM1 
mutation (AUC = 0.841), non-M3 type AML patients (AUC = 0.811), and those with intermediate-high-risk 
karyotypes (AUC = 0.847).

Kaplan-Meier curves demonstrated that increased PDGFD expression in individuals aged ≤ 60 (P = 0.021), 
AML-M2 subtype (P = 0.009), RAS mutation-negative status (P = 0.007), NPM1 mutation-negative status 
(P = 0.029), IDH1-R132 mutation-negative status (P = 0.004), IDH1-R140 mutation-negative status (P = 0.007), 
and IDH1-R172 mutation-negative status (P = 0.006) correlated with unfavorable prognosis (Supplementary 
Fig. S4). Hereafter, Univariate Cox analysis revealed that, like cytogenetic risk (favorable vs. intermediate/poor, 
P < 0.001), FAB classification (M3 vs. non-M3, P = 0.009), and age (≤ 60 vs. >60, P < 0.001), PDGFD (high vs. low, 
P = 0.011) is a predictor of diminished overall survival (OS) (Table 2). Data suggests that elevated PDGFD gene 
expression is characteristic of high-risk AML and may correlate with unfavorable prognosis.

Nomogram construction for AML
Univariate Cox analysis suggested that age, karyotype, FAB subtype, and PDGFD expression level might be 
prognostic risk factors for AML (P < 0.05, Table 2). Therefore, we combined these factors to design a prognostic 
nomogram to improve the accuracy of AML patient survival prognostication (Supplementary Fig. S5A). Notably, 
the PDGFD predictive model effectively predicts survival outcomes among AML patients (Supplementary Fig. 
S5B–C).

Validation of expression pattern and clinical significance of PDGFD in AML from clinical data
We performed RT-qPCR experiments on all genes of the PDGF family. In comparison to 18 healthy donors, 
the expression levels of the PDGFA, PDGFD, PDGFRA, and PDGFRB genes were markedly elevated in 61 
AML patients (all P < 0.05, Supplementary Fig. S6). We observed a significant increase in the expression of the 
PDGFD gene in non-M3 AML cases, prompting further investigation including 54 of these patients (P < 0.001, 
Supplementary Fig. S7).

We employed the Wilcoxon test and Spearman analysis to investigate the clinical relevance of PDGFD 
expression (Fig. 4). The correlation study demonstrated a positive association between PDGFD expression and 
WT1 fusion gene expression (r = 0.334, P = 0.014, Fig. 4A). The Wilcoxon rank-sum test indicated that PDGFD 
levels were significantly elevated in patients with negative MPO antigen (P = 0.0196), positive NPM1 mutation 

Fig. 2.  The expression and prognostic significance of PDGFD in pan-cancers and AML. (A) The expression 
levels of PDGFD in pan-cancers. (B) A prognostic risk assessment of PDGFD in pan-cancers. (C) A 
comparative analysis of PDGFD expression in AML versus normal controls. (D) Kaplan–Meier survival curves 
of OS between PDGFDhigh and PDGFDlow groups in AML.
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Characteristics Total (N) OR (95% CI) P value

Gender (Male vs. Female) 150 1.055 (0.554–2.009) 0.870

Age (> 60 vs. <= 60) 150 1.315 (0.687–2.520) 0.409

WBC count(x10^9/L) (> 20 vs. <= 20) 149 1.583 (0.829–3.022) 0.164

BM blasts (%) (> 20 vs. <= 20) 150 1.183 (0.614–2.279) 0.616

PB blasts (%) (> 70 vs. <= 70) 150 2.523 (1.306–4.874) 0.006

FAB classifications (non-M3 vs. M3) 149 15.770 (2.006–123.982) 0.009

Cytogenetic risk
(Intermediate & Poor vs. Favorable) 148 21.149 (4.809–93.011) < 0.001

FLT3 mutation (Positive vs. Negative) 146 2.348 (1.136–4.853) 0.021

IDH1-R132 mutation (Positive vs. Negative) 148 2.423 (0.712–8.250) 0.157

IDH1-R140 mutation (Positive vs. Negative) 148 0.486 (0.140–1.688) 0.256

IDH1-R172 mutation (Positive vs. Negative) 148 1.028 (0.063–16.745) 0.985

RAS mutation (Positive vs. Negative) 149 1.739 (0.400–7.556) 0.460

NPM1 mutation (Positive vs. Negative) 149 16.364 (4.715–56.795) < 0.001

Table 1.  Association between PDGFD expression and clinical characteristics using logistic regression. 
Significance value in bold and italic indicates a p value < 0.05.

 

Fig. 3.  Clinical correlation analysis and diagnostic value evaluation of PDGFD in AML. (A) Correlation 
between PDGFD expression level and clinical parameters. (B) The difference in gene mutation pattern between 
PDGFDhigh and PDGFDlow group. (C) The value of PDGFD in diagnosing AML.
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(P = 0.0014), positive FLT3 mutation (P = 0.0436), negative GATA2 mutation (P = 0.0344), negative CEBPA 
double mutation (P = 0.0127), and negative WT1 mutation (P = 0.0256) (Fig. 4B–G). Subsequently, we stratified 
AML patients into high- and low- groups according to PDGFD. A significant correlation existed between elevated 
PDGFD levels and increased WT1 fusion, FLT3 mutation (P = 0.021), and NPM1 mutation (P < 0.001) (Table 3). 
Nonetheless, the preceding analysis did not exhibit a significant correlation between PDGFD and gender, 
age, white blood cell count, hemoglobin levels, platelet count, bone marrow blast percentage, chromosomal 
karyotype, DNMT3A mutation, TET2 mutation, IDH2 mutation, NRAS mutation, c-Kit mutation, EZH2 
mutation, and other common gene mutation statuses (P > 0.05, Table 3).

Subsequently, we examined the impact of PDGFD on the therapy outcome. We found elevated PDGFD levels 
in both the relapse group (P < 0.05, Fig. 4H) and the non-remission group (P > 0.05, Fig. 4I). We monitored AML 
patients for a median duration of 423 days. We categorized PDGFD based on the appropriate threshold and 
examined the disparities in OS, progression-free survival (PFS), and cumulative recurrence rate (CRR) between 
the PDGFDhigh and PDGFDlow cohorts. The findings indicated that individuals exhibiting elevated PDGFD 
expression experienced reduced PFS (P = 0.0177, Fig. 4K). and elevated recurrence rates (P = 0.0002, Fig. 4L).

Functional enrichment analysis
Analysis of PDGFD co-expression genes in the TCGA-LAML cohort using the LinkedOmics database identified 
2579 genes significantly associated with PDGFD in AML (|cor| > 0.2, FDR < 0.05) (Fig. 5A). 736 DEGs were 
found when comparing the high- and low- PDGFD groups in AML (Fig.  5B). An overlap of 339 PDGFD-
related genes was identified between the co-expressed genes and DEGs (Fig. 5C). GO and KEGG analyses were 
conducted on the 339 shared genes to clarify the potential biological function of PDGFD in AML. The primary 
biological process (BP) identified was “regionalization”, with “the collagen-containing extracellular matrix” 
being the predominant cellular component (CC). The molecular functions (MF) of PDGFD and its associated 
genes were mainly related to “the activity of DNA-binding transcriptional activator” (Fig. 5D). KEGG analysis 
(Fig.  5E) indicated that PDGFD and its related genes are predominantly involved in the “calcium signaling 
pathway”. Furthermore, we analyzed the correlation between PDGFD-related genes and tumor pathways 
(Fig. 5F) and identified a significant enrichment in pathway linked to “NPM1-mutated AML”. More enrichment 
pathways are available in the Supplementary Table S3-5.

We further analyzed the differential genes between NPM1 + AML and NPM1-AML. The results showed 
that 1820 genes were significantly associated with NPM1 mutation in AML (|log FC| > 1, pValue < 0.05) 
(Supplementary Fig. S8A), including 369 up-regulated genes and 1491 down-regulated genes. GO and KEGG 
analyses were conducted to clarify the potential biological function of PDGFD in NPM1 + AML. KEGG analysis 
(Supplementary Fig. S8B and Supplementary Table S6) indicated that PDGFD is predominantly involved in 
the “calcium signaling pathway”. And GO analysis showed that the main molecular functions (MF) involved in 
PDGFD were “GO:0030546-signaling receptor activator activities”. (Supplementary Fig. S8C and Supplementary 
Table S7).

Characteristics

Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Gender (Female vs. Male) 1.024 (0.671–1.564) 0.912

Age ( < = 60 vs. > 60) 3.321 (2.156–5.116) < 0.001 3.175 (1.950–5.169) < 0.001

WBC count (x10^9/L)
( < = 20 vs. > 20) 1.156 (0.757–1.764) 0.503

BM blasts (%) ( < = 20 vs. > 20) 1.159 (0.754–1.780) 0.502

PB blasts (%) ( < = 70 vs. > 70) 1.224 (0.802–1.869) 0.349

Cytogenetic risk
(Favorable vs. Intermediate and Poor) 3.184 (1.637–6.193) < 0.001 1.682 (0.741–3.820) 0.214

FAB classifications (M3vs. non-m3) 3.874 (1.408–10.658) 0.009 1.876 (0.569–6.188) 0.301

IDH1-R132 mutation
(Negative vs. Positive) 1.706 (0.691–4.215) 0.247

IDH1-R140 mutation
(Negative vs. Positive) 0.886 (0.443–1.773) 0.733

IDH1-R172 mutation
(Negative vs. Positive) 1.644 (0.229–11.829) 0.621

FLT3 mutation
(Negative vs. Positive) 0.790 (0.498–1.253) 0.316

RAS mutation
(Negative vs. Positive) 1.558 (0.570–4.264) 0.388

NPM1 mutation
(Negative vs. Positive) 0.882 (0.548–1.421) 0.606

PDGFD (Low vs. High) 1.733 (1.133–2.650) 0.011 1.289 (0.816–2.036) 0.277

Table 2.  Univariate and multivariate Cox’s regression analysis of factors associated with OS in AML. 
Significance value in bold and italic indicates a p value < 0.05.
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Relationship between PDGFD and the immune landscape
Figure 6A-B illustrates that activated NK cells, resting mast cells, resting dendritic cells, and eosinophils were the 
principal immune cells influenced by PDGFD levels. A substantial increase in activated NK cells and eosinophils 
was strongly associated with the overexpression of PDGFD. Nonetheless, PDGFD overexpression exhibited a 
negative correlation with resting dendritic cells and resting mast cells (Fig. 6A). Afterwards, the ssGSEA results 
indicated a notable positive correlation between PDGFD expression levels and the infiltration of NK-CD56 
(bright) cells, activated dendritic cells (aDCs), and T gamma delta cells (Tgd), alongside a negative correlation 
with T cells and immature dendritic cells (iDCs) (Fig. 6C). The ESTIMATE analysis demonstrated an inverse 
connection between PDGFD gene mRNA levels and both Stromal Score (P < 0.05) and ESTIMATE Score 
(P < 0.05) (Fig. 6D–E).

We analyzed the variations in gene expression of 10 immunological checkpoints at different PDGFD 
expression levels. Notably, the results showed a positive correlation only between PDCD1 and PDGFD 
expression (Fig.  6F). Utilizing the CAMOIP tool, we examined the association between PDGFD expression 
and multiple immunological markers, discovering a positive correlation with IL2RA, TGFB1, PDCD1, TM4SF, 
GPR146, CCL5, IL12A, among others. Conversely, we noted a negative connection between PDGFD expression 
and IMIGD2, along with CD244, BTLA, IL5, HS3ST2, VEGFA, ICAM1, MMP9, CD2, and additional factors 
(Supplementary Fig. 9A).

Moreover, we examined the association between PDGFD expression and ten other popular immune 
checkpoints targeting myeloid leukemia. The finding indicated that PDGFD was positively correlated with 
PDCD1 (r = 0.178, P = 0.029) and CD80 (r = 0.224, P = 0.006), whereas PDGFD was negatively correlated with 
CD200 (r = -0.365, P < 0.001) (Supplementary Fig. 9B-D).

The TMB and MSI scores for AML patients were computed to explore their association with PDGFD gene 
expression levels. No significant link was seen between gene expression and tumor microenvironment score 
(Supplementary Fig. S9E–F). Moreover, an assessment of the impact of the PDGFD gene on immunotherapy 

Fig. 4.  Experimental validation of PDGFD expression and prognostic significance in AML from our clinical 
samples. (A) A positive correlation between the mRNA expression of PDGFD and the expression of the WT1 
fusion gene. (B–G) Upregulated PDGFD in MPO-negative AML/ in CEBPA-negative AML/ in WT1-negative 
AML/ in GATA2-negative AML/ in NPM1-positive AML/ in FLT-ITD3-positive AML (all P < 0.05). (H) 
Upregulated PDGFD in the relapsed group (P < 0.05). (I) Hyper-expressive PDGFD in the non-remission 
group (P > 0.05). (J) The OS difference between PDGFDhigh and PDGFDlow groups in AML(P > 0.05). (K) The 
PFS difference between PDGFDhigh and PDGFDlow groups in AML(P < 0.05). (L) The CRR difference between 
PDGFDhigh and PDGFDlow groups in AML(P < 0.05).
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response in AML patients revealed that the gene did not significantly alter patients’ responses to immunotherapy 
(P > 0.05, Supplementary Fig. S10A).

Single-cell data validation of PDGFD gene
Single-cell data can more effectively depict the distribution of PDGFD in immune cells in the tumor 
microenvironment. The TISCH tool was employed to analyze the distribution of PDGFD gene expression across 
four AML single-cell datasets (GSE116256, GSE135851, GSE147989, and GSE154109, Fig. 7). The results showed 
an apparent elevation in PDGFD expression within tumor cells (GSE147989), NK cells (GSE116256), CD8 + Tex 
cells (GSE154109), and endothelial cells (GSE135851) adjacent to the tumor (Fig. 7B–C and Supplementary 
Fig. S11), in line with the findings of the immune infiltration analysis. When comparing NK cells to the control 
group, PDGFD-expressing NK cells in AML group decreased (Fig. 7D).

Characteristics High expression of PDGFD(n = 27) Low expression of PDGFD(n = 27) P value

Gender, n (%)
Female 15 (27.8%) 11 (20.4%) 0.276

Male 12 (22.2%) 16 (29.6%)

FAB classification, n (%)

AML-M0 0 (0%) 1 (1.9%) 0.089

AML-M1 5 (9.3%) 1 (1.9%)

AML-M2 13 (24.1%) 20 (37%)

AML-M4 9 (16.7%) 4 (7.4%)

AML-M5 0 (0%) 1 (1.9%)

Cytogenetics risk, n (%)

Favorable 2 (3.7%) 3 (5.6%) 0.497

Intermediate 24 (44.4%) 21 (38.9%)

Poor 1 (1.9%) 3 (5.6%)

NPM1 mutation, n (%)
Positive 8 (14.8%) 1 (1.9%) 0.028

Negative 19 (35.2%) 26 (48.1%)

FLT3-ITD mutation, n (%)
Positive 10 (18.5%) 3 (5.6%) 0.026

Negative 17 (31.5%) 24 (44.4%)

FLT3-TKD mutation, n (%)
Positive 4 (7.4%) 1 (1.9%) 0.348

Negative 23 (42.6%) 26 (48.1%)

DNMT3A mutation, n (%)
Positive 7 (13%) 2 (3.7%) 0.144

Negative 20 (37%) 25 (46.3%)

TET2 mutation, n (%)
Positive 3 (5.6%) 3 (5.6%) 1

Negative 24 (44.4%) 24 (44.4%)

CEBPA mutation, n (%)
Positive 8 (14.8%) 14 (25.9%) 0.097

Negative 19 (35.2%) 13 (24.1%)

WT1 mutation, n (%)
Positive 2 (3.7%) 7 (13%) 0.144

Negative 25 (46.3%) 20 (37%)

IDH2 mutation, n (%)
Positive 1 (1.9%) 3 (5.6%) 0.603

Negative 26 (48.1%) 24 (44.4%)

NRAS mutation, n (%)
Positive 6 (11.1%) 5 (9.3%) 0.735

Negative 21 (38.9%) 22 (40.7%)

c-Kit mutation, n (%)
Positive 1 (1.9%) 4 (7.4%) 0.348

Negative 26 (48.1%) 23 (42.6%)

GATA2 mutation, n (%)
Positive 0 (0%) 5 (9.3%) 0.06

Negative 27 (50%) 22 (40.7%)

EZH2 mutation, n (%)
Positive 4 (7.4%) 1 (1.9%) 0.348

Negative 23 (42.6%) 26 (48.1%)

Age, (mean ± sd) 42.074 ± 15.287 35.63 ± 12.314 0.094

WBC Count(*10^9/L), [median (IQR)] 28.19 (4.765, 64.365) 20.01 (10.735, 69.99) 0.918

Hemoglobin(g/L), (mean ± sd) 85.407 ± 22.517 90.333 ± 24.83 0.449

Platelet Count(*10^9/L), [median (IQR)] 44 (22, 71.5) 31 (19, 49) 0.268

BM blasts (%), (mean ± sd) 60.333 ± 20.012 57.337 ± 19.717 0.582

WT1 fusion, [median (IQR)] 3320.6 (915, 6287.5) 687 (550, 3145) 0.030

EVI1 fusion, [median (IQR)] 0 (0, 0) 0 (0, 0) 0.939

Table 3.  Association between PDGFD expression and clinical features in AML from clinical data. Significance 
value in bold indicates a p value < 0.05.
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Drug sensitivity analysis of PDGFD gene
An analysis of the drug susceptibility of PDGFD was undertaken, encompassing various frequently employed 
AML agents. The findings illustrated in Fig. 8 indicate a detrimental association between heightened PDGFD 
expression and drug sensitivity, implying an elevated likelihood of drug resistance or primary drug resistance 
among affected individuals. Our results indicate that patients with elevated PDGFD genes may exhibit increased 
resistance to BCL-2 inhibitors, as shown in Fig. 8A. BCL-2 inhibitors represent a representative class of drugs 

Fig. 5.  Functional enrichment analysis of PDGFD gene. (A–C) Screening of genes related to PDGFD for 
functional enrichment analysis. (D) GO Terms. (E) KEGG pathways. (F) GSEA analysis.
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targeting apoptosis and have been widely used in newly treated and relapsed refractory AML patients in recent 
years.

Hsa-miR-203a-3p may act as an upstream regulator of PDGFD gene
An analysis was conducted on microRNAs that have the potential to modulate the genetic activity of the PDGFD 
gene. The investigation involved exploring miRNAs across four publicly available databases to identify potential 
target miRNAs. Two promising factors were pinpointed by examining data from Tarbase, miRDB, miRWalk, 
and mirDIP (Supplementary Fig. S12A) (Supplementary Fig. S12B). Then, expression correlation and prediction 
analyses were carried out (Supplementary Fig. S12C–F). The findings indicate that hsa-miR-203a-3p could act as 
an upstream regulator of the PDGFD gene.

Discussion
The PDGF signaling pathway is activated through the interaction of PDGFRs and PDGFs, which triggers the 
initiation of comparable signaling cascades. This pathway plays a significant role in the development of several 
diseases, such as organ fibrosis, atherosclerosis, and tumors33–35. Recent research focusing on the structural and 
functional aspects of PDGF has suggested that it can stimulate the growth of healthy hematopoietic progenitors 
and cells associated with chronic myelogenous leukemia, as well as modify the functional characteristics of 
stromal cell subsets5. However, the prognosis implications and biological significance of PDGF family members 
in AML have yet to be elucidated. It is hypothesized that certain PDGFs may contribute to the development of 
AML and hold prognostic value.

Our research initially investigated the expression levels and prognostic significance of the PDGF family in 
pan-cancer and AML. The findings indicated that the expression of PDGFA and PDGFB was diminished in 
AML patients compared to healthy controls, while PDGFC, PDGFD, PDGFRA and PDGFRB exhibited elevated 
transcription levels in AML. The hazard analysis showed that only PDGFD is a risky factor in AML, while the KM 
curve indicated that patients exhibiting PDGFD overexpression poorer survival and PDGFB underexpression 
experienced markedly similar results. This could be as a result of the fact that, despite belonging to the same 
PDGF family, PDGFB and PDGFD are controlled differently in the setting of illness. For instance, Michael et 
al. examined the functional enrichment pathways and expression patterns of the PDGF gene family in 16 solid 
tumors and discovered that, with the exception of GBM, the expression levels of PDGF subtypes varied among 
tumors36. Considering the findings above, we elected to prioritize the PDGFD gene as the subject of subsequent 
investigation.

Subsequent clinical factor correlation analysis showed that high expression of PDGFD in AML patients 
was associated with elevated peripheral blood (PB) cells, non-M3 subtypes, intermediate-high cytogenetic 

Fig. 6.  Correlation analysis of PDGFD and Immune cell infiltration. (A–B) The CIBERSORT algorithm 
determined the differences between PDGFDhigh and PDGFDlow groups. (C) ssGSEA analysis. (D–E) Stromal 
score and estimate score in PDGFDhigh and PDGFDlow groups by ESTIMATE algorithm. (F) Association 
of PDGFD with immune checkpoints. P value < 0.05 indicates statistical significance. * P < 0.05; ** P < 0.01; 
***P < 0.001; ns, non-significant.
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risk, NPM1 mutation, FLT3-ITD mutation, and poor prognosis, all of which are poor prognostic indicators 
of leukemia. The Kaplan-Meier curve for subgroups indicated that elevated PDGFD expression correlated 
with unfavorable prognosis in the age ≤ 60 subgroup, AML-M2 subgroup, RAS mutation-negative subgroup, 
NPM1 mutation-negative subgroup, IDH1-R132 mutation-negative subgroup, IDH1-R140 mutation-negative 

Fig. 7.  Single-cell datasets validation of PDGFD expression levels in AML. (A) Total four single-cell datasets of 
AML (GSE116256, GSE135851, GSE147989, GSE154109) were enrolled. (B–C) High expressed PDGFD in NK 
cells anear tumor. (D) Expression of PDGFD in different cell types in the tumor microenvironment both in the 
control group and the AML group.
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subgroup, and IDH1-R172 mutation-negative subgroup, respectively. These findings not only imply that 
PDGFD might be linked to high-risk leukemia behaviors, but they also imply that PDGFD might have negative 
effects on the group with a favorable prognosis. Notably, whereas 75% of newly diagnosed AML patients are 
over 60 years old37, PDGFD predicts overall survival in individuals aged 60 or younger, a result that retains its 
significance. In the real world, patients in younger age groups tend to receive more aggressive treatments such 
as intensive chemotherapy or stem cell transplants, but even with many treatments, a proportion of patients 
become relapsed and refractory leukemia38. If PDGFD is a reliable predictor of survival in this group, it has 
the potential to serve as a biomarker to guide more aggressive or targeted treatment. While the current data 
suggest a lack of prognostic value in the older group based solely on PDGFD expression, this does not mean that 
PDGFD is not clinically relevant in this population. PDGFD may interact with other factors in older patients 
that were not considered in our original analysis. Future research could focus on exploring these potential 
interactions. Furthermore, PDGFD was found to be markedly upregulated in patients experiencing relapse, 
and drug sensitivity analysis indicated that individuals with high PDGFD expression levels exhibited reduced 
responsiveness to chemotherapy agents. These observations suggest that PDGFD may function as a negative 
prognostic indicator in AML.

NPM1 mutation is detected in roughly 30% of adult AML cases, making it one of the most common genetic 
abnormalities in AML and regarded as an initiating lesion, significantly linked to frank leukemia39,40. Typically, 
NPM1 mutations involve small insertions in the final exon of the gene, leading to the loss of a signal that directs 
the protein to the nucleolus and the creation of a new signal that directs it to the cell nucleus. Consequently, the 
normal movement of the NPM1 protein between the nucleus and cytoplasm is disrupted, resulting in abnormal 
accumulation of the protein in the cytoplasm of leukemic cells with NPM1 mutations40,41. Recent research 
using a mice model has shown that the mutated form of NPM1 (NPM1c) promotes the expression of HOX/
MEIS1 genes, with HOX genes playing a role in sustaining the leukemic state in AML with NPM1 mutations42. 
However, the specific mechanisms linking the cytoplasmic localization of NPM1c and HOX gene expression 
require further investigation.

This study demonstrated that PDGFD expression was significantly elevated in NPM1-mutation-positive AML 
patients relative to those without the mutation. PDGFD expression levels have shown promise as a diagnostic 
marker for NPM1-mutated leukemia. Analysis of the mutational landscape revealed that frame-shift insertions 
in the NPM1 gene were more commonly observed in cases with increased PDGFD expression. Subsequent 
analysis of gene expression patterns indicated a close relationship between PDGFD and HOXB cluster genes. 
GSEA further confirmed a notable association between high PDGFD expression and the presence of NPM1 
mutations.

Moreover, the biological enrichment analysis indicated that PDGFD was implicated in the calcium and 
Rap1 signaling pathways as the primary pathways. Disrupted calcium homeostasis plays a crucial role in the 
progression of various types of cancer43. Qiu et al. have documented that Rap1 GAP can enhance leukemia cells’ 
differentiation and apoptosis while promoting leukemia cell invasion in vitro44. Hence, we hypothesize that 
PDGFD may contribute to initiating NPM1 mutations and the perpetuation of leukemia through interactions 
with HOXs. Further investigation is necessary to confirm the impact of elevated PDGFD expression on NPM1-
mutated AML and to clarify the mechanisms involved.

MicroRNAs (miRNAs) are small noncoding RNAs capable of inducing mRNA degradation or suppressing 
translation, serving vital functions in various essential biological processes, such as cell proliferation, 
differentiation, migration, survival, and programmed cell death45. MiR-203a-3p has been documented to 
function as a tumor suppressor, with its expression downregulated in numerous cancers46. For instance, in 
inflammatory breast cancer47, a significant decrease in miR-203a-3p expression has been noted, indicating its 
potential utility as a diagnostic biomarker for this disease. In colorectal cancer, miR-203a-3p modulates cancer 
cell proliferation, metastasis, and resistance to chemotherapy by targeting phosphodiesterase 4D (PDE4D) and 
the Wnt/β-catenin signaling pathways48. Furthermore, miR-203a-3p has been extensively investigated in other 
cancers like nasopharyngeal carcinoma and hepatocellular carcinoma49. Bioinformatics analysis showed that 
miR-203a-3p is inversely correlated with PDGFD and was downregulated in AML. Patients exhibiting high 
levels of miR-203a-3p tend to have a more favorable prognosis, suggesting a potential regulatory role of miR-
203a-3p in modulating the oncogenic effect of PDGFD in AML.

There is mounting evidence indicating the significant impact of the bone immune micro-environment in 
immunotherapy, tumor progression, and prognosis in patients with AML50. Human Natural Killer (NK) cells 
constitute approximately 10–15% of circulating lymphocytes, with CD56(bright) and CD56(dim) NK cells being 
the primary subsets51. Traditionally, NK cells have been recognized for their importance in immunosurveillance 
and exerting anti-tumor effects52. Previous studies have confirmed that PDGFD can hinder tumor cell growth 
by interacting with NKp44, thereby prompting NK cells to release interferon (IFN-γ) and tumor necrosis factor 
(TNF)-α53. Recent studies emphasized the critical role of the PDGFD-PDGFRβ signaling pathway in regulating 
IL-5-mediated NK cell growth and survival54. Our examination of immune cell infiltration revealed a positive 
connection between PDGFD and the prevalence of several immune cells, including activated dendritic cells, 
gamma delta T cells, and CD56(bright) NK cells.

Furthermore, examinations at the single-cell level demonstrated heightened PDGFD gene expression in 
NK cells situated in the tumor microenvironment. Nevertheless, it is widely recognized that AML patients 
exhibit deficiencies in the number and cytotoxic activity of NK cells in the bone marrow, which are linked to 
the development, advancement, and relapses of AML. This insight may explain the challenges in predicting the 
efficacy of PDGFD immunotherapy. On a positive note, given the elevated expression of PDGFD in leukemia 
and its close relationship with NK cells, a potential strategy could involve selectively introducing the PDGF signal 
into NK cells during NK cell-based immunotherapy to promote the expansion, persistence, and enhancement 
of NK cell effector function.
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Although our analysis is based on solid data and methods, it is crucial to recognize specific limitations. Most 
of our research data is primarily sourced from public repositories, and it is recognized that bio-informatics 
analysis offers only a partial representation of physiological conditions within the body. Additionally, the survival 
data utilized in our study is derived from a clinical cohort established several decades ago, potentially limiting its 
applicability to current treatment practices for AML, which have evolved and improved over time. Furthermore, 
the clinical samples provided are from a single center and a small sample size, which may introduce bias to 
our conclusions. Consequently, the information presented in this study is primarily indicative and necessitates 
further validation through experimental studies.

In summary, this research has unveiled, for the first time, an increased expression of PDGFD in AML, which 
correlates with a poor prognosis. Furthermore, PDGFD is suggested to play a role in initiating and advancing 
NPM1-mutated leukemia through various mechanisms, such as the modulation of target genes and signaling 
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pathways. The sequestration of PDGFD by MIR-203-3p may demonstrate an anti-leukemic impact in adult AML. 
Our work together emphasizes the potential function of PDGFD in facilitating AML progression, highlighting 
its importance as a prognostic marker and a prospective therapeutic target in AML treatment.

Data availability
The publicly available data could be acquired from TCGA dataset (https://portal.gdc.cancer.gov/), GEO dataset 
(https://www.ncbi.nlm.nih.gov/geo/), and Bloodspot project (http://servers.binf.ku.dk/bloodspot/). The original 
contributions presented in the study are included in the article/Supplementary Material, Further inquiries can 
be directed to the corresponding authors.
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Fig. 8.  Drug sensitivity analysis of PDGFD in AML. (A) ABT.263: Inhibitor of the Bcl-2 protein family, acting 
on Bcl-xL, Bcl-2 and Bcl-w; (B) AMG.706: ATP-competitive inhibitor of Vascular endothelial growth factor 
receptor (VEGFR)1/2/3; (C) Axitinib: Inhibitor of VEGFR; (D) AZD.0530: inhibitor of the Src family; (E) 
AZD7762: ATP-competitive checkpoint kinase (Chk) inhibitor; (F) Bicalutamide: non-steroidal androgen 
receptor (AR) antagonist; (G) BX.795: Inhibitor of PDK1; (H) GDC0941: Inhibitor of PI3Kα/δ; (I) Imatinib: 
Inhibitor of the tyrosine kinase; (J) KU.55,933: Inhibitor of the ATM; (K) Lenalidomide: Immunomodulator; 
(L) LFM.A13: Inhibitor of the BTK, JAK2, PLK; (M) NU.7441: Inhibitor of the DNA-PK; (N) NVP.TAE684: 
Inhibitor of the ALK; (O) OSI.906: Inhibitor of the insulin receptor (IR) and insulin-like growth factor 1 
receptor (IGF-1R) kinases; (P) PD.0332991: Inhibitor of the cyclin D kinase 4/6; (Q) PF.02341066: Inhibitor 
of the ATP-competitive ALK and c-Met; (R) PF.562,271: ATP-competitive and reversible FAK and Pyk2 
kinase inhibitor; (S) PHA.665,752: ATP-competitive, and active-site inhibitor of the catalytic activity of c-Met 
kinase; (T) PLX4720: Inhibitor of B-Raf-V600E; (U) SB.216,763: Inhibitor of the ATP-competitive GSK-3; 
(V) Sunitinib: Inhibitor of the tyrosine kinase; (W) WO2009093972: A potent HSP90 inhibitor; * P < 0.05; ** 
P < 0.01; ***P < 0.001; ns, non-significant.
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