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Autosomal recessive polycystic kidney disease (ARPKD) is a severe genetic disorder characterized 
by renal cystogenesis and hepatic fibrosis, primarily associated with PKHD1 mutations. While 
differential expression analysis (DEG) has identified key genes involved in ARPKD, their network-level 
interactions remain unclear. Recent studies have implicated WNT signaling in ARPKD pathogenesis, 
but a topological framework may provide additional insights into gene community structures.  This 
study applied a network-based approach integrating single-sample gene set enrichment analysis 
(ssGSEA) and topological centrality analysis to investigate gene communities in ARPKD. We identified 
three key communities: Community 2, centered on IFT22, exhibited stable activation in both ARPKD 
and healthy samples, suggesting its role in ciliary function. Community 5, predominantly activated in 
ARPKD, included genes linked to tissue repair and immune regulation. In contrast, Community 3 was 
suppressed in ARPKD, indicating potential structural instability. Notably, PKHD1 was mathematically 
isolated, suggesting limited direct involvement in ARPKD-specific transcriptional networks, while 
the absence of WNT5A, CDH1, and FZD10 from defined communities in ARPKD may indicate 
potential alterations in their network associations compared to healthy individuals. These findings 
highlight the advantages of network topology over conventional DEG analysis in elucidating ARPKD 
pathophysiology. By identifying gene communities and regulatory hubs, this approach offers novel 
insights into disease mechanisms and potential therapeutic targets.

Polycystic kidney disease (PKD) is a genetic disorder characterized by the formation of multiple cysts in the 
kidneys, often leading to kidney failure and systemic complications1,2. PKD is classified into autosomal dominant 
polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD), with ARPKD 
affecting children and causing early-onset nephromegaly and hepatic fibrosis1–4.

PKD1 (polycystic kidney disease 1) is a major regulator of cyst formation and is also involved in cellular 
processes such as osteoclastogenesis and bone resorption4. In contrast, ARPKD is caused by mutations in 
PKHD1 (polycystic kidney and hepatic disease 1), which encodes fibrocystin, a membrane-associated protein 
essential for kidney and bile duct development5. Additionally, the involvement of ciliary genes such as DZIP1L 
(DAZ interacting zinc finger protein 1-like) and TULP3 (Tubby like protein 3) classifies ARPKD as a ciliopathy6. 
The variability in clinical phenotypes among patients with the same PKHD1 mutation suggests that genetic 
modifiers influence disease severity7. Furthermore, dysregulation of signaling pathways, including Hedgehog 
signaling, planar cell polarity (PCP), WNT signaling, and metabolic pathways, has been implicated in ARPKD 
progression8,9.

A study by Richards et al. (2019) analyzed ARPKD kidney tissues using whole exome sequencing (WES) and 
RNA sequencing (RNA-Seq) and demonstrated that ATMIN (ataxia telangiectasia mutated interactor) regulates 
PKHD1 expression and influences ARPKD pathology through non-canonical WNT/PCP signaling9. Increased 
expression of ATMIN, WNT5A (Wnt family member 5A), VANGL2 (Van Gogh-like protein 2), and SCRIBBLE 

1Urology, Yokosuka Urogynecology and Urology Clinic, Ootaki 2-6, Yokosuka, Kanagawa 238-0008, Japan. 
2Mathematics, Kanagawa Dental University, Inaoka-cyou 82, Yokosuka, Kanagawa 238- 0008, Japan. 3Data 
Science and Informatics for Genetic Disorders, Graduate School of Medicine, Juntendo University, Tokyo 113-
8421, Japan. 4Urology, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan. email:  
okuinobuo@gmail.com

OPEN

Scientific Reports |        (2025) 15:15559 1| https://doi.org/10.1038/s41598-025-99048-y

www.nature.com/scientificreports

http://orcid.org/0000-0001-5894-5283
http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-99048-y&domain=pdf&date_stamp=2025-5-3


(scribbled planar cell polarity protein) was observed in ARPKD kidney tissues, along with a reduction in β-
catenin protein levels.

More recently, Richards et al. (2024) confirmed that mutations in PKHD1 are the primary cause of ARPKD1. 
However, no correlation was found between PKHD1 mutation positions and disease severity. Instead, mutations 
in PKD1 were associated with severe ARPKD phenotypes, and transcriptomic analysis revealed significant 
alterations in WNT signaling pathways. These findings suggest that changes in WNT-related gene expression 
may contribute to ARPKD progression1.

Traditional differential gene expression (DEG) analysis is critical for understanding disease mechanisms but 
primarily focuses on individual gene expression changes, potentially overlooking gene–gene interactions. To 
address this limitation, this study employed a network-based approach using graph-theoretic and topological 
analyses to investigate coordinated gene communities involved in ARPKD progression.

Unlike conventional DEG analysis, which treats genes as independent entities, this study integrates genes 
from publicly available datasets into functional networks, providing a more comprehensive understanding of 
disease mechanisms. This approach leverages discrete mathematics to characterize the structural properties of 
gene communities and identify key regulatory hub genes10–14.

Transcriptomic data from ARPKD patients were reanalyzed using a publicly available dataset from the 
National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) (accession: 
GSE242476), initially published by Goggolidou et al.1,9,10. This dataset includes kidney samples from four 
ARPKD patients and four age-matched healthy controls.

Furthermore, topological centrality and single-sample gene set enrichment analysis (ssGSEA) were applied 
to identify gene communities and their hub genes. This network-based approach uncovered previously 
unrecognized functional relationships, providing a comprehensive understanding of the genetic architecture of 
ARPKD and identifying potential therapeutic targets1,9.

Results
Reanalysis of ARPKD transcriptomic data: beyond simple differential expression
Transcriptomic data from ARPKD patients were reanalyzed using a publicly available dataset from the NCBI 
Gene Expression Omnibus (GEO) (accession: GSE242476), originally published by Goggolidou et al. This dataset 
includes kidney samples from four ARPKD patients and four age-matched healthy controls1,9,10. Since PKHD1, 
the primary causative gene of ARPKD, was not measured, this analysis focused on other genes associated with 
ARPKD pathology.

RNA-seq data were processed using standard bioinformatics workflows, and differential expression analysis 
was performed using DESeq215–19, identifying multiple significantly altered genes (Table 1). Among them, 
PKD1, primarily associated with autosomal dominant polycystic kidney disease (ADPKD), exhibited higher 
expression in ARPKD samples than in controls (14,028 vs. 7,715, ranked 113th). While PKD1 is not the causative 
gene for ARPKD, its altered expression suggests a potential regulatory role in disease progression.

Previous transcriptomic studies, including the original analysis by Goggolidou et al., have primarily focused 
on identifying DEGs. While these approaches have contributed to understanding disease mechanisms, they tend 
to emphasize genes with large expression changes, potentially overlooking interactions among lowly expressed 
genes.

The following section details the topology of ARPKD-specific gene networks, describing gene interactions, 
functional clustering, and the positioning of key genes within the network.

Mathematical approach reveals diverse gene communities in ARPKD
In this study, the topology of gene networks in ARPKD patients was analyzed by constructing a correlation-
based network. This transformation enabled the identification of meaningful gene communities that might not 
be evident in conventional linear gene expression analyses.

Gene_ID Gene_Description
PKD_
expression_avg

Control_
expression_avg p_value

ENSG00000121753 ADGRB2 1159.5 115.5 5.90E-05

ENSG00000134569 LRP4 1541.75 463.75 0.000621

ENSG00000004838 ZMYND10 340.75 87.75 0.000769

ENSG00000118513 MYB 36.75 0 0.000819

ENSG00000130294 KIF1A 388.25 60.25 0.000923

ENSG00000129038 LOXL1 1572 497.25 0.001394

ENSG00000034053 APBA2 182.5 51 0.001465

ENSG00000135074 ADAM19 1511.5 396.75 0.001491

ENSG00000135127 BICDL1 3496.5 14,724.5 0.001496

ENSG00000136378 ADAMTS7 1125.75 306 0.001612

Table 1.  Top 10 genes with the most significant differential expression between ARPKD and control groups. 
This table lists the top 10 genes with the most significant differential expression between ARPKD and control 
groups. For each gene, the table includes the Gene ID, gene name, average expression levels in the ARPKD and 
control groups, and the corresponding p-values.
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Given the computational constraints of analyzing all gene pairs in large-scale RNA-seq datasets, a reproducible 
random subset of 100 genes was selected to ensure consistency across analyses. Correlation coefficients were 
calculated for each gene pair, and only those with a correlation of 0.6 or higher were incorporated into the 
network20,21.

The Louvain method was applied to detect communities of closely interacting genes, and the central genes in 
each community were identified. This analysis revealed key regulatory hub genes in ARPKD, including PKD1, 
KIF1A (kinesin family member 1A), and LRP4 (low-density lipoprotein receptor-related protein 4). Further 
details on the network structure and sensitivity analysis of correlation thresholds are provided in Supplementary 
Figures S1 and S2.

This analysis demonstrated that topology-based network methods are a powerful approach for uncovering 
hidden gene relationships in ARPKD. Unlike conventional differential expression analysis, which evaluates 
genes individually, our approach integrated gene associations to identify functional communities, providing 
novel insights into disease progression.

Mathematical approach identifies central genes in ARPKD communities
Figure 1 visualizes gene connectivity, showing how genes cluster into functional groups. In the gene network 
analysis for ARPKD patients, key genes with high betweenness centrality were identified within each community. 
Betweenness centrality quantifies a gene’s role in network connectivity by measuring the fraction of shortest 

Fig. 1.  Gene network topology in ARPKD patients. This figure illustrates the gene network in ARPKD 
patients, where each node represents a gene, and each edge indicates a gene pair with a correlation coefficient 
of 0.6 or higher. To emphasize the distribution of nodes, edges are rendered fully transparent. Node size is 
proportional to its degree, reflecting the number of connections with other genes. Larger nodes represent 
highly connected hub genes, which may play key roles in network stability. Clusters were detected using the 
Louvain method, with each color representing a distinct community: Community 0 (dark purple), Community 
1 (green), and Community 2 (yellow). Genes within each community exhibit higher intra-cluster connectivity, 
visually delineating the structure of correlated gene groups.
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paths passing through it. Genes with high betweenness may act as critical connectors, facilitating interactions 
across distinct functional modules.

Among them, IFT22 (intraflagellar transport protein 22) in Community 2 exhibited the highest betweenness 
centrality (0.05737)22,23, suggesting its central role in network structure. IFT22 is involved in intraflagellar 
transport, essential for cilia maintenance. While cilia dysfunction is a hallmark of ARPKD, further studies are 
needed to determine IFT22's specific contribution.

Other key genes included PMPCB (mitochondrial processing peptidase beta subunit) in Community 
0 (0.013874) and TPSD1 (tryptase delta 1) in Community 1 (0.038575)24. PMPCB plays a crucial role in 
mitochondrial protein processing and overall mitochondrial function, while TPSD1, a tryptase enzyme, 
is involved in immune response regulation. These findings highlight distinct biological pathways within the 
network, but their direct relevance to ARPKD pathology requires further investigation.

This network-based approach offers insight into gene connectivity, but functional validation is essential to 
confirm these genes’ roles in disease mechanisms. Future studies integrating differential expression analysis and 
experimental validation will help clarify their biological significance.

Gene communities reveal functional connections in ARPKD
Gene communities identified through network analysis reveal the structural organization of the ARPKD genetic 
network. A community consists of genes with higher internal connectivity, often reflecting shared functions. 
Some genes appear in multiple communities due to their involvement in different pathways, a known feature 
of complex gene interaction networks. Table 2 summarizes these communities and their functional relevance.

Community 0 includes PMPCB (mitochondrial processing peptidase beta subunit), KLF12 (Kruppel-like 
factor 12)25, RBM3 (RNA-binding motif protein 3)26, SUMF2 (sulfatase modifying factor 2)27, MCHR1 (melanin-
concentrating hormone receptor 1)28, and RGS13 (regulator of G-protein signaling 13)29. This community is 
linked to transcriptional regulation, cellular stress response, and signal transduction.

Community 1 contains TPSD1 (tryptase delta 1), CEMIP2 (cell migration-inducing hyaluronidase 2)30, 
TREM1 (triggering receptor expressed on myeloid cells 1), and SLC4A11 (solute carrier family 4 member 11)31, 
which are involved in immune responses and inflammation. The presence of cytokine signaling and immune 
receptor genes suggests a role in immune regulation.

Community 2 includes IFT22, CEP250 (centrosomal protein 250  kDa), DYNLRB1 (dynein light chain 
roadblock-type 1), COX6A1 (cytochrome c oxidase subunit 6A1)32, NDUFS7 (NADH oxidoreductase subunit 
S7)33, POLQ (DNA polymerase theta), MCM8 (minichromosome maintenance complex component 8), CLEC4M 
(C-type lectin domain family 4 member M), and PLA2G12A (phospholipase A2 group XIIA)34. These genes are 
involved in intracellular trafficking, protein modification, and metabolism.

Figure 1 visualizes the network topology, while Table 2 details representative genes in each community. This 
analysis provides a framework for understanding gene connectivity in ARPKD, though further validation is 
needed to determine the functional significance of these communities.

Classification of gene communities in the ARPKD network
This study’s method determines whether additional genes belong to Community 0, 1, or 2.

Under the applied correlation threshold, none of the genes listed in Table 1 were assigned to any community. 
However, when genes with weaker correlations were included, ADGRB2 was assigned to Community 2, while 

Community Gene symbol (Ensembl ID)

0

KLF12 (ENSG00000118922), RBM3 (ENSG00000102317), SUMF2 (ENSG00000129103), MCHR1 (ENSG00000128285), RGS13 (ENSG00000127074), 
HOMER2 (ENSG00000103942), LACTB (ENSG00000103642), PUS7L (ENSG00000129317), PMPCB (ENSG00000105819), SUCO (ENSG00000094975), 
GSTM1 (ENSG00000086189), GLRB (ENSG00000109738), CREBL2 (ENSG00000111269), IL20RA (ENSG00000016402), AP1S1 (ENSG00000106367), 
HSDL1 (ENSG00000103160), PRPH2 (ENSG00000112619), RCBTB2 (ENSG00000136161), FGF14 (ENSG00000102466), RRAS (ENSG00000126458), 
PPP2CA (ENSG00000113575), ASPHD2 (ENSG00000128203), DCBLD2 (ENSG00000057019), HLTF (ENSG00000071794), LRRC4B (ENSG00000131409), 
CUL2 (ENSG00000108094), SKAP2 (ENSG00000005020), PNO1 (ENSG00000115946), MRPL44 (ENSG00000135900), KDM5A (ENSG00000073614), MAG 
(ENSG00000105695), SORT1 (ENSG00000134243), CSDE1 (ENSG00000009307), EHD3 (ENSG00000013016)

1

CEMIP2 (ENSG00000135048), PGLYRP1 (ENSG00000008438), BAIAP3 (ENSG00000007516), SP100 (ENSG00000067066), TSPAN32 (ENSG00000064201), 
SLC4A11 (ENSG00000088836), BPIFB9P (ENSG00000125997), CLNK (ENSG00000109684), BCKDK (ENSG00000103507), P3H3 (ENSG00000110811), 
WIPI1 (ENSG00000070540), TPSD1 (ENSG00000095917), SLC7A9 (ENSG00000021488), SLC8A2 (ENSG00000118160), AQP6 (ENSG00000086159), 
CAP2 (ENSG00000112186), EBF3 (ENSG00000108001), ADGRE2 (ENSG00000127507), BYSL (ENSG00000112578), UTP18 (ENSG00000011260), TSGA10 
(ENSG00000135951), TREM1 (ENSG00000124731), GSKIP (ENSG00000100744), PHF20 (ENSG00000025293), ARFGEF2 (ENSG00000124198), MXD1 
(ENSG00000059728), NSFL1C (ENSG00000088833), LSR (ENSG00000105699), DDX39A (ENSG00000123136)

2

APOA1 (ENSG00000118137), KCNIP3 (ENSG00000115041), SLC35F5 (ENSG00000115084), COX6A1 (ENSG00000111775), MCM8 (ENSG00000125885), 
KHDRBS3 (ENSG00000131773), POLR3H (ENSG00000100413), IFT22 (ENSG00000128581), PLA2G12A (ENSG00000123739), POLQ 
(ENSG00000051341), CLEC4M (ENSG00000104938), TENM1 (ENSG00000009694), CEP250 (ENSG00000126001), MFSD11 (ENSG00000092931), 
C22orf23 (ENSG00000128346), GALNT15 (ENSG00000131386), DYNLRB1 (ENSG00000125971), BRD1 (ENSG00000100425), CCNP 
(ENSG00000105219), PRMT7 (ENSG00000132600), HOXC8 (ENSG00000037965), CDKL5 (ENSG00000008086), G6PC1 (ENSG00000131482), TRHDE 
(ENSG00000072657), NDC80 (ENSG00000080986), NDUFS7 (ENSG00000115286), TNNT3 (ENSG00000130595), SLC9A2 (ENSG00000115616), 
DNAAF11 (ENSG00000129295), EHHADH (ENSG00000113790), SMS (ENSG00000102172), CCDC88C (ENSG00000015133), LLGL2 (ENSG00000073350)

Table 2.  Gene communities and their associated genes identified in ARPKD patient samples through network 
analysis. Gene communities identified through network analysis in the ARPKD samples were categorized 
as communities 0, 1, and 2. Each community comprises distinct genes associated with specific biological 
functions relevant to ARPKD pathology, including cellular regulation, immune responses, and metabolic 
pathways. The table lists the gene IDs and corresponding proteins within each community, emphasizing their 
potential roles in ARPKD progression.
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LRP4, ZMYND10, MYB, and KIF1A were classified into Community 1. Similarly, LOXL1, APBA2, and BICDL1 
were assigned to Community 0. These genes exhibited weak correlations with other members, suggesting limited 
but measurable network connectivity. Additionally, ADAM19 and ADAMTS7 were assigned to Community 1, 
reflecting weak correlations indicative of interactions at the network level.

Gene network analysis was performed using a publicly available dataset from Goggolidou et al. Although this 
dataset was limited in scope, it included WNT5A, CDH1, and FZD10, which are key genes in ARPKD. These 
genes were not classified into any community in ARPKD.

Regarding PKD1, which is also important in ARPKD, its expression was increased in ARPKD but did not 
correlate with genes in Community 0 and showed only weak correlations with some genes in Communities 1 
and 235,36.

Further details are provided in Supplementary Table 1.

Gene network analysis and functional organization in control (normal) individuals
The gene interaction network in healthy individuals was analyzed to identify distinct gene communities and 
their organizational structures in normal kidney tissues. Figure  2 visualizes gene connectivity, showing how 
genes cluster into functional groups.

Fig. 2.  Gene network topology in healthy control individuals. This figure shows the gene network in healthy 
control individuals, with each node representing a gene and each edge representing a gene pair with a 
correlation of 0.6 or higher. The edges are fully transparent to focus on the structure and prominence of 
individual nodes. The size of each node is proportional to the number of other genes and is strongly correlated 
with, emphasizing the hub genes that are central to the network. Different colors indicate clusters detected 
by the Louvain method, with each color representing a distinct community of genes: Community 3 is shown 
in purple, Community 4 in green, and Community 5 in yellow. Genes within each community exhibit 
strong mutual interactions, illustrating the structure of gene relationships based on correlations in healthy 
kidney function. These clusters highlight potential functional groupings of genes, with central genes in each 
community likely playing key roles in maintaining normal cellular processes in the kidneys.
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Each community contained genes with strong correlation-based associations, reflecting coordinated 
biological functions. Central genes were identified based on their connectivity patterns, indicating their potential 
role as key regulators in maintaining homeostasis. Notably, genes with high betweenness centrality serve as 
communication hubs, facilitating interactions between different functional groups.

The identified network structure in healthy individuals serves as a reference for comparison with disease 
states. Understanding how genes naturally organize within a stable physiological system provides insight 
into how gene interactions may be disrupted in pathological conditions. Future studies examining network 
perturbations in ARPKD may help pinpoint key mechanisms underlying disease progression.

In the gene network analysis of normal kidney tissues, key genes with high betweenness centrality were 
identified within each community. These central genes function as hubs that integrate essential biological 
processes, contributing to homeostasis and normal kidney function.

The results demonstrated that SMS (spermine synthase) in Community 3 is involved in polyamine 
biosynthesis, a process essential for cellular growth and stability37. In Community 4, CLEC4M (C-type lectin 
domain family 4 member M) was identified as a regulator of immune response, facilitating pathogen recognition 
and contributing to infection defense38. CCNP (cyclin C-like nucleolar protein) in Community 5 was associated 
with cell cycle regulation, which supports tissue repair and regeneration39.

Through their roles in metabolic, immune, and proliferative pathways, these genes contribute to the functional 
organization of the normal kidney gene network. Their identification provides a reference for understanding 
potential alterations in gene interactions in pathological states such as ARPKD40–42.

Based on the network analysis of normal kidney samples, three distinct gene communities (Communities 3, 
4, and 5) were identified as functional hubs contributing to kidney homeostasis.

Community 3 includes IFT22, CEP250 (centrosomal protein 250  kDa), COX6A1 (cytochrome c oxidase 
subunit 6A1), NDUFS7 (NADH oxidoreductase subunit S7), and LLGL2 (lethal giant larvae homolog 2). These 
genes are involved in intracellular trafficking, mitochondrial function, and protein modification, indicating their 
roles in maintaining metabolic balance and cellular homeostasis.

Community 4 is characterized by APOA1 (apolipoprotein A1)43, KCNIP3 (potassium voltage-gated channel 
interacting protein 3)44, CEMIP2 (cell migration-inducing hyaluronidase 2)45, and CLEC4M (C-type lectin 
domain family 4 member M)46. These genes participate in lipid metabolism, immune regulation, and cellular 
stress responses, reflecting their involvement in immune balance and renal protection.

Community 5 features POPDC3 (Popeye domain-containing protein 3)47, COX6A1 (cytochrome c oxidase 
subunit 6A1)33, KLF12 (Kruppel-like factor 12)25, and CCNP (cyclin C-like nucleolar protein)48. These genes are 
associated with cellular growth, tissue repair, and metabolic regulation, supporting kidney cell function under 
normal conditions.

In healthy kidney samples, PKD1, ADGRB2, LRP4, and KIF1A did not exhibit strong or weak correlations 
within the normal gene network. This suggests that these genes are not functionally co-regulated in healthy 
kidney tissues and that the altered connectivity observed in ARPKD reflects disease-specific interactions.

Additionally, WNT5A, CDH1, and FZD10, which were part of Community 0 in healthy controls, were not 
classified into any community in ARPKD. This suggests that their network associations may have been disrupted 
in the disease state, as detailed in Supplementary Table 1. These genes are involved in Wnt/PCP signaling and cell 
adhesion, both of which play essential roles in maintaining kidney homeostasis and may contribute to ARPKD 
pathogenesis when dysregulated1,9.

Table 3 provides an overview of gene composition and connectivity within these communities, emphasizing 
their contributions to normal kidney function.

Single sample gene set enrichment analysis
Table 4 presents the application of single-sample Gene Set Enrichment Analysis (ssGSEA) to gene communities 
identified in ARPKD patients and mapped to healthy samples. The analysis examined Communities 0, 1, and 2 in 
the control group and Communities 3, 4, and 5 in ARPKD patients. For each community, the mean enrichment 
score (ES_mean) and normalized enrichment score (NES_mean), along with their standard deviations (ES_std 
and NES_std), were calculated to assess activation trends in both groups.

Community 0 exhibited an ES_mean of 151.67, indicating a slight positive activation in healthy samples, 
with an NES_mean of 0.170, suggesting a modest activation trend relative to other communities. The relatively 
large standard deviations (ES_std of 235.40 and NES_std of 0.264) suggest variability across samples, potentially 
reflecting heterogeneity in activation levels within this community in healthy individuals.

Community 1 exhibited an ES_mean of 182.25, indicating mild activation in healthy samples, with an 
NES_mean of 0.204. However, the high standard deviations (ES_std of 361.60 and NES_std of 0.405) reflect 
substantial inter-sample variability, suggesting that some healthy samples exhibit particularly low activation in 
this community.

Community 2 displayed the highest activation level, with an ES_mean of 511.60 and an NES_mean of 0.573, 
indicating robust and consistent activation in healthy samples. The lower standard deviations (ES_std of 158.94 
and NES_std of 0.178) compared to other communities suggest that this activation trend is stable across samples, 
highlighting the potential significance of Community 2 in maintaining normal kidney function.

In comparing healthy and ARPKD samples, Community 2 exhibited the highest activation in both groups, 
suggesting its involvement in fundamental physiological processes or homeostasis. If activation in ARPKD 
samples is elevated, it may reflect disease-related alterations rather than normal physiological regulation. 
Conversely, a decrease in activation could indicate disruption in key pathways associated with disease progression.

Community 0 and Community 1 exhibit only mild activation in healthy samples, suggesting that abnormal 
activation or suppression in ARPKD samples could indicate their involvement in disease-related processes.
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Community 3: The mean enrichment score (ES_mean) was -283.63, with a normalized enrichment score 
mean (NES_mean) of -0.293, suggesting reduced activation in ARPKD patients. The ES standard deviation 
(ES_std) was 94.42, indicating significant variability across samples and suggesting individual differences in 
Community 3 activation among ARPKD patients.

Community 4: The ES_mean was 99.99, while the NES_mean was 0.103, indicating mild positive activation. 
High standard deviations (ES_std of 150.57 and NES_std of 0.155) suggest considerable variation in activation 
across samples, implying that this community is either not directly involved in ARPKD or only minimally 
affected.

Community 5: With an ES_mean of 458.04, Community 5 exhibited the highest positive score, and the NES_
mean was 0.473, indicating stronger activation in ARPKD samples. The standard deviations were relatively low 
(ES_std of 68.47 and NES_std of 0.071), suggesting consistent activation across samples.

These results suggest that Community 5 is consistently activated in ARPKD patients, potentially reflecting 
its involvement in disease-related pathways. Conversely, Community 3 appears to be suppressed, which may 
indicate a regulatory response to disease or a loss of function in ARPKD.

Discussion
This study proposes a pilot methodological approach for analyzing gene networks in ARPKD using a random 
subset of 100 genes. By integrating ssGSEA and topological centrality analysis, this approach identifies gene 

Term Group ES_mean ES_std NES_mean NES_std

Community_0 Control 151.67 235.40 0.170 0.264

Community_1 Control 182.25 361.60 0.204 0.405

Community_2 Control 511.60 158.94 0.573 0.178

Community_3 ARPKD − 283.63 94.42 − 0.293 0.097

Community_4 ARPKD 99.99 150.57 0.103 0.155

Community_5 ARPKD 458.04 68.47 0.473 0.071

Table 4.  Comparison of community activation in control and ARPKD samples via ssGSEA analysis. 
Comparison of community activation between control (healthy) and ARPKD patients. For each community, 
the mean Enrichment Score (ES_mean) and standard deviation (ES_std) indicate the activation level 
and variability within the gene set, while the mean Normalized Enrichment Score (NES_mean) and 
standard deviation (NES_std) were adjusted for gene set size to facilitate community comparisons. Positive 
scores indicate activation, whereas negative scores indicate suppression. Control community structures 
(Communities 0, 1, 2) are applied to ARPKD samples, and ARPKD community structures (Communities 3, 4, 
5) are applied to control samples.

 

Community Gene symbol (Ensembl ID)

3
SLC35F5 (ENSG00000115084), KHDRBS3 (ENSG00000131773), MCHR1 (ENSG00000128285), BAIAP3 (ENSG00000007516), LACTB 
(ENSG00000103642), IFT22 (ENSG00000128581), PMPCB (ENSG00000105819), SUCO (ENSG00000094975), GLRB (ENSG00000109738), AP1S1 
(ENSG00000106367), HSDL1 (ENSG00000103160), POLQ (ENSG00000051341), PRPH2 (ENSG00000112619), MRPL44 (ENSG00000135900), CAP2 
(ENSG00000112186), EHHADH (ENSG00000113790), SMS (ENSG00000102172), MXD1 (ENSG00000059728)

4

APOA1 (ENSG00000118137), KCNIP3 (ENSG00000115041), CEMIP2 (ENSG00000135048), PGLYRP1 (ENSG00000008438), MCM8 
(ENSG00000125885), TGM5 (ENSG00000104055), POLR3H (ENSG00000100413), HOMER2 (ENSG00000103942), TSPAN32 (ENSG00000064201), 
BPIFB9P (ENSG00000125997), IL20RA (ENSG00000016402), CLNK (ENSG00000109684), CLEC4M (ENSG00000104938), TENM1 
(ENSG00000009694), BCKDK (ENSG00000103507), CEP250 (ENSG00000126001), MFSD11 (ENSG00000092931), P3H3 (ENSG00000110811), 
C22orf23 (ENSG00000128346), SLC7A9 (ENSG00000021488), BRD1 (ENSG00000100425), PRMT7 (ENSG00000132600), HOXC8 
(ENSG00000037965), MAG (ENSG00000105695), ADGRE2 (ENSG00000127507), G6PC1 (ENSG00000131482), TRHDE (ENSG00000072657), TNNT3 
(ENSG00000130595), DNAAF11 (ENSG00000129295), LLGL2 (ENSG00000073350), EHD3 (ENSG00000013016), DDX39A (ENSG00000123136)

5

POPDC3 (ENSG00000132429), COX6A1 (ENSG00000111775), KLF12 (ENSG00000118922), RBM3 (ENSG00000102317), SUMF2 
(ENSG00000129103), SP100 (ENSG00000067066), PUS7L (ENSG00000129317), SLC4A11 (ENSG00000088836), DIMT1 (ENSG00000086189), 
CREBL2 (ENSG00000111269), PLA2G12A (ENSG00000123739), RCBTB2 (ENSG00000136161), FGF14 (ENSG00000102466), RRAS 
(ENSG00000126458), GALNT15 (ENSG00000131386), PPP2CA (ENSG00000113575), ASPHD2 (ENSG00000128203), DCBLD2 (ENSG00000057019), 
DYNLRB1 (ENSG00000125971), HLTF (ENSG00000071794), LRRC4B (ENSG00000131409), CUL2 (ENSG00000108094), SKAP2 
(ENSG00000005020), WIPI1 (ENSG00000070540), PNO1 (ENSG00000115946), SLC8A2 (ENSG00000118160), CCNP (ENSG00000105219), AQP6 
(ENSG00000086159), KDM5A (ENSG00000073614), CDKL5 (ENSG00000008086), EBF3 (ENSG00000108001), BYSL (ENSG00000112578), UTP18 
(ENSG00000011260), NDC80 (ENSG00000080986), SORT1 (ENSG00000134243), NDUFS7 (ENSG00000115286), TSGA10 (ENSG00000135951), 
SLC9A2 (ENSG00000115616), CSDE1 (ENSG00000009307), TREM1 (ENSG00000124731), GSKIP (ENSG00000100744), PHF20 (ENSG00000025293), 
ARFGEF2 (ENSG00000124198), CCDC88C (ENSG00000015133), NSFL1C (ENSG00000088833), LSR (ENSG00000105699)

Table 3.  Gene communities and their associated genes identified in normal kidney samples through network 
analysis. The gene communities identified through network analysis in normal kidney samples, categorized 
as Communities 3, 4, and 5. Each community comprises distinct genes associated with specific biological 
functions that are essential for maintaining normal kidney physiology, including structural integrity, immune 
balance, and metabolic pathways. This table lists the gene IDs and corresponding proteins within each 
community, highlighting their potential roles in normal kidney function.
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community structures that conventional DEG analysis may overlook. This provides a framework for exploring 
potential gene interactions and guiding future network-based studies.

First, RNA overexpression was observed in both ARPKD and healthy samples, suggesting the possible 
involvement of compensatory mechanisms in ARPKD5. Community 2, identified in ARPKD samples, also 
exhibited high activation in healthy samples, indicating a potential role in kidney function maintenance. The 
hub gene IFT22 supports ciliary function and may contribute to compensatory responses in ARPKD22,23. 
Additionally, abnormalities in the Hedgehog, Wnt, and Notch pathways have been linked to ARPKD, with 
Hedgehog signaling as a proposed therapeutic target9. This community includes APOA1, PLA2G12A, 
MCM8, POLQ, CEP250, and HOXC8, which may be involved in inflammation regulation, DNA repair, ciliary 
maintenance, and tissue remodeling35,43,49–51.　Conversely, Community 5 was predominantly activated in 
ARPKD samples and may reflect both disease-related changes and potential compensatory mechanisms. It 
includes CCNP, TREM1, PLA2G12A, COX6A1, and RRAS, which may be involved in cell cycle regulation, 
immune responses, and metabolic adaptation30,39,52–54. Further studies are needed to determine whether these 
genes have a direct role in disease progression or reflect secondary effects.

Second, genes upregulated in ARPKD but not in healthy controls may contribute to disease pathology. 
Community 0 analysis identified PMPCB and MRPL44, involved in mitochondrial protein processing, whose 
dysfunction may lead to oxidative stress and impaired ATP production, exacerbating cellular stress responses24,33. 
KLF12 may be activated under such conditions, potentially influencing cell growth and tissue remodeling25. 
Overexpression of IL20RA and CREBL2 could sustain chronic inflammation, which may contribute to renal 
damage55–57.　Community 1 analysis highlighted TPSD1 as a hub gene potentially involved in renal tissue 
damage through inflammatory pathways, along with CEMIP2 and TREM1, which may sustain inflammation 
and promote kidney remodeling30. Abnormal ion channel genes, including SLC4A11 and SLC8A2, could disrupt 
osmotic regulation and contribute to cyst formation31. Excessive activation of AQP6 may further accelerate fluid 
transport abnormalities in ARPKD58,59.

Third, gene communities suppressed in ARPKD may indicate a loss of functions essential for kidney 
homeostasis. Community 3 was downregulated, suggesting a role in structural integrity. The hub gene SMS, 
essential for spermine synthesis, is involved in DNA stability and cell growth, and its suppression may weaken 
kidney tissue and be associated with disease progression2,35. Additionally, PMPCB, MRPL44, LACTB, and 
IFT22 may contribute to impaired mitochondrial support, disrupted cell growth, and metabolic dysfunction in 
ARPKD2,22–24,60.

Fourth, to place our findings in a broader context, we compared them with previous analyses by Richards et 
al. (2019, 2024). Gene communities were identified using a randomly selected set of 100 genes, but additional 
genes were evaluated based on their correlation with existing communities to infer their potential network 
associations.

Examining the network positions of WNT5A, CDH1, and FZD10 allowed us to compare our results with 
prior studies and assess structural changes in gene communities associated with ARPKD pathophysiology.

Our analysis revealed that WNT5A, CDH1, and FZD10 were part of Community 0 in healthy individuals but 
were not classified into any community in ARPKD. This suggests that these genes were components of a network 
involved in transcriptional regulation, cellular stress response, and signal transduction. However, in ARPKD 
patients, their network integration was lost, implying potential changes in their functional roles. Whether these 
alterations arise due to disease progression or reflect primary pathogenic abnormalities remains uncertain.

WNT5A is a key component of the non-canonical Wnt/PCP pathway. Richards et al. (2019) reported that 
excessive activation of WNT5A in ARPKD may contribute to aberrant Wnt/PCP signaling, potentially influencing 
disease progression1. Additionally, Richards et al. (2024) demonstrated that variations in WNT5A expression in 
ARPKD patients are associated with abnormalities in Wnt signaling. Our findings suggest that while WNT5A 
plays a role in transcriptional regulation and cellular response in healthy individuals, its functional role may shift 
in ARPKD.

CDH1 (E-cadherin) is crucial for maintaining cell–cell adhesion. Previous studies reported that increased 
CDH1 expression in ARPKD kidneys does not necessarily enhance cell adhesion but may instead contribute to 
abnormal cell polarity and adhesion defects1. Our results indicate that while CDH1 is associated with maintaining 
adhesion homeostasis in healthy kidneys, its role may change during ARPKD progression.

FZD10 (Frizzled class receptor 10) functions as a Wnt signaling receptor involved in cell proliferation, 
differentiation, and polarity control. Previous studies have indicated that FZD10 is differentially expressed in 
ARPKD, potentially contributing to disease progression through altered Wnt signaling9. In our study, FZD10 
was part of a transcriptional regulation and cellular response network in healthy individuals, but its function 
appeared to be altered in ARPKD.

Furthermore, conventional gene expression analysis using DESeq2 identified genes that, despite being 
highly expressed in ARPKD, exhibited weak correlations (0.3–0.5) with major gene communities. These weak 
associations may reflect compensatory mechanisms or network reorganization in ARPKD, but further validation 
is required to determine their biological significance.

A detailed comparison with traditional differential gene expression (DEG) analysis and an expanded 
evaluation of genes, including PKD1, LOXL1, KIF1A, ADGRB2, LRP4, and APBA2, are provided in Supplementary 
Information61–63. In particular, while our method does not determine whether PKD1 is mathematically isolated, 
this finding may carry significant implications35,36.

Fifth, this study has several limitations. An important limitation is the small sample size (n = 4 per group), 
which restricts the generalizability of our findings and may be influenced by inter-sample variability. The cross-
sectional design restricts the ability to determine whether gene expression changes are primary contributors to 
ARPKD progression or secondary responses to the disease. Longitudinal studies with larger cohorts are needed 
to clarify the causal relationship between these alterations and disease progression3.
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While ssGSEA and topological centrality analysis provide valuable insights into gene community 
structures, they do not account for other critical aspects of gene regulation, such as epigenetic modifications, 
post-transcriptional regulation, or protein-level interactions, which may also influence ARPKD pathology11. 
Functional validation using cellular and animal models is essential to confirm the biological significance of these 
gene communities and assess their potential as therapeutic targets50.

Due to computational constraints, this study analyzed a reproducible random subset of 100 genes rather than 
a systematically selected biologically relevant set. Methods such as Deterministic Column Subset Selection or 
Hierarchical Representative Set Selection, which could improve biological relevance, were not applied. Future 
studies should incorporate these approaches to refine gene selection and enhance network analysis.

Despite these limitations, this study provides a useful framework for analyzing gene networks associated 
with ARPKD and establishes a foundation for further research and therapeutic development. Integrating 
both gene-specific analyses and network-based approaches will be essential to deepen the understanding of 
ARPKD pathogenesis. Functional validation of gene communities through experimental models and iterative 
incorporation of newly identified genes into TDA-based analyses will improve the precision of disease modeling. 
These efforts will contribute to a more comprehensive understanding of ARPKD pathophysiology and support 
the development of novel therapeutic strategies.

Methods
Ethics
This investigation utilized publicly available data from the National Center for Biotechnology Information 
(NCBI), and approval from the Yokosuka Urogynecology and Urology Clinic Ethics Committee was not required.

Sample and data usage
In this study, a transcriptomic analysis of ARPKD was conducted using a publicly available dataset from NCBI 
GEO. This dataset was generated and provided by Goggolidou et al. (GEO accession number: GSE242476), 
comprising four kidney samples from ARPKD patients and four age-matched healthy kidney samples1,9,10. 
An independent analytical approach was employed to examine this dataset to provide additional insights and 
compare the findings with those presented in the original publication1,9.

RNA extraction, library preparation, and sequencing
In this study, no genetic manipulation was conducted, and the protocols for RNA extraction and sequencing 
adhered to those established in the original dataset by Goggolidou et al. The specimens were obtained from the 
ARPKD Biobank at University College London, RNA extraction was performed using the Qiagen RNeasy Mini 
Kit, and sequencing was performed on the Illumina NovaSeq 6000 platform.

Read processing and alignment
Post-sequencing, raw reads were processed for quality control and adapter trimming using CutAdapt. The 
cleaned reads were then aligned to the GRCh38 reference genome using HISAT2 to ensure accurate mapping of 
transcriptomic sequences.

Gene quantification and differential expression analysis
Gene-level expression counts were obtained using StringTie. Differential expression analysis was conducted 
using DESeq214–18, applying an adjusted p-value threshold of < 0.05 to identify significantly differentially 
expressed genes. Among the identified genes, PKD1, associated with autosomal dominant polycystic kidney 
disease (ADPKD), exhibited significantly higher expression in ARPKD samples compared to controls. Other 
differentially expressed genes included ADGRB2, which is involved in cellular adhesion, LRP4, a key regulator of 
Wnt signaling, and KIF1A, an essential component of intracellular transport.

Functional enrichment analysis
To explore the biological relevance of differentially expressed genes, functional enrichment analysis was 
performed using GOSeq and Revigo19,20, accessed via Galaxy.org, with the exception of Revigo21. Enrichment 
results highlighted pathways associated with cystogenesis, cellular adhesion, and immune response, which are 
known to be implicated in ARPKD pathophysiology.

Data processing and analysis
The sequence data were analyzed in their original form without any genetic manipulation. Using the StringTie 
and DESeq2 packages, the data were re-analyzed with an independent analytical approach. To enable direct 
comparison with the original study, the same reference genome (GRCh38) and aligner (HISAT2) were used for 
differential expression analysis.

Data citation
This dataset was made publicly available as part of the study by Goggolidou et al. and uploaded to the NCBI 
GEO database for utilization by researchers. In this study, the data provided by the authors were used to generate 
new insights based on an independent analytical approach, contributing to an enhanced understanding of gene 
expression in ARPKD1,9,10.

Data preparation
Two datasets were obtained: one representing gene expression in ARPKD (abnormal) samples and the other 
in control (normal) samples. Both datasets contained gene expression levels across four samples. The column 
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names were standardized to facilitate merging and comparison, and the datasets were subsequently merged 
based on common gene identifiers (Gene_ID).

Statistical testing
For each gene, a paired t-test was performed between the ARPKD and Control expression levels across the 
four samples. This test was chosen because it assesses whether there is a statistically significant difference in the 
expression of each gene between ARPKD and Control groups. A p-value threshold of 0.05 was applied to identify 
genes with significant differences in expression.

Data loading and preprocessing
Gene expression data are provided in a CSV file, with rows representing gene names and columns representing 
individual samples. These data were loaded using Python’s `pandas` library. Only numeric data columns were 
extracted to focus on the gene expression levels. To improve the computational efficiency, a subset of 100 genes 
was randomly selected for analysis. If the total number of genes was less than 100, all genes were used. Random 
sampling was performed to retain a representative set of genes for correlation analysis while maintaining 
manageable computational requirements.

Constructing the gene network
Given the computational constraints associated with analyzing all gene pairs in large-scale RNA-seq datasets, a 
reproducible random subset of 100 genes was selected to ensure consistency across analyses23,24. This selection 
was performed using a fixed random seed to allow reproducibility. While this approach reduces computational 
burden and maintains network integrity, it does not prioritize biological relevance. In future studies, deterministic 
selection methods such as DSSC (Deterministic Column Subset Selection) or HRSS (Hierarchical Representative 
Set Selection) may be implemented to improve the biological relevance of selected genes while maintaining 
computational feasibility20,21,64–66.

A correlation matrix was computed for the selected subset of genes using the transpose of the data to assess 
gene-to-gene correlations. This matrix displays the correlation coefficient for each gene pair, with higher values 
indicating stronger co-expression. An edge threshold of 0.6 was applied, meaning that only gene pairs with a 
correlation of 0.6 or above were considered strongly related and were retained as edges in the network. Using 
the `NetworkX` library, a network graph was built where each gene was represented as a node and an edge 
connected to any two genes with a correlation meeting or exceeding the threshold12. Next, to focus on the most 
interconnected structure, only the largest connected component of the graph is retained, removing any isolated 
nodes. This refined graph was visualized with `matplotlib,’ using a layout algorithm (`spring_layout`) to place 
closely correlated genes near one another for clearer identification of clusters11,12.

To ensure statistical rigor, Pearson’s correlation coefficients were used to quantify pairwise gene co-expression.

	
Rij = Cov (Xi, Xj)

σXiσXj

where Xi and Xj represent the expression profiles of genes i and j, and σX denotes the standard deviation. Edge 
retention was determined based on two criteria: ∣Rij∣exceeding a threshold T = 0.6 and statistical significance 
(pij < 0.05), ensuring that only robust co-expression relationships were included in the network.

Sensitivity analysis method
To evaluate the robustness of the chosen correlation coefficient threshold (0.6), a sensitivity analysis was 
performed by varying the threshold across a range of values (0.1,0.2,0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9). For each 
threshold, a gene correlation network was constructed using only gene pairs with correlations above a given 
threshold. Network topology was analyzed in terms of the number of nodes, edges, and communities detected 
using the Louvain method. The results were compared to assess the impact of the threshold on network structure 
and community detection.

Community detection and centrality calculation
The Louvain method was applied using the Community Louvain module to identify gene clusters within the 
network12. This method groups genes into communities, where genes within a community have stronger 
connections with each other than with those in other communities. Next, betweenness centrality was calculated 
separately for each community to identify genes acting as central 'hubs' within their respective groups. The gene 
with the highest centrality score in each community was designated as the 'central gene,' suggesting its potential 
key role in regulating interactions within that community. These central genes are then listed in a summary table, 
showing their community assignment and centrality scores, providing insights into genes that may significantly 
influence ARPKD-specific gene expression networks.

Definition of disease-related gene communities
Gene communities were identified from ARPKD patient data based on prior network analyses that grouped genes 
into distinct functional communities: Community_0, Community_1, and Community_2. Each community 
consisted of genes with related functions and interaction patterns that were used as gene sets for ssGSEA 
analysis. The list of genes within each community was curated and labeled as "Community_0," "Community_1," 
and "Community_2" in the gene set definitions.
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Application of ssGSEA analysis to healthy sample data
Gene expression data from the healthy control samples were collected and uploaded. Each column in the 
dataset was treated as an independent sample, with rows representing the expression levels of different genes11. 
Predefined gene sets representing the ARPKD communities were used to conduct ssGSEA on healthy sample 
data11. This analysis produced two scores for each gene community for each sample.

Enrichment Score (ES): A score reflecting the cumulative level of activation or repression of genes within a 
community.

Normalized Enrichment Score (NES): An adjusted score that accounts for differences in gene set size, 
enabling comparisons across communities.

Calculation and comparison of activation scores
The results of the ssGSEA were averaged across samples to calculate the mean and standard deviation for both 
ES and NES within each community. The mean scores indicate the overall activation trend in each community, 
whereas the standard deviations reflect the variability of activation across different samples11. These baseline 
values for healthy samples served as a reference point for comparing activation patterns in ARPKD patients.

Interpretation and comparison with disease states
The mean ES and NES values, along with their standard deviations, were analyzed to understand the baseline 
activation of ARPKD-related gene communities in healthy individuals. Comparing these scores to those obtained 
from ARPKD patients allowed us to detect deviations in community activation that may be associated with 
disease pathology. Communities showing significantly altered activation in ARPKD patients ARPKD relative to 
the baseline observed in healthy controls are considered candidates for further investigation into their roles in 
disease progression.

Graph theoretical isolation and mathematical isolation
To analyze the mathematical isolation of PKD1, we represented the network as an undirected graph G = (V, 
E), where V represents nodes (genes) and E represents edges, indicating statistically significant pairwise 
correlations66,67. The adjacency matrix (A) for this graph is constructed such that:

	
1, if a significant edge exists between nodes i and j
0, otherwise.

The connectivity of each node was determined by its degree, which was calculated as

	
deg (vi) =

∑
j∈V

Aij

A node is mathematically isolated if its degree is zero

	 deg(vi) = 0 ⇒ vi is isolated.

For PKD1, represented as node v₀, isolation was verified by checking if

	 deg(v0) = 0.

We further analyzed the network’s connectivity by constructing the graph Laplacian matrix (L), defined as

	 L = D − A.

Here, D is the degree matrix, which is a diagonal matrix where

	 Dii = deg(vi),

and A is the adjacency matrix. The eigenvalues of L, denoted as λ1, λ2, …, λn, reveal the network structure. The 
number of zero eigenvalues corresponds to the number of connected components in the graph67,68. An isolated 
node forms its own trivial connected component, defined as.

To construct the graph, pairwise correlations were calculated using Pearson’s correlation coefficient.

	
Rij = Cov (Xi, Xj)

σXiσXj

where Xi and Xj represent the expression profiles of genes i and j, and σx denotes the standard deviation. Edges 
were retained if:

where Xi and Xj represent the expression profiles of genes i and j, and σx denotes the standard deviation67,68. 
Edges were retained if:

	 |Rij | ≥ T andpij < α,

where T is the correlation threshold, and pij is the p-value associated with the correlation, with a significance 
level of α = 0.05.
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Statistical analysis
Statistical analyses were performed using Google Colab (Google LLC, Mountain View, CA, USA). The Python 
code for the analysis was developed with the assistance of ChatGPT (OpenAI, San Francisco, CA, USA) and 
cross-checked using Claude 3 (Anthropic PBC, San Francisco, CA, USA) and Jimmniy (Grok Ventures Pty Ltd., 
Sydney, NSW, Australia). After the verification, the code was executed to obtain the results of this study. To 
ensure reproducibility, detailed Python code is publicly available in the "Code Availability section”. The analysis 
employed various scientific computing libraries, including pandas, numpy, and matplotlib, for data handling and 
visualization, and NetworkX for network-based analyses.

Data availability
The transcriptomic data used in this study were obtained from the publicly available NCBI Gene Expression 
Omnibus (GEO) repository under accession number GSE242476 (Goggolidou et al., 2024). This dataset includes 
samples from ARPKD patients and age-matched healthy controls. 

Code availability
The code used in this study is available at: https://github.com/Okuinobuo/ARPKD2024/.
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