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Solar photovoltaic technology is efficient and clean, but extracting photovoltaic cell parameters is
challenging due to various influencing factors. The rime optimization algorithm (RIME) is a recently
proposed metaheuristic algorithm (MAs). This paper introduces the dynamic multi-dimensional
random mechanism (DMRM) combined with the Nelder-Mead simplex (NMs) to propose an enhanced
version of RIME, called DNMRIME. DMRM improves the convergence accuracy of RIME by random
non-periodic convergence, and NMs accelerate convergence, enabling DNMRIME to escape local
optima and perform better on hybrid and composite functions. To evaluate the performance of
DNMRIME, a qualitative analysis and an ablation study were conducted on CEC 2017. To verify

its effectiveness, DNMRIME was compared with 14 well-known MAs, including some champion
algorithms, and the results of the Wilcoxon signed rank test showed that DNMRIME ranked first. To
extract parameters on SDM, DDM, TDM, and PV, DNMRIME was applied, resulting in mean RMSE
values of 9.8602188324E - 04, 9.8296993325E - 04, 9.8393451046E - 04, and 2.4250748704E - 03
respectively. Moreover, under varying temperature and irradiation conditions on three manufacturers
(KC200GT, ST40, SM55), DNMRIME extracted parameters with simulation data matching the actuval
data. Therefore, unlike previous studies, this study proposes DMRM and DNMRIME, demonstrating
the efficiency and practicality of DNMRIME and further highlighting potential value of DNMRIME in
photovoltaic parameter extraction. The source code of DNMRIME is available at https://github.com/zy
etpink/DNMRIME-Solar-Model-dataset.

Keywords RIME optimization algorithm, Optimization, Photovoltaic parameter extraction, Dynamic multi-
dimensional random mechanism, Nelder-Mead simplex

Abbreviations

RIME Rime optimization algorithm
NMs Nelder-Mead simplex

SDM Single diode model

DDM Double diode model

TDM Three diode model

PV Photovoltaic

MazxFESs Maximum number of iterations
N Population size or problem scale
SM55 Mono-crystalline PV module
ST40 Thin-film PV module
KC200GT Multicrystal photovoltaic module
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Ir Output current

Ion Photo-generated current

Iy, Ig1, Iao, Ias Diode current

I Shunt resistor current

Isa, Isa1, Isaz, Isas  Reverse saturated current

dim Problem dimension

Rg Series resistor

Rsh Parallel resistor

1,1y, M, 1y Diode ideality factor

WSRT Wilcoxon signed-rank test

q The charge of the electron

k Boltzmann constant

T Kelvin temperature

RMSE Root mean square error

FEs The number of the current iteration
Rpest,j The j-th dimension of the best rime
UB Upper boundary

LB Lower boundary

Np Number of parallel solar cells

Ng Number of series solar cells
R The new position of the particle
cos @ The Particle movement direction
B The environmental factor

i The i-th random number in [0, 1]
FmermT(Sy) The normalized value

In recent years, escalating environmental pollution has increasingly threatened human health and sustainable
social development, sparking an urgent quest for clean and renewable energy sources to replace traditional,
highly polluting ones™2. Photovoltaic energy, as a clean, pollution-free, and renewable form of energy, not only
holds economic advantages but also boasts broad application prospects, including daily power supply, electric
vehicles, aerospace, and other fields>?. Photovoltaic energy has become crucial for ditching traditional energy
sources’. Furthermore, in numerous regions and countries, solar energy significantly promotes energy diversity
and security®. Therefore, the rising global need for sustainable energy has made photovoltaic energy crucial’.

Owing to the influence of varying light intensity, temperature, and the non-uniform and intricate structure
of photovoltaic cells®, the photovoltaic model exhibits nonlinear relationships and complex structures, resulting
in transcendental equations®!. Nonlinearity and precise estimation of unknown parameters pose a challenge
in solar energy. Precise parameter extraction is vital for maximizing solar energy utilization. Analytical
methods!'!'"13, numerical methods'*!® and metaheuristic algorithms (MAs)!” are three commonly used
approaches for determining the parameters or characteristics of photovoltaic systems. Analytical methods face
challenges such as high computational costs and significant model dependencies when using mathematical
models and computational techniques in various applications!s.

Meanwhile, numerical techniques are constrained by the quality and limitations of experimental data®®.
Conversely, MAs demonstrate robustness and adaptability in estimating composite photovoltaic parameters,
enabling them to flexibly address diverse systems and optimization objectives, improving accuracy and
reliability?’. Through its parallel processing and computational efficiency, it not only minimizes costs in time
and resources but also quickly reaches the global optimum, surpassing the constraints of traditional methods
and emerging as a highly effective optimization technique.

In recent years, MAs have emerged in various research fields by establishing mathematical models by
simulating natural behaviors, demonstrating strong adaptability and flexibility?!. Notable MAs include genetic
algorithm (GA)?%, particle swarm optimization (PSO)?, differential algorithm (DE)?*, artificial bee colony
(ABC)?, whale optimization algorithm (WOA)?, grey wolf optimization (GWO)?¥, Harris hawks optimization
(HHO)®, hunger games search (HGS)?’, teaching-learning based optimization (TLBO)%, colony predation
algorithm (CPA)*!, liver cancer algorithm (LCA)2, Runge Kutta optimizer (RUN)*, competitive swarm
optimizer (CSO)** and others. Recently proposed algorithms include, slime mould algorithm (SMA)3>3,
educational competition optimizer (ECO)?’, artemisinin optimization (AO)3®, the weighted mean of vectors
(INFO)¥, fata morgana algorithm (FATA)*, rime optimization algorithm (RIME)*!, polar lights optimization
(PLO)*, parrot optimizer (PO)*?, quantum-based avian navigation optimizer (QANA)** and more.

Recent studies have highlighted the versatile applications of MAs and their enhanced versions across various
fields*®. These algorithms have proven to be particularly effective in addressing complex optimization problems.
For example, the offline learning-enhanced CSO has been applied to efficiently solve nonlinear fixed-cost
transportation problems*®. At the same time, the reinforcement learning-improved HHO has been utilized for
high-dimensional feature selection?”. The enhanced ABC has also shown promising results in breast cancer
image segmentation®®. Using MAs to estimate photovoltaic parameters is the mainstream method*’. Table 1
summarizes recent research on MAs for photovoltaic parameter estimation, including methods and targeted
solar models. Many researchers have used (MAs) or enhanced versions for photovoltaic parameter estimation,
and these significant contributions have provided valuable insights into the field. However, these studies lack in-
depth performance analysis of the algorithms used and do not comprehensively evaluate photovoltaic parameter
models and commercial model systems.
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Year | References | Main work and method Solar model

2015 | %0 Used flower pollination algorithm (FPA) SDM, DDM

2016 | Proposed an adaptive NMs to improve artificial bee colony (ABC) SDM, DMM, PV

2016 | *2 Applied moth-flame optimizer (MFO) DDM, TDM

2017 | %3 Proposed a hybrid algorithm of ABC and FPA SDM, DDM

2018 | ** Improved PSO with adaptive mutation strategy SDM, DDM, PV

2018 | 5° Proposed a new hybrid of ABC and TLBO SDM, DDM, PV

2019 | % Improved interior search algorithm SDM, DDM

2020 | %7 Proposed a hybrid of GWO and cuckoo search SDM, DDM, PV

2020 | %8 Improved WOA with reflection principle SDM

2020 | ° Improved bat algorithm with Lévy ﬂight SDM, DDM

2020 | ¢ Proposed a hybrid of TLBO and DE SDM, DDM, PV

2020 | ¢ Used manta ray foraging optimization TDM

2021 | 62 Improved DE with population information and search direction SDM, DDM, TDM, PV
2021 | % Proposed a new hybrid of MPA and SMA TDM

2021 | ¢ Improved TLBO by dividing into three phases based on scores SDM, DDM, PV

2021 | % Improved SMA by local search capability SDM, DDM, PV

2021 | % Improved MPA by population enhancement SDM, DDM, PV

2022 | ¢7 Used circle search algorithm TDM

2022 | 8 Improved WOA by information sharing strategy and NMs SDM, DDM, TDM, PV
2022 | © Improved colony predation algorithm by opposition and level learning SDM, DDM, PV

2022 |70 Combined QANA and the Newton-Raphson method SDM, DDM, PV

2023 | 7 Improved atomic search optimization by anti-sine-cosine strategy SDM, DDM, TDM, PV
2023 | 72 Improved GWO by spiral updating and multiple learning backtracking

2023 | 73 Improved elephant herding optimization by fast moving operator and elite strategy | PV

2023 | 74 Improved FPA by combining three new strategies SDM, DDM, PV

2023 | 7® Improved DE by four strategies SDM, DDM, PV

2024 | 76 Improved clonal selection algorithm using golden sine and dual-feedback strategies | SDM, DDM

2024 |77 Improved exponential distribution optimization by opposition learning SDM, DDM, TDM, PV

Table 1. Summary of MAs for photovoltaic parameter estimation.

Lately, the domain of MAs has been consistently observing the sprouting of novel algorithms. Remarkably,
the rime optimization algorithm (RIME), a novel approach grounded in physical phenomena’8, was introduced
in 2023 and quickly attracted widespread interest. This is due to its advantages: (1) Simple and intuitive working
mechanism is easy to understand and implement; (2) It requires fewer parameters, reducing the need for
algorithm adjustment; (3) RIME exhibits a relatively fast convergence speed when dealing with multimodal
functions. Considering the notable advantages of the RIME, we have recognized its potential and attempted to
apply it to practical photovoltaic parameter estimation.

RIME demonstrates strong exploration capabilities on unimodal functions, such as F2 and F3 on the CEC
2017 benchmark, where it effectively searches for the global optimum. Additionally, RIME can escape local
optima on multimodal functions, as seen on CEC2017 functions F8, F9 and F10. However, when faced with
more complex hybrid and composition functions, the performance of RIME is less satisfactory, often struggling
to escape local optima and exhibiting deficiencies in convergence accuracy. This indicates that RIME still has
room for improvement in balancing global exploration and local search in complex search spaces. Photovoltaic
parameter extraction is a complex optimization problem where optimization algorithms need to escape local
optima while also requiring precise local search capabilities to ensure rapid convergence to high-accuracy
solutions during the search process. According to the "No Free Lunch Theorem" (NFL)”’, there is no universal
algorithm that performs optimally on all problems. Consequently, choosing the appropriate algorithm based
on the problem is necessary. In the photovoltaic parameter extraction experiments, we found that the original
RIME algorithm did not perform satisfactorily.

To better accelerate the convergence speed and improve the convergence accuracy of RIME, we propose
an enhanced algorithm called DNMRIME in our research. This paper combines dynamic multi-dimensional
random mechanism (DMRM) and NMs into a straightforward and effective RIME algorithm to better solve
complex optimization issues like photovoltaic parameter extraction. In the Soft-rime search strategy of RIME,
although the cosine function introduces a certain level of controlled volatility, providing some adjustment ability
to the search process, this volatility follows a deterministic periodic variation. Specifically, we introduce DMRM,
which uses uncertain perturbations and a non-periodic sine function to improve RIME’s convergence accuracy
and local search capability. We also used the NMs to improve the local search ability and convergence speed. To
validate the performance of the DNMRIME, we conducted extensive testing on the CEC 2017 and a series of
simulation experiments in photovoltaic models. Through rigorous analysis of the experimental results, we found
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that DNMRIME demonstrated superior performance across multiple test cases. Compared to RIME and other
relevant algorithms, DNMRIME exhibited higher convergence speeds and better parameter estimation accuracy.
Based on the above, the key differences of this study compared to previous research are as follows.

o The dual-mechanism improvement of RIME, where DMRM is proposed for the first time and combined with
NMs to enhance RIME.

« This study conducts comprehensive validation and photovoltaic parameter extraction by evaluating DN-
MRIME on CEC 2017 and testing DNMRIME on SDM, DDM, TDM, KC200GT, ST40, and SM55.

Therefore, the contributions of this study are as follows:

« Proposal of DMRM: This study introduces DMRM, which enhances RIME’s ability to escape local optima and
improves its convergence accuracy by incorporating a sine function and a sigmoid function.

o Integration of DMRM and NMs into RIME: By combining DMRM and NMs to enhance RIME, the proposed
algorithm, DNMRIME, achieves a better balance between exploration and exploitation.

+ Qualitative analysis of DNMRIME: A qualitative analysis of DNMRIME on the CEC 2017 benchmark is con-
ducted to evaluate the convergence trend of the population and the dimensional change trajectories.

« Ablation study of DNMRIME: The ablation study of DNMRIME on CEC 2017 validates the effectiveness of
DMRM and NMs, confirming their contributions to DNMRIME.

« Competitiveness analysis: This study compares DNMRIME with 14 well-known algorithms on CEC 2017,
and the Wilcoxon signed-rank test confirms its competitive performance.

o Application in photovoltaic parameter extraction: The photovoltaic parameter extraction capability of DN-
MRIME is comprehensively evaluated using SDM, DDM, TDM, and PV, showing lower RMSE than existing
algorithms.

« Performance under real-world conditions: Three commercial photovoltaic models (KC200GT, ST40, SM55)
are used to assess DNMRIME under different temperature and illumination conditions, further validating its
optimization performance.

The main structure of this paper is as follows: Section “Photovoltaic problem definition and equations’, the
photovoltaic problem and its formulas are described. In “The proposed DNMRIME algorithm’, the DNMRIME
algorithm is introduced. Section “Experimental results’, experiments are conducted on DNMRIME. Section
“Discussion on the results” presents a discussion on DNMRIME. Section “Conclusions and future directions”,
finally, prospects are outlined.

Photovoltaic problem definition and equations

This section introduces modeling methods, equivalent circuit models, and relevant mathematical equations
for photovoltaic energy problems. Establishing precise mathematical models is vital for analyzing system
performance, optimizing designs, and developing effective control strategies in photovoltaic energy systems. We
will describe four commonly used photovoltaic models: SDM, DDM, TDM, and PV.

Solar cell model

Single diode model (SDM)

The SDM is a widely employed simplified mathematical model utilized to elucidate the operational characteristics
of photovoltaic cells. Grounded in both circuit theory and semiconductor physics principles, this model
conceptualizes a PV cell as an equivalent circuit comprising a diode and a resistor. The schematic representation
of the SDM’s equivalent circuit is depicted in Fig. 1. Equation (1) elucidates the method for calculating the output
current of the photovoltaic cell in the SDM case.

Light Source

4 sh
4

sh

Fig. 1. Equivalent circuit diagram for SDM.
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Iy = Ipp — Isn — g (1)

where the current /g that through the diode can be calculated using Eq. (2), I, stands for the current flowing
through the parallel resistance Rspn, Rsn can be derived from Eq. (3), Ipn represents the current generated by
light shining on the surface of the photovoltaic cell, I1, is the final output current.

VL + Rs x I
Iy = {exp (W X q) — 1] X Isq (2)
Ly, = L2t B x ]y 3)

Rsh

where V7, is the final output voltage, R, is the series resistance used for voltage division, n represents the ideality

factor or coefficient of an ideal diode, n is typically in the range (1, 2), k is the Boltzmann constant approximately

valued at 1.380649 x 10E — 23 J/K, the parameter 7" denotes the Kelvin temperature of the photovoltaic cell.
Substituting Eqs. (2) and (3) into Eq. (1) yields Eq. (4).

Vi + Rs X I,
nxkxT

I = Iph — [exp (
Inthe SDM, thereare fiveunknown parameterstobe determined. These parametersinclude: Ipn, Isq, Rs, Rsh, n.
Determining the values of these parameters is crucial for accurately describing the behavior and performance
of photovoltaic systems.

Double diode model (DDM)

DDM adds an extra parallel diode outside the components of SDM to better capture the intricate dynamics
within the photovoltaic cell. The equivalent circuit diagram of DDM is illustrated in Fig. 2. On DDM, Iy, is
calculated by Eq. (5).

I = Ipp — Isp — Iax — a2 (5)

where I4; is the current passing through the first diode, and I42 is the current passing through the second diode.
By substituting Eq. (4) into Eq. (5), Eq. (6) can be obtained.

- VL + Rs x I, VL + Rs x I, VL + Rs x I,
IL—Ipthff‘gdl X |:CXp (m Xq)71:| 7Isd2>< [OXp(mX(I) *1:| (6)

where n1 and na respectively represent the ideality factors or ideality coeflicients of the two diodes.
On DDM, there are 7 unknown parameters to be determined. These parameters include:
I, Isa1, Isaz, Rs, n1, na.

Three diode model (TDM)
TDM consists of three diodes in parallel, along with a parallel resistor and a series resistor, forming an equivalent
circuit, as depicted in Fig. 3.

In the DDM, Iy, is calculated using Eq. (7).

Ip =Ipn — s — In — 1g3 (7)

Light Source

4
&

Fig. 2. Equivalent circuit diagram of DDM.
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Fig. 3. Equivalent circuit diagram of TDM.
I, —»
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Fig. 4. Equivalent circuit of PV.

where I41, 142, 143 represent the current through the first, second, and third diodes, respectively.

VL+RS><IL_I ~[ex (VL+RSXIL. )_1}
Rsh sdl p ’I’leT q

_ X[ex (MX>_1}_ X{ex (MX)_I]
sd2 P AT xkxT g sd3 P AT e xkxT q

Ip =TI, —

(8)

where n1, no, n3 respectively represent the ideality factors or ideality coefficients of the three diodes.
In the TDM, there are nine unknown parameters to be determined. These parameters include:
Iph, Isar, Isaz, las, Rs, Rsn, 1, N2, N3.

PV module model
PV is a mathematical model used to describe the behavior of photovoltaic cells, typically composed of a
photocurrent source and a series resistor, aiming to simulate the photovoltaic cell’s current characteristics
accurately.

The equivalent circuit diagram of PV is shown in Fig. 4.

Similarly, Egs. (9) and (10) can also be derived accordingly.

NS
Rsp X Ns ©)

ny X kX NgxT
NP

VL Vi Vi Ip
& 4+ Ns x Rs x <& + Ns X Rs X
It = L Np — Isq X Np X [exp(Ns q> —11 _ X N
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I, =1, X N, — Isq1 X N, X
L= Iph P a P ny X kX NgxT

VL VL VL Iy,
+ Ns X Rs x + Ns X Rs X
—Isq2 X N, X lexp (NS AERP q) — 1‘| N N

(Xﬁ—i—NsstxXi ) ]
exp xq|—-1

no X kx Ny xT Rop X Ns
Np

where N, represents the number of solar cells in series, Np represents the number of solar cells in parallel.
On PV, several unknown parameters need to be determined. These parameters include: Ipn, Isq, Rsn, 1.

Objective function
In photovoltaic problems, the problem description can be represented by Egs. (11)-(13).

It is vital to assess the deviation between actual and estimated values. The selection of Root Mean Square
Error (RMSE) as an evaluation metric is justified by its sensitivity to outliers, interpretability of positive and
negative errors®, and differentiability. The expression for RMSE is shown in Eq. (14).

(11

I, X) = — I, — I
F Ve, I, X) = In — It dx{eXP( S E % T o

2
o _ 7VL+RS><[L7 _ qX(VL—f—RSXIL) B
FVi, I, X) = Ipn — I B Z;JW x [exp ( S E T 1 (12)

qX(VL+RSXIL)> _1] _VL—FRSX[L

3
o Vi + Rs x I, _ qX(VL+RS><IL)
F(Ve, I, X) = Ipn — I R, E Tsa,i % [exp < XX T 1 (13)

i=1

where X represents the vector of parameters to be optimized.

N
RMSE (X;) = %Zfi’ Vi, I, Xy) (14)
i=1

where N represents the number of samples, which refers to the quantity of data points.
The smaller the RMSE, the closer the predicted values are to the actual values. Therefore, the objective
function to be minimized is shown in Eq. (15).

Minimize RMSE (X;) (15)

The proposed DNMRIME algorithm
This section will introduce the original RIME, the NMs and the newly proposed dynamic multi-dimensional
random mechanism. Furthermore, we will discuss the proposed improved algorithm, DNMRIME.

The RIME algorithm

The principle of RIME is quite straightforward: rime is classified into soft and hard types based on its morphology.
RIME has two main stages: soft-rime search strategy and Hard-rime puncture mechanism. A positive greedy
absorption mechanism is also consistently utilized throughout RIME’®.

Initialize rime particles
Initially, rime particles acquire their initial position according to Eq. (16).

Rij = LB+r x (UB — LB) (16)
where 71 is a random number in the range [0, 1].

Soft-rime search strategy
When rime is in the soft state, a soft margin strategy is adopted, and the state of rime particles is updated using
Eq. (17).

RE™ = Ripest,j + 72 X cos0 x Bx (hx (UB—LB)+ LB),r3 < E,j =1,2,...,dim (17)

where ;" represents the new position of the updated rime particle, while i and j indicate the j-th dimension
of the i-th rime particle, respectively, R?*" represents the j-th dimension of the best rime agent within the
RIME population. The parameter 72 and r3 is a random number in the range [—1, 1]. U B and L B respectively
represent the upper bound and lower bound of the search space.

FFEs
0 =mx 10 X MaxFFEs (18)
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The parameter 6 is determined by Eq. (18), and as the iteration count rises, it grows larger. Consequently, the
parameter cos 6 diminishes as the iteration count increases.

w X FEs

p=1- [MaacFEs} /v 19

The environmental factor 3, varying with iterations as a random number in the range [0, 1], is calculated using
Eq. (19).

FFEs
_ 20
E (Maa:FEs) (20)

The parameter value E is related to the current iteration count and the maximum iteration count in the range
[0, 1], as indicated in Eq. (20). Parameters F and 1 jointly determine, with a certain probability, whether a rime
particle adopts the soft margin search strategy or the soft rime strategy.

Hard-rime puncture mechanism
When a rime particle is in a state of hard rime, Eq. (21) will be employed to update the position of the current
fog rime particle.

R;(Ljew _ Rbest,j,rél < Fnormr (Sz) (21)

where R} represents the updated position of rime particles, 4 and j respectively denote the j-th dimension
of the i-th RIME agent. The parameter 74 is a random number in the range [0, 1]. F"°"™" (S;) represents the
normalized fitness value of the i-th RIME agent.

Nelder-Mead simplex
J. Nelder and R. Mead proposed the NMs in 196581, a method capable of locally searching for minimum values
in multi-dimensional space.

The NMs explore the solution space with a basic simplex, adapting its shape and position to find optimal
values locally. According to objective function values, its shape is altered through operations like reflection,
expansion, contraction, and shrinkage. The method is efficient and often used for unconstrained optimization,
making it simple yet effective. The basic operations of the simplex in DNMRIME are as follows.

Step 1 Construction of the initial simplex. Firstly, a set of initial solutions is selected as the vertices of the sim-
plex, with each point representing a parameter vector, which in this context corresponds to the RIME
agent. Since the current dimensional space is D-dimensional, D + 1 vertices are chosen to construct an
initial simplex of D + 1 dimensions.

Step 2 Sorting. Based on the fitness values of these D + 1 vertices, they are sorted in descending order of fitness
and numbered accordingly, resulting in a sequence as shown in Eq. (22).

F(X) < f(X2) <. < f(Xp) < f(Xps) (22)

Step 3 Calculating the centroid. The worst vertex X p1 is removed, and the centroid (average position) of the
remaining vertices is calculated to determine a new trial point X¢, as shown in Eq. (23).

D
. ¢
Xc = LZE (23)

Step 4 Reflection operation. Obtain the reflection point X r according to Eq. (24).

Xp=Xc+ax (Xc—Xpt+1) (24)

where « is the reflection coefficient.

Step 5 Reflection point expansion operation. The expansion point X g is obtained according to Eq. (25).

Xe=Xc+Bx(Xr—Xc) (25)

where (3 is the expansion coefficient. If f (Xg) < f (Xg), then Xg is used instead of X p41 to construct a new
simplex. Otherwise, if f (Xg) > f (Xgr), f (Xr) replaces X p+1 to construct a new simplex.

Step 6 Compression operation of thereflected point. If f (Xr) < f (Xp+1),accordingtoEq. (26), the compres-
sion point X¢r is obtained. If f (X¢cr) < f (XbD+1), then X is used instead of X py1 to construct
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a new simplex. Otherwise, utilizing Eq. (27), calculate the new point X¢p. If f (Xcom) < f (Xp41),
then X¢p is used instead of X p41 to construct a new simplex.

Xcr=Xc+7vx (Xr—Xo) (26)
Xep = Xeo + 7 X (XD+1 - Xc) (27)

where +y is the compression coeflicient.

Step 7 Overall contraction operation. If f (Xcar) > f (Xp41), then the simplex is compressed, and the oper-
ation in Eq. (28) is performed.

Xi=X14+wx (X —X1),i=2,3,...,D,D+1 (28)

In this paper, the current RIME agent performs the NMs operation only when r3 < N M sPRO. Additionally,
the simplex operation is executed on Ryest at the end of each iteration. The random number 75 in the range
[0,1] and NM sPRO represents the probability of performing the NMs operation. In this paper, we set the
specific value of NMsPRO to 0.1.

The NMs can be represented by Fig. 5.

Dynamic multi-dimensional random mechanism
This section will elaborate on the proposed dynamic multi-dimensional random mechanism (DMRM).

In the original RIME, the update of the rime particle heavily relies on Rpest,j. As shown in Egs. (17) and
(18), the variation of cos @ is periodic, fluctuating between —1 and 1, rather than changing randomly. During
the search process, this periodic behavior causes the rime particle to become overly concentrated in certain local
regions, affecting RIME’s performance in complex problems. Although r; introduces small disturbances, which
somewhat increases the randomness of the search, it still makes it difficult for the RIME particles to effectively
cover the area around Ryes¢, hindering the particles from escaping local optima.

To overcome this issue, we introduce DMRM into the original RIME framework. By using uncertain
disturbances and non-periodic randomness, DMRM breaks the original periodic constraint, making the particle
search trajectory more random and diversified. As a result, the particles can escape local optima and explore
the solution space more evenly. This is particularly beneficial in regions near R;.,;, where better coverage and
search capability can be achieved, significantly improving the algorithm’s global optimization performance and
convergence speed.

Therefore, we reinforce the particle update strategy using Eq. (29), introducing a more uncertain disturbance
mechanism to increase the search space’s diversity, thereby enhancing RIME’s global search ability. At the same
time, Eq. (35) increases the search capability of RIME particles around Ry, ;. While the values sin (1) also range
from -1 to 1, due to the randomness introduced by Eq. (36), the values sin (1) do not exhibit a fixed periodicity.
Figure 6 illustrates the concept of DMRM. Figure 7 illustrates the trend of important variables over time during
different iterations.

Ry =px Levy x (Rij +n),j € J (29)

X

D+1

Fig. 5. The visualization of NMs.
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Fig. 6. Structure of DMRM.
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Fig. 7. Variation of key variables across iterations.

n=(UB—LB)x0.1x (2xry—1) (30)
FEs

=1- — - 31

a MaxFFEs G

J={j1,d2,---,J6},J: € {1,2,...,dim},Vi € {1,2,...,k} (32)

k = |dim xg| (33)

= \ X 6—6-MaxF‘Es (34)
where J represents a set of k dimensions randomly selected from {1, 2, ..., dim}. k is the number of selected

dimensions, generated by Eq. (33). € is the dimension scaling factor, which controls the range of dimension
selection, as specified by Eq. (34). A is set to 0.1, representing the initial dimension selection range. J is set
to 0.05, representing the decay rate. Lévy represents a random number that follows a Lévy distribution. p is a
linearly decreasing factor that decreases from 1 to 0 as the F'E's increase, as shown in Eq. (31). 7 is a dimension
perturbation factor, calculated as Eq. (30). The parameter 4 is a random number in the range [0, 1].
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R = Ryj x |sin (I)| — % xsin(l) x |Ri™ + Rij|,j =1,2,...,dim (35)

l=2Xrg X (36)

where is a random angle that controls the value of the sine function, derived from Eq. (36). ¢ is a random
number in the range [0, 1].

The proposed DNMRIME algorithm based on RIME

Based on this, we propose an enhanced RIME that combines the DMRM with the NMs, referred to as
DNMRIME. The DNMRIME inherits the fundamental framework of the RIME while boasting improved global
and local exploration capabilities. In the DNMRIME algorithm, DMRM is utilized to increase fitness values and
escape local optima. At the same time, the NMs are employed for local search to further enhance the accuracy
of solutions and the local search capability of the algorithm. By combining these two mechanisms, DNMRIME
achieves a good balance between global and local exploration while effectively overcoming the challenge of local
optima.

The positive greedy absorption mechanism, a commonly used strategy in optimization algorithms®>%3, was
adopted in the original RIME”3. Therefore, we maintain its application in updating the population throughout
the entire algorithm, safeguarding the superiority of our solutions.

Specifically, the design logic of DNMRIME is to dynamically adjust the neighborhood range of the search
space during the iterative optimization process, integrating the greedy absorption DMRM, and NMs simplex to
solve optimization problems efficiently.

To vividly illustrate DNMRIME, the flowchart is depicted in Fig. 8, while the pseudocode is summarized in
Algorithm 1.

Experimental results
In this section, we present a comprehensive overview of the experimental results.

Firstly, a qualitative analysis of DNMRIME is conducted. Secondly, an ablation study is performed to
examine the specific contributions of various mechanisms to the performance of DNMRIME. Thirdly, we
assess and compare the performance of DNMRIME with other well-known MAs, benchmarking against CEC
2017. Fourthly, we contrast DNMRIME with algorithms renowned for superior performance in solar models,
evaluating and comparing them across SDM, DDM, TDM, and PV. Lastly, we validate the effectiveness of
DNMRIME using actual data provided by suppliers in different environments, including KC200GT, ST40, and
SM55.

The experimental equipment configuration adopted in this study is shown in Table 2. All experiments in this
paper are based on the following configuration.

To conduct a detailed analysis of the experimental results, we will utilize the following metrics to evaluate the
performance of DNMRIME:

1. 2D Search History: This metric shows how the population converges towards the global optimum across
different iterations (used in “Qualitative analysis of DNMRIME on CEC 20177).

2. The first dimension of trajectory: It reflects the variation in the first dimension of the population during the
iterations. Initially, with a good algorithm, there are significant fluctuations, which gradually stabilize and
converge to the global optimum (used in “Qualitative analysis of DNMRIME on CEC 2017”).

3. Diversity: This metric evaluates the diversity of the population members during the search process, as is
shown in Egs. (37) and (38) (used in “Qualitative analysis of DNMRIME on CEC 2017”).

Div; = % Z ’meadian (m]) — ! (37)
=1
1 dim
j=1

where Div represents the diversity of all population members in the algorithm. Divmax represents the maxi-
mum diversity value in the population members. Div; represents the diversity of the j-th dimension in the
population.

4. Exploration and exploitation: These metrics assess the algorithm’s exploration—exploitation balance, as de-
fined in Egs. (39) and (40) (used in “Qualitative analysis of DNMRIME on CEC 2017”).

Di
Ezxploration (%) = — Y % 100% (39)
Divimax
D‘ - D max
Ezxploitation (%) = % x 100% (40)
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positions by Eq. (17)

v
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Termination
end?

Update individual

positions by Eq. (21)

Fig. 8. The flowchart of DNMRIME.

where Exploration denotes the exploration percentage of the algorithm, while Exploitation denotes its ex-

ploitation percentage.

5. Average (Mean) and Standard deviation (Stdv, Std): The mean reflects the algorithm’s average performance,

while the Std measures the performance stability. Outstanding experimental results will be highlighted in
bold (used in “DNMRIME for ablation study on CEC 2017” and “DNMRIME compared with well-known
algorithms”).

. Wilcoxon signed-rank test (WSRT): We employ the non-parametric Wilcoxon signed-rank test® to quan-

tify the significance of algorithm performance improvements. In this test, we set the significance level to
0.05 and use "+/=/-"symbols to indicate whether DNMRIME performs better than, equal to, or worse than
other MAs (used in “DNMRIME for ablation study on CEC 2017” and “DNMRIME compared with well-
known algorithms”).

. Root mean square error (RMSE): RMSE measures the discrepancy between an algorithm’s predicted values

and actual results, with a lower value indicating greater prediction accuracy.

. Convergence curves: Convergence curves visually depict the optimization progress of an algorithm, ena-

bling a clear comprehension of its convergence speed and stability throughout the process (used in “Exper-
imental results of DNMRIME on SDM”-“Experimental results of DNMRIME on PV?).

Scientific Reports |

(2025) 15:20951 | https://doi.org/10.1038/541598-025-99105-6 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

® N

10.
11.
12.
13.
14.
15.

16.

17.
18.
19.
20.
21.
22.
23.
24.

Initialization: population R,R,,,,N ,dim ,UB ,LB,FEs ,MaxFEs,w,A,d ,etc
while Fes < MaxFEs
Calculate 6,3
for i=1:N
if n<E

est >

Update R;™ by Eq. (17)
end

if n‘ < Fnurml‘ (S’)

Update R by Eq. (21)

end
end
Calculate fitness and update R,

Calculate ¢,7,k
for i=1:N

Update R;™ by Eq. (29)

Update R by Eq. (35)

end
Calculate fitness and update R,
if r, < NMsPro
Execute NMs
end
Calculate fitness and update R,

est

end
Return R,

est

Algorithm 1. Pseudo-code of DNMRIME.

Configuration item | Details

Processor Intel® Core™ i5-12500
Clock speed 3.00 GHz
RAM capacity 16.0 GB

Operating system Windows 11

MATLAB version MATLAB 2018

Table 2. Experimental equipment configuration.

9.

10.

P-V and I-V: The photovoltaic parameters extracted by the algorithm can be assessed using the I-V and
P-V characteristics (used in “Experimental results of DNMRIME on SDM”-“Experimental results of DN-
MRIME on PV”, “Results of different irradiation and constant temperature”-“Results of different tempera-
ture and constant irradiation”).

I-IAE, I-RE, P-IAE, P-RE error characteristics: We will utilize metrics I-IAE, I-RE, P-IAE, and P-RE to
assess the performance of DNMRIME in extracting photovoltaic parameters. These metrics respectively
represent the absolute and relative errors for current (I-IAE, I-RE) and power (P-IAE, P-RE). The equations
for calculating IAE and RE are shown in Egs. (41) and (42), respectively (used in Sections “Experimental
results of DNMRIME on SDM”-“Experimental results of DNMRIME on PV”).
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Function | Type Purpose Search range

F1-F3 Unimodal functions Evaluate local exploitation ability

F4-F10 | Multimodal functions | Assess global exploration ability

—100, 100 D where D is the dimension
F11-F20 | Hybrid functions Evaluate robustness of algorithm [ 17w '

F21-F30 | Composition functions | Assess problem-solving ability

Table 3. The summary of CEC 2017.

Section

4.1.1 4.1.2,4.1.3
Parameter | Value | Parameter | Value
dim 30 dim 30
N 10 N 30
MazFEs |50 | MazFEs | 300,000
- - Runs 30

Table 4. Unified parameter settings.

IAE = Z |Xactua1 - Xp'r"edict| (41)

i=1

where Xactual represents the actual data, Xprcqict represents the predicted data from the photovoltaic simula-
tion, and n is the number of data points.

n
Zi:l Xactual - Xp'redict

RE = -
Zi:l Xp'redict

x 100% (42)

where Xactual represents the actual data, Xpreqict represents the predicted data from the photovoltaic simula-
tion, and n is the number of data points.

11. CPU Cost Time: This metric measures the computational time required by the algorithm, reflecting its
efficiency in terms of resource usage (used in “CPU time cost assessment”).

Results of DNMRIME on CEC 2017
CEC 2017 is an internationally recognized benchmark set. All the benchmark functions used in “Results of
DNMRIME on CEC 2017” are sourced from CEC 2017, consisting of 30 functions across 4 different types. The
value range for these functions is [—100, 100], as shown in Table 3, assessing the optimization performance
of DNMRIME. These 30 functions are used as objective functions, with DNMRIME aiming to minimize their
values for optimization.

To ensure the comparability and fairness of the experimental results, uniform settings were applied to all
algorithm parameters in “Qualitative analysis of DNMRIME on CEC 2017”-“DNMRIME compared with well-
known algorithms”, as shown in Table 4.

Qualitative analysis of DNMRIME on CEC 2017

To better demonstrate the performance of DNMRIME, the qualitative analysis will be conducted from two
aspects: the historical search patterns of the algorithm and the balance between exploitation and exploration.
Furthermore, on CEC 2017, we conducted an experiment utilizing F1, F4, F7, F25, and F28 to assess the
effectiveness of DNMRIME.

Figure 9 presents one of the qualitative analysis results of DNMRIME. Specifically, Fig. 9a in the second
column showcases the three-dimensional image of the corresponding function, with the red dot indicating the
global optimal solution obtained by DNMRIME. Figure 9b in the second column depicts the search history of
DNMRIME in a two-dimensional distribution. Figure 9c¢ in the third column illustrates the changing pattern of
the search positions of the RIME agents in the first dimension. Finally, Fig. 9d in the third column displays the
average fitness of DNMRIME.

The experimental results show that DNMRIME exhibits a wide population distribution, effectively covering
the solution space. This indicates its strong global exploration capability. Moreover, DNMRIME can closely
reach the global optimum with fewer populations. During the initial stage, DNMRIME undergoes sharp changes
in the first dimension, indicating its focus on exploration. During the later iterations, the stability of the first
dimension reflects the convergence of DNMRIME towards the optimal solution.

Scientific Reports |

(2025) 15:20951 | https://doi.org/10.1038/541598-025-99105-6 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

100 Search history Trajectory of agent +10'0 Average fitness of all agents
30F 1 16p
\ 14F
s0f . N\ O\ 1 20 ] bl
10 10f
8 0 8
0 q 6
S0
-10 I &
] 2
-100 . 2 : : - - -
-100 50 100 100 200 300 400 500 100 200 300 400 500
z Iteration Iteration
Search history Trajectory of agent «10*  Average fitness of all agents
100 T - T E T T T T =
20 f 12
10F 1
S0 60
sk ]
40f
20 4 6 ]
E 20F
af ]
S0 4 0
2 ]
60 - P Lo 20E . . . . E| L . . . .
-100 -50 0 50 100 100 200 300 400 500 100 200 300 400 500
) Tteration Iteration
160 Search history Trajectory of agent Average fitness of all agents
. T 10 T T T T T T T
5
AR 3500 F
50 BEEeE 0
sk 3000 |
g o0f 1ok
2500
I5F
-50 20F 1 2000
25F 1 L
_100 n L L L 1500 £ . " " n 1
-100 100 100 200 300 400 500 100 200 300 400 500
Tteration Iteration
- Trajectory of agent «10* Average fitness of all agents
12 T T T aE T T T T ]
10 35 4
S0F
3 3F 1
25F 1
“ 2 of 6
oF E
F25 ’
L 15 k!
S0 5
2 1 ]
100 L . i . L \ . \ . 05N g . . . 1
-100 -50 0 50 100 100 200 300 400 500 100 200 300 400 500
7 Tteration Iteration
Search history Trajectory of agent Average fitness of all agents
100 T T T T T T T T
. ]
-10F
8000
50 - 1 15
7000
20
F28 8 oL ~UNE b | - 1 6000 F
- -30 E 5000
S0 (
. -35 ] 4000 \‘
-100 . . - i T T ; ; . L n n
-100 -50 0 50 100 100 200 300 400 500 100 200 300 400 500

Tteration Iteration

(a) (b) (©) ()

Fig. 9. (a) Function diagram, (b) 2D search history of DNMRIME, (c) the first dimension of trajectory in
DNMRIME, (d) average fitness of the DNMRIME.

Similarly, we compared DNMRIME and RIME using five distinct functions to analyze balance and diversity.
Figure 10a shows balance analysis results for DNMRIME, while Fig. 10b shows those for RIME. Figure 10c
displays the diversity experiment results of DNMRIME and RIME, while Fig. 10d shows convergence curves of
fitness.

As a result, DNMRIME exhibits a significant enhancement in exploration capabilities compared to the
original RIME. Furthermore, the diversity exhibited by DNMRIME is richer than RIME, leading to superior
performance in the convergence curves of DNMRIME’ fitness. F1 and F7 demonstrate the capacity of
DNMRIME to overcome local optima, while F4, F25, and F28 showcase its rapid convergence speed. Compared
to RIME, DNMRIME boasts superior optimization capabilities and a faster convergence speed. However, it must
be acknowledged that, in the later stages of the diversity experiment, the convergence effect of DNMRIME may
not be as satisfactory as RIME. This could be attributed to the fact that, while maintaining diversity, DNMRIME
continues to explore new search directions.

DNMRIME for ablation study on CEC 2017
An ablation study is a crucial research tool that involves removing or substituting specific components in a system
or model to observe their effects on performance. Similar to controlling variables, it deepens our understanding
of each components role and supports optimization.

In this section, we will separately test the effects of the two mechanisms of DNMRIME on the CEC 2017
function set to verify the superiority of DNMRIME over DRIME and NMRIME.
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Fig. 10. (a) Balance analysis of the DNMRIME, (b) balance analysis of the RIME, (c) diversity analysis, (d)

convergence curve.

The ablation experimental results on CEC 2017 are shown in Fig. 11. Appendix Table 1 shows the results of
the ablation study. Table 5 shows the WSRT comparison results o. It demonstrated the best performance among
the 14 functions and tied for first place in F25, F26, F28, F29 with DRIME. Through the ablation experiments
conducted on CEC 2017, we initially verified the potential effectiveness of integrating the two mechanisms into
DNMRIME. The experimental results suggest that RIME incorporating the two mechanisms may better solve
complex optimization problems than algorithms adopting only one mechanism.

DNMRIME compared with well-known algorithms
In this section, we will compare DNMRIME with several original and advanced algorithms that have shown
outstanding performance on the CEC 2017. These algorithms include RIME’®, DE*, PSO%, WOA?, HHO%,
WSO, AHA®, LSHADE®, LSHADE_cnEpSi®, CLPSO%, ALCPSO®°, SCADE’!, GAEFA_HK®?, and iAEFA®>.
The specific algorithm settings used in this study are detailed in Table 6.

As is showed in Fig. 12, which presents the convergence curves of each algorithm, it can be observed that
on CEC 2017, DNMRIME converges faster on F9 and F28. Most algorithms can find relatively good global
optimum solutions quickly for the multimodal, hybrid, and composition functions such as F4, F15, F19, F21,
F25, and F28, but DNMRIME demonstrates superior convergence accuracy. Appendix Tables 2-5 present the
specific comparison results of DNMRIME with well-known MAs. As shown in Appendix Table 2, DNMRIME
ranks third in terms of fitness mean on the single-modal function F1, performing worse than LSHADE and

LSHADE_cnEpSi.

Table 7 shows that on CEC 2017, DNMRIME ranks first, outperforming the second-ranked LSHADE in 14
functions, being equal to LSHADE in 3 functions, and performing worse in 13 functions.

Experimental results of DNMRIME on solar models
In this section, we will conduct photovoltaic simulation experiments on DNMRIME.
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Fig. 11. Convergence curve of DNMRIME for ablation study on CEC 2017.
Algorithm | +/=/-— | Mean | Rank

DNMRIME | - 203 |1

DRIME 11/9/10 | 2.48 |2

NMRIME | 18/12/0 |2.79 |4

RIME 18/2/10 {270 |3

Table 5. WSRT comparison of DNMRIME for ablation study.

Fairly, Table 8 shows the boundaries for unknown parameters. To validate the accuracy and efficiency of
DNMRIME, we will compare it not only with the original RIME’® but also with other outstanding algorithms on
solar models, specifically CCNMHHO%, GOFPANM?>, WOA?¢, BSA%, TLBO*,

Experimental results of DNMRIME on SDM

Table 9 summarizes the results of parameter identification on SDM. In Fig. 13, the solid red line represents
DNMRIME, while the curves of different colors represent various comparative algorithms. The RMSE
convergence curves in this section and the following three subsections are based on the mean RMSE values.
Additionally, we calculated the RMSE values of algorithms on SDM and included them in Table 10. Figure 14
illustrates the performance of the SDM at different voltages: Fig. 14a,b depict the I-V and P-V characteristic
curves, respectively. Figure 15 presents the various error metrics of DNMRIME on SDM.

From the perspective of convergence speed, DNMRIME demonstrates significant superiority. By observing
the convergence curves, DNMRIME exhibits stronger optimization capability, achieving lower RMSE values in
the early iterations than RIME. The convergence curve of DNMRIME rapidly descends, indicating its ability to
reach lower RMSE values with fewer function evaluations. In contrast, the convergence speed of RIME, WOA,
BSA and TLBO is relatively slower, and their RMSE values are far higher than those of DNMRIME. GOFPANM
and CCNMHHO, known for their strong performance in photovoltaic parameter estimation, require more
iterations to match the RMSE of DNMRIME. In the end, DNMRIME achieved the lowest RMSE value compared
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DNMRIME W =5;NMsPro=0.1; 6= 0.05; A= 0.1

RIME W =5

DE pCR = 0.2; beta € [0.2,0.8]

PSO Vimax = 6;n0P = N;wmax = 0.9; wmin = 0.25¢1 = 25¢0 = 2
WOA a1 =[0,2];a2 =[-2, —1];b=1

HHO beta = 1.55¢ = 2% (1 — 7rEEs)

WSO pr =0.5

AHA Migration coef ficient = 2N

LSHADE arc_rate = 0.4;memory _sf = memory_cr = 0.5;ppest = 0.11; memory_size =5
LSHADE_cnEpSi | freq_init = ps = 0.5;pb = 0.4

CLPSO c = 1.49445

ALCPSO w = 0.4;¢c1 = c2 = 2;lifespan = 60;T =2

SCADE min= 0.2; a= 2;CR=maz= 0.8

GAEFA_HK ko = 500; o = 6; T = 300

iAEFA ko = 500; a € [3,40]

Table 6. Parameter setting of comparison algorithm with DNMRIME.
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Fig. 12. Convergence comparison of DNMRIME with well-known algorithms on CEC 2017.
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Algorithm +/=/- | Mean | Rank
DNMRIME - 4.486 | 1
RIME 17/5/8 7.162 |7
DE 17/4/9 6.864 | 6
PSO 30/0/0 | 10.902 | 12
WOA 27/3/0 | 11.401 | 13
HHO 22/4/4 8.867 | 11
WSO 30/0/0 | 12.097 | 15
AHA 17/716 5929 |5
LSHADE 14/3/13 | 4.494 |2
LSHADE_cnEpSi | 16/2/12 | 5.268 | 3
CLPSO 17/2/11 | 5.381 | 4
ALCPSO 22/3/5 8.168 | 8
SCADE 24/5/1 11.627 | 14
GAEFA_HK 22/1/7 8510 |9
iAEFA 23/0/7 8.843 | 10

Table 7. WSRT comparison of DNMRIME with well-known algorithms.

SDM/DDM/TDM PV/KC200GT/ST40/SM55

Parameter Lowest bound | Highest bound | Lowest bound | Highest bound

Iyn(A) 0 1 0 2

Isa(pA), Isa1 (pA), Isaz(HA), Isaz(nA) | 0 1 0 50

n,ni, N2, N3 1 2 1 50

R,(Q) 0 0.5 0 2

Ron(Q) 0 100 0 2000

Table 8. Upper and lower bounds of unknown parameters.

Item DNMRIME RIME CCNMHHO GOFPANM WOA BSA TLBO
Ion(A) | 0.76077547 0.76100100 0.76077556 0.76077553 0.76131261 0.76061651 0.76073870
Isa(pA) |0.32302698 0.33391613 0.32302564 0.32302080 0.75370353 0.33799831 0.32722285
Rs(Q) 3.63770053E—-02 | 3.62476584E—-02 | 3.63769972E—02 | 3.63770928E—02 | 3.26375670E—-02 | 3.61848079E—02 | 3.63234160E - 02
Rsn(Q) | 53.71901421 52.02512650 53.71832947 53.71851963 75.34789413 56.00141430 54.53637226
n 1.48118553 1.48456871 1.48118511 1.48118359 1.57179273 1.48573978 1.48247484
RMSE | 9-8602E-04 1.0018E-03 9.8602E - 04 9.8602E - 04 1.9863E-03 9.9419E - 04 9.8686E — 04
Compare + = = + + +

Table 9. Parameters estimation results of DNMRIME with other algorithms on SDM. Significant values are in
bold.

to other MAs. The experimental data of DNMRIME exhibit clear peaks consistent with the actual data. The
difference between the maximum and minimum RMSE of DNMRIME is small, resulting in its lowest Std.
On SDM, the performance of DNMRIME surpasses that of the other compared algorithms.

Experimental results of DNMRIME on DDM
On DDM, Fig. 16 shows a convergence comparison of algorithms. Fig. 17 displays the I-V characteristic curves
on DDM, while Fig. 18 illustrates the error indices of DNMRIME. Finally, Table 11 showcases the specific results
on DDM, while Table 12 summarizes RMSE values.

Initially, DNMRIME, GOFPANM, and CCNMHHO performed well on DDM. DNMRIME quickly achieves
lower RMSE values, reaching about 9.8296993325E — 04 at the final iteration. Furthermore, DNMRIME achieved
the lowest RMSE after the iteration, indicating its optimal fitting effect in parameter estimation. DNMRIME
demonstrated even greater accuracy in model fitting and has the lowest Std.

On DDM, DNMRIME exhibited the best performance.
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Fig. 13. Convergence comparison of algorithms in the SDM.

Item Maz Min Mean Std
DNMRIME | 9.86021889E—04 | 9.86021880E—04 | 9.8602188324E—-04 | 2.00339E-12
RIME 7.31804270E—-03 | 1.00179682E—03 | 1.9226893260E—-03 | 0.001164931
CCNMHHO | 9.86021893E—-04 | 9.86021880E—-04 | 9.8602188374E—04 | 3.17257E—-12
GOFPANM | 9.86021903E—04 | 9.86021878E—-04 | 9.8602188970E—04 | 5.75592E—-12
WOA 4.41134266E—-02 | 1.98632656E—-03 | 9.9302641932E—-03 | 0.009776725
BSA 1.88397447E—-03 | 9.94189070E—04 | 1.3604541357E—-03 | 0.000224506
TLBO 1.39656941E-03 | 9.86856871E—04 | 1.1167603686E—-03 | 0.000133876

Table 10. RMSE values of DNMRIME and other algorithms on SDM. Significant values are in bold.

Experimental results of DNMRIME on TDM

On TDM, Table 13 specifically describes the parameter extraction results of DNMRIME. Table 14 lists the RMSE
values of each algorithm on TDM. Figure 19 shows the RMSE convergence curve of DNMRIME with other
algorithms. Figure 20 shows two characteristic plots of DNMRIME on TDM, while Fig. 21 illustrates the error
metrics.

Compared to RIME, WOA, BSA, and TLBO, DNMRIME demonstrates faster convergence speed in the
curves. As for the mean RMSE value, DNMRIME reaches a value of 9.86E — 4, while CNMHHO and GOFPANM
achieve approximately 9.85E —4 and 9.86E — 4, respectively. DNMRIME achieves a lower final RMSE value than
other algorithms on TDM. DNMRIME, CCNMHHO, and GOFPANM exhibit similar RMSE values around
9.8249E - 04. However, DNMRIME stands out with a much lower Std of 1.7548E — 06 compared to these two

algorithms. With minimal Std, DNMRIME shows consistent RMSE fluctuations and a faster convergence rate.
On TDM, DNMRIME demonstrates high accuracy in prediction.

On TDM, the performance of DNMRIME remains superior.

Experimental results of DNMRIME on PV

On PV, Fig. 22 represents convergence curves, Fig. 23 depicts the I-V and P-V characteristic curves, Fig. 24

illustrates the error indicators. Moreover, Table 15 provides detailed results in parameter extraction, and Table
16 presents specific RMSE values.
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Fig. 16. Convergence comparison of algorithms on DDM.
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Fig. 17. I-V and P-V characteristic curve of DNMRIME on DDM.

Based on the experimental results, although CCNMHHO performed well on SDM, DDM, and TDM, it
showed unsatisfactory performance on PV and performed worse than DNMRIME and RIME. On PV, TLBO
outperforms the previous three models in convergence, yet its speed lags behind DNMRIME. Simultaneously,
GOFPANM initially exhibits a slow convergence speed, even reaching a lower RMSE value only in the later
evaluation stages. During the entire evaluation process, DNMRIME consistently maintains the lowest RMSE
value. The final RMSE of DNMRIME is 2.42507487E — 03. While maintaining the lowest Std, DNMRIME boasts
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Fig. 18. Error metrics of DNMRIME on DDM.
Item DNMRIME RIME CCNMHHO GOFPANM WOA BSA TLBO
Ion(A) | 0.76078109 0.76073873 0.76078108 0.76078108 0.76162458 0.76066445 0.76075395
Tsa1(pA) | 0.22594990 0.29448975 0.22597498 0.74936976 0.27741243 0.06720720 0.33225000
Tsa2(HA) | 0.74956832 0.40255762 0.74934374 0.22597193 0.00000000 0.33941143 0.01077375
Rs(Q) | 3.67405249E-02 | 3.59974861E-02 | 3.67404235E—02 | 3.67404378E—02 | 3.67486284E—02 | 3.59629945E-02 | 3.62445709E - 02
Ren(Q) | 5548599213 58.20789437 55.48546717 55.48548112 41.34803895 58.14882331 55.01099801
n1 145100785 1.47602357 145101705 2.00000000 1.46625977 177321765 148426220
no 199999999 193009347 2.00000000 1.45101592 1.62436839 1.48802160 179196736
RMSE |9-8248E-04 1.0243E-03 9.8248E-04 9.8248E-04 1.2118E-03 1.0205E-03 9.9147E-04
Compare + = = + + +

Table 11. Parameters estimation results of DNMRIME with other algorithms on DDM. Significant values are
in bold.

a remarkably low Std of 9.0046E — 13, significantly surpassing the Std of its competitors. Moreover, DNMRIME’s
predictions are highly consistent with the actual data.
On PV, DNMRIME ranks first in performance.

CPU time cost assessment
The average CPU expenditure time of the algorithms is one of the key metrics for evaluating their performance.
As shown in Fig. 25 and Table 17, we can visually observe the differences in average time expenditure among
different algorithms. Notably, the CPU time expenditure of the GOFOPANM is particularly significant, especially
during the parameter extraction of the TDM, where it exceeds 400 s.
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Item Max Min Mean Std
DNMRIME | 9.86023449E - 04 | 9.82484852E—-04 | 9.8296993325E-04 | 9.21878E-07
RIME 4.04136804E-03 | 1.02425801E-03 | 2.2761976172E-03 | 0.000909176
CCNMHHO | 9.89130510E-04 | 9.82484852E—-04 | 9.8436773877E—04 | 2.1277E-06
GOFPANM | 9.86171797E—04 | 9.82484852E—-04 | 9.8380696019E-04 | 1.73767E-06
WOA 4.74010845E-02 | 1.21177304E-03 | 1.3785341065E-02 | 0.014313079
BSA 2.51079424E-03 | 1.02047716E-03 | 1.5942391080E—-03 | 0.000448579
TLBO 1.64218785E-03 | 9.91470979E-04 | 1.2747608685E—03 | 0.000204125

Table 12. RMSE values of DNMRIME and other algorithms on DDM. Significant values are in bold.

Item DNMRIME RIME CCNMHHO GOFPANM WOA BSA TLBO
Ion(A) | 0.76078076 0.76149281 0.76078099 0.76078108 0.76122240 0.76042051 0.76082358
Isa1(pA) | 0.30526000 1.00000000 0.22695100 0.74709600 0.00550409 0.32258700 0.25695700
Tsq2(pA) | 0.41339700 0.11393800 0.41507600 0.22597500 0.17917600 0.19564800 0.37826800
Tsaz(pA) | 0.22961500 0.12208600 0.32599800 0.00224813 0.31226000 1.00000000 0.19676300
Rs(Q) 3.67232450E-02 | 3.82026620E—-02 | 3.67358170E—-02 | 3.67404280E—-02 | 3.50951330E—02 | 3.57651690E—02 | 3.68190870E — 02
Rsn(Q) | 5541319592 45.88512600 55.46584733 55.48543589 55.80176047 73.20061637 54.77327294
ni 1.99999963 1.93746201 1.45137729 2.00000000 1.65995724 1.89182840 1.84260742
o 1.99999947 1.39291748 1.99999999 1.45101692 1.65825935 1.44426571 1.92840553
ns 1.45235392 2.00000000 2.00000000 2.00000000 1.49065251 1.97153659 1.44102726
RMSE | 9-8249E-04 1.1762E-03 9.8249E - 04 9.8249E - 04 1.2041E-03 1.2674E-03 9.8488E — 04
Compare + = = = + +

Table 13. Parameters estimation results of DNMRIME with other algorithms on TDM. Significant values are

in bold.

Item Mazx Min Mean Std
DNMRIME | 9.88860941E—04 | 9.82491890E—04 | 9.8393451046E—-04 | 1.7548E-06
RIME 3.88425922E-03 | 1.17620112E-03 | 2.6150797805E—-03 | 0.000863494
CCNMHHO | 9.90074006E — 04 | 9.82485364E—04 | 9.8553348389E-04 | 2.27248E-06
GOFPANM | 9.92906638E—04 | 9.82484852E—04 | 9.8479539229E-04 | 2.31492E-06
WOA 4.18144832E-02 | 1.20412332E-03 | 1.1567324386E—-02 | 0.011292231
BSA 2.57322058E—-03 | 1.26739939E-03 | 1.8679958308E—-03 | 0.000340022
TLBO 2.51122298E—-03 | 9.84879354E—-04 | 1.4130817952E—-03 | 0.000410508

Table 14. RMSE values of DNMRIME and other algorithms on TDM. Significant values are in bold.

It is worth noting that the average CPU expenditure time of DNMRIME is not the shortest. Although its
time overhead may not be as compact as other algorithms except for GOFOPANM, it demonstrates excellent
accuracy and stability in photovoltaic model parameter extraction, completing tasks with relatively low CPU
expenditure time under various model conditions.

Experimental results for manufacturer solar cell models
In this section of the paper, we conduct simulation experiments on solar panels of three different models from
manufacturers: KC200GT, ST40, and SM55. The simulation experiments systematically explore their operational
efficiency and output power characteristics under varying light conditions, temperature environments, and load
requirements.

Results of different irradiation and constant temperature
This section presents the simulation results of SDM and DDM solar cells under the KC200GT, ST40, and SM55
models. Figures 26, 27 and 28 illustrate the I-V characteristics experiment results under constant temperature
conditions of 25 ‘C for irradiance levels of 1000W/m2, 800W/m2, 600W/m2, 400W/m2, and 200W/m2,
respectively. The consistency between the experimental results and real data is significant, validating the accuracy
of DNMRIME in predicting solar cell performance.
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Fig. 19. Convergence comparison of algorithms on TDM.
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Fig. 20. I-V and P-V characteristic curve of DNMRIME on TDM.

Results of different temperature and constant irradiation

Figure 29 illustrates the I-V characteristic curves of SDM and DDM solar cells under the KC200GT model,
obtained from simulation experiments conducted at constant irradiance conditions of 25 °C, 50 °C, and 75 °C
temperatures. Fig. 30 depicts the I-V characteristic curves of SDM and DDM solar cells under the ST40 model,
where experiments were conducted at a constant irradiance of 10001%//m? and temperatures of 25 °C, 40 °C,
50 °C, and 75 °C. Additionally, Fig. 31 displays the I-V characteristic curves of SDM and DDM solar cells under
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Fig. 21. Error metrics of DNMRIME on TDM.

the SM55 model, with experiments conducted at constant irradiance conditions and temperatures of 25 °C,
40 °C, and 60 °C. The actual data is highly consistent with the data estimated by DNMRIME. These experiments
validate the effectiveness of DNMRIME.

Discussion on the results

In our research, we have observed the remarkable performance of a novel RIME algorithm in extracting
photovoltaic parameters. This paper introduces a new dynamic multi-dimensional random mechanism, a
dynamic random search strategy enhancing convergence accuracy across multiple dimensions. To achieve a
more accurate extraction of photovoltaic model parameters, we have integrated this mechanism with the NMs
and enhanced RIME, resulting in the development of the DNMRIME.

As for the CEC 2017 evaluation, we found that the DNMRIME significantly outperforms other algorithms
regarding convergence speed. The exploration capability of DNMRIME increased by approximately 25.02991%
in F1,27.56922% in F4, 18.68052% in F7, 22.75426% in F25, and 27.3841% in F28 compared to RIME. Therefore,
DNMRIME has more population diversity to find better solutions than RIME. Compared with well-known
MAs, the results of the WSRT show that DNMRIME ranks first and has demonstrated excellent performance on
hybrid and composite functions.

As for a series of simulation experiments in photovoltaic parameter extraction, we have validated the
superiority of DNMRIME in this field. In the cases of SDM, DDM, TDM, and PV, DNMRIME has the lowest Std,
with values of 2.00339E — 12, 9.21878E - 07, 1.7548E — 06, and 9.0046E — 13, respectively. Meanwhile, compared
to CCNMHHO and GOFPANM, DNMRIME demonstrates faster convergence speed. This indicates that
DNMRIME possesses efficiency, stability, and robustness. DNMRIME also consistently displays its advantages
under various environmental conditions. The extracted parameters exhibit high degrees of consistency and
accuracy compared to the actual parameters.

These results show the significance and practical utility of DNMRIME in photovoltaic parameter extraction.
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Fig. 22. Convergence comparison of algorithms on PV.
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Fig. 23. I-V and P-V characteristic curve of DNMRIME on PV.

Conclusions and future directions

This work proposes an improved version of RIME, named DNMRIME, by including the dynamic multi-
dimensional random mechanism (DMRM) in conjunction with the Nelder-Mead simplex (NMs). Through
random non-periodic convergence, DMRM increases RIME’s convergence accuracy. NMs speed up convergence,
allowing DNMRIME to avoid local optima and outperform it on hybrid and composite functions. A qualitative
analysis and ablation test were carried out on CEC 2017 in order to assess DNMRIMES efficiency. In order
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Fig. 24. Error metrics of DNMRIME on PV.
Item DNMRIME | RIME CCNMHHO | GOFPANM | WOA BSA TLBO
Ipn(A) | 103051417 | 1.03099664 | 1.03051439 | 1.03051430 | 1.02814553 103041899 103050649
Toa(pA) |3.48233355 | 3.77739282 | 3.48223418 | 3.48226314 | 4.91771885 3.50804713 3.48500640
Rs(Q) |1.20126916 |1.19170008 |1.20127166 | 1.20127100 | 1.16682214 1.20105866 1.20122084
Ran(Q) | 982.00874023 | 978.25303671 | 981.96841662 | 981.98231868 | 1761.53244332 | 1000.49066433 | 984.45627076
n 48.64291200 | 48.95893121 | 48.64280381 | 48.64283511 | 49.99740397 | 48.67019614 | 48.64570564
RMSE | 24251E-03 |24505E-03 |2.4251E-03 |2.4251E-03 |26146E-03 |2.4261E-03 |2.4251E-03
Compare + = = = + =

Table 15. Parameters estimation results of DNMRIME with other algorithms on PV. Significant values are in
bold.

to confirm its efficacy, it compared to 14 other well-known MAs, including several advanced techniques.
DNMRIME was used for obtaining parameters for SDM, DDM, TDM, and PV as well. In conclusion, this study
significantly proved the performance of DNMRIME for parameter identification in solar models. Not only does
the algorithm exhibit better performance in terms of accuracy and convergence speed, but it also demonstrates
robustness across different types of photovoltaic models.

Looking ahead, several potential research directions emerge. Firstly, further exploring the interaction
between the DMRM and the NMs may lead to more sophisticated hybrid optimization algorithms tailored to
specific problems. Secondly, in photovoltaic parameter extraction, we have noticed the Lambert W function®”
as a promising method for improved accuracy and plan to apply DNMRIME to it in the future. Lastly, applying
the improved algorithm to other domains, such as machine learning or signal processing, may reveal its broader
utility and potential.
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DNMRIME | 2.42507487E-03 | 2.42507487E—-03 | 2.4250748704E-03 | 9.0046E-13
RIME 3.47130941E—-02 | 2.45048337E-03 | 4.8501667168E—-03 | 0.007009457
CCNMHHO | 4.84314324E-01 | 2.42507487E—03 | 6.2666049656E—02 | 0.120533779
GOFPANM | 2.42507488E-03 | 2.42507487E—-03 | 2.4250748731E-03 | 3.00095E-12

WOA 2.75415742E-01 | 2.61455796E-03 | 7.9040153129E-02 | 0.120023474
BSA 2.54370834E—-03 | 2.42611050E-03 | 2.4855574418E—-03 | 3.09512E-05
TLBO 2.72775948E—-03 | 2.42509970E-03 | 2.4577300984E—-03 | 5.75831E-05

Table 16. RMSE values of DNMRIME and other algorithms on PV. Significant values are in bold.

Average Time Cost of Algorithms (s)
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Fig. 25. Average CPU expenditure time for each algorithm.

DNMRIME | 0.951 1.192 0.540 0.766
RIME 0.840 1.184 0.369 0.666
CCNMHHO | 0.967 1.216 0.425 0.748
GOFPANM | 185.427 | 341.267 | 199.221 | 172.905

WOA 0.788 0.927 0.406 0.727
BSA 0.874 0.991 0.404 0.769
TLBO 0.967 1.034 0.472 0.818

Table 17. The time cost of algorithm in photovoltaic model. (The unit of this table is seconds).

The further development and application prospects of DNMRIME remain promising and warrant further
exploration.

Scientific Reports|  (2025) 15:20951 | https://doi.org/10.1038/s41598-025-99105-6 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

SDM DDM

L e S L B A e

[ 1000W/m? £ 1000W/m?

8 ] 8 ]
71 8oowim? 3 7 [ 80owim? =
of 1 e 3
= F = _F eoowim? 3
2 5L goowm E Zsf m 3
s [ ] = [ ]
s L ] & F 3
E ] E
=4 = =4 <
© b s00wm? 1 © b s00wm? ]
S 1 3 4
F 1 E 200wim? ]
2 [ 200Wim? - 2 m .
= v_-N\\ ] 1F v_v—N-\\ =
N ML TP PR PRTR PO PR I T P NI B B PSP BTN N P A
0 5 10 15 20 25 30 35 0 s 10 15 20 25 30 35

Voltage(V) Voltage(V)

Fig. 26. The I-V characteristic curves of KC200GT under with different irradiance.
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Fig. 27. The I-V characteristic curves of ST40 under different irradiance.
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Fig. 28. The I-V characteristic curves of SM55 under different irradiance.
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Fig. 31. The I-V characteristic curves of SM55 under different temperature.
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