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Solar photovoltaic technology is efficient and clean, but extracting photovoltaic cell parameters is 
challenging due to various influencing factors. The rime optimization algorithm (RIME) is a recently 
proposed metaheuristic algorithm (MAs). This paper introduces the dynamic multi-dimensional 
random mechanism (DMRM) combined with the Nelder–Mead simplex (NMs) to propose an enhanced 
version of RIME, called DNMRIME. DMRM improves the convergence accuracy of RIME by random 
non-periodic convergence, and NMs accelerate convergence, enabling DNMRIME to escape local 
optima and perform better on hybrid and composite functions. To evaluate the performance of 
DNMRIME, a qualitative analysis and an ablation study were conducted on CEC 2017. To verify 
its effectiveness, DNMRIME was compared with 14 well-known MAs, including some champion 
algorithms, and the results of the Wilcoxon signed rank test showed that DNMRIME ranked first. To 
extract parameters on SDM, DDM, TDM, and PV, DNMRIME was applied, resulting in mean RMSE 
values of 9.8602188324E − 04, 9.8296993325E − 04, 9.8393451046E − 04, and 2.4250748704E − 03 
respectively. Moreover, under varying temperature and irradiation conditions on three manufacturers 
(KC200GT, ST40, SM55), DNMRIME extracted parameters with simulation data matching the actual 
data. Therefore, unlike previous studies, this study proposes DMRM and DNMRIME, demonstrating 
the efficiency and practicality of DNMRIME and further highlighting potential value of DNMRIME in 
photovoltaic parameter extraction. The source code of DNMRIME is available at ​h​t​t​p​s​:​​​/​​/​g​i​t​h​u​​b​.​c​o​​m​/​z​y​
e​t​​p​i​​n​k​/​​D​N​M​R​I​​​M​E​-​S​o​​l​​a​r​-​M​o​​​d​e​l​-​d​a​t​a​s​e​t.
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Abbreviations
RIME	� Rime optimization algorithm
NMs	� Nelder–Mead simplex
SDM	� Single diode model
DDM	� Double diode model
TDM	� Three diode model
PV	� Photovoltaic
MaxF Es	� Maximum number of iterations
N 	� Population size or problem scale
SM55	� Mono-crystalline PV module
ST40	� Thin-film PV module
KC200GT	� Multicrystal photovoltaic module
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IL	� Output current
Iph	� Photo-generated current
Id, Id1, Id2, Id3	� Diode current
Ish	� Shunt resistor current
Isd, Isd1, Isd2, Isd3	� Reverse saturated current
dim	� Problem dimension
RS 	� Series resistor
Rsh	� Parallel resistor
n, n1, n2, n3	� Diode ideality factor
WSRT	� Wilcoxon signed-rank test
q	� The charge of the electron
k	� Boltzmann constant
T	� Kelvin temperature
RMSE	� Root mean square error
F Es	� The number of the current iteration
Rbest,j 	� The j-th dimension of the best rime
UB	� Upper boundary
LB	� Lower boundary
NP 	� Number of parallel solar cells
NS 	� Number of series solar cells
Rnew

ij 	� The new position of the particle
cos θ	� The Particle movement direction
β	� The environmental factor
ri	� The i-th random number in [0, 1]
F normr(Si)	� The normalized value

In recent years, escalating environmental pollution has increasingly threatened human health and sustainable 
social development, sparking an urgent quest for clean and renewable energy sources to replace traditional, 
highly polluting ones1,2. Photovoltaic energy, as a clean, pollution-free, and renewable form of energy, not only 
holds economic advantages but also boasts broad application prospects, including daily power supply, electric 
vehicles, aerospace, and other fields3,4. Photovoltaic energy has become crucial for ditching traditional energy 
sources5. Furthermore, in numerous regions and countries, solar energy significantly promotes energy diversity 
and security6. Therefore, the rising global need for sustainable energy has made photovoltaic energy crucial7.

Owing to the influence of varying light intensity, temperature, and the non-uniform and intricate structure 
of photovoltaic cells8, the photovoltaic model exhibits nonlinear relationships and complex structures, resulting 
in transcendental equations9,10. Nonlinearity and precise estimation of unknown parameters pose a challenge 
in solar energy. Precise parameter extraction is vital for maximizing solar energy utilization. Analytical 
methods11–13, numerical methods14–16 and metaheuristic algorithms (MAs)17 are three commonly used 
approaches for determining the parameters or characteristics of photovoltaic systems. Analytical methods face 
challenges such as high computational costs and significant model dependencies when using mathematical 
models and computational techniques in various applications18.

Meanwhile, numerical techniques are constrained by the quality and limitations of experimental data19. 
Conversely, MAs demonstrate robustness and adaptability in estimating composite photovoltaic parameters, 
enabling them to flexibly address diverse systems and optimization objectives, improving accuracy and 
reliability20. Through its parallel processing and computational efficiency, it not only minimizes costs in time 
and resources but also quickly reaches the global optimum, surpassing the constraints of traditional methods 
and emerging as a highly effective optimization technique.

In recent years, MAs have emerged in various research fields by establishing mathematical models by 
simulating natural behaviors, demonstrating strong adaptability and flexibility21. Notable MAs include genetic 
algorithm (GA)22, particle swarm optimization (PSO)23, differential algorithm (DE)24, artificial bee colony 
(ABC)25, whale optimization algorithm (WOA)26, grey wolf optimization (GWO)27, Harris hawks optimization 
(HHO)28, hunger games search (HGS)29, teaching–learning based optimization (TLBO)30, colony predation 
algorithm (CPA)31, liver cancer algorithm (LCA)32, Runge Kutta optimizer (RUN)33, competitive swarm 
optimizer (CSO)34 and others. Recently proposed algorithms include, slime mould algorithm (SMA)35,36, 
educational competition optimizer (ECO)37, artemisinin optimization (AO)38, the weighted mean of vectors 
(INFO)39, fata morgana algorithm (FATA)40, rime optimization algorithm (RIME)41, polar lights optimization 
(PLO)42, parrot optimizer (PO)43, quantum-based avian navigation optimizer (QANA)44 and more.

Recent studies have highlighted the versatile applications of MAs and their enhanced versions across various 
fields45. These algorithms have proven to be particularly effective in addressing complex optimization problems. 
For example, the offline learning-enhanced CSO has been applied to efficiently solve nonlinear fixed-cost 
transportation problems46. At the same time, the reinforcement learning-improved HHO has been utilized for 
high-dimensional feature selection47. The enhanced ABC has also shown promising results in breast cancer 
image segmentation48. Using MAs to estimate photovoltaic parameters is the mainstream method49. Table 1 
summarizes recent research on MAs for photovoltaic parameter estimation, including methods and targeted 
solar models. Many researchers have used (MAs) or enhanced versions for photovoltaic parameter estimation, 
and these significant contributions have provided valuable insights into the field. However, these studies lack in-
depth performance analysis of the algorithms used and do not comprehensively evaluate photovoltaic parameter 
models and commercial model systems.
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Lately, the domain of MAs has been consistently observing the sprouting of novel algorithms. Remarkably, 
the rime optimization algorithm (RIME), a novel approach grounded in physical phenomena78, was introduced 
in 2023 and quickly attracted widespread interest. This is due to its advantages: (1) Simple and intuitive working 
mechanism is easy to understand and implement; (2) It requires fewer parameters, reducing the need for 
algorithm adjustment; (3) RIME exhibits a relatively fast convergence speed when dealing with multimodal 
functions. Considering the notable advantages of the RIME, we have recognized its potential and attempted to 
apply it to practical photovoltaic parameter estimation.

RIME demonstrates strong exploration capabilities on unimodal functions, such as F2 and F3 on the CEC 
2017 benchmark, where it effectively searches for the global optimum. Additionally, RIME can escape local 
optima on multimodal functions, as seen on CEC2017 functions F8, F9 and F10. However, when faced with 
more complex hybrid and composition functions, the performance of RIME is less satisfactory, often struggling 
to escape local optima and exhibiting deficiencies in convergence accuracy. This indicates that RIME still has 
room for improvement in balancing global exploration and local search in complex search spaces. Photovoltaic 
parameter extraction is a complex optimization problem where optimization algorithms need to escape local 
optima while also requiring precise local search capabilities to ensure rapid convergence to high-accuracy 
solutions during the search process. According to the "No Free Lunch Theorem" (NFL)79, there is no universal 
algorithm that performs optimally on all problems. Consequently, choosing the appropriate algorithm based 
on the problem is necessary. In the photovoltaic parameter extraction experiments, we found that the original 
RIME algorithm did not perform satisfactorily.

To better accelerate the convergence speed and improve the convergence accuracy of RIME, we propose 
an enhanced algorithm called DNMRIME in our research. This paper combines dynamic multi-dimensional 
random mechanism (DMRM) and NMs into a straightforward and effective RIME algorithm to better solve 
complex optimization issues like photovoltaic parameter extraction. In the Soft-rime search strategy of RIME, 
although the cosine function introduces a certain level of controlled volatility, providing some adjustment ability 
to the search process, this volatility follows a deterministic periodic variation. Specifically, we introduce DMRM, 
which uses uncertain perturbations and a non-periodic sine function to improve RIME’s convergence accuracy 
and local search capability. We also used the NMs to improve the local search ability and convergence speed. To 
validate the performance of the DNMRIME, we conducted extensive testing on the CEC 2017 and a series of 
simulation experiments in photovoltaic models. Through rigorous analysis of the experimental results, we found 

Year References Main work and method Solar model

2015 50 Used flower pollination algorithm (FPA) SDM, DDM

2016 51 Proposed an adaptive NMs to improve artificial bee colony (ABC) SDM, DMM, PV

2016 52 Applied moth-flame optimizer (MFO) DDM, TDM

2017 53 Proposed a hybrid algorithm of ABC and FPA SDM, DDM

2018 54 Improved PSO with adaptive mutation strategy SDM, DDM, PV

2018 55 Proposed a new hybrid of ABC and TLBO SDM, DDM, PV

2019 56 Improved interior search algorithm SDM, DDM

2020 57 Proposed a hybrid of GWO and cuckoo search SDM, DDM, PV

2020 58 Improved WOA with reflection principle SDM

2020 59 Improved bat algorithm with Lévy flight SDM, DDM

2020 60 Proposed a hybrid of TLBO and DE SDM, DDM, PV

2020 61 Used manta ray foraging optimization TDM

2021 62 Improved DE with population information and search direction SDM, DDM, TDM, PV

2021 63 Proposed a new hybrid of MPA and SMA TDM

2021 64 Improved TLBO by dividing into three phases based on scores SDM, DDM, PV

2021 65 Improved SMA by local search capability SDM, DDM, PV

2021 66 Improved MPA by population enhancement SDM, DDM, PV

2022 67 Used circle search algorithm TDM

2022 68 Improved WOA by information sharing strategy and NMs SDM, DDM, TDM, PV

2022 69 Improved colony predation algorithm by opposition and level learning SDM, DDM, PV

2022 70 Combined QANA and the Newton–Raphson method SDM, DDM, PV

2023 71 Improved atomic search optimization by anti-sine–cosine strategy SDM, DDM, TDM, PV

2023 72 Improved GWO by spiral updating and multiple learning backtracking

2023 73 Improved elephant herding optimization by fast moving operator and elite strategy PV

2023 74 Improved FPA by combining three new strategies SDM, DDM, PV

2023 75 Improved DE by four strategies SDM, DDM, PV

2024 76 Improved clonal selection algorithm using golden sine and dual-feedback strategies SDM, DDM

2024 77 Improved exponential distribution optimization by opposition learning SDM, DDM, TDM, PV

Table 1.  Summary of MAs for photovoltaic parameter estimation.
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that DNMRIME demonstrated superior performance across multiple test cases. Compared to RIME and other 
relevant algorithms, DNMRIME exhibited higher convergence speeds and better parameter estimation accuracy.

Based on the above, the key differences of this study compared to previous research are as follows.

•	 The dual-mechanism improvement of RIME, where DMRM is proposed for the first time and combined with 
NMs to enhance RIME.

•	 This study conducts comprehensive validation and photovoltaic parameter extraction by evaluating DN-
MRIME on CEC 2017 and testing DNMRIME on SDM, DDM, TDM, KC200GT, ST40, and SM55.

Therefore, the contributions of this study are as follows:

•	 Proposal of DMRM: This study introduces DMRM, which enhances RIME’s ability to escape local optima and 
improves its convergence accuracy by incorporating a sine function and a sigmoid function.

•	 Integration of DMRM and NMs into RIME: By combining DMRM and NMs to enhance RIME, the proposed 
algorithm, DNMRIME, achieves a better balance between exploration and exploitation.

•	 Qualitative analysis of DNMRIME: A qualitative analysis of DNMRIME on the CEC 2017 benchmark is con-
ducted to evaluate the convergence trend of the population and the dimensional change trajectories.

•	 Ablation study of DNMRIME: The ablation study of DNMRIME on CEC 2017 validates the effectiveness of 
DMRM and NMs, confirming their contributions to DNMRIME.

•	 Competitiveness analysis: This study compares DNMRIME with 14 well-known algorithms on CEC 2017, 
and the Wilcoxon signed-rank test confirms its competitive performance.

•	 Application in photovoltaic parameter extraction: The photovoltaic parameter extraction capability of DN-
MRIME is comprehensively evaluated using SDM, DDM, TDM, and PV, showing lower RMSE than existing 
algorithms.

•	 Performance under real-world conditions: Three commercial photovoltaic models (KC200GT, ST40, SM55) 
are used to assess DNMRIME under different temperature and illumination conditions, further validating its 
optimization performance.

The main structure of this paper is as follows: Section “Photovoltaic problem definition and equations”, the 
photovoltaic problem and its formulas are described. In “The proposed DNMRIME algorithm”, the DNMRIME 
algorithm is introduced. Section “Experimental results”, experiments are conducted on DNMRIME. Section 
“Discussion on the results” presents a discussion on DNMRIME. Section “Conclusions and future directions”, 
finally, prospects are outlined.

Photovoltaic problem definition and equations
This section introduces modeling methods, equivalent circuit models, and relevant mathematical equations 
for photovoltaic energy problems. Establishing precise mathematical models is vital for analyzing system 
performance, optimizing designs, and developing effective control strategies in photovoltaic energy systems. We 
will describe four commonly used photovoltaic models: SDM, DDM, TDM, and PV.

Solar cell model
Single diode model (SDM)
The SDM is a widely employed simplified mathematical model utilized to elucidate the operational characteristics 
of photovoltaic cells. Grounded in both circuit theory and semiconductor physics principles, this model 
conceptualizes a PV cell as an equivalent circuit comprising a diode and a resistor. The schematic representation 
of the SDM’s equivalent circuit is depicted in Fig. 1. Equation (1) elucidates the method for calculating the output 
current of the photovoltaic cell in the SDM case.

Fig. 1.  Equivalent circuit diagram for SDM.
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	 IL = Iph − Ish − Id� (1)

where the current Id that through the diode can be calculated using Eq. (2), Ish stands for the current flowing 
through the parallel resistance Rsh, Rsh can be derived from Eq. (3), Iph represents the current generated by 
light shining on the surface of the photovoltaic cell, IL is the final output current.

	
Id =

[
exp

(
VL + Rs × IL

n × k × T
× q

)
− 1

]
× Isd� (2)

	
Ish = VL + Rs × IL

Rsh
� (3)

where VL is the final output voltage, Rs is the series resistance used for voltage division, n represents the ideality 
factor or coefficient of an ideal diode, n is typically in the range (1, 2), k is the Boltzmann constant approximately 
valued at 1.380649 × 10E − 23 J/K, the parameter T  denotes the Kelvin temperature of the photovoltaic cell.

Substituting Eqs. (2) and (3) into Eq. (1) yields Eq. (4).

	
IL = Iph −

[
exp

(
VL + Rs × IL

n × k × T
× q

)
− 1

]
× Isd − VL + Rs × IL

Rsh
� (4)

In the SDM, there are five unknown parameters to be determined. These parameters include: Iph, Isd, Rs, Rsh, n. 
Determining the values of these parameters is crucial for accurately describing the behavior and performance 
of photovoltaic systems.

Double diode model (DDM)
DDM adds an extra parallel diode outside the components of SDM to better capture the intricate dynamics 
within the photovoltaic cell. The equivalent circuit diagram of DDM is illustrated in Fig. 2. On DDM, IL is 
calculated by Eq. (5).

	 IL = Iph − Ish − Id1 − Id2� (5)

where Id1 is the current passing through the first diode, and Id2 is the current passing through the second diode.
By substituting Eq. (4) into Eq. (5), Eq. (6) can be obtained.

	
IL = Iph − VL + Rs × IL

Rsh
− Isd1 ×

[
exp

(
VL + Rs × IL

n1 × k × T
× q

)
− 1

]
− Isd2 ×

[
exp

(
VL + Rs × IL

n2 × k × T
× q

)
− 1

]
� (6)

where n1 and n2 respectively represent the ideality factors or ideality coefficients of the two diodes.
On DDM, there are 7 unknown parameters to be determined. These parameters include: 

Iph, Isd1, Isd2, Rs, n1, n2.

Three diode model (TDM)
TDM consists of three diodes in parallel, along with a parallel resistor and a series resistor, forming an equivalent 
circuit, as depicted in Fig. 3.

In the DDM, IL is calculated using Eq. (7).

	 IL = Iph − Ish − Id1 − Id3� (7)

Fig. 2.  Equivalent circuit diagram of DDM.
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where Id1, Id2, Id3 represent the current through the first, second, and third diodes, respectively.

	

IL = Iph − VL + Rs × IL

Rsh
− Isd1 ·

[
exp

(
VL + Rs × IL

n1 · k · T
· q

)
− 1

]

− Isd2 ×
[
exp

(
VL + Rs × IL

n2 × k × T
× q

)
− 1

]
− Isd3 ×

[
exp

(
VL + Rs × IL

n2 × k × T
× q

)
− 1

]� (8)

where n1, n2, n3 respectively represent the ideality factors or ideality coefficients of the three diodes.
In the TDM, there are nine unknown parameters to be determined. These parameters include: 

Iph, Isd1, Isd2, Id3, Rs, Rsh, n1, n2, n3.

PV module model
PV is a mathematical model used to describe the behavior of photovoltaic cells, typically composed of a 
photocurrent source and a series resistor, aiming to simulate the photovoltaic cell’s current characteristics 
accurately.

The equivalent circuit diagram of PV is shown in Fig. 4.
Similarly, Eqs. (9) and (10) can also be derived accordingly.

	
IL = IphNp − Isd × Np ×

[
exp

(
VL
Ns

+ Ns × Rs × VL
Ns

n1 × k × Ns × T
× q

)
− 1

]
−

VL
Ns

+ Ns × Rs × IL
Np

Rsh×Ns

Np

� (9)

Fig. 4.  Equivalent circuit of PV.

 

Fig. 3.  Equivalent circuit diagram of TDM.
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IL = Iph × Np − Isd1 × Np ×

[
exp

(
VL
Ns

+ Ns × Rs × VL
Ns

n1 × k × Ns × T
× q

)
− 1

]

−Isd2 × Np ×

[
exp

(
VL
Ns

+ Ns × Rs × VL
Ns

n2 × k × Ns × T
× q

)
− 1

]
−

VL
Ns

+ Ns × Rs × IL
Np

Rsh×Ns

Np

� (10)

where Ns represents the number of solar cells in series, NP  represents the number of solar cells in parallel.
On PV, several unknown parameters need to be determined. These parameters include: Iph, Isd, Rsh, n.

Objective function
In photovoltaic problems, the problem description can be represented by Eqs. (11)–(13).

It is vital to assess the deviation between actual and estimated values. The selection of Root Mean Square 
Error (RMSE) as an evaluation metric is justified by its sensitivity to outliers, interpretability of positive and 
negative errors80, and differentiability. The expression for RMSE is shown in Eq. (14).

	
f (VL, IL, X) = Iph − IL − Isd ×

[
exp

(
q × (VL + Rs × IL)

n × k × T

)
− 1

]
− VL + Rs × IL

Rsh
� (11)

	
f (VL, IL, X) = Iph − IL − VL + Rs × IL

Rsh
−

2∑
i=1

Isd,i ×
[

exp
(

q × (VL + Rs × IL)
ni × k × T

)
− 1

]
� (12)

	
f (VL, IL, X) = Iph − IL − VL + Rs × IL

Rsh
−

3∑
i=1

Isd,i ×
[

exp
(

q × (VL + Rs × IL)
ni × k × T

)
− 1

]
� (13)

where X  represents the vector of parameters to be optimized.

	

RMSE (Xi) =

√√√√ 1
N

N∑
i=1

f2 (VL, IL, Xi)� (14)

where N  represents the number of samples, which refers to the quantity of data points.
The smaller the RMSE, the closer the predicted values are to the actual values. Therefore, the objective 

function to be minimized is shown in Eq. (15).

	 Minimize RMSE (Xi)� (15)

The proposed DNMRIME algorithm
This section will introduce the original RIME, the NMs and the newly proposed dynamic multi-dimensional 
random mechanism. Furthermore, we will discuss the proposed improved algorithm, DNMRIME.

The RIME algorithm
The principle of RIME is quite straightforward: rime is classified into soft and hard types based on its morphology. 
RIME has two main stages: soft-rime search strategy and Hard-rime puncture mechanism. A positive greedy 
absorption mechanism is also consistently utilized throughout RIME78.

Initialize rime particles
Initially, rime particles acquire their initial position according to Eq. (16).

	 Rij = LB + r1 × (UB − LB)� (16)

where r1 is a random number in the range [0, 1].

Soft-rime search strategy
When rime is in the soft state, a soft margin strategy is adopted, and the state of rime particles is updated using 
Eq. (17).

	 Rnew
ij = Rbest,j + r2 × cos θ × β × (h × (UB − LB) + LB) , r3 < E, j = 1, 2, . . . , dim� (17)

where Rnew
ij  represents the new position of the updated rime particle, while i and j indicate the j-th dimension 

of the i-th rime particle, respectively, Rbest
ij  represents the j-th dimension of the best rime agent within the 

RIME population. The parameter r2 and r3 is a random number in the range [−1, 1]. UB and LB respectively 
represent the upper bound and lower bound of the search space.

	
θ = π × F Es

10 × MaxF Es
� (18)
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The parameter θ is determined by Eq. (18), and as the iteration count rises, it grows larger. Consequently, the 
parameter cos θ diminishes as the iteration count increases.

	
β = 1 −

[
w × F Es

MaxF Es

]
/w� (19)

The environmental factor β, varying with iterations as a random number in the range [0, 1], is calculated using 
Eq. (19).

	
E =

√(
F Es

MaxF Es

)
� (20)

The parameter value E is related to the current iteration count and the maximum iteration count in the range 
[0, 1], as indicated in Eq. (20). Parameters E and r1 jointly determine, with a certain probability, whether a rime 
particle adopts the soft margin search strategy or the soft rime strategy.

Hard-rime puncture mechanism
When a rime particle is in a state of hard rime, Eq. (21) will be employed to update the position of the current 
fog rime particle.

	 Rnew
ij = Rbest,j , r4 < F normr (Si)� (21)

where Rnew
ij  represents the updated position of rime particles, i and j respectively denote the j-th dimension 

of the i-th RIME agent. The parameter r4 is a random number in the range [0, 1]. F normr (Si) represents the 
normalized fitness value of the i-th RIME agent.

Nelder–Mead simplex
J. Nelder and R. Mead proposed the NMs in 196581, a method capable of locally searching for minimum values 
in multi-dimensional space.

The NMs explore the solution space with a basic simplex, adapting its shape and position to find optimal 
values locally. According to objective function values, its shape is altered through operations like reflection, 
expansion, contraction, and shrinkage. The method is efficient and often used for unconstrained optimization, 
making it simple yet effective. The basic operations of the simplex in DNMRIME are as follows.

	Step 1	 Construction of the initial simplex. Firstly, a set of initial solutions is selected as the vertices of the sim-
plex, with each point representing a parameter vector, which in this context corresponds to the RIME 
agent. Since the current dimensional space is D-dimensional, D + 1 vertices are chosen to construct an 
initial simplex of D + 1 dimensions.

	Step 2	 Sorting. Based on the fitness values of these D + 1 vertices, they are sorted in descending order of fitness 
and numbered accordingly, resulting in a sequence as shown in Eq. (22).

	 f (X1) ≤ f (X2) ≤ ... ≤ f (XD) ≤ f (XD+1)� (22)

	Step 3	 Calculating the centroid. The worst vertex XD+1 is removed, and the centroid (average position) of the 
remaining vertices is calculated to determine a new trial point XC , as shown in Eq. (23).

	
XC =

∑D

i=1 Xi

D
� (23)

	Step 4	 Reflection operation. Obtain the reflection point XR according to Eq. (24).

	 XR = XC + α × (XC − XD+1)� (24)

	where α is the reflection coefficient.

	Step 5	 Reflection point expansion operation. The expansion point XE  is obtained according to Eq. (25).

	 XE = XC + β × (XR − XC)� (25)

	where β is the expansion coefficient. If f (XE) ≤ f (XR), then XE  is used instead of XD+1 to construct a new 
simplex. Otherwise, if f (XE) > f (XR), f (XR) replaces XD+1 to construct a new simplex.

	Step 6	 Compression operation of the reflected point. If f (XR) ≤ f (XD+1), according to Eq. (26), the compres-
sion point XCR is obtained. If f (XCR) ≤ f (XD+1), then XCM  is used instead of  XD+1 to construct 
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a new simplex. Otherwise, utilizing Eq. (27), calculate the new point XCD . If f (XCM ) ≤ f (XD+1), 
then XCD  is used instead of XD+1 to construct a new simplex.

	 XCR = XC + γ × (XR − XC)� (26)

	 XCD = XC + γ × (XD+1 − XC)� (27)

	where γ is the compression coefficient.

	Step 7	 Overall contraction operation. If f (XCM ) > f (XD+1), then the simplex is compressed, and the oper-
ation in Eq. (28) is performed.

	 Xi = X1 + ω × (Xi − X1) , i = 2, 3, ..., D, D + 1� (28)

In this paper, the current RIME agent performs the NMs operation only when r3 < NMsP RO. Additionally, 
the simplex operation is executed on Rbest at the end of each iteration. The random number r5 in the range 
[0, 1] and NMsP RO represents the probability of performing the NMs operation. In this paper, we set the 
specific value of NMsP RO to 0.1.

The NMs can be represented by Fig. 5.

Dynamic multi-dimensional random mechanism
This section will elaborate on the proposed dynamic multi-dimensional random mechanism (DMRM).

In the original RIME, the update of the rime particle heavily relies on Rbest,j . As shown in Eqs. (17) and 
(18), the variation of cos θ is periodic, fluctuating between − 1 and 1, rather than changing randomly. During 
the search process, this periodic behavior causes the rime particle to become overly concentrated in certain local 
regions, affecting RIME’s performance in complex problems. Although r1 introduces small disturbances, which 
somewhat increases the randomness of the search, it still makes it difficult for the RIME particles to effectively 
cover the area around Rbest, hindering the particles from escaping local optima.

To overcome this issue, we introduce DMRM into the original RIME framework. By using uncertain 
disturbances and non-periodic randomness, DMRM breaks the original periodic constraint, making the particle 
search trajectory more random and diversified. As a result, the particles can escape local optima and explore 
the solution space more evenly. This is particularly beneficial in regions near Rbest, where better coverage and 
search capability can be achieved, significantly improving the algorithm’s global optimization performance and 
convergence speed.

Therefore, we reinforce the particle update strategy using Eq. (29), introducing a more uncertain disturbance 
mechanism to increase the search space’s diversity, thereby enhancing RIME’s global search ability. At the same 
time, Eq. (35) increases the search capability of RIME particles around Rbest. While the values sin (l) also range 
from -1 to 1, due to the randomness introduced by Eq. (36), the values sin (l) do not exhibit a fixed periodicity. 
Figure 6 illustrates the concept of DMRM. Figure 7 illustrates the trend of important variables over time during 
different iterations.

	 Rnew
ij = µ × L

′
e vy × (Rij + η) , j ∈ J � (29)

Fig. 5.  The visualization of NMs.
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	 η = (UB − LB) × 0.1 × (2 × r4 − 1)� (30)

	
µ = 1 − F Es

MaxF Es
� (31)

	 J = {j1, j2, . . . , jk} , ji ∈ {1, 2, . . . , dim} , ∀i ∈ {1, 2, . . . , k}� (32)

	 k = ⌊dim ×ε⌋� (33)

	 ε = λ × e−δ·MaxF Es� (34)

where J  represents a set of k dimensions randomly selected from {1, 2, . . . , dim}. k is the number of selected 
dimensions, generated by Eq.  (33). ε is the dimension scaling factor, which controls the range of dimension 
selection, as specified by Eq.  (34). λ is set to 0.1, representing the initial dimension selection range. δ is set 
to 0.05, representing the decay rate. Lévy represents a random number that follows a Lévy distribution. µ is a 
linearly decreasing factor that decreases from 1 to 0 as the F Es increase, as shown in Eq. (31). η is a dimension 
perturbation factor, calculated as Eq. (30). The parameter r4 is a random number in the range [0, 1].

Fig. 7.  Variation of key variables across iterations.

 

Fig. 6.  Structure of DMRM.
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Rnew

ij = Rij × |sin (l)| − 9
16 × sin (l) ×

∣∣Rbest
ij + Rij

∣∣ , j = 1, 2, . . . , dim� (35)

	 l = 2 × r6 × π� (36)

where  is a random angle that controls the value of the sine function, derived from Eq. (36). r6 is a random 
number in the range [0, 1].

The proposed DNMRIME algorithm based on RIME
Based on this, we propose an enhanced RIME that combines the DMRM with the NMs, referred to as 
DNMRIME. The DNMRIME inherits the fundamental framework of the RIME while boasting improved global 
and local exploration capabilities. In the DNMRIME algorithm, DMRM is utilized to increase fitness values and 
escape local optima. At the same time, the NMs are employed for local search to further enhance the accuracy 
of solutions and the local search capability of the algorithm. By combining these two mechanisms, DNMRIME 
achieves a good balance between global and local exploration while effectively overcoming the challenge of local 
optima.

The positive greedy absorption mechanism, a commonly used strategy in optimization algorithms82,83, was 
adopted in the original RIME78. Therefore, we maintain its application in updating the population throughout 
the entire algorithm, safeguarding the superiority of our solutions.

Specifically, the design logic of DNMRIME is to dynamically adjust the neighborhood range of the search 
space during the iterative optimization process, integrating the greedy absorption DMRM, and NMs simplex to 
solve optimization problems efficiently.

To vividly illustrate DNMRIME, the flowchart is depicted in Fig. 8, while the pseudocode is summarized in 
Algorithm 1.

Experimental results
In this section, we present a comprehensive overview of the experimental results.

Firstly, a qualitative analysis of DNMRIME is conducted. Secondly, an ablation study is performed to 
examine the specific contributions of various mechanisms to the performance of DNMRIME. Thirdly, we 
assess and compare the performance of DNMRIME with other well-known MAs, benchmarking against CEC 
2017. Fourthly, we contrast DNMRIME with algorithms renowned for superior performance in solar models, 
evaluating and comparing them across SDM, DDM, TDM, and PV. Lastly, we validate the effectiveness of 
DNMRIME using actual data provided by suppliers in different environments, including KC200GT, ST40, and 
SM55.

The experimental equipment configuration adopted in this study is shown in Table 2. All experiments in this 
paper are based on the following configuration.

To conduct a detailed analysis of the experimental results, we will utilize the following metrics to evaluate the 
performance of DNMRIME:

	 1.	 2D Search History: This metric shows how the population converges towards the global optimum across 
different iterations (used in “Qualitative analysis of DNMRIME on CEC 2017”).

	 2.	 The first dimension of trajectory: It reflects the variation in the first dimension of the population during the 
iterations. Initially, with a good algorithm, there are significant fluctuations, which gradually stabilize and 
converge to the global optimum (used in “Qualitative analysis of DNMRIME on CEC 2017”).

	 3.	 Diversity: This metric evaluates the diversity of the population members during the search process, as is 
shown in Eqs. (37) and (38) (used in “Qualitative analysis of DNMRIME on CEC 2017”).

	
Divj = 1

N

n∑
i=1

∣∣meadian
(
xj

)
− xj

i

∣∣� (37)

	
Div = 1

dim

dim∑
j=1

Divj � (38)

	where Div represents the diversity of all population members in the algorithm. Divmax represents the maxi-
mum diversity value in the population members. Divj  represents the diversity of the j-th dimension in the 
population.

	 4.	 Exploration and exploitation: These metrics assess the algorithm’s exploration–exploitation balance, as de-
f﻿ined in Eqs. (39) and (40) (used in “Qualitative analysis of DNMRIME on CEC 2017”).

	
Exploration (%) = Div

Divmax
× 100%� (39)

	
Exploitation (%) = |Div − Divmax|

Divmax
× 100%� (40)
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	where Exploration denotes the exploration percentage of the algorithm, while Exploitation denotes its ex-
ploitation percentage.

	 5.	 Average (Mean) and Standard deviation (Stdv, Std): The mean reflects the algorithm’s average performance, 
while the Std measures the performance stability. Outstanding experimental results will be highlighted in 
bold (used in “DNMRIME for ablation study on CEC 2017” and “DNMRIME compared with well-known 
algorithms”).

	 6.	 Wilcoxon signed-rank test (WSRT): We employ the non-parametric Wilcoxon signed-rank test84 to quan-
tify the significance of algorithm performance improvements. In this test, we set the significance level to 
0.05 and use "+/=/−" symbols to indicate whether DNMRIME performs better than, equal to, or worse than 
other MAs (used in “DNMRIME for ablation study on CEC 2017” and “DNMRIME compared with well-
known algorithms”).

	 7.	 Root mean square error (RMSE): RMSE measures the discrepancy between an algorithm’s predicted values 
and actual results, with a lower value indicating greater prediction accuracy.

	 8.	 Convergence curves: Convergence curves visually depict the optimization progress of an algorithm, ena-
bling a clear comprehension of its convergence speed and stability throughout the process (used in “Exper-
imental results of DNMRIME on SDM”–“Experimental results of DNMRIME on PV”).

Fig. 8.  The flowchart of DNMRIME.
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	 9.	 P–V and I–V: The photovoltaic parameters extracted by the algorithm can be assessed using the I–V and 
P–V characteristics (used in “Experimental results of DNMRIME on SDM”–“Experimental results of DN-
MRIME on PV”, “Results of different irradiation and constant temperature”–“Results of different tempera-
ture and constant irradiation”).

	10.	 I-IAE, I-RE, P-IAE, P-RE error characteristics: We will utilize metrics I-IAE, I-RE, P-IAE, and P-RE to 
assess the performance of DNMRIME in extracting photovoltaic parameters. These metrics respectively 
represent the absolute and relative errors for current (I-IAE, I-RE) and power (P-IAE, P-RE). The equations 
for calculating IAE and RE are shown in Eqs. (41) and (42), respectively (used in Sections “Experimental 
results of DNMRIME on SDM”–“Experimental results of DNMRIME on PV”).

Configuration item Details

Processor Intel® Core™ i5-12500

Clock speed 3.00 GHz

RAM capacity 16.0 GB

Operating system Windows 11

MATLAB version MATLAB 2018

Table 2.  Experimental equipment configuration.

 

Algorithm 1.  Pseudo-code of DNMRIME.
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IAE =

n∑
i=1

|Xactual − Xpredict|� (41)

	where Xactual represents the actual data, Xpredict represents the predicted data from the photovoltaic simula-
tion, and n is the number of data points.

	
RE =

∑n

i=1 Xactual − Xpredict∑n

i=1 Xpredict

× 100%� (42)

	where Xactual represents the actual data, Xpredict represents the predicted data from the photovoltaic simula-
tion, and n is the number of data points.

	11.	 CPU Cost Time: This metric measures the computational time required by the algorithm, reflecting its 
efficiency in terms of resource usage (used in “CPU time cost assessment”).

Results of DNMRIME on CEC 2017
CEC 2017 is an internationally recognized benchmark set. All the benchmark functions used in “Results of 
DNMRIME on CEC 2017” are sourced from CEC 2017, consisting of 30 functions across 4 different types. The 
value range for these functions is [−100, 100], as shown in Table 3, assessing the optimization performance 
of DNMRIME. These 30 functions are used as objective functions, with DNMRIME aiming to minimize their 
values for optimization.

To ensure the comparability and fairness of the experimental results, uniform settings were applied to all 
algorithm parameters in “Qualitative analysis of DNMRIME on CEC 2017”–“DNMRIME compared with well-
known algorithms”, as shown in Table 4.

Qualitative analysis of DNMRIME on CEC 2017
To better demonstrate the performance of DNMRIME, the qualitative analysis will be conducted from two 
aspects: the historical search patterns of the algorithm and the balance between exploitation and exploration. 
Furthermore, on CEC 2017, we conducted an experiment utilizing F1, F4, F7, F25, and F28 to assess the 
effectiveness of DNMRIME.

Figure 9 presents one of the qualitative analysis results of DNMRIME. Specifically, Fig. 9a in the second 
column showcases the three-dimensional image of the corresponding function, with the red dot indicating the 
global optimal solution obtained by DNMRIME. Figure 9b in the second column depicts the search history of 
DNMRIME in a two-dimensional distribution. Figure 9c in the third column illustrates the changing pattern of 
the search positions of the RIME agents in the first dimension. Finally, Fig. 9d in the third column displays the 
average fitness of DNMRIME.

The experimental results show that DNMRIME exhibits a wide population distribution, effectively covering 
the solution space. This indicates its strong global exploration capability. Moreover, DNMRIME can closely 
reach the global optimum with fewer populations. During the initial stage, DNMRIME undergoes sharp changes 
in the first dimension, indicating its focus on exploration. During the later iterations, the stability of the first 
dimension reflects the convergence of DNMRIME towards the optimal solution.

Section

4.1.1 4.1.2, 4.1.3

Parameter Value Parameter Value

dim 30 dim 30
N 10 N 30
MaxF Es 500 MaxF Es 300,000

– – Runs 30

Table 4.  Unified parameter settings.

 

Function Type Purpose Search range

F1–F3 Unimodal functions Evaluate local exploitation ability

[−100, 100]D , where D is the dimension
F4–F10 Multimodal functions Assess global exploration ability

F11–F20 Hybrid functions Evaluate robustness of algorithm

F21–F30 Composition functions Assess problem-solving ability

Table 3.  The summary of CEC 2017.
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Similarly, we compared DNMRIME and RIME using five distinct functions to analyze balance and diversity. 
Figure 10a shows balance analysis results for DNMRIME, while Fig. 10b shows those for RIME. Figure 10c 
displays the diversity experiment results of DNMRIME and RIME, while Fig. 10d shows convergence curves of 
fitness.

As a result, DNMRIME exhibits a significant enhancement in exploration capabilities compared to the 
original RIME. Furthermore, the diversity exhibited by DNMRIME is richer than RIME’s, leading to superior 
performance in the convergence curves of DNMRIME’s fitness. F1 and F7 demonstrate the capacity of 
DNMRIME to overcome local optima, while F4, F25, and F28 showcase its rapid convergence speed. Compared 
to RIME, DNMRIME boasts superior optimization capabilities and a faster convergence speed. However, it must 
be acknowledged that, in the later stages of the diversity experiment, the convergence effect of DNMRIME may 
not be as satisfactory as RIME. This could be attributed to the fact that, while maintaining diversity, DNMRIME 
continues to explore new search directions.

DNMRIME for ablation study on CEC 2017
An ablation study is a crucial research tool that involves removing or substituting specific components in a system 
or model to observe their effects on performance. Similar to controlling variables, it deepens our understanding 
of each component’s role and supports optimization.

In this section, we will separately test the effects of the two mechanisms of DNMRIME on the CEC 2017 
function set to verify the superiority of DNMRIME over DRIME and NMRIME.

Fig. 9.  (a) Function diagram, (b) 2D search history of DNMRIME, (c) the first dimension of trajectory in 
DNMRIME, (d) average fitness of the DNMRIME.
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The ablation experimental results on CEC 2017 are shown in Fig. 11. Appendix Table 1 shows the results of 
the ablation study. Table 5 shows the WSRT comparison results o. It demonstrated the best performance among 
the 14 functions and tied for first place in F25, F26, F28, F29 with DRIME. Through the ablation experiments 
conducted on CEC 2017, we initially verified the potential effectiveness of integrating the two mechanisms into 
DNMRIME. The experimental results suggest that RIME incorporating the two mechanisms may better solve 
complex optimization problems than algorithms adopting only one mechanism.

DNMRIME compared with well-known algorithms
In this section, we will compare DNMRIME with several original and advanced algorithms that have shown 
outstanding performance on the CEC 2017. These algorithms include RIME78, DE24, PSO23, WOA26, HHO28, 
WSO85, AHA86, LSHADE87, LSHADE_cnEpSi88, CLPSO89, ALCPSO90, SCADE91, GAEFA_HK92, and iAEFA93. 
The specific algorithm settings used in this study are detailed in Table 6.

As is showed in Fig. 12, which presents the convergence curves of each algorithm, it can be observed that 
on CEC 2017, DNMRIME converges faster on F9 and F28. Most algorithms can find relatively good global 
optimum solutions quickly for the multimodal, hybrid, and composition functions such as F4, F15, F19, F21, 
F25, and F28, but DNMRIME demonstrates superior convergence accuracy. Appendix Tables 2–5 present the 
specific comparison results of DNMRIME with well-known MAs. As shown in Appendix Table 2, DNMRIME 
ranks third in terms of fitness mean on the single-modal function F1, performing worse than LSHADE and 
LSHADE_cnEpSi.

Table 7 shows that on CEC 2017, DNMRIME ranks first, outperforming the second-ranked LSHADE in 14 
functions, being equal to LSHADE in 3 functions, and performing worse in 13 functions.

Experimental results of DNMRIME on solar models
In this section, we will conduct photovoltaic simulation experiments on DNMRIME.

Fig. 10.  (a) Balance analysis of the DNMRIME, (b) balance analysis of the RIME, (c) diversity analysis, (d) 
convergence curve.
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Fairly, Table 8 shows the boundaries for unknown parameters. To validate the accuracy and efficiency of 
DNMRIME, we will compare it not only with the original RIME78 but also with other outstanding algorithms on 
solar models, specifically CCNMHHO94, GOFPANM95, WOA26, BSA96, TLBO30.

Experimental results of DNMRIME on SDM
Table 9 summarizes the results of parameter identification on SDM. In Fig.  13, the solid red line represents 
DNMRIME, while the curves of different colors represent various comparative algorithms. The RMSE 
convergence curves in this section and the following three subsections are based on the mean RMSE values. 
Additionally, we calculated the RMSE values of algorithms on SDM and included them in Table 10. Figure 14 
illustrates the performance of the SDM at different voltages: Fig. 14a,b depict the I–V and P–V characteristic 
curves, respectively. Figure 15 presents the various error metrics of DNMRIME on SDM.

From the perspective of convergence speed, DNMRIME demonstrates significant superiority. By observing 
the convergence curves, DNMRIME exhibits stronger optimization capability, achieving lower RMSE values in 
the early iterations than RIME. The convergence curve of DNMRIME rapidly descends, indicating its ability to 
reach lower RMSE values with fewer function evaluations. In contrast, the convergence speed of RIME, WOA, 
BSA and TLBO is relatively slower, and their RMSE values are far higher than those of DNMRIME. GOFPANM 
and CCNMHHO, known for their strong performance in photovoltaic parameter estimation, require more 
iterations to match the RMSE of DNMRIME. In the end, DNMRIME achieved the lowest RMSE value compared 

Algorithm +/=/− Mean Rank

DNMRIME – 2.03 1

DRIME 11/9/10 2.48 2

NMRIME 18/12/0 2.79 4

RIME 18/2/10 2.70 3

Table 5.  WSRT comparison of DNMRIME for ablation study.

 

Fig. 11.  Convergence curve of DNMRIME for ablation study on CEC 2017.
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Fig. 12.  Convergence comparison of DNMRIME with well-known algorithms on CEC 2017.

 

Algorithm Parameters setting

DNMRIME W = 5; NMs Pr o = 0.1; δ= 0.05; λ= 0.1

RIME W = 5
DE pCR = 0.2; beta ∈ [0.2, 0.8]
PSO Vmax = 6; noP = N ; wmax = 0.9; wmin = 0.2; c1 = 2; c2 = 2
WOA a1 = [0, 2] ; a2 = [−2, −1] ; b = 1

HHO beta = 1.5; c = 2 ∗
(

1 − F Es
MaxF Es

)
WSO ρr = 0.5
AHA Migration coefficient = 2N

LSHADE arc_rate = 0.4; memory_sf = memory_cr = 0.5; pbest = 0.11; memory_size = 5

LSHADE_cnEpSi freq_init = ps = 0.5; pb = 0.4

CLPSO c = 1.49445
ALCPSO w = 0.4; c1 = c2 = 2; lifespan = 60; T = 2
SCADE min= 0.2; a= 2;CR=max= 0.8

GAEFA_HK k0 = 500; α = 6; T = 300
iAEFA k0 = 500; α ∈ [3, 40]

Table 6.  Parameter setting of comparison algorithm with DNMRIME.

 

Scientific Reports |        (2025) 15:20951 18| https://doi.org/10.1038/s41598-025-99105-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


to other MAs. The experimental data of DNMRIME exhibit clear peaks consistent with the actual data. The 
difference between the maximum and minimum RMSE of DNMRIME is small, resulting in its lowest Std.

On SDM, the performance of DNMRIME surpasses that of the other compared algorithms.

Experimental results of DNMRIME on DDM
On DDM, Fig. 16 shows a convergence comparison of algorithms. Fig. 17 displays the I–V characteristic curves 
on DDM, while Fig. 18 illustrates the error indices of DNMRIME. Finally, Table 11 showcases the specific results 
on DDM, while Table 12 summarizes RMSE values.

Initially, DNMRIME, GOFPANM, and CCNMHHO performed well on DDM. DNMRIME quickly achieves 
lower RMSE values, reaching about 9.8296993325E − 04 at the final iteration. Furthermore, DNMRIME achieved 
the lowest RMSE after the iteration, indicating its optimal fitting effect in parameter estimation. DNMRIME 
demonstrated even greater accuracy in model fitting and has the lowest Std.

On DDM, DNMRIME exhibited the best performance.

Item DNMRIME RIME CCNMHHO GOFPANM WOA BSA TLBO

Iph(A) 0.76077547 0.76100100 0.76077556 0.76077553 0.76131261 0.76061651 0.76073870

Isd( μA) 0.32302698 0.33391613 0.32302564 0.32302080 0.75370353 0.33799831 0.32722285

Rs( Ω) 3.63770053E − 02 3.62476584E − 02 3.63769972E − 02 3.63770928E − 02 3.26375670E − 02 3.61848079E − 02 3.63234160E − 02

Rsh( Ω) 53.71901421 52.02512650 53.71832947 53.71851963 75.34789413 56.00141430 54.53637226

n 1.48118553 1.48456871 1.48118511 1.48118359 1.57179273 1.48573978 1.48247484

RMSE 9.8602E − 04 1.0018E − 03 9.8602E − 04 9.8602E − 04 1.9863E − 03 9.9419E − 04 9.8686E − 04

Compare + = = + + +

Table 9.  Parameters estimation results of DNMRIME with other algorithms on SDM. Significant values are in 
bold.

 

Parameter

SDM/DDM/TDM PV/KC200GT/ST40/SM55

Lowest bound Highest bound Lowest bound Highest bound

Iph(A) 0 1 0 2

Isd(µA), Isd1(µA), Isd2(µA), Isd3(µA) 0 1 0 50

n, n1 , n2 , n3 1 2 1 50

Rs( Ω) 0 0.5 0 2

Rsh( Ω) 0 100 0 2000

Table 8.  Upper and lower bounds of unknown parameters.

 

Algorithm +/=/− Mean Rank

DNMRIME – 4.486 1

RIME 17/5/8 7.162 7

DE 17/4/9 6.864 6

PSO 30/0/0 10.902 12

WOA 27/3/0 11.401 13

HHO 22/4/4 8.867 11

WSO 30/0/0 12.097 15

AHA 17/7/6 5.929 5

LSHADE 14/3/13 4.494 2

LSHADE_cnEpSi 16/2/12 5.268 3

CLPSO 17/2/11 5.381 4

ALCPSO 22/3/5 8.168 8

SCADE 24/5/1 11.627 14

GAEFA_HK 22/1/7 8.510 9

iAEFA 23/0/7 8.843 10

Table 7.  WSRT comparison of DNMRIME with well-known algorithms.
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Experimental results of DNMRIME on TDM
On TDM, Table 13 specifically describes the parameter extraction results of DNMRIME. Table 14 lists the RMSE 
values of each algorithm on TDM. Figure 19 shows the RMSE convergence curve of DNMRIME with other 
algorithms. Figure 20 shows two characteristic plots of DNMRIME on TDM, while Fig. 21 illustrates the error 
metrics.

Compared to RIME, WOA, BSA, and TLBO, DNMRIME demonstrates faster convergence speed in the 
curves. As for the mean RMSE value, DNMRIME reaches a value of 9.86E − 4, while CNMHHO and GOFPANM 
achieve approximately 9.85E − 4 and 9.86E − 4, respectively. DNMRIME achieves a lower final RMSE value than 
other algorithms on TDM. DNMRIME, CCNMHHO, and GOFPANM exhibit similar RMSE values around 
9.8249E − 04. However, DNMRIME stands out with a much lower Std of 1.7548E − 06 compared to these two 
algorithms. With minimal Std, DNMRIME shows consistent RMSE fluctuations and a faster convergence rate. 
On TDM, DNMRIME demonstrates high accuracy in prediction.

On TDM, the performance of DNMRIME remains superior.

Experimental results of DNMRIME on PV
On PV, Fig. 22 represents convergence curves, Fig. 23 depicts the I–V and P–V characteristic curves, Fig. 24 
illustrates the error indicators. Moreover, Table 15 provides detailed results in parameter extraction, and Table 
16 presents specific RMSE values.

Item Max Min Mean Std

DNMRIME 9.86021889E − 04 9.86021880E − 04 9.8602188324E − 04 2.00339E − 12

RIME 7.31804270E − 03 1.00179682E − 03 1.9226893260E − 03 0.001164931

CCNMHHO 9.86021893E − 04 9.86021880E − 04 9.8602188374E − 04 3.17257E − 12

GOFPANM 9.86021903E − 04 9.86021878E − 04 9.8602188970E − 04 5.75592E − 12

WOA 4.41134266E − 02 1.98632656E − 03 9.9302641932E − 03 0.009776725

BSA 1.88397447E − 03 9.94189070E − 04 1.3604541357E − 03 0.000224506

TLBO 1.39656941E − 03 9.86856871E − 04 1.1167603686E − 03 0.000133876

Table 10.  RMSE values of DNMRIME and other algorithms on SDM. Significant values are in bold.

 

Fig. 13.  Convergence comparison of algorithms in the SDM.
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Fig. 15.  Error metrics of DNMRIME on SDM.

 

Fig. 14.  I–V and P–V characteristic curve of DNMRIME on SDM.
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Based on the experimental results, although CCNMHHO performed well on SDM, DDM, and TDM, it 
showed unsatisfactory performance on PV and performed worse than DNMRIME and RIME. On PV, TLBO 
outperforms the previous three models in convergence, yet its speed lags behind DNMRIME. Simultaneously, 
GOFPANM initially exhibits a slow convergence speed, even reaching a lower RMSE value only in the later 
evaluation stages. During the entire evaluation process, DNMRIME consistently maintains the lowest RMSE 
value. The final RMSE of DNMRIME is 2.42507487E − 03. While maintaining the lowest Std, DNMRIME boasts 

Fig. 17.  I–V and P–V characteristic curve of DNMRIME on DDM.

 

Fig. 16.  Convergence comparison of algorithms on DDM.
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a remarkably low Std of 9.0046E − 13, significantly surpassing the Std of its competitors. Moreover, DNMRIME’s 
predictions are highly consistent with the actual data.

On PV, DNMRIME ranks first in performance.

CPU time cost assessment
The average CPU expenditure time of the algorithms is one of the key metrics for evaluating their performance. 
As shown in Fig. 25 and Table 17, we can visually observe the differences in average time expenditure among 
different algorithms. Notably, the CPU time expenditure of the GOFOPANM is particularly significant, especially 
during the parameter extraction of the TDM, where it exceeds 400 s.

Item DNMRIME RIME CCNMHHO GOFPANM WOA BSA TLBO

Iph(A) 0.76078109 0.76073873 0.76078108 0.76078108 0.76162458 0.76066445 0.76075395

Isd1( μA) 0.22594990 0.29448975 0.22597498 0.74936976 0.27741243 0.06720720 0.33225000

Isd2( μA) 0.74956832 0.40255762 0.74934374 0.22597193 0.00000000 0.33941143 0.01077375

Rs( Ω) 3.67405249E − 02 3.59974861E − 02 3.67404235E − 02 3.67404378E − 02 3.67486284E − 02 3.59629945E − 02 3.62445709E − 02

Rsh( Ω) 55.48599213 58.20789437 55.48546717 55.48548112 41.34803895 58.14882331 55.01099801

n1 1.45100785 1.47602357 1.45101705 2.00000000 1.46625977 1.77321765 1.48426220

n2 1.99999999 1.93009347 2.00000000 1.45101592 1.62436839 1.48802160 1.79196736

RMSE 9.8248E − 04 1.0243E − 03 9.8248E − 04 9.8248E − 04 1.2118E − 03 1.0205E − 03 9.9147E − 04

Compare + = = + + +

Table 11.  Parameters estimation results of DNMRIME with other algorithms on DDM. Significant values are 
in bold.

 

Fig. 18.  Error metrics of DNMRIME on DDM.
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It is worth noting that the average CPU expenditure time of DNMRIME is not the shortest. Although its 
time overhead may not be as compact as other algorithms except for GOFOPANM, it demonstrates excellent 
accuracy and stability in photovoltaic model parameter extraction, completing tasks with relatively low CPU 
expenditure time under various model conditions.

Experimental results for manufacturer solar cell models
In this section of the paper, we conduct simulation experiments on solar panels of three different models from 
manufacturers: KC200GT, ST40, and SM55. The simulation experiments systematically explore their operational 
efficiency and output power characteristics under varying light conditions, temperature environments, and load 
requirements.

Results of different irradiation and constant temperature
This section presents the simulation results of SDM and DDM solar cells under the KC200GT, ST40, and SM55 
models. Figures 26, 27 and 28 illustrate the I–V characteristics experiment results under constant temperature 
conditions of 25 ℃ for irradiance levels of 1000W/m2, 800W/m2, 600W/m2, 400W/m2, and 200W/m2, 
respectively. The consistency between the experimental results and real data is significant, validating the accuracy 
of DNMRIME in predicting solar cell performance.

Item Max Min Mean Std

DNMRIME 9.88860941E − 04 9.82491890E − 04 9.8393451046E − 04 1.7548E − 06

RIME 3.88425922E − 03 1.17620112E − 03 2.6150797805E − 03 0.000863494

CCNMHHO 9.90074006E − 04 9.82485364E − 04 9.8553348389E − 04 2.27248E − 06

GOFPANM 9.92906638E − 04 9.82484852E − 04 9.8479539229E − 04 2.31492E − 06

WOA 4.18144832E − 02 1.20412332E − 03 1.1567324386E − 02 0.011292231

BSA 2.57322058E − 03 1.26739939E − 03 1.8679958308E − 03 0.000340022

TLBO 2.51122298E − 03 9.84879354E − 04 1.4130817952E − 03 0.000410508

Table 14.  RMSE values of DNMRIME and other algorithms on TDM. Significant values are in bold.

 

Item DNMRIME RIME CCNMHHO GOFPANM WOA BSA TLBO

Iph(A) 0.76078076 0.76149281 0.76078099 0.76078108 0.76122240 0.76042051 0.76082358

Isd1( μA) 0.30526000 1.00000000 0.22695100 0.74709600 0.00550409 0.32258700 0.25695700

Isd2( μA) 0.41339700 0.11393800 0.41507600 0.22597500 0.17917600 0.19564800 0.37826800

Isd3( μA) 0.22961500 0.12208600 0.32599800 0.00224813 0.31226000 1.00000000 0.19676300

Rs( Ω) 3.67232450E − 02 3.82026620E − 02 3.67358170E − 02 3.67404280E − 02 3.50951330E − 02 3.57651690E − 02 3.68190870E − 02

Rsh( Ω) 55.41319592 45.88512600 55.46584733 55.48543589 55.80176047 73.20061637 54.77327294

n1 1.99999963 1.93746201 1.45137729 2.00000000 1.65995724 1.89182840 1.84260742

n2 1.99999947 1.39291748 1.99999999 1.45101692 1.65825935 1.44426571 1.92840553

n3 1.45235392 2.00000000 2.00000000 2.00000000 1.49065251 1.97153659 1.44102726

RMSE 9.8249E − 04 1.1762E − 03 9.8249E − 04 9.8249E − 04 1.2041E − 03 1.2674E − 03 9.8488E − 04

Compare + = = = + +

Table 13.  Parameters estimation results of DNMRIME with other algorithms on TDM. Significant values are 
in bold.

 

Item Max Min Mean Std

DNMRIME 9.86023449E − 04 9.82484852E − 04 9.8296993325E − 04 9.21878E − 07

RIME 4.04136804E − 03 1.02425801E − 03 2.2761976172E − 03 0.000909176

CCNMHHO 9.89130510E − 04 9.82484852E − 04 9.8436773877E − 04 2.1277E − 06

GOFPANM 9.86171797E − 04 9.82484852E − 04 9.8380696019E − 04 1.73767E − 06

WOA 4.74010845E − 02 1.21177304E − 03 1.3785341065E − 02 0.014313079

BSA 2.51079424E − 03 1.02047716E − 03 1.5942391080E − 03 0.000448579

TLBO 1.64218785E − 03 9.91470979E − 04 1.2747608685E − 03 0.000204125

Table 12.  RMSE values of DNMRIME and other algorithms on DDM. Significant values are in bold.
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Results of different temperature and constant irradiation
Figure 29 illustrates the I–V characteristic curves of SDM and DDM solar cells under the KC200GT model, 
obtained from simulation experiments conducted at constant irradiance conditions of 25 °C, 50 °C, and 75 °C 
temperatures. Fig. 30 depicts the I–V characteristic curves of SDM and DDM solar cells under the ST40 model, 
where experiments were conducted at a constant irradiance of 1000W/m2 and temperatures of 25 °C, 40 °C, 
50 °C, and 75 °C. Additionally, Fig. 31 displays the I-V characteristic curves of SDM and DDM solar cells under 

Fig. 20.  I–V and P–V characteristic curve of DNMRIME on TDM.

 

Fig. 19.  Convergence comparison of algorithms on TDM.
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the SM55 model, with experiments conducted at constant irradiance conditions and temperatures of 25  °C, 
40 °C, and 60 °C. The actual data is highly consistent with the data estimated by DNMRIME. These experiments 
validate the effectiveness of DNMRIME.

Discussion on the results
In our research, we have observed the remarkable performance of a novel RIME algorithm in extracting 
photovoltaic parameters. This paper introduces a new dynamic multi-dimensional random mechanism, a 
dynamic random search strategy enhancing convergence accuracy across multiple dimensions. To achieve a 
more accurate extraction of photovoltaic model parameters, we have integrated this mechanism with the NMs 
and enhanced RIME, resulting in the development of the DNMRIME.

As for the CEC 2017 evaluation, we found that the DNMRIME significantly outperforms other algorithms 
regarding convergence speed. The exploration capability of DNMRIME increased by approximately 25.02991% 
in F1, 27.56922% in F4, 18.68052% in F7, 22.75426% in F25, and 27.3841% in F28 compared to RIME. Therefore, 
DNMRIME has more population diversity to find better solutions than RIME. Compared with well-known 
MAs, the results of the WSRT show that DNMRIME ranks first and has demonstrated excellent performance on 
hybrid and composite functions.

As for a series of simulation experiments in photovoltaic parameter extraction, we have validated the 
superiority of DNMRIME in this field. In the cases of SDM, DDM, TDM, and PV, DNMRIME has the lowest Std, 
with values of 2.00339E − 12, 9.21878E − 07, 1.7548E − 06, and 9.0046E − 13, respectively. Meanwhile, compared 
to CCNMHHO and GOFPANM, DNMRIME demonstrates faster convergence speed. This indicates that 
DNMRIME possesses efficiency, stability, and robustness. DNMRIME also consistently displays its advantages 
under various environmental conditions. The extracted parameters exhibit high degrees of consistency and 
accuracy compared to the actual parameters.

These results show the significance and practical utility of DNMRIME in photovoltaic parameter extraction.

Fig. 21.  Error metrics of DNMRIME on TDM.
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Conclusions and future directions
This work proposes an improved version of RIME, named DNMRIME, by including the dynamic multi-
dimensional random mechanism (DMRM) in conjunction with the Nelder–Mead simplex (NMs). Through 
random non-periodic convergence, DMRM increases RIME’s convergence accuracy. NMs speed up convergence, 
allowing DNMRIME to avoid local optima and outperform it on hybrid and composite functions. A qualitative 
analysis and ablation test were carried out on CEC 2017 in order to assess DNMRIME’s efficiency. In order 

Fig. 23.  I–V and P–V characteristic curve of DNMRIME on PV.

 

Fig. 22.  Convergence comparison of algorithms on PV.
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to confirm its efficacy, it compared to 14 other well-known MAs, including several advanced techniques. 
DNMRIME was used for obtaining parameters for SDM, DDM, TDM, and PV as well. In conclusion, this study 
significantly proved the performance of DNMRIME for parameter identification in solar models. Not only does 
the algorithm exhibit better performance in terms of accuracy and convergence speed, but it also demonstrates 
robustness across different types of photovoltaic models.

Looking ahead, several potential research directions emerge. Firstly, further exploring the interaction 
between the DMRM and the NMs may lead to more sophisticated hybrid optimization algorithms tailored to 
specific problems. Secondly, in photovoltaic parameter extraction, we have noticed the Lambert W  function97 
as a promising method for improved accuracy and plan to apply DNMRIME to it in the future. Lastly, applying 
the improved algorithm to other domains, such as machine learning or signal processing, may reveal its broader 
utility and potential.

Item DNMRIME RIME CCNMHHO GOFPANM WOA BSA TLBO

Iph(A) 1.03051417 1.03099664 1.03051439 1.03051430 1.02814553 1.03041899 1.03050649

Isd( μA) 3.48233355 3.77739282 3.48223418 3.48226314 4.91771885 3.50804713 3.48500640

Rs( Ω) 1.20126916 1.19170008 1.20127166 1.20127100 1.16682214 1.20105866 1.20122084

Rsh( Ω) 982.00874023 978.25303671 981.96841662 981.98231868 1761.53244332 1000.49066433 984.45627076

n 48.64291200 48.95893121 48.64280381 48.64283511 49.99740397 48.67019614 48.64570564

RMSE 2.4251E − 03 2.4505E − 03 2.4251E − 03 2.4251E − 03 2.6146E − 03 2.4261E − 03 2.4251E − 03

Compare + = = = + =

Table 15.  Parameters estimation results of DNMRIME with other algorithms on PV. Significant values are in 
bold.

 

Fig. 24.  Error metrics of DNMRIME on PV.
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The further development and application prospects of DNMRIME remain promising and warrant further 
exploration.

Item SDM DDM TDM PV

DNMRIME 0.951 1.192 0.540 0.766

RIME 0.840 1.184 0.369 0.666

CCNMHHO 0.967 1.216 0.425 0.748

GOFPANM 185.427 341.267 199.221 172.905

WOA 0.788 0.927 0.406 0.727

BSA 0.874 0.991 0.404 0.769

TLBO 0.967 1.034 0.472 0.818

Table 17.  The time cost of algorithm in photovoltaic model. (The unit of this table is seconds).

 

Fig. 25.  Average CPU expenditure time for each algorithm.

 

Item Max Min Mean Std

DNMRIME 2.42507487E − 03 2.42507487E − 03 2.4250748704E − 03 9.0046E − 13

RIME 3.47130941E − 02 2.45048337E − 03 4.8501667168E − 03 0.007009457

CCNMHHO 4.84314324E − 01 2.42507487E − 03 6.2666049656E − 02 0.120533779

GOFPANM 2.42507488E − 03 2.42507487E − 03 2.4250748731E − 03 3.00095E − 12

WOA 2.75415742E − 01 2.61455796E − 03 7.9040153129E − 02 0.120023474

BSA 2.54370834E − 03 2.42611050E − 03 2.4855574418E − 03 3.09512E − 05

TLBO 2.72775948E − 03 2.42509970E − 03 2.4577300984E − 03 5.75831E − 05

Table 16.  RMSE values of DNMRIME and other algorithms on PV. Significant values are in bold.

 

Scientific Reports |        (2025) 15:20951 29| https://doi.org/10.1038/s41598-025-99105-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 28.  The I–V characteristic curves of SM55 under different irradiance.

 

Fig. 27.  The I–V characteristic curves of ST40 under different irradiance.

 

Fig. 26.  The I–V characteristic curves of KC200GT under with different irradiance.
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Data is provided within the manuscript or supplementary information files.

Received: 18 June 2024; Accepted: 16 April 2025

Fig. 31.  The I–V characteristic curves of SM55 under different temperature.

 

Fig. 30.  The I–V characteristic curves of ST40 under different temperature.

 

Fig. 29.  The I–V characteristic curves of KC200GT under different temperature.
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