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For the robust localization in mixed line-of-sight (LOS) and non-line-of-sight (NLOS) indoor 
environments, we proposed a max-min optimization estimator from a measurement model and 
introduced an adaptive loss function to optimize the estimation. However, this estimator is highly 
nonconvex leading to difficulties in solving it directly. We employed the neurodynamic to solve it. In 
addition, we checked the local equilibrium stability of the corresponding projective neural network 
model. The proposed algorithm does not require any prerequisites compared to existing algorithms, 
which either require knowledge of the magnitude of the NLOS bias or a priori distinction between LOS 
and NLOS. We proposed an adaptive distance error upper bound method to improve the accuracy of 
localization model. Tested in representative numerical simulation and real environments, our proposed 
robust adaptive positioning algorithm outperforms existing methods in terms of localization accuracy 
and robustness, especially in severe NLOS environments.
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In the increasingly digital and intelligent world of today, localization technology has become critical1,2. It plays 
a key role in variety of areas, such as helping people navigate through large buildings, improving the efficiency 
of traffic management, enhancing personal safety, and providing support in the Internet of Things(IoTs) and 
smart homes3–5. Highly accurate and robust positioning technology has become one of the most important 
prerequisites to support various applications.

Although global satellite navigation systems are widely used in outdoor environments, it is difficult to achieve 
positioning in heavily occluded indoor environments due to the weak signal strength of navigation satellite 
signals, which makes it difficult to penetrate buildings6. Various indoor positioning technologies such as Wi-
Fi and Bluetooth positioning have made great strides in the last few decades7,8 However, as the requirements 
for positioning accuracy and reliability have increased, the traditional technology is limited by positioning 
technology itself and is difficult to meet.

Compared to traditional technologies, the Ultra-Wideband (UWB) has advantages of low power consumption, 
high distance measurement accuracy, low cost, etc9. It can be widely used for positioning in indoor, urban and 
industrial environments capable of realizing high-precision positioning10.

The UWB localization algorithm is based on relative distance measurements obtained from the timing 
and signal characteristics of radio signals, which are further calculated to determine positioning of the 
node. Compared to time-difference-of-arrival (TDOA), angle of arrival (AOA) and received signal strength 
indicator (RSSI) localization techniques, time-of-arrival (TOA) has a large advantage in terms of accuracy and 
computational overhead. Typically studies of TOA-based techniques assume a LOS environment11. But normally 
in indoor scenarios, UWB signals suffer from NLOS, multipath, and other interferences, resulting in large 
deviations in the information measured by the signals, which leads to a sharp drop in positioning accuracy, or 
even the inability.

For localization methods with NLOS mitigation, existing studies are categorized into localization methods 
based on weighted least squares, filtering, machine learning, to name a few. Localization methods based on 
weighted least squares utilize all available UWB measurements for position, with each measurement having its 
own weight. For LOS measurements with a larger weight and NLOS measurements have a smaller weight, which 
reduces the impact of NLOS errors on positioning. Under the a priori assumption of NLOS measurements, a 
least squares algorithm was used to perform a global search, and then the optimal initial value was obtained by 
threshold screening and weight calculation, which improved localization accuracy by 63% compared to least 
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squares algorithm12. For the mixed LOS/NLOS environment with unknown anomaly variance, a weighted 
least squares method based on Hampel and jump filters is proposed to estimate positioning and reduce the 
impact of NLOS error on localization13. To mitigate NLOS errors of localization algorithms based on weighted 
least squares, the value of weights must be considered. As a result, algorithm performance relies on feature 
recognition of measurement, leading to limited localization accuracy in real-world.

Among the filtering-based localization methods, Yang et al. proposed a localization method based on particle 
filtering, which is filtered twice in order to reduce the effect of NLOS errors and improve localization accuracy14. 
The algorithm can handle nonlinear and non-Gaussian system model, which requires fewer assumptions of the 
model and increase the number of particles to reduce NLOS error. However, computational complexity is high, 
due to large number of particles to be processed. In addition, the calculation results of particle filtering algorithm 
have a certain degree of uncertainty because of introduction of randomness. Therefore, it is difficult to ensure the 
reliability of localization when applied in a real.

Localization methods based on filtering and weighted least squares need to first determine the NLOS state of 
ToA measurements before localization, which is computationally expensive and suffers from misidentification, 
whereas machine have been widely applied for LOS/NLOS identification15,16. There are already several machine 
learning-based approaches that can directly achieve robust estimation of the localization state without need for a 
known NLOS state17. A maximum likelihood (ML) position estimator is derived from measurement model, and 
localization problem is then transformed into a generalized trust domain subproblem (GTRS)18.

Thereafter, localization problem is reshaped into an optimized form using semidefinite relaxation (SDR) 
or second-order cone relaxation (SOCR) as well as regularized total least square semidefinite program (RTLS-
SDP)11, new robust semidefinite programming method (RDSP-New)19, semidefinite programming (SDP)20. 
Another idea is to improve position estimator by constructing a robust localization optimization problem, based 
on maximum correntropy criterion (MCC)21, which does not require any a priori assumptions and can achieve 
robust estimation under NLOS22. However, these methods cannot eliminate the bias in TOA measurements and 
cannot adaptively change the positioning model according to the NLOS environment, leading to a decrease in 
localization accuracy.

The primary contribution of this paper is introduction of a robust adaptive localization algorithm for indoor 
UWB localization, based on neurodynamic principles. This contribution is characterized by two key aspects 
of adaptation robust: the first one is adaptation robust during localization solving process, while the second 
focuses on adaptation of localization model itself. By incorporating an adaptive robust function, our method 
advances existing localization model, resulting in development of a robust adaptive localization model. This 
approach distinguishes itself from traditional methods, such as MCC, by its ability to dynamically adapt based 
on the number of iterations, thereby providing enhanced flexibility and robustness across various localization 
scenarios. We apply the neurodynamic to effectively solve the localization model based on adaptive robust 
optimization problem and analyze the local stability of localization solution. Our localization model is different 
from other methods in that it can estimate the distance error bounds and adjust the localization model to achieve 
higher accuracy.

UWB adaptive robust localization model
The measurement model
Consider a 2D indoor localization scenario containing N  UWB anchor and one unknown nodes. The positioning 
of i-th anchor node is denoted as xi ∈ R2 and positioning of unknown node is represented as x ∈ R2.

The x is calculated by the relative distances to the anchor nodes, and di is the Euclidean distance between 
unknown and i-th anchor node, defined as:

	 di = ∥x − xi∥2 , i = 1, 2, . . . , N.� (1)

where ∥ · ∥2 denotes a L2 norm. Considering the indoor NLOS error and observation noise, the observation 
model of relative distance can be expressed as:

	 ri = di + ni + qi, i = 1, 2, . . . , N.� (2)

where ri denotes relative distance observation, ni is UWB measurement noise, which satisfies the Gaussian 
distribution N (0, σi). qi is NLOS measurement error, when qi = 0 denotes a LOS condition.

Introduce adaptive robust loss function
The adaptive robust loss function is23:

	
f (L, α, c) = |α − 2|

α

((
(L/c)2

|α − 2| + 1
)2

− 1

)
.� (3)

where c > 0 is a scale parameter that determines the degree of bending near L = 0, and L is the original loss 
function. α is a hyperparameter that controls the solution robustness of optimization problem, and different 
values of α, the loss function can be expressed as follows:
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The adaptive loss function with α = 2 is equivalent to L2 loss, while using α = 1 is a smoothed form of L1 
loss, Charbonnier loss or L1–L2 loss. When α = −∞, it approaches local mode finding. The α can be thought 
of as a smooth interpolation between these three averages during the estimation process, the robustness of 
the loss function to be automatically adapted during optimization of localization process, thus improving the 
localization performance without the need for any manual parameter tuning.

Problem formulation
Assuming UWB indoor localization without any NLOS a priori information. And according to Eq. (2), the L2 
optimization problem for indoor UWB localization can be established as

	

min
x

max
∈

N∑
i=1

(ri − di− ∈i)2

s.t.0N ≤∈≤ δ

.� (5)

where ∈= [∈1, . . . , ∈N ]T , δ = [δ1, . . . , δN ]T . 0N  denotes an N-dimensional column vector with all elements 
0, ϵ ≤ δ means ϵi ≤ δi with i = 1,2, . . . , N . ϵi = ni + qi is distance error between unknown and i-th anchor 
node. δi is the upper bound of ranging error ϵi, which is usually unknown in real world, and setting the value 
of δi too large or too small will degrade the accuracy. Because of the continuity of motion trajectory, the upper 
bound of measurements varies less in a short period of time, for this reason, we proposed an adaptive robust 
(AR) method that approximates the error upper bound by an estimate of ϵi as

	 δi,t = β · max {∈1,t−1, . . . , ∈i,t−1} , i = 1, . . . , N.� (6)

where β ≥ 1 is the amplification factor, which ensures that avoiding the δi,t too small when distance error 
become large. For simplicity, t will be omitted. In order to solve optimization problem (5), we transform it into 
an equivalent as

	

min
x,∈

γ

s.t.γ ≥
N∑

i=1
(ri − di− ∈i)2

0N ≤∈≤ δ

.� (7)

NLOS leads to UWB relative distance measurements with large measurement errors ϵi. Therefore, the L2 
loss function degrades accuracy and reliability of indoor positioning. For this reason, from the idea of robust 
learning in machine learning, combined with the adaptive robust loss function in Eq. (3). Then, the adaptive 
robust optimization function for indoor UWB positioning is

	

min
x,ei

γ

s.t.γ ≥ f (L, α, c)
0N ≤∈≤ δ

.� (8)

where L is denoted as

	
L =

N∑
i=1

(ri − di− ∈i)2 .� (9)

The α and c affect robustness and convergence speed of loss function, and f (L, α, c) is monotonically 
increasing with respect to α. By gradually decreasing α, we can avoid optimization process from getting stuck in 
local optima, thereby enhancing the robustness of the position coordinate estimation. c determines the gradient 
of loss function f  in the neighborhood of optimal solution. When |L| < c, the gradient value ∂f

∂L  is linearly 
proportional to L for any parameter α, and can converge to optimal solution quickly and precisely. Therefore, 
we draw on α and c adaptive methods in the reference23 to establish robust adaptive factors for UWB indoor 
localization. α and c is

	

αk = (αmax − αmin) S (αk−1) + αmin

ck = ψ (ck−1) + cmin

αmin = 0, αmax = 3, cmin = 10−8
.� (10)
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where αk  and ck  denote the hyperparameters of loss function f  for the k-th iteration operation, respectively. 
S(·) and ψ (·) are the sigmoid and softplus functions, respectively, defined as

	
S (x) = 1

1+e−x ck

ψ (x) = log (1 + ex) .� (11)

Neurodynamic robust localization algorithm
Consider the nonconvex nonlinear optimization problem with inequality constraints

	

min
z

f (z)
s.t.g (z) ≤ 0M

.� (12)

where g (z) = [g1 (z) , g2 (z) , . . . , gM (z)]T ∈ RM  is a vector function in dimension M , and f, g1, g2 . . . , gm 
are a quadratically continuous differentiable function. 0M ∈ RM  is an M-dimensional zero vector. The 
Lagrangian function of optimization problem Eq. (12) is:

	 L (z, u) = f (z) + uT g (z) .� (13)

where u = [u1, u2, . . . , uM ]T ∈ RM  is a vector of Lagrange multipliers. The necessary condition for optimal 
solution is then to satisfy the KKT condition as

	

∇zL (z∗, u∗) = ∇zf (z∗) + u∗T ∇zg (z∗) = 0
gi (z∗) ≤ 0
u∗T

i g (z∗
i ) = 0

u∗
i ≥ 0

.� (14)

z∗ is the locally optimal solution to optimization problem Eq. (12). The projective form of augmented Lagrangian 
function can be obtained as

	
∇zLρ (z∗, u∗) = 0
[u∗

i + gi (z∗)]+ − u∗
i = 0 .� (15)

where Lρ (z, u) = L (z, u) + ρ
2

∑M

i=1[uigi (z)]2 is augmented Lagrangian function, ρ > 0 is augmented 
Lagrange parameter. The operator [·]+ = max(·, 0) represents the primal feasibility, pairwise feasibility, and 
complementarity conditions of the inequality constraints equivalently in projective form.

Based on Eq.  (15), KKT points of optimization problem Eq.  (12) can be calculated by projection neural 
network (PNN). Therefore, the localization problem is formulated using a recurrent neural network model24,25 
and is represented as:

	

dω
dt

= T (ω) =
[

−∇zLρ (ω)
[u + g (z)]+ − u

]

∇zLρ (ω) = ∇zL (ω) + ρ
M∑

i=1
u2

i gi (z) ∇zgi (z)
.� (16)

where ω =
[
zT , uT

]T . Figure 1 shows how recurrent neural network based on neurodynamic model described 
by Eq. (16) has been implemented in hardware.

Next, recurrent neural network will be used to solve optimization problem Eq. (8), which can be transformed 
into

	

min
x,∈

γ

s.t. |α−2|
α

((
(L/c)2

|α−2| + 1
)2

− 1
)

− γ ≤ 0

∈ −δ ≤ 0N

− ∈≤ 0N

.� (17)

Comparing Eq. (17) with optimization problem Eq. (13) can be obtained

	

z =
[
xT , ∈T , γ

]T

f (z) = γ

g (z) =




|α−2|
α

((
(L/c)2

|α−2| + 1
)2

− 1
)

−γ
(∈ −δ)T

− ∈T




M = 2N + 2

.� (18)
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The Lp (z, u) is

	 Lp (z, u) = γ + uT g (z) .� (19)

Several relatively complex gradient calculations in Eq. (16) are

	

∂Lp(z,u)
∂x

= |α−2|u1
α

(
( 1

c
· ∂L

∂x )2

|α−2| + 1
)2

∂L
∂x

=
N∑

i=1

∂(ri−di−∈i)
∂x

2
= −2

N∑
i=1

∂di
∂x

(ri − di− ∈i)
∂di
∂x

= ∂∥x−xi∥2
∂x

= x−xi
di

∂Lp(z,u)
∂∈ = uT

3:N+2 − uT
N+3:2N+2

∂Lp(z,u)
∂γ

= 1 − u2

.� (20)

Stability and convergence
In this section, we discuss two important properties of neural network formulation Eq.  (16), stability and 
convergence.

Theorem 1  If ω∗ =
[
zT , uT

]T  is the equilibrium point of neural network in Eq. (16), then ω∗ is the KKT point 
of optimization problem in Eq. (12).

Fig. 1.  Structure of recursive neural network.
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Proof  If ω∗ =
[
zT, uT

]T is equilibrium point of neural network Eq. (16), then there is.

	
dω∗

dt
= dz∗

dt
= du∗

dt
= 0 .� (21)

It is equivalent to

	
∇zLρ (ω∗) = 0
[u∗ + g (z∗)]+ = u∗ .� (22)

If and only if gi (z∗) ≤ 0, u∗
i

T g (z∗
i ) = 0, u∗

i ≥ 0, satisfies [u∗ + g (z∗)]+ = u∗. Substituting into Eq.  (22) 
yields ∇zL (ω∗) = ∇zLρ (ω∗) = 0. Thus ω∗ is equilibrium point of neural network and is also KKT point.

Theorem 2  The neurodynamic model Eq. (16) is asymptotically stable at KKT point ω∗, where z∗
i  is a strict local 

minimum of optimization problem.

Proof  Consider the following Lyapunov equation is.

	 V (ω) = −F (ω) T (ω) − 1
2 ∥T (ω)∥2

2 + 1
2 ∥ω − ω∗∥2

2 .� (23)

where

	
F (ω) =

[ ∇zLρ (ω)
−g (z)

]
.� (24)

According to Theorem 2 in reference 26, if dω̂
dt

= 0, then there is dV (ω̂)
dt

= 0. According to dV
dt

= 0, we have

	

F (ω̂) (ω̂ − ω∗) = 0
T (ω̂)T ∇F (ω̂) T (ω̂) = 0
(F (ω̂) − F (ω∗))T (ω̂ − ω∗) = 0
dV (ω̂)

dt
≤ − (F (ω̂) − F (ω∗))T (ω̂ − ω∗)

.� (25)

where ω̂ is denoted as neighbor of ω∗, according to Eq. (25) there is

	
ẑ = x∗

g (ω̂)T (û − u∗) = 0 .� (26)

Therefore, we can obtain

	

g (ω̂)T û = g (ω∗)T u∗[
u∗ + g (ω∗)T

]+ = u∗ .� (27)

dω∗

dt
= 0 means that ω∗ is equilibrium point of neurodynamic model Eq. (16), and according to Theorem 1, ω∗ 

is also a KKT point. Thus ω∗ is asymptotically stable and is a strict local minimum.

Complexity analysis
Using Horner’s scheme27, the evaluation of a polynomial with fixed-size coefficients of degree n can be performed 
in O(n) time. Considering the polynomial evaluation as the operation in each iteration of Eq. (16) that dictates 
the computational complexity, it is straightforward to deduce that the dominant complexity of the proposed 
method (AR-PNN) is O(NP NN · N2). The computational complexity of the algorithms considered, such as 
SR-MCC21, MCC-PNN22, RDSP-New19, RTLS-SDP11 and AR-PNN, is summarized in Table 1.Where NP NN  
denotes the number of iterations taken in discretely realizing the PNN, K  is the number of steps taken by 
bisection search, and NHQ denotes the number of half-quadratic (HQ) iterations21.

Algorithm Description Complexity

SR-MCC The MCC-based robust method21 O(NHQKN)

MCC-PNN The robust MCC-PNN method22 O(NP NN · N2)

RDSP-New The robust RDSP-New method19 O(N6.5)

RTLS-SDP The robust RTLS SDP method11 2 × O(N6.5)

AR-PNN The proposed method O(NP NN · N2)

Table 1.  Summary of the considered algorithm.
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Numerical results
We first validate the algorithm through numerical simulation and then verify the proposed algorithm through 
experimental data in real world in the next section. The purpose of the simulation is to verify localization 
performance and robustness of AR-PNN.

Simulation setup
The simulation in this section is divided into three parts, firstly to verify the adaptive ranging error bound of the 
proposed algorithm, and then to verify localization accuracy and robustness of AR-PNN under LOS and NLOS 
environments, respectively. The positioning of 10 anchor and unknown nodes are randomly generated and are 
localized in a 20m × 20m area. Different parts of simulation have different parameters, specifically in terms of 
the number of NLOS paths, ranging error variance σi, and maximum NLOS error qm. In each simulation, NLOS 
paths are randomly assigned, and measurements used by different algorithms remain completely identical. 
The localization performance is evaluated by the root mean square error (RMSE) and the error cumulative 
distribution function (CDF).

Distance error upper bound adaptation study
To verify the effectiveness of AR-PNN, we verified ranging error bounds adaption under LOS and NLOS 
conditions. Evaluate error upper bound performances by averaging error. For visualization, we plotted only 
the last 100 results. We assume that the NLOS error qi satisfies a uniform distribution U (0, qm). max(ϵ) is 
maximum measurements error. LNLOS  indicates the number of NLOS paths, when LNLOS = 0 means in 
LOS environment. Six different conditions were analyzed, and each condition was tested with 3000 Monte Carlo 
(MC) simulations. LNLOS  NLOS paths are randomly selected. Figure 2 below gives the error upper bounds 
adaptive under six conditions.

It can be seen that the actual estimates are large in comparison, which is beneficial in the localization model 
to ensure correctness of localization model Eq. (8). However, it needs to be ensured that error bounds do not 
deviate too much from actual values, otherwise the problem of large positional estimation errors will occur. The 
average error between actual and estimated error bound is given in Table 2, and it can be seen that it is basically 
less than 0.35 m, which ensures positioning estimation performance.

Impact of the ranging noise σi in LOS
We evaluate localization performance of AR-PNN, RDSP-New, SR-MCC, RTLS-SDP, and MCC-PNN algorithms 
under different Gaussian noise σi variances in a LOS environment. The positionings of unknown and anchor 
nodes are randomized at each MC. The TOA measurements follow a Gaussian distribution with standard 
deviations σi ranging from 0.1m to 5m at 0.1 m intervals. The RMSE for different σi were obtained by running 
3000 MCs. Figure 3 shows RMSE results of 5 algorithms for different ranging error distributions. AR-PNN has 
a smaller RMSE than any other algorithm, especially when σi is large, the difference is more obvious. Since 
there are no NLOS paths in Fig. 3, both MCC-PNN and our proposed algorithm have similar formulations for 
localization optimization function, with the performance difference mainly arising from robust function. In this 
case, our algorithm can be viewed as an MCC-PNN algorithm with a modified robust function. As seen in Fig. 3, 
AR-PNN has significant performance improvements when the measurement noise is large, which highlights the 
impact of the robust function.

Impact of the localization performance in mild, moderate, and severe NLOS environments
Fixing ranging noise to σi = 0.1m, Fig. 4 exhibits relationship between localization performance and maximum 
NLOS error qm ∈ [1,5] m for three representative light, medium and heavy NLOS environments. 3000 MCs 
were run with different environments.

We find that localization performance of algorithms deteriorate gradually with increasing qm. AR-PNN 
has least deterioration among all the methods and has better robustness to increasing NLOS errors. Because 
AR-PNN can adaptively adjust the distance error bounds with a more accurate localization model relative to 
other algorithms. During the localization process, the adaptive robust loss function can better converge to the 
vicinity of the best solution, thus providing better scene adaptation and localization performance. This also 
makes localization performance of all algorithms progressively worse as the number of NLOS paths becomes 
larger. Nonetheless, especially in severe NLOS environments, AR-PNN has better localization performance 
and robustness compared to other methods. The same NLOS error distribution in different environments also 
minimizes the degradation of AR-PNN localization performance in most cases. Therefore, in the mild case of 
NLOS and errors, the performance and robustness of all localization methods are basically comparable. But in 
moderate and severe cases, AR-PNN has better localization performance and robustness.

Further analysis reveals that the key advantage of our proposed method lies in its ability to adaptively 
adjust the upper bound of distance error, which significantly enhances localization accuracy under challenging 
conditions with many NLOS paths. The robust function plays a crucial role in maintaining stability in the 
presence of sensor noise under LOS environment (as illustrated in Fig. 3). Its effect is less noticeable when sensor 
noise is relatively low (σi = 0.1m), as comparison with MCC-PNN, SR-MCC, and RTLS-SDP shows. In this 
case, impact of different robust functions on performance is minimal. As demonstrated in Fig. 4, when number 
of NLOS paths increases, performance improvement of our proposed becomes more pronounced. This is due to 
method’s ability to better handle the NLOS distortions, providing a more accurate estimate of unknown node’s 
position. In contrast, robust function mainly addresses performance degradation caused by large observation 
noise in sensors themselves.
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LNLOS σi  (m) ϵm  (m) Mean error (m)

0 0.1 0 0.14

0 0.3 0 0.26

2 0.1 1 0.22

2 0.1 3 0.35

8 0.1 1 0.20

8 0.1 3 0.29

Table 2.  Adaptive mean error of upper bounds.

 

Fig. 2.  Dynamic behaviors of max(ϵ) estimate of time constants for random deployment in NLOS and LOS 
environments.
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Real world experiments
Dataset detail
In order to validate performance of AR-PNN in real world, we use a UWB localization dataset established by 
Breger28. The positioning system contains 8 UWB anchor and 1 unknown nodes. The distances are realized by 
DW1000 modules. Use the MQTT and Wi-Fi to collect distance to the laptop.

The localization environment is an indoor apartment, the overall length of the apartment is 12.06 m, width is 
9.18 m, the external wall is made of brick structure, and all the internal walls are made of gypsum and thermal 
insulation materials The environment floor plan and moving trajectory are shown in Fig. 5. The fork symbols 
denote the positions of the anchor nodes, and position coordinates are shown in Table 3 below.

We first analyzed ranging errors in the real world, and Fig. 6 demonstrates actual ranging errors of all test 
points. It can be seen that maximum distance error is no more than 4m. The distribution of distance errors 
remain roughly constant over short periods of time, but varies to a large extent over long periods of time. 
Further, we analyzed all distance measurements for each anchor node by box-and-line plots. Figure 7 shows that 
the mean errors of the measurements for all anchor nodes do not vary much, but the outliers vary considerably. 
That is to say, it shows the high variability of the distribution of NLOS errors for different anchor nodes, where 
A1 and A8 have the most severe NLOS errors, and A3 has the lightest impact of distance errors.

Localization performance analysis
To evaluate localization performance in real scenarios, we first analyze trajectories errors. Then we evaluate 
localization performance by CDF and RMSE.

From Fig. 8, it can be seen that most of trajectory points of AR-PNN are closer to true values than other 
algorithms. Figure 9 demonstrates that AR-PNN have better performance and robustness among all algorithms. 
The localization performance was further analyzed by CDF, and it can be seen from Fig. 10. The localization 
accuracy of MCC-PNN and SR-MCC are close to each other in real world. This may be due to the fact that 
both methods use the MCC criterion, resulting in similar localization performance and robustness in real-
world. Although both AR-PNN and MCC-PNN are based on reflective projection network, the AR-PNN has a 
more accurate localization model, which makes localization performance better as well. It also shows that the 
localization loss function is crucial to improve the localization performance and reliability.

Table 4 compares RMSE of different algorithms, and it can be seen that AR-PNN improves significantly 
compared to other algorithms. The main reason is that compared with other algorithms, AR-PNN takes into 
account the two main characteristics of the hybrid LOS/NLOS scenarios: small short-term and large long-term 
variations. By adaptively adjusting localization model, localization model accuracy is improved. Finally, thereby 
improving the localization performance and robustness.

Conclusion and future work
We proposed a robust adaptive localization method for UWB that does not require any a priori information 
from NLOS. The UWB distance measurements deteriorate in accuracy due to ambient occlusion and error 
characteristics change dynamically with environment. Due to nonlinear and nonconvexity of ToA-based 
localization model, we proposed a neurodynamic approach and verify the local stability conditions for equilibrium 
of corresponding dynamical system. A robust localization algorithm with adaptive tuning is established from 
both solution process and localization model. The stability and accuracy of solution is improved by dynamically 
adjusting loss function in optimization process. On the other hand, measurement error upper bounds are 

Fig. 3.  Comparison of positioning accuracy under different σi.
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dynamically estimated for adjusting the localization model. Through these two strategies, the characteristics of 
small changes in NLOS errors in short time or small area range and large changes in long time are fitted, which 
makes the localization performance and robustness enhancement significant in the real world.

Our solution can be further applied in the field of autonomous mobile robots. In the future, the algorithm can 
be improved to fuse sensors such as IMUs and encoders, which can provide high-precision relative localization 

Fig. 4.  Comparison of localization accuracy in light, medium and severe NLOS environments.
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in a short period of time, and further improve localization accuracy and robustness when NLOS error changes. 
On the other hand, neurodynamic approach we adopted can be implemented using neural network-specific 
hardware, integrated into a single sensor, which can reduce power consumption and expand range of applications.

Anchor node ID Positioning (m)

A1 (8.47, 11.87)

A2 (8.41, 7.85)

A3 (5.95, 7.45)

A4 (5.45, 6.71)

A5 (6.95, 0.05)

A6 (2.24, 0.05)

A7 (3.06, 8.33)

A8 (4.47, 11.21)

Table 3.  UWB anchor node positionings.

 

Fig. 5.  Indoor localization environments and trajectory.
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Fig. 7.  Boxplot of ranging error.

 

Fig. 6.  Ranging error in real world.

 

Scientific Reports |        (2025) 15:14271 12| https://doi.org/10.1038/s41598-025-99150-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 9.  Comparison of localization errors.

 

Fig. 8.  Comparison of trajectories from different algorithms.
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Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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