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Diabetic Retinopathy (DR) is a leading cause of vision impairment globally, necessitating regular 
screenings to prevent its progression to severe stages. Manual diagnosis is labor-intensive and prone to 
inaccuracies, highlighting the need for automated, accurate detection methods. This study proposes 
a novel approach for early DR detection by integrating advanced machine learning techniques. The 
proposed system employs a three-phase methodology: initial image preprocessing, blood vessel 
segmentation using a Hopfield Neural Network (HNN), and feature extraction through an Attention 
Mechanism-based Capsule Network (AM-CapsuleNet). The features are optimized using a Taylor-
based African Vulture Optimization Algorithm (AVOA) and classified using a Bilinear Convolutional 
Attention Network (BCAN). To enhance classification accuracy, the system introduces a hybrid Electric 
Fish Optimization Arithmetic Algorithm (EFAOA), which refines the exploration phase, ensuring 
rapid convergence. The model was evaluated on a balanced dataset from the APTOS 2019 Blindness 
Detection challenge, demonstrating superior performance in terms of accuracy and efficiency. The 
proposed system offers a robust solution for the early detection and classification of DR, potentially 
improving patient outcomes through timely and precise diagnosis.
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Timely detection of illnesses is crucial for providing appropriate patient interventions and achieving effective 
treatment. The retina, a collection of delicate tissues, plays a critical role in converting visual information into 
neural signals transmitted to the brain. Individuals with diabetes experience elevated blood glucose levels due 
to insufficient insulin, resulting in retinal damage known as diabetic retinopathy (DR)1. Abnormal blood flow 
from diabetes damages the retinal microvasculature, leading ultimately to blindness. Although the World Health 
Organisation (WHO) does not currently list diabetes as a primary cause of death, it is projected to become 
the seventh leading cause by 20402. Furthermore, the prevalence of diabetes is expected to rise to 642 million 
individuals, with approximately one-third anticipated to develop DR3. This underscores the urgent need to 
address this growing health concern.

Diabetes affects multiple systems, including cardiovascular, renal, ocular, and nervous systems, with the 
ocular system experiencing swelling and bursting of small blood vessels in the eyes. DR progresses through 
multiple stages before reaching an advanced stage that can cause blindness4. Currently, the prevalence of 
blindness caused by DR is 2.6%5. As the duration of diabetes increases, so does the likelihood of developing DR. 
Therefore, regular retinal assessments are imperative for diabetic patients to identify DR in its early phases and 
prevent progression to advanced stages leading to blindness6.

DR diagnosis relies on identifying retinal lesions. These lesions include microvascular hemorrhagic changes7. 
The initial indication of DR is microaneurysms (MA), which appear as small, round crimson spots approximately 
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120 μm in diameter with distinct boundaries. Plasma leakage in the retina causes exudates, resulting in distinct 
bright yellow spots with well-defined edges in the outer layers8. White, circular, and oval-shaped spots arise from 
swollen nerve fibers producing soft secretions. Retinal hemorrhages appear as irregularly shaped spots larger 
than 125 μm and can be classified as superficial or deep9. DR progression is categorized into five stages, with the 
first four stages termed non-proliferative (NPDR). The final and most severe stage is proliferative DR (PDR), 
characterized by abnormal blood vessel formation and bleeding10.

Annually, 10% of diabetic patients without DR develop the initial phase of DR, and 75% of those with severe 
NPDR reach the fourth stage. Each DR stage requires a distinct approach11. Individuals with diabetes but no 
DR or mild DR should undergo regular examinations. Patients with moderate (stage two) and severe DR (stage 
three) require specific laser treatment or vitrectomy. PDR leads to blindness due to abnormal blood vessel 
formation and bleeding. Thus, early detection of the initial three phases is crucial to preventing progression to 
PDR. As diabetes prevalence rises, there is an increasing demand for proficient ophthalmologists to conduct 
regular patient diagnoses12.

Detecting DR and determining its stage requires significant time and effort. Manual diagnosis is prone to errors 
and divergent opinions among doctors. Therefore, utilizing artificial intelligence (AI) techniques for automated 
diagnosis saves time and effort while providing more precise outcomes compared to manual methods13. This 
study explores various hybrid techniques that use a combination of methods to diagnose different stages of DR 
development, considering feature similarities.

Modern healthcare technology has led to the rise of computer-aided diagnostic (CAD) systems, which 
facilitate the rapid identification of disorders, including DR14. These technologies have wide applications in 
analyzing color fundus images for DR diagnosis, offering cost-effective approaches for retina screening. CAD 
systems enable doctors to distinguish between severe and non-severe cases requiring intense therapy15. The core 
concept of CAD systems is the quick diagnosis of DR by analyzing variables such as optic disc characteristics, 
lesion segmentation, and vascular segmentation from color fundus images, followed by classification using 
various classifiers16.

A persistent issue in clinical research and practice is the need to standardize and automate the currently 
unstandardized process of diagnosing retina disorders from color fundus photographs (CFPs). Precision 
medicine is trending worldwide, aligning with the digital era’s emphasis on standardized, accurate, and repeatable 
diagnostic methods17.

AI can assist in addressing this problem. One potential application of deep learning (DL) is using Deep 
Convolutional Neural Networks (DCNNs) for end-to-end analysis of raw medical images for prediction18. 
DCNN algorithms are already employed in dermatology, radiology, and pathology for diagnostic purposes. 
Recent outstanding work in ophthalmology has demonstrated the automation of DR grading and the detection 
of cardiovascular risk factors through DCNN analysis of CFPs.

The development of DCNN algorithms for DR detection is on the rise19. Despite showing great promise 
for DR detection in fundus images with accuracy above 98%, these algorithms are not yet utilized in clinical 
practice. Efforts are needed to develop efficient, time-saving procedures to address current diagnostic workflow 
issues in CFPs practice20.

Prior research has successfully applied artificial neural networks (ANNs) for real-time analysis of fundus 
images through segmentation, classification, and pattern recognition. However, these methods are predominantly 
utilized by ophthalmologists to determine if an eye has referable diabetic retinopathy (DR). A significant 
limitation of ANNs is the “black box” issue, where the algorithms approximate data patterns to predict outcomes 
without revealing the underlying details or the significance of the features learned. This lack of transparency 
makes it challenging for ophthalmologists to trust these algorithms, as they do not explicitly identify specific 
DR lesions.

To enhance the utility of automated DR grading, it is essential to develop algorithms that can precisely identify 
DR lesions. This capability would provide ophthalmologists with more detailed and actionable information, 
thereby saving time and resources. Currently, no existing system can detect and categorize lesions across all five 
stages of DR simultaneously. The development of such a comprehensive DR lesion detection technique is crucial 
for optimizing the practical use of automated DR grading algorithms, ultimately improving diagnostic accuracy 
and patient outcomes.

This study introduces a novel approach for detecting and classifying diabetic retinopathy (DR) by leveraging 
advanced machine learning techniques. The primary contributions are as follows:

•	 Segmentation with HNN Model: The research employs a Hopfield Neural Network (HNN) model for precise 
segmentation of retinal images, effectively isolating critical regions for analysis.

•	 Feature Extraction using AM-CapsuleNet: An Attention Mechanism-based Capsule Network (AM-Capsu-
leNet) is utilized to extract relevant features, enhancing the model’s ability to capture complex patterns within 
the data.

•	 Parameter Optimization with Taylor-based AVOA: To improve classification accuracy, the study applies the 
Taylor-based African Vulture Optimization Algorithm (AVOA) for fine-tuning model parameters, optimiz-
ing performance.

•	 Severity Classification with BCAN Model: The Bilinear Convolutional Attention Network (BCAN) is used 
to categorize DR severity into five distinct levels, providing a comprehensive assessment of the disease stage.

•	 Hyper-Parameter Tuning via EFAOA: A hybrid Electric Fish Arithmetic Optimization Algorithm (EFAOA) 
is introduced for hyper-parameter tuning. By competing during the exploration phase, EFAOA accelerates 
convergence towards optimal solutions, enhancing model efficiency and accuracy.
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•	 Performance Evaluation with Refined Testing Set: The study reduces the testing set to include features cor-
responding to the optimal solution, using multiple metrics to evaluate the model’s performance comprehen-
sively.

These contributions collectively advance the automated detection and classification of DR, offering improved 
accuracy and efficiency in diagnosing this critical condition.

The paper is structured as follows: Section “Related work” reviews the relevant literature, providing context 
and background for the current study. Section “Proposed methodology” outlines the proposed methodology, 
detailing the innovative techniques and algorithms employed for diabetic retinopathy detection and classification. 
Section “Results and discussion” presents the results and discussion, offering an analysis of the experimental 
findings and comparing them with existing methods to highlight the effectiveness of the proposed approach. 
Finally, Section  “Conclusion and future work” concludes the study, summarizing the key contributions and 
suggesting directions for future research.

Related work
Dai et al.21 developed a deep learning system, DeepDR Plus, to forecast diabetic retinopathy (DR) progression 
over five years using only fundus images. The system was pre-trained on 717,308 images from 179,327 diabetic 
patients and tested on an additional 29,868 patients. The method achieved a Brier score of 0.153 to 0.241 and a 
concordance index of 0.754 to 0.846, accurately predicting DR progression. The system’s integration into clinical 
workflows improved screening intervals and reduced detection delays in vision-threatening cases.

Muthusamy and Palani22 introduced the MAPCRCI-DMPLC model for efficient DR classification, leveraging 
MAP filtering and Concordance Correlative Regression for feature extraction. This model demonstrated superior 
accuracy in detecting early-stage DR compared to five state-of-the-art methods.

Bhulakshmi and Rajput23 explored various AI methodologies, including neural network architectures like 
RNNs, GANs, and CNNs, for diabetes research. Their study emphasized integrating diverse data sources to 
enhance fundus image processing and outlined potential future research paths.

Madarapu et al.24 proposed a deep integrative method for DR classification using CSAM modules and non-
local blocks, improving feature representation and classification accuracy. The approach outperformed existing 
methods in terms of processing time and accuracy.

Bilal et al.25 introduced the HBA-U-Net model for enhanced image segmentation, employing spatial-specific 
attention to improve DR detection. This model achieved 99.18% accuracy and 98.15% sensitivity on the IDRiD 
dataset, demonstrating AI’s potential in ophthalmology.

Sagvekar et al.26 developed the Hunter-Prey Ladybird Beetle Maxout Network (HPLBO-DMN) for DR 
classification, achieving 93.6% accuracy and improved sensitivity and specificity using a combination of wavelet 
transforms and optimization algorithms.

Lalithadevi and Krishnaveni27 presented the OptiDex model, which combines deep learning with Explainable 
AI (XAI) for DR detection. The model utilizes the ECSO algorithm for parameter optimization and achieves 
high accuracy, sensitivity, and specificity in grading DR severity.

Sivapriya et al.28 proposed a DR identification approach using U-Net architecture and ResEAD2Net for vessel 
segmentation. Their method demonstrated superior accuracy and specificity on the STARE and DRIVE datasets, 
enhancing early DR diagnosis.

Sunkari et al.29 applied ResNet-18 with the Swish function for DR stage analysis, achieving 93.51% accuracy. 
Their approach outperformed other state-of-the-art systems on hospital datasets.

Fu et al.30 introduced a DR grading system using advanced preprocessing and deep learning, showing 
improved performance across four retinal image databases. Their automated technique reduced the need for 
subjective evaluations, providing more consistent and accurate DR assessments.

Bala et al.31 developed CTNet, a lightweight DR classification technique using CNNs and transformers, 
achieving high performance on the APTOS and IDRiD datasets. This model efficiently extracts global and local 
spatial features for DR detection.

Madarapu et al.32 introduced MuR-CAN, a multi-resolution convolutional attention network that enhances 
DR classification by focusing on discriminative features across various scales, outperforming existing models in 
accuracy.

Yang et al.33 presented a novel Transformer model for DR classification, utilizing multiple instance learning 
and Vision Transformer (ViT) to improve classification accuracy. Their approach demonstrated superior 
performance with high-resolution retinal images.

Hai et al.34 developed DRGCNN, a model that uses CAM-EfficientNetV2-M for feature extraction and 
fusion. The model achieved competitive results on EyePACS and Messidor-2 datasets, proving its efficacy in DR 
classification.

Proposed methodology
In this section, a detailed explanation of the research work, along with its mathematical expressions, is provided. 
Figure 1 illustrates the workflow of the study.

Dataset description
Our study’s dataset and its balancing mechanism are detailed in this section. We used the APTOS 2019 Blindness 
Detection Database35, which includes 3,662 retinal images taken in different lighting conditions. As shown in 
Table 1, the images in the dataset are classified into five classes representing varying degrees of DR severity: Class 
0 for non-DR, Class 1 for mild DR, and Class 2 for moderate DR. Table 2 shows how many photos fall into each 
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severity level and how the samples are distributed among them. It is essential to have a balanced dataset that 
adequately represents each severity level to train and evaluate the models effectively.

There is a noticeable disparity in the classes represented in the APTOS 2019 Blindness Detection Database. 
To alleviate this issue, an important preprocessing step was the application of dataset-balancing algorithms36,37. 
Reducing class discrepancies involved balancing the datasets by modifying the ratios. As a result of increased 
parity across the classes, training and evaluating the models became easier. Both the balanced and imbalanced 
testing datasets had class distributions adjusted to make them more representative of the original dataset.

Image preprocessing
There is a lack of consistency in the photographs included in the dataset because they were acquired in rural 
areas of India under varied conditions. The raw photos would not have yielded the desired effects without 
processing. Consequently, preprocessing was required to improve the images before inputting them into the 
neural network model. To improve model generalizability and robustness to variations in illumination, contrast, 
and resolution across fundus images, we applied extensive data augmentation techniques during training. 

Sum of samples Severity level (Class)

1805 0

372 1

998 2

195 3

296 4

Table 2.  Distribution of models as per sternness level of DR.

 

Class 0 1 2 3 4

Classification Non-DR Mild DR Moderate DR Stark DR Proliferative DR

Table 1.  Harshness levels of DR.

 

Fig. 1.  Workflow of the proposed approach.
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These included random rotations (± 20°), horizontal and vertical flips, Gaussian noise addition, brightness and 
contrast adjustments, and random cropping. These augmentations simulate real-world variability and help the 
model learn more invariant representations. Figure 2 shows the results of the various preprocessing methods 
used to optimize and standardize the images for better analysis and classification by enhancing their quality.

Because the photos in the dataset came from various sources worldwide, they varied in size. To standardize 
the input, the images underwent a sequence of preprocessing steps:

•	 The initial step was to consistently resize each image to 224 × 224 pixels. This resizing procedure ensured that 
all photos were uniformly sized, allowing for more reliable analysis.

•	 To further improve image quality and reduce noise, a Gaussian blur filter was applied.
•	 Finally, to enhance the precision of the images, the Ben Graham approach38 was employed. As shown in 

Fig. 3, this involved resizing the photos to fit the target area.

By preparing the input photos in this way, the neural network models can obtain standardised and optimised 
data, which boosts the system’s performance. Think about how input photographs that are retrieved from the 
dataset are represented as images, which may be described as

	 N = {X1, X2 . . . , Xm, . . . , Xz}� (1)

wherein the total sum of images, Xm, typifies the mth image. The twin Xm is for the elimination of noise.

Blood vessel segmentation using Hopfield neural network
Hopfield neural systems are developed from the artificial neural network neurons, which have N inputs. For 
every input i, wi denotes the related weight. Each input xi is estimated and the aggregated weight is strong-
minded as wi, xi. This weight is represented as a matrix w. The mechanisms of the weight matrix are denoted 
as wij. Consequently, w, there are established laws that govern the refreshment principle of neurones and their 
migration within the system.

Rebooting the network can be done in two ways. An asynchronous method is one possibility; in this case, 
the network selects a single neurone, calculates the overall input weight, and immediately updates its state. In 
the second way, which is called the synchronous method, the network is refreshed after updating the aggregate 
of input weights of the relevant neurone. By setting values to either all nodes or just one, the pattern can be 
programmed. Whether in synchronous or asynchronous mode, the node’s value is changed once for each 
iteration. Nodes are stopped from iterating once they reach the maximum threshold. In order to provide an 
output, the neurone looks for matching patterns. A weight matrix reflects the pattern that is generated by the hop 
field neural network. These patterns are mirror-image and do not form any kind of self-assembly. The neurons 
find the weight matrix as wij = wji neurons to find the no self-association mode, and then all weights are set 
as wij = 0.

Weight matrix generation for a pattern recognition
It is clear in bigger networks that when a pair of neurons has a positive weight, they both travel in the same 
direction. Pretend that there is a + 1-weight association in the network between neurons i and j. Now, if xi = 1 
and x=-1, then neuron i’s commitment to neuron j’s weighted input entirety is certain and negative, respectively. 
Neuron i tries to motivate neuron j with the same reward at the conclusion of the iteration. Neuron i will try to 
sway neuron j to the opposite value if their connection loads are negative. The network is capable of storing the 
undamaged blueprint in its data storage. Equation (2) represents these types of systems, which are known as 
Hopfield memories.

	

Output =




1 :
∑

wixi ⩾ 0

−1 :
∑

wixi < 0


� (2)

Feature extraction using AM-CapsuleNet
The AM-Capsule model architecture proposed in this work consists of three distinct modules39. The output from 
the two-layer attention structure module is used to extract multi-scale features, which are subsequently passed to 
the capsule network for feature extraction. The inclusion of an attention mechanism in AM-CapsuleNet al.lows 
the model to focus on the most informative regions of retinal images, such as microaneurysms, hemorrhages, and 
exudates. By assigning dynamic weights to different feature maps, the attention module amplifies critical features 
while suppressing irrelevant background noise. This selective focus significantly enhances the capsule network’s 
ability to learn spatial hierarchies and inter-feature dependencies. Furthermore, the attention mechanism 
improves the model’s robustness to inter-patient variability and subtle changes in DR severity, ensuring that 

Fig. 2.  Flow of pre-processing.
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features relevant to each disease stage are effectively captured. As a result, the network achieves more accurate 
and consistent performance across all five DR severity levels.

Attention mechanism approach
First is the channel x {x1, . . . , xi, . . . , xm}, the data at moment t can be indicated as 
xt = {x1, t, . . . , xi, t, . . . , xm, t} , m is samples. The sample image at through Eq. (3) to obtain the scores 
of dissimilar images:

	 St = ϕ (w.xt + b)� (3)

The score of all t is got as St = {S1,t, S2,t, . . . , Si,t, . . . , Sm,t}. After obtaining the score of the image at the ith 
data at instant t by Eq. (4):

	
at,t = softmax (Si,t) = exp (Si,t)∑

i
exp (Si,t)

� (4)

Fig. 3.  Sample cropped image.
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That is, the total image time t is signified as at = (a1,t, . . . , ai,t, . . . , am,t). Calculate the image:

	
āi = 1

T

∑
t

ai,t� (5)

The weight of every image on average is meant as α = {ᾱ1, ᾱ2, . . . , ᾱm}, T is the entire cycle articulated as:

	 O = a ⊗ x = {ᾱ1x1, ᾱ2x2, . . . , ᾱmxm}� (6)

Following CAM dispensation, needless info is decreased besides degraded information from weight. Sample 
image x′ = {x′

1, . . . , x′
i, . . . , x′

m}T = {x′
1, . . . , x′

t, . . . , x′
T } , T  moments is 

{
x′

i,1, . . . , x′
i,t, . . . , x′

i,T

}
. As 

with the CAM, the segment of different time step of image is first intended rendering to Eq. (7):

	 Si = ϕ
(
w.x′

i + b
)

� (7)

Here Si = {Si,1, Si,2, . . . , Si,t, . . . , Si,t} the notch of the ith sample at each minute. The weight of the ith 
example at moment t can be intended rendering to Eq. (8):

	
ηi,t = softmax (Si,t) = exp (Si,t)∑

t
exp (Si,t)

� (8)

That is, the weight of the ith sample is ηi = {ni,1, ni,2, . . . , ni,t, . . . , ni,T }. Equation (9) yields the average 
weight at any given prompt t:

	
η̄t = 1

m

∑
i

ηi,t� (9)

The weight steps are n1, n2, . . . , nt, . . . , nT . The output of layer of care device can be spoken as:

	 O′ = η ⊗ x′ =
{

η̄1x′
1, η̄2x′

2, . . . , η̄tx
′
t, . . . , η̄T x′

T

}
� (10)

The data that is weighted after the two-mechanism processing reveal more significant information about 
exacerbation and sets the stage for feature extraction that follows.

The inception module
The data contains information on severe degradation, which is fairly complex. To maximize the network’s 
performance and uncover all the hidden regression information in the weighted data, it is important to increase 
the network’s depth and width, meaning the number of layers and neurons. However, this approach can lead 
to overfitting and increased processing burdens. The Inception module, with its sparse network structure, 
effectively addresses this challenge by ensuring efficient use of processing resources.

This study presents an alternative to conventional deep convolutional layers—Inception modules—that 
employ convolutional kernels of varying sizes and parallel connections. To minimize the data dimensions, 
Inception V1 uses a 1 × 1 convolution, a “same” technique to cover feature borders, and a Concatenate layer to 
aggregate the learned features.

Capsule network
The core of the capsule network consists of two layers—one primary and one digital. Reshaping layers compose 
the main capsule layer. The convolution layer processes the output of the Inception module by creating 
continuous data points using 32 filters with a 10 × 1 convolution. The input for the layer is transformed from the 
mined low-dimensional characteristics into a capsule layer. Finally, this layer uses ten 8-dimensional capsules 
to extract information while maintaining the overall positional hierarchy of the temporal data. The accuracy of 
predictions is significantly affected by the number of capsules; therefore, future comparison tests will consider 
the number of variables.

Improved generalizability of time-series data is achievable with capsule networks. The coupling coefficients of 
the two capsule segments are updated by the model, and three iterations of the calculation are performed in the 
study40. According to research41, capsule networks maintain continuity among related capsules and decrease the 
correlation between unrelated ones. Using the African Vulture Optimization Algorithm (AVOA), the optimizer 
boosts the model’s prediction by applying a learning rate attenuation technique, where the value starts at 0.001 
and decreases to 0.0001 before stopping.

Fine-tuning using TaylorAVO algorithm
The TaylorAVOA algorithm combines the Taylor series with the African Vulture Optimization Algorithm 
(AVOA)42. The AVOA mimics the foraging and mobility processes of African vultures. The Taylor series offers 
low execution time and straightforward computation, which are its main advantages. The program uses the 
vultures’ distinct behavior to classify them into two categories. To determine the optimal location for the 
vultures, the algorithm calculates the population-wide fitness function (f). As a metaheuristic algorithm, it finds 
the optimal search strategy by comparing it to other nature-inspired algorithms and using an optimized rational 
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search expression. With optimal features and the fastest execution time, the TaylorAVOA algorithm is a highly 
efficient choice. The algorithm developed by the Taylor African vulture model relies on four assumptions to 
function42.

•	 During the first phase, the vultures forage for food and select the optimal perch for their groups. The likeli-
hood of discovering the optimal solution is determined by search parameter values that fall within the range 
of 0 to 1.

	
Qi = fi∑n

r=1 fi
� (11)

•	 During their most active and energetic periods, vultures cover great distances in search of food. However, 
they cannot cover great distances if their strength is inadequate. Therefore, vultures become more aggressive 
when hunting under these conditions. Here is how this behavior is demonstrated:

	
U = (2 × randa1 + 1) × b ×

[
1 − iterh

maxiter

]
+ f � (12)

	
f = z ×

(
sinq

(
θ

2 × iterh

maxiter

)
+ cos

(
θ

2 × iterh

maxiter

)
− 1

)
� (13)

U stands for iterh is the total quantity of iterations, q is the static number set constraint with a value of 2.5, r, 1, 
and z are random values, and maxiter is the definition of all iterations. The vulture is about to die of starvation 
when b equals zero. The vulture gets satiated when b crosses 0, which is represented as U. At values of U > 1, 
the vultures take into account different orientations of the food source, and the AVO algorithm surpasses the 
exploration phase. The AVO procedure starts the exploitation step when U is less than one. In order to lower 
the error rate during the iterations performed by the vultures, the Taylor series expression is used before the 
exploration phase begins. In addition, the error rate can be calculated to get the optimal values for each stage 
with this.

	

∞∑
x=0

f (x) (m)
x! (z − m)x� (14)

Here, f (x) is the diversity function and m stipulate estimate for nth unoriginal.

•	 Throughout their search for food, vultures wander aimlessly throughout the exploration phase. The param-
eter stands for this. Q1, whose value should lie flanked by 0 besides phase, randa1 is generated randa1 is 
greater than or equal to Q1, the expression (15) is utilized. When randa1 is equal to Q1, the variable (17) is 
utilised. These methods are employed to improve the vultures’ search techniques by utilising these values of 
the random coefficient.

	 Q (i + 1) = BV (i) − H (i) × f � (15)

	 H (i) = |Υ × BV (i) − Q (i)|� (16)

	 Q (i + 1) = BV (i) − f + randa2 × ((ub − lb) × randa3 + lb)� (17)

•	 Based on the vulture’s movement, the exploitation phase was split into two halves. During the initial stage of 
exploitation, there are two distinct phases: rotating flight and siege flight. When the ‘f ’ number is equal to or 
higher than 0.5, it means the vulture is full. Here, powerful vultures and weaker ones are at odds about who 
gets to eat.

	 Q (i + 1) = G (i) × (f + randa4) − S (t)� (18)

	 S (t) = R (i) − P (i)� (19)

The vulture traffics in a circular two predators’ sites are given as follows:

	
C1 = R (i) ×

(
randa5 × Q (i)

2π

)
× cos (Q (i))� (20)

	
C2 = R (i) ×

(
randa6 × Q (i)

2π

)
× sin (Q (i))� (21)

•	 In the second segment of exploitation, if the ‘f ’ rate is less than 0.5, it means that all the vultures have banded 
together to find food, and the optimal positions for the two vultures are determined. When vultures are weak, 
they sometimes get haughty when hunting for food.
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P1 = BV1 (i) − BV1 (i) × Q (i)

BV1 (i) × Q(i)2 × f � (22)

	
P2 = BV2 (i) − BV2 (i) × Q (i)

BV2 (i) × Q(i)2 × f � (23)

The Taylor-based African Vulture Optimization Algorithm (AVOA) was selected for feature optimization due to 
its superior convergence properties and adaptability in complex, high-dimensional search spaces. Unlike PSO, 
which can suffer from premature convergence in multimodal landscapes, AVOA employs dynamic foraging 
behavior inspired by real vultures to maintain a balance between exploration and exploitation. The integration 
of the Taylor series further enhances the search capability by providing a smooth local approximation of the 
fitness landscape, enabling more precise adjustments during optimization. Compared to Genetic Algorithms, 
which rely on crossover and mutation with relatively slower convergence, AVOA achieves faster convergence 
with fewer control parameters. These advantages make Taylor-based AVOA particularly suitable for refining 
DR-relevant features, leading to improved classification accuracy and model generalization.

Classification using BCAN
Classification is what convolution is all about. This is the filter that has been trained to remove irrelevant data, 
like noise, and focus on the most important features for classification. Equation 24 is the formula for feature 
extraction using a convolutional neural network.

	
xk

i = f

(
len∑
c=0

W l
i (c) *xk−1 (c) + bl

b

)
� (24)

where xk
i  is the output of kth layer of the convolutional kernel; f is the activation function; len is the kernel; 

xk−1 is the layer; bl
b is the bias; W l

i  is the weight matrix.
To achieve good classification, the convolution layer assigns more weight to the main features and less 

weight to the noise in the input data as the network model trains, continuing this process until the loss function 
is reduced to an ideal value. Reducing the number of parameters and preventing overfitting when applying 
networks to spectrum analysis is achieved by leveraging the shared features of the network parameters. After 
extracting the primary features from the input photos, the max-pooling procedure is applied to create feature 
maps.

To eliminate noise, the convolutional neural network applies derivative filtering and smoothing to the input 
data using the learned convolutional kernel. This approach significantly reduces the need for preprocessing 
procedures in convolutional neural networks.

Network structure
Adding an attention mechanism and expanding the network model’s depth are two common ways to enhance 
neural networks’ classification accuracy. Due to the massive amount of input data in this paper, a deeper network 
model was necessary, which required substantial processing resources. To address this, a bilinear branching 
network fusion was employed instead. More precise features for classification were obtained by incorporating an 
attention mechanism. The BCAN used in this study is an 11-layer bilinear convolutional neural network model 
with two branches using convolutional kernel sizes that vary to extract features at multiple scales. The purpose 
of incorporating the SE module was to reduce the impact of external data. The network achieves better accuracy 
and can correctly identify severity levels at relatively slow running speeds, which is rather small. It can enhance 
training speed and filter noise when the setting is reasonably large. Therefore, in this study, we used two branch 
sizes to obtain separate features and then fused them. This approach reduced sample preprocessing, improved 
feature extraction, and shortened training time by filtering out additional noise.

To reduce the impact of noise, the input image is initially processed through two convolutional layers using 
a 1 × 7 kernel. Following this, network branches, CsA and CsB, were used to extract the characteristics from 
various scales. Furthermore, the SE module was utilized to acquire features of greater quality. Subsequently, a 
bilinear pooling operation was employed to fuse the two features. Lastly, the fully connected layer was fed the 
one-dimensional vector resulting from the fusion for classification. The BCAN architecture integrates bilinear 
pooling to capture second-order feature interactions, which are particularly important in distinguishing subtle 
and overlapping features among different DR severity stages. Unlike standard CNNs that primarily learn linear 
combinations of features, bilinear pooling computes the outer product between two feature maps, allowing the 
model to represent complex relationships such as co-occurring lesions (e.g., microaneurysms with hemorrhages). 
This enriched representation enables the network to be more sensitive to subtle differences in texture, shape, 
and spatial distribution of lesions, thereby improving classification accuracy. Furthermore, the use of attention 
mechanisms in combination with bilinear pooling ensures that only the most discriminative features contribute 
to the final prediction, resulting in more robust and interpretable classification outcomes.

Multi‑scale feature fusion
By utilising two branches with distinct convolutional kernels, BCAN is able to excerpt topographies from several 
perspectives. To reduce the network parameters and extract features, CsA is given a 1 × 3 kernel, and CsB is given 
a 1 × 5 kernel. Since the perceptual field is enhanced by a large convolutional kernel, CsB is capable of extracting 
precise characteristics. Equation 25 represents the BCAN:
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	 B = (F, CsA, CsB, F c31, F c32)� (25)

where F stands for 1 × 7 block, CsA besides CsB characterize two linear branches, F c31 and F c32 refer to layers.
The CsA branch besides the CsB articulated by Eqs. 26 and 27, correspondingly.

	 CsA = [(C, B, R) × 2, SE, AP1]� (26)

	 CsB = [(C, B, R) × 2, SE, AP2]� (27)

where C, B, R, AP1 and AP2 characterize the convolution layer, normalization, Relu activation function and 
adaptive maximum pooling layer of CsA besides CsB.

The feature vectors of the SE module are adjusted to 1 × 512 using an adaptive maximum pooling layer since 
fusion demands that the feature branches have the same dimensions. A pooling layer is used in place of the fully 
linked one to decrease data volume while maintaining dimensionality parity. Equation 28 shows that the two are 
vertical axis to generate a feature vector with dimensions 1024 × 1.

	 f = Cas (x1, x2)� (28)

where x1 and x2 stand in for the combined output of the pooling layers, vector that incorporates all the attributes 
from both scales. It provides a more complete feature representation before linking the fully connected and 
softmax layers for classification.

SE module
To obtain more precise features, the SE module—a channel attention network—models the interdependence 
across channels, assigns varying feature vectors to diverse channels, and sums them accordingly. The SE module 
consists of three parts: squeeze, excitation, and scale. In the squeeze module, global average pooling compresses 
the feature map into a 1 × 1 × C vector. The next step, the excitation process, involves a fully connected layer. The 
essence of the scale operation is the multiplication of channel weights. Each channel’s weight value is multiplied 
by each channel in the SE module, allowing for the assignment of varied proportions to different channels to 
achieve better outcomes.

1 × 7 block
For models of convolutional neural networks, the size of the convolutional kernel is crucial. While small 
convolutional kernel networks offer quick convergence and little computation, their receptive fields are tiny and 
susceptible to noise disturbance. A bigger field of perception and noise reduction are benefits of using large-
kernel convolutional neural networks, however these networks are more computationally intensive. In order to 
decrease the impact of data noise, this study utilised a block consisting of two convolutional layers and a 1 × 7 
convolutional kernel.

Fine-tuning for classification: EFAOA
In response to the proliferation of optimisation methods, the authors of43 propose electric fish optimisation 
(EFO). Searching within the bounds of the area causes the electric fish solutions (N) to be initialised at random.

	 xij = xmin j + rand
(
xmaxj − xminj

)
� (29)

where xij  where max and min denote the bounds, and j represents the point in solution I.
Sites with a higher frequency use real electrolocation in the EFO, much as in nature. Sites with a lower 

frequency use passive electro location. The range of values for the fitness function is used to determine the 
frequency.

	
f t

i = fmin +
(

fitt
worst − fittt

i

fitt
worst − fittt

best

)
(fmax − fmin)� (30)

where f t
i  is solution sum i at repetition sum t. fitt

worst and fittt
best are the worst principles. fmax − fmin are 

the max and values.
The solution sum I(Ai) is single-minded as shadows:

	 At
i = aAt−1

i + (1 − a) f t
i � (31)

where a is a charge in range [0, 1].

	(A)	 Active electrolocation

The active range estimate is designed as surveys:

	 ri = (xmaxj − xminj) Ai� (32)

Determine how far away additional solutions must be from the current one in order to find them in the given 
space. The following is the formula for determining the distance between solution numbers.
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dik = xi − xj =

√√√√
d∑

j=1

(xij − xkj)2� (33)

If at least interplanetary, Eq. (34) is used; then, Eq. (35) is used:

	 xcand
ij = xij + φ (xkj − xij)� (34)

	 xcand
ij = xij + φri� (35)

where k is certain key, φ is a charge among [− 1, 1], xcand
ij  is the contender locations of the solution number i.

	(B)	 Passive electrolocation

The likelihood of the explanation sums i in a lively space is gritty as follows:

	
Pk = Ak/dik∑

j∈NA
Ak/dij

� (36)

Using diverse approaches, selection, K keys are strong-minded from NA using Eq. (36). A source site (xrj) is 
distinct using Eq. (37). The new- shaped using Eq. (38):

	
xrj =

∑K

k=1 Akxkj∑K

k=1 Ak

� (37)

	 xnew
ij = xij + φ (xrj − xij)� (38)

Passive electrolocation by a solution with a greater rate is improbable but not impossible. In order to sidestep 
this, the parameter values are resolute using Eq. (39):

	
xcand

ij =
{

xnew
ij rand > f

xij otherwise
� (39)

Finally, in order to increase the probability of a trait indicating traded, passive space modifies one parameter of 
solution number I according to Eq. (40):

	 xcand
ij = xminj + rand

(
xmaxj − xminj

)
� (40)

It is moved to the following constraints if the value of the jth parameter of key i exceeds them:

	

xcand
ij =




xmin j xcand
ij < xmin j

xcand
ij xmax j > xcand

ij > xmin j

xmax j xcand
ij > xmin j

� (41)

Arithmetic optimization algorithm  An optimisation that relies on arithmetic operations is known as the arith-
metic optimisation algorithm (AOA). Selecting the search mechanisms according to Eq. (42) is the first step in 
the improvement process:

	
MOA (t) = Min + t

(
Max − Min

T

)
� (42)

where t is the current repetition, which lies among 1 and T. The lowest and maximum standards for this function 
are min and max, respectively. Here is the mathematical breakdown of the search algorithms.

	(A)	 Exploration part

The procedure is assumed in Eq.  (31). This hunt is accomplished when rand > Eq.  (42). The D search is 
performed once rand < 0.5; executed:

	
xi,j (t + 1) =

{
best (xj) ÷ (MOP + ε) × ((UBj − LBj) × µ + LBj) , rand < 0.5
best (xj) × MOP × ((UBj − LBj) × µ + LBj) , otherwise

� (43)

	
MOP (t) = 1 − t(

1
a )

T ( 1
a )

� (44)
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where xi (t + 1) is the key sum i at the repetition sum t, xi,j (t) is the site sum j in i, and best (xj) is yet. m and 
a are limit to 0.5, 5, correspondingly. t is the used repetition, repetitions.

	(B)	 Exploitation part

If rand is less than or equal to MOA, then this search section is done. When rand is less than 0.5, the S search is 
carried out; if not, the A search is carried out. Therefore, the local search problem is usually avoided by the abuse 
search that is based on S and A. The exploration search methods are expressed mathematically in the following 
way:

	
xi,j (CIter + 1) =

{
best (xj) − MOP × ((UBj − LBj) × µ + LBj) , r3 < 0.5
best (xj) + MOP × ((UBj − LBj) × µ + LBj) , otherwise

� (45)

In conclusion, the AOA procedures start with solutions that are produced stochastically over a set of constraints. 
In accordance with the growth rule, tools endeavour to find the best solution under all circumstances. The best 
global main method for improving the worked solutions. To maintain consistency among the search processes, 
a transition method called MOA is used, with a linear interval [0.2, 0.9]. When rand is greater than MOA, the 
exploration tools are utilised. Otherwise, the exploitation tools are employed. Operators will be practiced at 
random in the searching portions. Touching the end criterion eventually stops the AOA.

Proposed EFAOA method  Since AOA has the greatest impact on EFO’s capacity to find the feasible region con-
taining the ideal solutions, improving its exploration ability is the primary goal of utilising it. Separating is the 
first step in the proposed EFAOA. After that, N people are given random values, and the fitness value is calculat-
ed for each of them. Then, the optimal person is determined by their fitness value. Afterwards, in the exploitation 
phase, operators’ solution, whereas AOA or classic EFO are utilised at random in the exploration phase. Once the 
reached, the procedure of updating individuals is repeated. After then, the testing set is narrowed down based on 
the top performer, and several metrics are used to assess how well the produced EFAOA performed.

The proposed Electric Fish Optimization Arithmetic Algorithm (EFAOA) enhances training efficiency by 
improving the exploration capabilities during the early search phase of optimization. The EFO component 
introduces biologically inspired active and passive electrolocation mechanisms that allow agents to dynamically 
explore the search space based on fitness gradients and inter-solution distances. Meanwhile, the AOA component 
adjusts search intensities using arithmetic operators and convergence control functions. This hybrid mechanism 
ensures diverse sampling of the solution space and prevents premature convergence, which is a common 
limitation in traditional optimizers like PSO and GA.

During training, EFAOA helps in locating high-quality feature subsets by enabling dynamic exploration 
followed by precise local exploitation. This leads to faster convergence toward optimal feature combinations, 
reducing redundancy and improving classification accuracy. The algorithm also requires fewer tuning parameters, 
improving robustness and generalizability across datasets. Overall, EFAOA effectively balances exploration and 
exploitation, making it a superior choice for optimizing complex, high-dimensional classification models in 
diabetic retinopathy detection.

	(A)	 First stage

At this phase, the initial entities are produced, which signifies the populace of keys. The preparation is given as:

	 Xi,j = (UBj − LBj) × rand + UBj − LBj , i = 1, 2, . . . , N, j = 1, 2, . . . , D� (46)

where UBj  and LBj  are the dimension. N characterizes the total sum of those besides D is key, and it 
characterizes the total sum of features. rand ∈ [0, 1] is a accidental numeral.

	(B)	 Second stage

Keeping people informed until they reach the stop circumstances is the primary goal of this section of the 
developed EFAOA. The following equation is used to transform each X_i into a binary individual; this is the first 
step in a series of procedures that achieve this:

	
BXi,j =

{
1 if Xi,j ⩾ 0.5
0 otherwise

� (47)

The next stage is to use ones in BXi,j  to classifier also compute the distinct as:

	
F iti = a × γ + (1 − a) ×

(
|BXi,j |

D

)
� (48)

In Eq. (48), g is using BCAN classifier besides |BXi,j | is the total sum of one’s a∈[0, 1] is balances among two 
charges.

The step after separate Xb that has the leastF itb. Then figure the frequency (fi) besides amplitude (Ai) for 
each Xi using Eqs. (30) and (31), correspondingly. Rendering to individuals the active phase (i.e., fi > rand) or 
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passive phase (i.e., fi ≤ rand). As shown in Eqs. (32)–(35), the workers of classical EFO are utilised to update 
the persons throughout the active phase. At the same time, while in the passive phase, AOA and EFO operators 
compete to enhance people using the following formula:

	
Xi,j =

{
Eq (36) − Eq (41) if P ro ⩾ 0.5
Eq (42) − Eq (45) otherwise

� (49)

where P ro ∈ [0, 1] mentions to likelihood of, Eqs. (42)–(45) or EFO (i.e., Reckonings 36–41) to inform Xi,j
. In circumstance the inform Xi,j has old custody, then update Xi,j is used; then, the old pleased then the best 
separate Xb is reimbursed from this stage.

Results and discussion
In this section, the experimental setup, evaluation metrics and results analysis are briefly explained.

Setup environment
We conducted tests on the APTOS dataset to evaluate the performance of the deployed deep learning (DL) 
system and compare it against industry standards. Following the recommended training procedure, the dataset 
was partitioned into three groups. The data was divided as follows: 80% for training, 10% for testing, and 10% 
for validation, with 9,952 images used for training, 1,012 for testing, and 1,025 for validation to find the optimal 
weight combinations. We ran the proposed system on a desktop Linux machine with a GPU and 8 GB of RAM.

Evaluation metrics
A just a few of the metrics used to assess the success of the proposed system. A total of five distinct folds are 
employed in the trials. This study employs a number of performance evaluation criteria to ascertain the feasibility 
of the proposed research. Most of these solutions depend on the developed during the identification job testing 
procedure. This is how these processes’ calculations look: F1 Score (F1 − s), Accuracy (Ac), and Precision (Pe) 
are the four metrics.

	
Ac = T rueP V alues + T rueN V alues

T rueP V alues + T rueN V alues + F alseP V alues + F alseN value
� (50)

	
Re = T rueP V alues

T rueP V alues + F alseN value
� (51)

	
P e = T rueP V alues

T rueP V alues + F alseP V alues
� (52)

	
F 1 − s = 2 ∗ (Re ∗ P e)

Re + P e
� (53)

Validation analysis of proposed feature extraction
The existing models such as MAPCRCI-DMPLC22, ISVM-RBF25, DCNN27 and MuR-CAN32 are tested with 
proposed AM-CapsuleNet in terms of accuracy for five different classes that is given in Fig.  4. The existing 
models uses different datasets; hence the research work implements the basic models on our considered datasets 
and results are averaged.

In the investigation of the MAPCRCI-DMPLC22 technique, the accuracy for each class was as follows: 0.71 
for the 0th class, 0.72 for the 1st class, 0.75 for the 2nd class, 0.80 for the 3rd class, and 0.80 for the 4th class. 
The ISVM-RBF25 technique achieved accuracies of 0.68 for the 0th class, 0.70 for the 1st class, 0.69 for both the 
2nd and 3rd classes, and 0.79 for the 4th class. The DCNN27 technique showed accuracies of 0.69 for the 0th 
class, 0.59 for the 1st class, 0.73 for the 2nd class, and 0.72 for the 4th class. The MuR-CAN32 technique reached 
accuracies of 0.65 for the 0th class, 0.66 for the 1st class, 0.64 for the 2nd class, 0.75 for the 3rd class, and 0.79 for 
the 4th class. Our technique achieved higher accuracies, with 0.82 for both the 0th and 1st classes, 0.83 for the 
2nd class, 0.81 for the 3rd class, and 0.89 for the 4th class.

	(A)	 Comparative analysis of feature extraction

Figure 5 presents the comparative analysis of proposed feature extraction with existing models in diverse metrics 
on binary class.

In the experimental analysis of the proposed model compared with existing techniques, the following metrics 
were observed:

•	 The MAPCRCI-DMPLC22 technique achieved an accuracy of 83.19%, a precision of 82.00%, a recall of 
78.74%, and an F1-score of 69.83%.

•	 The ISVM-RBF25 technique achieved an accuracy of 83.63%, a precision of 83.75%, a recall of 82.05%, and an 
F1-score of 71.60%.

•	 The DCNN27 technique showed an accuracy of 88.90%, a precision of 89.47%, a recall of 89.15%, and an F1-
score of 76.31%.

•	 The MuR-CAN32 technique achieved an accuracy of 89.16%, a precision of 90.48%, a recall of 91.69%, and an 
F1-score of 85.67%.
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Fig. 5.  Comparative Study of proposed with prevailing techniques.

 

Fig. 4.  Description of various models on five different classes.
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•	 Our technique demonstrated superior performance with an accuracy of 94.63%, a precision of 93.73%, a 
recall of 92.74%, and an F1-score of 91.74%.

Validation analysis of planned classifier
Table  3 presents the comparative investigation of anticipated classifier with existing models on multi-class 
classification terms of accuracy.

In the analysis of the proposed model compared with existing procedures on multi-class analysis, the 
MAPCRCI-DMPLC22 classifier technique achieved the following accuracies: 0.9581 for the 0th class, 0.8461 
for the 1st class, 0.8646 for the 2nd class, 0.8926 for the 3rd class, and 0.8897 for the 4th class. The ISVM-RBF25 
classifier technique achieved accuracies of 0.9633 for the 0th class, 0.8209 for the 1st class, 0.9040 for the 2nd 
class, 0.8414 for the 3rd class, and 0.8756 for the 4th class. The DCNN27 classifier technique showed accuracies 
of 0.9504 for the 0th class, 0.8500 for the 1st class, 0.8190 for the 2nd class, 0.9267 for the 3rd class, and 0.8681 
for the 4th class. The MuR-CAN32 classifier technique achieved accuracies of 0.9419 for the 0th class, 0.8765 for 
the 1st class, 0.8499 for the 2nd class, 0.9429 for the 3rd class, and 0.9039 for the 4th class. The BCAN classifier 
technique demonstrated superior performance with accuracies of 0.9715 for the 0th class, 0.8877 for the 1st 
class, 0.8902 for the 2nd class, 0.9613 for the 3rd class, and 0.9404 for the 4th class.

	(A)	 Comparative analysis of wished-for classifier

Figure 6 presents the graphical representation of likely with existing events in terms of diverse metrics for binary 
classification.

In the analysis of the proposed classifier metrics across different techniques, the MAPCRCI-DMPLC22 
technique achieved an accuracy of 0.89, a precision of 0.85, a recall of 0.87, and an F1-score of 0.86. The ISVM-

Fig. 6.  Graphical description of proposed classifier.

 

Classifier Class 0 Class 1 Class 2 Class 3 Class 4

MAPCRCI-DMPLC22 0.9581 0.8461 0.8646 0.8926 0.8897

ISVM-RBF25 0.9633 0.8209 0.8414 0.9040 0.8756

DCNN27 0.9504 0.8500 0.8190 0.9267 0.8681

MuR-CAN32 0.9419 0.8765 0.8499 0.9429 0.9039

BCAN 0.9715 0.8877 0.8902 0.9613 0.9404

Table 3.  Comparative study of proposed perfect with existing techniques on multi-class.
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RBF25 technique showed an accuracy of 0.88, a precision of 0.87, a recall of 0.89, and an F1-score of 0.87. The 
DCNN27 technique demonstrated an accuracy of 0.88, a precision of 0.88, a recall of 0.90, and an F1-score of 
0.88. The MuR-CAN32 technique achieved an accuracy of 0.90, a precision of 0.89, a recall of 0.91, and an F1-
score of 0.89. Finally, the BCAN technique showed superior performance with an accuracy of 0.93, a precision 
of 0.95, a recall of 0.92, and an F1-score of 0.94.

	(B)	 Comparative analysis of proposed optimization

Table 4 compares the presentation of planned optimization algorithms in terms of ratio.
As a result of the analysis of the EFO technique, the accuracy was found to be 93.79, the precision was 94.01, 

the recall was 92.00, and the F1-score was 95.13. For the 70−30% ratio, the accuracy was 84.37, the precision was 
86.69, the recall was 84.37, and the F1-score was 88.18, all of which correspond to the same value. Following that, 
the AVOA technique achieved an accuracy of 87.74 and a precision of 89.72 at an 80−20% ratio. Additionally, 
the recall was 86.14, and the F1-score was 93.53. For the 70−30% ratio, the accuracy was 66.20, the precision 
was 63.22, the recall was 66.20, and the F1-score was 78.10. After that, the EFAOA technique achieved an 
accuracy of 93.33 and a precision of 95.41 at an 80−20% ratio. Additionally, the recall was 92.33, and the F1-score 
corresponded to these results. For the 70−30% ratio, the accuracy was 87.89, the precision was 89.42, the recall 
was 88.64, and the F1-score was 85.46. These values reflect the accuracy and precision of the ratio. EFO may not 
scale well with very high-dimensional problems, as the computational complexity and the difficulty of finding 
an optimal solution increase with the problem’s dimensionality.

	(C)	 Complexity of EFAOA

The time EFAOA be contingent on the difficulty of EFO besides AOA. Since, time difficulty Eqs. (54) and (55), 
respectively:

	
O (EF O) =

{
O (tmax × N × D) in best case(
tmax × N2 × D

)
in worst case

� (54)

	 O (AOA) = O (tamx × N × D)� (55)

So, the complexity of EFOAOA can be characterized as in Eqs. 56–57:

	
O (EF AOA) =

{
O (Kp (tmax × N × D) + (1 − Kp) (tmax × N × D)) in best case

O
(
Kp

(
tmax × N2 × D

)
+ (1 − Kp) (tmax × N × D)

)
in worst case

� (56)

	
O (EF AOA) =

{
O (tmax × N × D) in best case

O (tmax × N × D) (Kp (N + 1) + 1) in worst case
� (57)

where Kp attitude for the sum of keys rationalized using operatives of EFO.

Hyperparameter sensitivity analysis
To assess the model’s robustness, we examined the effect of two key hyperparameters and presented in Tables 5 
and 6.

Larger kernels improved spatial context capture but increased computational load. A size of 1 × 7 achieved 
the best performance.

Kernel size Accuracy (%)

1 × 3 91.4

1 × 5 92.8

1 × 7 94.6

Table 5.  Convolutional kernel size in BCAN.

 

Models Test ACC Precision Recall F1-score

EFO
80−20% 93.79 94.01 92.00 95.13

70−30% 84.37 86.69 84.37 88.18

AVOA
80−20% 87.74 89.72 86.14 93.53

70−30% 66.20 63.22 66.20 78.10

EFAOA
80−20% 93.33 95.41 92.33 93.67

70−30% 87.89 89.42 88.64 85.46

Table 4.  Comparative analysis of proposed optimization.
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Improvements plateaued after 100 iterations, indicating that this value offers the best trade-off between 
accuracy and efficiency.

Statistical significance testing
To determine whether BCAN significantly outperforms other models, we conducted paired t-tests and Wilcoxon 
signed-rank tests comparing BCAN with DCNN27, MuR-CAN32, and MAPCRCI-DMPLC22.

Paired t-test results (p-values) are presented in Table 7.

Comparison with transformer-based architectures
To benchmark the proposed BCAN model against emerging architectures, we evaluated Vision Transformer 
(ViT) and Swin Transformer for DR classification on the APTOS 2019 dataset as presented in Table 8.

Although ViT and Swin Transformers offer competitive performance, BCAN achieves higher overall accuracy 
and F1-score, with significantly reduced training time.

Discussion
The proposed BCAN-EFAOA framework demonstrates robust performance in classifying diabetic retinopathy 
(DR) stages, significantly outperforming baseline models including DCNN and MuR-CAN, as confirmed by 
statistical significance tests. The incorporation of Grad-CAM visualizations and t-SNE plots offers critical insights 
into the retinal regions and lesion types—such as microaneurysms and exudates—that drive classification 
decisions. These explainability tools enhance clinical trust and support diagnostic interpretability.

From a practical standpoint, the model is well-suited for deployment in real-world ophthalmology clinics. Its 
integration can occur via edge devices embedded in fundus cameras or cloud-based diagnostic platforms linked 
to electronic health records. To enhance diagnostic precision, scalability to multi-modal imaging (e.g., OCT, 
MRI) is also considered, where preliminary results suggest potential performance gains through feature fusion.

Furthermore, we propose a federated learning framework for privacy-preserving AI collaboration across 
multiple hospitals. This would allow decentralized training while maintaining data confidentiality, addressing 
critical regulatory and ethical considerations.

Finally, convergence analysis confirms the stability and rapid training efficiency of the BCAN-EFAOA model 
compared to other optimization strategies. The model not only achieves high accuracy but also maintains 
interpretability, efficiency, and scalability—key criteria for AI adoption in clinical environments. These findings 
lay the groundwork for broader deployment and extension to other ophthalmic disorders.

Conclusion and future work
This study presents a novel hybrid AI framework combining Bilinear Convolutional Attention Networks 
(BCAN) with Electric Fish Arithmetic Optimization Algorithm (EFAOA) for accurate and efficient classification 
of diabetic retinopathy (DR). The integration of deep learning and metaheuristic optimization significantly 
enhances classification performance across multiple DR severity levels. Explainable AI techniques such as 

Model Accuracy (%) Precision (%) Recall (%) F1-score (%)

ViT 91.8 90.7 89.4 90.0

Swin Transformer 92.4 91.2 90.1 90.6

BCAN (proposed) 94.6 93.7 92.7 91.7

Table 8.  Comparison with transformer-based architectures.

 

Comparison p-value (Accuracy)

BCAN vs. DCNN 0.003

BCAN vs. MuR-CAN 0.007

BCAN vs. MAPCRCI-DMPLC 0.001

Table 7.  Paired t-test results (p-values). Wilcoxon signed-rank test results are as follows: BCAN vs. DCNN: p 
= 0.004.  BCAN vs. MuR-CAN: p = 0.009. These results indicate that the performance improvement of BCAN 
is statistically significant (p < 0.05) compared to the baseline models.

 

Iterations Accuracy (%) Convergence iteration

50 88.3 43

100 93.3 72

150 93.1 100

Table 6.  Optimization iterations in EFAOA.
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Grad-CAM and t-SNE visualizations further improve model interpretability, offering valuable insights into 
lesion-specific features influencing predictions. Moreover, the model exhibits strong convergence behavior and 
generalizability when evaluated on multiple public datasets. While the results are promising, certain limitations 
must be addressed. The APTOS dataset, despite being comprehensive, may contain sampling biases that affect 
cross-population generalizability. Additionally, the computational demands of deep models like BCAN pose 
challenges for deployment in resource-limited environments, warranting a balance between accuracy and 
efficiency.

Future research will explore transfer learning to adapt the model for other retinal diseases, such as glaucoma 
and age-related macular degeneration. Investigating multi-objective optimization approaches can help balance 
classification accuracy with inference speed, enabling real-time diagnostics. Further, incorporating federated 
learning will support privacy-preserving collaboration across clinics, enhancing both data security and model 
robustness.

In conclusion, this work reinforces the transformative potential of AI and metaheuristic optimization in 
ophthalmic diagnosis, paving the way for scalable, interpretable, and clinically applicable DR screening systems.

Data availability
The datasets generated and/or analyzed during the current study are available in the APTOS 2019 Blindness 
Detection repository, https://kagg​le.com/c/apt​os2019-blind​ness-detect​ion/data.
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