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This research presents an advanced optimization framework motivated from biological sources using
the Sperm Swarm Optimization (SSO) algorithm to specifically deal with the Many-Objective Optimal
Power Flow (MaO-OPF) problem in power systems. Despite the great progress made in multi-objective
optimization, convergence, diversity, and computational efficiency problems still exist—in particular,
the high dimensional, multifaceted, conflicting objectives space. The proposed MaOSSO algorithm
incorporates adaptive diversity mechanisms along with swarm intelligent hyper-dynamic control to
address these shortcomings and improve the solution quality in higher scalable architectures. This
framework is extensively tested with cutting-edge algorithms NSGA-IIl and RVEA on the DTLZ and
MaF test suites and later validated on the realistic IEEE 30, 57, and 118-bus power systems. MaOSSO is
shown to consistently outperform competing methods with up to 15-20% faster convergence and 25%
less computation time. While applying the algorithm on the MaO-OPF problem, the active/reactive
power loss minimization was optimized along with the voltage stability, emissions, operational cost,
and Pareto front diversity sustaining. The biologically inspired multi-directional search strategy
incorporated in MaOSSO that provides balance between exploration and exploitation is what
distinguishes this approach from others. Additional comparisons with OPF models based on FACTS
and fuzzy-evolutionary OPF models demonstrate the claimed advantages in practical applications.
Comprehensive multi-metric evaluation supporting the performance increase is attributed to
Hypervolume (HV), Inverted Generational Distance, Generational Distance, Spread, and efficiency of
runtime. A single radar plot and a cumulative ranking summary illustrate and quantify how MaOSSO
outperforms more recent swarm-based algorithms like GWO, MOPSO, and MOGWO. The study
describes specific future improvement actions while admitting some constraints on extremely large-
scale systems. In summary, MaOSSO stands out as the most robust and flexible approach to enabling
adaptive intelligent and sustainable operations on power systems.

Keywords Sperm swarm optimization (SSO), Many-objective optimal power flow (MaO-OPF), Multi-
objective optimization, Reactive power loss minimization, IEEE bus system validation, Flexible AC
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Foundational concepts and challenges

In modern engineering science networks, the need to optimize power system operations has become crucial due
to increased global energy demands and environmental concerns!~>. The problem of Many-Objective Optimal
Power Flow (MaO-OPF) is a multiple-criteria decision making framework for power systems with conflicting
objectives that include minimizing reactive and active power losses, sustaining nominal node voltages, reducing
fuel costs and emissions as well as improving voltage stability*. These methods are seen as primary approaches
due to the growing focus on the enhancement of energy efficiency and environmentally sustainable MaO-
OPPF°. Unlike classical OPF techniques which operate on one or few goals at a time, traditional approaches
are incapable of addressing the sophisticated multi-dimensional criteria which these methods work with®-.
While directionally guided movements accomplish convergence, multi-dimensional complexity of autonomous
stochastic OPF problems renders those multi-faceted resolution approaches ineffective which require flexible
optimization strategies that readily shift in response to competing demands within the obstacles presented
by such situations. It is in this regard that the recent emphasis placed on the MaO-OPF problem has been
tackled through customization of metaheuristic optimization strategies’. As recently researched!®!!, hybrid
metaheuristics integrated with swarm intelligence approximately exhibit balanced computational performance
with diverse Pareto fronts. These approaches include sophisticated methods like adaptive parameter control
and advanced decomposition strategies to maneuver through high-dimensional spaces'2. Moreover, biologically
inspired algorithms that mimic collective behaviors in nature have proven highly successful at solving the
problems of convergence and diversity in large-scale optimization!®. This ever-changing nature of research
on optimization emphasizes the urgent need for scalable, robust algorithms designed to address the dynamic
and high dimensional requirements of current power systems. In light of this, we identify the Sperm Swarm
Optimization (SSO) algorithm as a new promising method specifically developed to deal with complexities
surrounding MaO-OPF framework.

Insights from previous research

Optimization of power system operation is a vast problem and has resulted in the development of many
metaheuristic approaches as well as multi-objective evolutionary algorithms (MOEAs), each solving some
aspects of Optimal Power Flow problem!4-!°. These techniques mainly look for optimal or near-optimal
solutions that adequately balance different competing goals like minimizing losses in active power and reactive
power, reducing fuel costs as well as pollution levels within operational constraints but still meeting voltage
security. Whale Optimization Algorithm (WOA)', Slime Mould Algorithm (SMA)'3, and Flower Pollination
Algorithm (FPA)!? are among these classical methods which have been widely used to tackle OPF problems.
Derived from natural events, these algorithms employ various strategies including pollination processes of plants
such as FPA, slime molds movement seen in SMA, and whale hunting behavior adopted by WOA. However,
while they can solve simple dimensional optimization problems easily, their effectiveness and efficiency are
compromised with increasing number of objectives or/and constraints. In high dimensional search spaces, this
is the outcome of failure to ensure convergence to Pareto front while maintaining diversity. Research has seen
significant advancements in some complex multi-objective evolutionary algorithms such as Non-dominated
Sorting Genetic Algorithm IIT (NSGA-III), Reference-Vector Guided Evolutionary Algorithms (RVEA), and
decomposition-based approaches?®?!. These have utilized advanced mechanisms designed for enhancing
convergence and diversity with NSGA-III including reference points and adaptive reference vector tweaking
for RVEA. This makes it possible to solve numerous problems related to optimization in power systems within
multiobjective approaches. However, the overhead cost and parameter-based sensitivity remain major obstacles
towards any viable modeling attempts on real time or large-scale system applications. Swarm intelligence-based
algorithms can be considered good alternatives where they are able to explore complex high-dimensional spaces
effectively. Some swarm-like decentralized search techniques like Grasshopper Optimization Algorithm (GOA)?*
and Firefly Algorithm (FA)?? strike a good balance between exploration and exploitation in their operation. GOA
is based on the concept of a grasshopper swarm and fosters diversity, whereas FA focuses more on specificity and
delineates areas of interest through firefly glow communication. One disadvantage of these algorithms is their
high computational overheads especially when applied in solving multi-objective optimization problems with
multiple decision variables.

Several new estimates of hybrid and improved algorithms have been proposed to improve the classical
approaches. Specifically, Multi-Objective Grey Wolf Optimizer (MOGWO)* and Many-Objective Particle
Swarm Optimization (MOPSO)?* are built to address economic dispatch, cost and voltage stability goals in power
systems. They combine the use of swarm-based strategies with other methods for controlling convergence and
diversity. MOPSO uses Pareto dominance and crowding distance concepts on top of basic PSO framework, while
MOGWO utilizes multi-leadership styles so as to enhance search efficiency. In fact, the processes were found
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to be quite successful in optimizing diverse objectives of power systems. In order to tackle current problems
in many-objective optimization applications, certain modifications have been made to existing algorithms.
Adaptive versions of NSGA-III and RVEA schemes employ efficient selection policies as well as better handling
of high dimensional Pareto optimal surfaces. The main objective behind these changes is reducing the trade-offs
between proximity among solutions versus their diversity; thus, achieving solutions that are both computationally
effective and high-quality ones. Moreover, optimization approaches that integrate the advantages of different
optimization methods become increasingly popular with significant achievements regarding improvements and
extension potentials.

In conclusion, power system optimization has experienced an unprecedented growth; however, the
increasing complexity of modern power systems and growing emphasis on conservation compel sophistication
in the optimization techniques. At present, several multi solution approaches are currently being developed to
utilize swarm intelligence algorithms coupled with evolutionary processes as evidenced by their leading role in
engineering and optimization activities.

Identified challenges and unexplored areas

It must be acknowledged that the attainment of power system optimization is quite challenging because, like any
other problem, it involves more than one target. An even bigger trouble is presented by the growing complexity
of modern power systems where multiple different goals have to be achieved simultaneously: reduction of losses,
cost and emissions together with improved voltage reliability and overall stability of the system. Many papers have
been published that suggest various algorithms for addressing these issues; however, each proposed algorithm
has its own set of limitations which result in many open questions in this field. The two optimization algorithms
PSO and GWO are based on swarm intelligence which has proven efficient for searching through large search
spaces. These methods have proved their efficiency in solving single-objective as well as multi-objective tasks
by means of self-adaptive approaches and distributed control. However, when the size of the objective space
increases dramatically, these algorithms often experience scalability problems. As an example, many particles in
PSO perform badly due to convergence problems as they fail to properly explore the whole solution but only find
local optima. However, even though it is successful in achieving diversity, GWO still faces the challenge of lack
of convergence due to a high number of objectives and decision variables. Hence, there should be some trade-
off between solution quality and computational cost. Conversely, gradient-based techniques that are dependent
on directional data derived from gradients such as MaOSSO perform well for gradient-based approaches like
those resulting in fast convergence. In this case however, these systems have less capability for most continuous
objective problems that do not use these kinds of DFRs. But when it comes to large scale or highly nonlinear
networks, they fail to solve a diverse set of Pareto optimal solutions adequately. The lack of diversity in the solution
leads to convergence in some solutions but many of the key trade off objectives are grossly under represented.
Power system optimization problems have multipeak landscapes and discontinuities which make the gradient
based systems less effective. These limitations strongly support ongoing development of novel optimization
algorithms that can integrate affordance competition exploration exploitation in high dimensional objective
space to overcome them. To maintain TP solutions and, if possible, allow algorithms for rapid convergence in
vivo is a need to balance. Decision makers are left at the mercy of a set of several operational objectives and the
significance they bear with respect to some possible alternatives that they have which involves this one in an
effort to achieve optimal tradeoff. Given this, it is difficult to use these algorithms as general-purpose tools since
they are constructed for specific problems as such their use in various domains is limited. In situations where the
goals of system reliability and environmental consideration outweigh the interests in economic dispatch, these
types of algorithms would not be effective. The research area lacks an all-inclusive framework for power systems
that can address functional requirements on multi-purpose basis.

In conclusion, the efficacy of automation is still a problem. The size and complexity of power systems have
been further increased by the integration of modern grid technologies, distributed generation and renewable
energy sources, necessitating real-time processing of large amounts of data by optimization algorithms. This
computational requirement is seldom satisfied by either method mentioned above without deteriorating quality
of solutions. To address these research gaps, there is need to develop state-of-the-art optimization algorithms
that are computationally efficient as well as scalable and robust. Such algorithms should be able to handle
multiple-objective optimization intricacies appropriately while checking both excessive diversity and too much
convergence at once.

Highlights of research outcomes

Ultimately, the effectiveness of computation processes is yet to be agreed upon. Power system integration is
becoming more extensive and its information processing burden grows with every passing moment thanks to
building advanced grid technology and introduction of decentralized and renewable energy systems through the
optimization algorithms. These computational requirements are often not met by existing approaches without
compromising on the quality of their implementations in some way. Such gaps can only be bridged by putting
into place necessary modern optimization algorithms usage that would facilitate better merging of computational
efficiency, flexibility, as well as extensibility. Modern optimization algorithms must thus be able to strike a balance
between diversity and convergence in terms of multi objective optimization problems whose complexity is high.
This proposal suggests SSO towards addressing those areas. MaO-OPF framework consists an ant-based controls
incorporated SSO which then results in stronger multitarget objectives responses. Consequently, such parameter
adjustable swarm intelligence will increase rate of convergence and Pareto diversification efficiency as well. The
following are the underlining principles:
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o Swarm SSO Algorithm Multidirectional SSO: The technique behind SSO resembles the swarms from biology
as it increases diversity while reducing convergence, guiding the targets into a variety of different objective
spaces quickly, which makes it better than other power optimization solver like gradient method and basic
evolution-based algorithms.

o Benchmark Validation on IEEE Systems: Comparative study is made between the proposed SSO and IEEE
benchmark systems i.e. 30 bus system, 57-bus system, and 118-bus system in terms of optimal convergent
solutions to multiple competing objectives with their trade-offs; using maximum tolerable error limits of 0.01
for restoration and reconfiguration of the networks.

o Comparative Analysis with Advanced Techniques: A few people have tried allusion to SSOPs through some
aims hence its excellence among other renowned optimisers such as NSGA-III, RVEA, MOEA/D-DE for
MaO OPF Problems.

« Analysis of SSO in Extensive Power Networks: In large power networks or case studies related to real power
networks extensive analysis has been done on how efficient SSO in controlling power grid systems.

Groundbreaking contributions to the field

The SSO algorithm is a kind of swarm-based stochastic strategy which is highly complex and makes it possible
to navigate efficiently through high dimensional objective fields. Unlike Gradient Based Optimization or
Harris Hawks Optimization which are mostly static methods that rely on simple gradients, SSO allows for a
larger range of exploitation and exploration techniques. Diversity in Pareto solutions as well as the problem of
converging to local optima are addressed by this adaptability. The ability of SSO to balance between global and
local optimization while controlling diversity by adapting swarm intelligence is what makes it most innovative.
This framework allows SSO to deal with many power system objective optimization problems, particularly those
involving competing factors.

Study layout and framework
The structure of this paper is outlined as follows:

o In Section “Theoretical formulation of the MaO-OPF problem”, the MaO-OPF formulation is explained, fo-
cusing on the aforementioned functions and limitations of the system.

« In Section “SSO algorithm: design principles and MaO-OPF applications’, a thorough investigation of the
SSO algorithm is presented, description of its structure and its use for the MaO-OPF optimization is given.

o In Section “Comprehensive analysis of experimental outcomes’, results from IEEE standard tests and MaO-
OPF benchmark problems are presented and also comparison is done.

« In Section “Comprehensive performance evaluation’, the application of SSO on a large power system is pre-
sented.

« In Section “Conclusion and Future work’, the future work plans are analyzed and the obtained results are
summarized.

Theoretical formulation of the MaO-OPF problem

This is one of the issues that have faced modern power systems optimization and it requires balancing between
economic efficiency, environmental friendliness, and system reliability. There are many ways in which MaO-
OPF is different from traditional single-objective OPF formulations because it contains diverse objectives such
as fuel minimization, emission minimization and reactive power loss minimization that are often constrained
by voltage stability indices. This evolutionary process commensurate with the changes taking place in today’s
power systems due to increased penetration of renewable energies, distributed generations and stringent
environment regulations. The motivation for this investigation is the increasing needs to provide solutions to
high-dimensional optimization problems with a reasonable computational time spending on efficient algorithms
and effective constraint management techniques. With this in mind, the section offers a detailed analysis of
MaO-OPF that exposes its formulation as a multi-objective optimization problem with a set of defined operating
constraints. It also outlines some primary objectives such as minimizing active/reactive power outputs or
emissions from the system while illustrating the manner in which these equality and inequality constraints
control the boundaries of generators, the balance of powers, the transformer operations, and system security
and safety features. Additionally, an illustrative mathematical foundation will be provided describing challenges
of populating high-dimensional Pareto fronts as dealing with extremely complex optimization processes which
simultaneously guarantee convergence and diversity of different solution candidates must also be dealt with. All
these parts constitute the problem formulation which serves as a basis for the algorithmic approaches tailored to
the complex and changing requirements of contemporary energy systems.

Theoretical foundation for many-objective optimization (MOOP)
Equation (1)?® encapsulates the mathematical formulation of the MaO-OPF problem, which seeks to optimize
multiple conflicting objectives within a power system framework. This equation is structured as:

Minimize F (v) = {f1 (v), f2 (v),..., fo(v)} (1

subject to a set of equality constraints h(v) = 0 and inequality constraints g(v) < 0, where v represents the decision
variable vector. The vector v includes the most critical parameters of system control in respect to power such as
output of generators, bus voltage level and tap settings for transformers.
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« Objective Functions, f,(v): These functions portray several performance indices for power systems that in-
clude but are not limited to fuel cost, emissions, active and reactive power losses and voltage stability indices.
Each objective function fi(v) represents a different optimization target indicating the wide range of often
conflicting objectives in power systems management.

o Equality Constraints, h(v): These constraints ensure that the supply of electrical energy matches with its
demand at all times (balance), hence they represent the equality constraint for the system’s state equation.
Mathematically, these constraints describe equations that determine nodal flows between various elements
ensuring both equilibrium as well as consistency in operations.

« Inequality Constraints, g(v): These are operational boundaries of various components of a power system e.g.,
limits on generator capacities; voltage limits; thermal limits on transmission lines. They prevent possible op-
erational violations from occurring within such facilities which might lead to a destabilization or worse still
unsafeness of this particular system in use.

The statement appreciates the inherent intricacy of MaO-OPF problems as illustrated by high-dimensional
Pareto fronts and the interactions between objectives which are themselves nonlinear. It emphasizes on the need
for advanced optimization techniques that can balance exploration and exploitation, facilitating convergence to
optimal trade-offs. This structure proves a solid base for use in applying the proposed optimization algorithm,
ensuring it is practically feasible and computationally efficient.

Functional goals of the framework

The MaO-OPF framework encompasses a diverse range of optimization objectives such as the Reduction of
Reactive Power Loss, the Minimization of Active Power Loss, Voltage Magnitude Deviation (VMD), Total
Emissions (TE), Total Fuel Cost (TFC), and the Elevation of Voltage Stability Indicators (VSI). The framework
also incorporates quadratic fuel cost (QFC), value-point loading (VPL), multi-fuel (MF) scenarios, and
prohibited operating zones (POZ) which are contained in six fitness functions formulated in?”?%. To achieve
these objectives, interpolations for fuel consumption and carbon dioxide (CO,) emissions alongside power loss
minimization must be developed, coupled with minimized voltage deviation and bolstered how robust of voltage
stability indices. Meeting these modern requirements which a flexible and adaptive power system needs to adjust
to is evolving quite rapidly. The figures illustrate some of the ideas discussed; Fig. 1 demonstrates the relationship
of VPL over varying parameters and Figs. 2, 3, and 4 illustrate POZ and MF trends shown in Fig. 4.

The MaO-OPF problem in this study considers six primary objectives, aiming to minimize:

Minimization of fuel cost (TFC)
The minimization of the total fuel cost (TFCTFCTFC) for generators is mathematically represented as follows
in relation (2):
NQ
TFC = [ai +biPyi + i Pyi® +

i=1

di.sin(e;.(Pyi™™ — Pyi)) H 2)

where:

o N : Total number of generators in the system.

+ P_: Active power output of the i-th generator.

o Py;™™ and P,;"™“": Lower and upper bounds of the i-th generator’s active power, respectively.

. a, bi, c, di, e; Coefficients representing the cost characteristics of the i-th generator.

. di.singei.(Pgimm — P,;)): Represents the valve-point loading effect, introducing nonlinearity into the cost
curve.

In this formulation, quadratic fuel cost component is combined with the valve-point loading effect which
is responsible for introducing oscillations to accurately represent the generators’ operational characteristics in
real-world scenarios. It effectively captures both linear and nonlinear cost variations, thus providing a solid
framework for generation costs optimization while respecting the operating constraints of generators.

Minimization of emission (TE)
Reducing emissions is illustrated as in Eq. (3):

Ng
TE = Z(OéiPG,iQ + BiPa,i +vi + niexp(0: Pa.i)) (3)

=1
where o, Bi, Vi, s> and 0; are emission coefficients for each generator.

Minimization of active power loss (APL)
Equation (4) shows the active power loss minimization:
Ny,
APL = (GiVi* = 2V;V;Gijcos0i;) (4)

=1
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TFC = Z a,+biPy + P + |disin (e, (P = Pg,))[) fe— ] TE= z(hf + Py + fiPL + gie'e)
=il i=1
VL Ny
APL= ) GV + V7 = 20 cosq,) RPL= ) (G (V2 + ¥} — 20¥sing, )
k=1 k=1
VST = Max(L;)j = Ny + 1,..., Nyg T
" v =Y -l
i = l—z V—‘]—N +1,. Npq,F——(YLL)'ll/LG '
i=1

Transformer constraints
T <G i= 12N,

Shunt VAR compensator constraints

min ¢ 0, < Qi =12, N, Generator constraints
Security constraints P <Py <P*i=12,+,Ng
VIV S Vi =12, Ny " < Qg < Q5 i=12,,Ng
Sttt & St 0= W0y B Vg“i““ <V <Vi*i=12,,Ng
v

Where symbol notation a;, b;, ¢;, d; and e; fuel cost coefficients, h ;, m ;, f; and g; emission coefficients, Py active power of gen., P
minimum limit of the active power of gen., N, no of PQ buses, V; rated voltage of VM is I p.u., V; and V; VM of the bus, g;; voltage
angel difference, Q; reactive power of gen., N; no of load bus, G;; and By; conductance and susceptance, Pp;and Qp; active load and
reactive load, N, no of generators, V;; VM of load bus, S; transmission flow of branch, Q;; compensator of reactive power, T;
transformer ratio, Py; active power of the generator, Q,; reactive power generator, it" bus, j** bus, and Vi VM of the generator bus.

Fig. 1. Schematic representation of OPF outputs and constraints.

where G; and G5 are conductance terms, V; and V; are bus voltages, and 6; ; is the phase angle difference
between buses i and j.

Minimization of reactive power loss (RPL)
The minimization of the reactive power loss is presented as in Eq. (5):

Np,
RPL — B;Vi®> — 2V,V; B;;sinb;; (5)
J J J

=1

where B; and B;; are susceptance terms.
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Impact of Valve-Point Loading on Fuel Expenses
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Fig. 3. Representation of POZ in power system operations.
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Fig. 4. Impact of multi-fuel operations on generator cost curves.

Minimization of voltage magnitude deviation (VMD)
The relation characterizing the minimization of the voltage magnitude deviation is presented in Eq. (6):

Np
VMD =" |Vi = Viey| (6)
i=1

where V; is the voltage at bus i and V.. ¢ is the reference voltage.

Maximization of Voltage Stability Index (VSI)
A stability index, such as the Line Stability Index (L-index), can be used for VSI as described in relation (7):

N
1
VL =1- > Vi Z0; )
j=1

where Y;; represents admittance values between buses.

Constraints
The MaO-OPF problem includes the following key constraints:

Generator constraints
PG < Pai < PGS (®)
&' < Qai < QG ©)

This restriction on Eq. (8) guarantees that the effective power output (P ) of each generator is kept within
its lower (Pg;"™'™) and upper (Pg;™*") limits. These boundaries are defined by the design and operating
characteristics of individual generators. Staying within this range prevents abnormal stress on the generator
while ensuring stability of the overall system. Similarly, in Eq. (9), all generators’ reactive power outputs (Qgi)
are confined to a certain range with set boundaries Qg™ and Qg:"*". These values help in maintaining
voltage profiles within desired levels and promoting proper reactive power compensation across the entire grid.

MaO-OPF model guarantees that generations run at maximum efficiency as well as safety degrees by
ensuring adherence to these limitations. It helps lower the hazards related to voltage instability or even full
system malfunctions or equipment overloads. These rules also guarantee harmony between techno-economic
aims that let the system maximize power flow and preserve its operation security. These elements are now crucial
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for contemporary energy systems marked with great degrees of variable and complexity usually resulting from
integration of renewable energy sources and shifting demand dynamics.

Power balance constraints

-

N
Il
-

(Pai — Pp;) =0 (10)

(Qgi — Ppi) =0 (11)

M=

i=1

Maintaining the power balancing Eq. (10) will help to guarantee that energy generated equalizes consumption
in real time and keeps the system frequency constant. Maintaining this balance depends on reactive power
produced in line with formula (11) for voltage stability and best power transmission. They relate operational
limitations of a given network, which are related with physical features of the system such line flow restrictions,
generating unit limits, and transformer capacities, with optimization goals of MaO-OPF issue. Equations (8)
and (9) should thus be part of MaO-OPF formulation since they provide system security as well as operation
feasibility. These equations underline in modern power systems the need of strong optimization techniques that
can consider losses and dynamic demand patterns existing in today’s markets while guaranteeing equilibrium.

Transformer constraints
T < T < T (12)

This constraint ensures that the tap-changing transformer’s tap ratio (T,) operates within its permissible range,
defined by 7;™™ and T;™*". Adjusting the tap ratio allows for voltage regulation and reactive power flow
control, which are critical for maintaining system stability under varying load and generation conditions.

Security constraints

Sri < SL (13)

In this case, S;; represents apparent power transferred between buses i and j through the transformer while
Sr:™** is the thermal limit of the transformer. This restriction makes sure that the transformer does not
exceed its thermal limits which could result to overheating, insulation breakdown or even catastrophic failure.
Transformers are necessary parts of a power system that allow adjustments in voltage to meet specific areas in a
network. However, these constraints limit their flexibility so that they do not cause operational inefficiencies or
damages. In MaO-OPF framework, these constraints guarantee that optimization process respects transformers’
physical as well as operational limitations while optimizing power flow.

Shunt VAR compensator constraints
Q" < Qei < QB (14)

Shunt compensators are placed strategically along the network to ensure effective voltage stability as they
manage reactive power. They effectively control the overvoltage and the collapse of voltage resulting from load
changes along with any form of disturbances caused by the change in load. Proper management of reactive
power will enable better control of performance metrics such as upper and lower voltage limits, reduction in
losses, improved quality of the power supplied, operability and security of the network. Renewal energy modern
networks need tighter enforcement of transformer limitations. In adherence to these limitations, system
reliability is enhanced, there is a prolongment of transformer life, and there’s improvement of resilience for the
overall grid. For a quick overview on objective functions including their definitions as well as mathematical
expressions see Table 1 below:

Additionally, the standard parameters for the IEEE 30, 57, and 118-bus test systems utilized in validation
studies are displayed in Table 2.

SSO algorithm: design principles and MaO-OPF applications

The SSO algorithm is an innovative approach in many-objective optimization influenced by how sperm cells
behave during fertilization. This biological inspired optimization technique is particularly useful in addressing
the challenges posed by complex, high-dimensional optimization problems such as MaO-OPE A reliable and
adaptable optimization strategy should be developed because power systems are becoming more complicated
due to incorporation of renewable energy sources, strict environmental regulations and dynamically changing
load patterns. Traditional optimization techniques have significant limitations with regards to scalability,
convergence, and maintaining solution diversity when applied to such multifaceted issues. However, these
limitations are overcome by SSO that utilizes the cooperative/adaptive behaviors seen in sperm swarm which
provides a balance between exploration and exploitation within multidimensional solution spaces. This part
extensively explains theoretical basis as well as practical application of SSO algorithm covering its exceptional
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Objective

Expression Penalty factor

Total fuel cost (TFC)

TEC=Y""% (a; Pg,i% + biPa.i + c:) 10

Total emission (TE)

TE:E?:GI(!L;PG@Z + BiPa,i +vi +niexp(6; Pa,i)) 20

N
VSI = 1— (;ﬁ > VjYijzeij>

Voltage stability index (VSI)/voltage Magnitude £ 15
deviation (VMD) J=1
N
VMD =3 8 Vi = Veey|
APL = Y"VE(GiVi? = 2ViV;Gyjcosts)
Active power loss (APL)/reactive power loss (RPL) ;\7 12
RPL = Zi:ﬁ(Bin — 2V;V; Byjsind;;)
Table 1. Key optimization functions.
Test System | Number of buses | Number of generators | Number of loads | Number of transformers | Number of shunt comp tors
IEEE 30-Bus | 30 6 21 4 2
IEEE 57-Bus | 57 7 42 15 3
IEEE 118-Bus | 118 19 91 9 14

Table 2. IEEE Test System Parameters. This table provides a summary of the standard IEEE test systems used
for validation, highlighting the number of buses, generators, loads, transformers, and shunt compensators for

each test configuration.
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Fig. 5. Mechanism of fertilization?’.

ability to navigate numerous dimensional Pareto fronts. The paper also presents some features of the designed
algorithm including its velocity adaptation mechanisms, constraint handling techniques and multi-directional
search strategies among others. In addition, integrating the SSO into MaO-OPF reveals its capability in
optimizing multiple conflicting objectives while obeying operational constraints tightly. Modern power system
optimization can be transformed by the versatility and computational efficiency of the SSO algorithm. This will
ensure that sustainable energy management is achieved and decision making enhanced.

Conceptual overview of the SSO algorithm

SSO was introduced by Shehadeh et al.?>*? as a novel algorithm that mimics the complex, coordinated movement
of sperm cells in fertilization (see Fig. 5). Fertilization is a highly regulated and mechanized biological event
involving over 130 million sperm cells working together to successfully navigate through various physiological
barriers such as the cervix and fallopian tubes in order to fertilize an ovum. This process exemplifies a superb
biological optimization mechanism where sperms collaborate and modify their movements in order to surmount
intricate obstacles towards achieving their final aim. At least three different stages of this process, known as
“mysterious velocities,” that characterize the real-time dynamics of sperm cells while they traverse different
media may be decomposed according to Shehadeh et al.>!. With each velocity reflecting distinct behavioral
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characteristics of sperms which change in response to the varying physiological conditions encountered during
the pilgrimage along those routes. These rules are scrutinized and framed within a structured control system for
use in computational optimization techniques.

The natural strategies used by sperms are capitalized by this approach which explores and exploits multi-
criteria optimization landscapes effectively using their dynamic and adaptive movement patterns. The
algorithm’s design incorporates the three velocity types observed in nature that make SSO adapt to a wide range
of optimization problems. These velocities have been identified in the literature®! as:

« Standard Velocity: It is the simple motion made by sperm cells as they move towards an ovum.

« Reduced Velocity: This refers to a slower pace, implying more control when moving around under difficult or
restrictive circumstances.

« Tactical Velocity: These are quick movements for outmaneuvering barriers or aiming at ova with precision.

This biologically inspired mechanism allows SSO to navigate complex problem spaces with high adaptability and
effectiveness, making it a powerful tool for solving various multi-objective and high-dimensional optimization
problems.

The release of numerous sperm cells into the cervix during a new cycle marks the beginning of reproductive
process in multicellular organisms. These sperm cells set off on a collective journey towards an egg, competing
among themselves to reach the ultimate goal which is fertilization. With so many participants, only one sperm cell
eventually achieves fertilization of the ovum, making this a natural example of complex optimization. The SSO
algorithm represents how sperm cells migrate in Fig. 5 by drawing upon this intricate biological process. In the
SSO algorithm, Cartesian coordinates are used to represent sperm cells as particles and their origin is considered
to be cervix at point (0,0). This representation reproduces nature diversity observed in natural fertilization where
sperms are randomly distributed with different initial conditions hence promoting optimization diversity. In this
way each sperm cell receives an arbitrary velocity drawn from Shehadeh et al.?>*° studies on motion behavior
for a dynamic and non-static search throughout optimization operation. This probabilistic component reflects
inherent variation and adaptability that exists within nature’s gametes -sperm cells-. A structured iterative
procedure that exploits diverse movement patterns of sperms is implemented through the algorithm. In the
course of optimization, sperm cells go across the search space altering their movements to explore and exploit
high-dimensional problem landscapes. This cooperation guarantees that the population rapidly converges
towards the optimal solution. The iterative process persists until such a point when the whole society of sperms
coalesce at one specific place denoting the answer. By means of simulating stochastic yet intentional motions
executed by sperms cells, SSO algorithm is able to navigate through complicated high-dimensional optimization
problems. It is a coordinated mode in which it can strike a balance between exploration and exploitation that
makes it fit for tackling multi-objective as well as computationally intensive challenges.

Initial _Velocity = D - V; (t) - Log,,(pH _Rand;) (15)

« v;—is the velocity of cell i at iteration t;
o D—is the factor of velocity damping, which is a random quantity in the range of 0-1;
+ pH_Rand,—is the pH value at the reached position, and it’s a random parameter between 7 and 14;

According to the SSO model, each spermatozoon is directed to a specific area on the surface of an egg. As these
cells achieve this goal, they exhibit highly organized coordinated behavior that mimics natural swarms such as
flocking birds or schooling fish. These coordinated movements enable the swarm to adapt to optimal conditions,
demonstrating the efficiency and adaptability of collective biological systems. The instinctive swarming behavior
of sperm enhances search efficiency and, during optimization, leads them to intuitively explore and converge
on solutions. An ovum additionally aids the process by releasing attractants in the form of chemo-attractants to
focus the swarm to a desired position. In this model, chemotactic cues are crucial in guiding sperm cells toward
their specific targets, enabling them to function as a single unit regardless of their initial spatial coordinates.
This seemingly uncoordinated approach to search strategy highlights the dynamic behavior of individual cells
who move toward the ovum while directing their motion. Shehadeh et al.’! argue the supporting elements of the
swarm that keep cell tails oscillating in rhythmic waves facilitate synchronized pulse flocking and grouping’ tail
pulsation. Such synchrony boosts concurrency, and so the performance of all cells heading towards the ovum
is swarm. Thus, about SSO algorithm, this phase improves capability to control parameters of the algorithm to
perform a better search and comprehensive search in the workspace. The ova (egg) is situated in the distal end of
the fallopian tube and so represents the achievement of sought positions by sperm cells, which in optimization
process denotes optimality. The SSO algorithm incorporates a best historical velocity rule where each cell
stores its past successful coordinates and so each one ‘remembers during what time they reached the most
efficient coordinates. The accuracy and efficiency metrics in target attainment is set by the dynamically adjusted
trajectories of the cells via memory mechanisms. This feature completes the modification of swarm velocity(v)
as it becomes ever more specialized and optimally specialized ositioned leading towards best possible answer:

Current _Best Solution = Logio(pH _Randy) - Logio(Temp Randi) - (Tspest;[] — xi[])  (16)

In a typical situation, only one cell can fertilize an egg, as previously mentioned. Since this was the case, Shehadeh
et al.>"-32 gave this cell a catchy name. The group of successful sperm is shown in Fig. 6.
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Fig. 6. Sperm swarm interaction and convergence to the winner?°3%32,

The SSO strategy operates on a population of sperm cells which are potential solutions that explore
independently the search space. In this frame, the SSO algorithm evaluates at once all the sperm cells by comparing
their performance against that of the one with higher performance in the group. The topmost performing cell in
any iteration acts as a benchmark that guides the remaining cells future trajectories. This is how iterations flow
through to make up SSO algorithm and improve its navigation and optimizing abilities progressively leading
swarm nearer to optimal solution. Key parameters like current velocity of each sperm cell, positions of better-
performing cells and best position ever recorded in cell's memory are considered when individual sperms adjust
their movements. These adjustments constantly decrease the gap between individual members and swarm’s
global maximum intensifying swarming convergence. This flexibility is what enables dynamic equilibrium
between exploration—searching for new regions within the solution space—and exploitation—focusing on
areas with a high likelihood of success. Hence, such balance prevents premature convergence and preserves
diversity in solution space.

The SSO algorithm is successful because it combines the local interactions among neighboring cells and
global information about the performance of the whole swarm. This double mechanism makes it possible for the
algorithm to focus on areas with high potential for producing good results but still explore extensively in other
parts of the search space. By saving an ordered convergence devoid of diversity, this approach is designed for
complex high-dimensional optimization problems. According to him, this means that swarms can strategically
improve how they act until they finally get to their optimum solution using the most accurate and least time-
consuming path which by his example is Schermerhorn’s implementation of the SSO algorithm:

Global _Best__Solution(the _winner) = Log,,(pH _Rands) - Log,,(Temp _Randz) - (Zsgbest; || — x:[]) (17)

The symbols of the Eq. (17) and Eq. (18) are as follows,

» pH_Rand, and pH_Rand,—are the reached location pH values, which are random parameter in the range
of 7-14;

o Temp_Rand,, Temp_Rand ,—are the reached location temperature values, which are random parameter in the
range of 35.1-38.5;

« x,—current position of potential solution i at iteration

Xg,.—Personal best location of potential solution i at iteration

X gpesy—global best location of the flock.

o randl(), rand2(): Random functions generating values between 0 and 1.

where,

o v—is the velocity of cell 7 at iteration t;
e Xx,—current position of cell i at iteration t;

The total velocity rule V;( t) can be modeled as*? depending on the preceding equations.
Vi (k) = D - Logio (pHyr,) - Vi (k — 1) + Logio (pHr,) - Logio (T1) - (Tspest (k) — zi (k)) + Logio (pHry) - Logio (12) « (zsapest (k) — i (k)) , (18)

In SSO, the swarm updated its position using the following mathematical model:
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zi(t) = (1) + vi(?) (19)

The SSO operational process intertwines with biological systems, incorporating key physiological factors,
such as temperature and pH, to modulate each sperm’s velocity. The temperature range of operability 35.1 °C
to 38.5 °C oscillates with the biological values of the reproductive system, thereby modeling the effects due
to fluctuations in arterial blood pressure. Such extensive ranges provide the ability to simulate multiple
scenarios effectively broadening the scope of optimization constraints. On the other hand, pH is influenced
by emotions, dietary habits, or even the timing of meals, which makes it a crucial set point toward achieving
balance. It was necessary for the algorithm to set the limits of PH at 7-14 to widen the range toward capturing
various physiological dimensions enhancing the algorithm’s ability to simulate nature-focused performance
optimizations. In order to achieve these goals, computations aimed at increasing the efficiency and accuracy of
the algorithm were based on employing logarithmic transformations of the parameters as put forth by Shehadeh
et al.?®3. The aim of these changes was to eliminate outliers in sperm velocity calculations to improve realistic
comparisons with sperm motion models. Moreover, by normalizing velocity data, algorithms avoid imprecise
modeling error optimizing simulations that are subsequently generated. Also, logarithmic transformation aids
in optimization of range parameters increasing the precision and reliability of the SSO algorithm in complicated
optimization algorithms. Notwithstanding the flexibility and multi-objective optimization capabilities of the
SSO algorithm, these attributes pose a challenge with wide search spaces. The greater the problem domain,
the greater probability of locking into local minima which severely reduces the algorithm’s effectiveness as the
problem domain increases. This one limitation posits that additional focus on exploration and dynamically
setting directions during algorithm SSO search needs refinement. These changes are fundamental to enable SSO
tackle highly complicated multi-dimensional optimization problems such as MaO-OPF which require extreme
levels of stability and flexibility due to their intricate and multi-layered nature.

SS0O-based solution for MaO-OPF optimization

Incorporating the SSO algorithm into MaO-OPF optimization approaches offers a robust method that imitates
biological systems when addressing intricately complex challenges involving modern power systems. The MaO-
OPF framework includes the optimization of several conflicting objectives simultaneously which include: active
and reactive power loss, fuel cost, emissions, voltage deviations, and enhancement of voltage stability indices.
The breadth of the objectives compounds the optimization problem as it is discerned in high-dimensional Pareto
front optimization landscapes which require sophisticated methods for effective exploration and convergence.
The SSO algorithm employs swarm intelligence inspired by the cooperative adaptive behavior of sperm cells
during fertilization. Each sperm cell represents a potential solution which has the freedom to navigate the search
space independently while tailoring its trajectory based on interactions with other solutions as well as predefined
user restrictions. Through adaptive velocity rules, SSO achieves balance between exploration and exploitation,
ensuring refinement of known good solutions and search in novel, uncharted regions of the solution space.
Achieving balance in this manner guarantees preservation of diverse solution characteristics throughout
objective function convergence while maintaining dynamic trade-offs across objectives. Integral limitations
like the generator output constraints, power balance equations, transformer operations along with line security
limitations are incorporated within the SSO algorithm for MaO-OPE. Incorporating sophisticated constraint-
handling strategies which include boundary-check mechanisms and penalty methods, the algorithm guarantees
all proposed solutions are operationally feasible and physically plausible. As a point of interest, SSO framework
is capable of resolving and creating a parametric envelope encapsulating conflicting objectives. In terms of
prioritizing the trade-offs, it also identifies Pareto-optimal solutions when considering economic efficiency,
environmental impact and system reliability. Moreover, SSO’s biologically inspired mechanisms allow it to
respond to modern power grid’s dynamic and nonlinear behaviors, ensuring robust and scalable performance
over diverse system configurations. Intensive benchmarking on IEEE test systems (30-bus, 57-bus, 118-bus) has
validated the performance of SSO algorithm concerning rapid convergence along with sustaining pareto front
diversity against the computational burden of didactic high dimensional optimization problems, proving robust
power system optimization with adaptable sustainable solution flexibility to evolving energy system needs.

Logical flowchart of the optimization algorithm

Algorithm 1 explains the pseudocode of SSO. Finding optimal solutions in complex search spaces is crucial, and
this algorithm effectively balances exploration and exploitation by leveraging both the individual and collective
learning processes of particles. The Many-Objective Sperm Swarm Optimization (MaOSSO) algorithm is
inspired by the fertilization process in biological systems and is adapted for high-dimensional optimization. It
involves the following core stages :
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1. Initialization
Initialize sperm population with random positions in the decision space
Assign each sperm a velocity vector
Initialize control parameters such as temperature and pH using logarithmic scaling
Evaluate initial fitness values using objective functions
2. Velocity and Position Update
Each sperm updates its position based on:
Its previous velocity,
Personal best position,
A global attractor influenced by the elite sperm,
Adaptive regulation through pH and temperature parameters
Velocity Update Eq. (18)
3. Fertilization and Selection
Evaluate the fitness of updated sperm positions
Store solutions in an external archive based on non-dominance and crowding distance
Apply a Fertilization Gate Mechanism to retain high-quality diverse individuals
4. Archive Maintenance and Diversity Control
Maintain the external archive within a fixed size
Use diversity preservation techniques to avoid solution clustering
Periodically reinitialize part of the population to prevent stagnation
5. Termination
Repeat steps until the maximum number of generations or evaluations is reached
Return the final set of non-dominated Pareto-optimal solutions

Fine-tuning algorithm parameters

Table 3 presents the SSO Algorithm Parameters:

Comprehensive procedure for MaO-OPF optimization
Below is an in-depth guideline revealing a clear and effective approach to tackling the MaO-OPF Problem
with the help of SSO. This method aims at finding a balance between exploring the entire solution space and
simultaneously optimizing multiple objectives while respecting constraints.

Step I: Initialization

1. Define the Objective Functions and Constraints

« For instance, enumerate all the objectives for MaO-OPF problem such as minimizing active/reactive power
loss, fuel cost, emissions or voltage deviations.

« Also, identify all operational constraints including generator limits, power balance, transformer tap limits,
line flow security limits and shunt compensator bounds.

2. Parameter Setup for SSO

« Set up parameters of the SSO algorithm such as swarm size, inertia weight (w), cognitive coefficient (c,),
social coefficient (c,) and random parameters r; and 7.

o Tuning parameters like temperature should be assigned randomly between 35.1 °C and 38.5 °C based on
specific conditions given. The temperature tuner ranges from 7 to 14; this parameter has been logarithmi-
cally transformed to mimic real world sperm velocities.

3. Initialize Swarm Positions and Velocities

« Randomly assign initial positions and velocities for every potential solution—sperm cells within the prob-
lem’s solution space that will satisfy initial system constraints.

Step 2: Objective Evaluation and Fitness Calculation.
1. Evaluate Objective Functions for Each Sperm Cell

« This is done by calculating the value of each objective function for each sperm cell on the basis of its posi-
tion. This entails determining active/reactive power loss, emissions, voltage stability and fuel cost for every
potential solution.

Parameter Description Typical range
Swarm size Number of sperm individuals in the swarm 50-200

Initial step size Controls initial movement distance 0.1-1.0
Mutation rate Probability of mutation in each iteration 0.01-0.2

Convergence threshold | Minimum change threshold for convergence detection | 0.001

Max iterations Maximum number of iterations before stopping 500-2000

Table 3. SSO parameters.
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2. Compute Fitness Scores

« The objectives values are combined into a fitness score using any multi-objective fitness evaluation ap-
proach e.g. Pareto dominance to prioritize alternatives based on trade-offs amid objectives.

3. Identify Best Positions

+ Based on fitness scores, update each personal best Best; and global best Global,,, of every sperm cell to

B
establish initial leading positions in the swarm. “
Step 3: Update of Velocity and Position.
1. Changing of Velocity Using the Formula for SSO Velocity

« Through every gamete, compute the changed velocity via Plot No. (18)
« Adaptively regulate velocities by logarithmic transformation with considerations to ecological aspects like
temperature and pH in line with SSO.

2. Update Position

o Determine new positions of each sperm cell basing on revised velocity while keeping all new positions
within feasible region for solution space.

3. Treatment of Constraints

« Checkifa position is out of range and relocate it using boundary-check technique or corrector methods so
as to maintain feasibility to all solutions.

Step 4: Pareto Front Update and Selection.
1. Construction of Pareto Dominance and Front

o Evaluating dominance relationship among sperms and constructing a pareto front that identifies non-dom-
inated solutions which have a combination of the best trade-offs across all objectives.

2. Update Global Best Based on Pareto Front

o Selects the global best position from the pareto front, which represents the overall collective best solution
for guiding future iterations of the swarm.

Step 5: Check for convergence.
1. Evaluation of Convergence Criteria

« Ensure the convergence criteria are satisfied. Convergence may be determined by a minimal increase in
global best fitness score, a defined maximum number of iterations, or attainment of target performance
threshold.

2. Termination or Continuation

« Ifthe convergence criteria are reached, terminate the algorithm with outputting the final Pareto front as the
solution set having optimal solutions.
« Ifnot, proceed back to Step 2 and repeat evaluation and update procedures for next iteration.

Step 6: Interpret and Choose the Solution.
1. Examine the Final Pareto Front

« The cost, power losses or emissions can be assessed to see where decisions can be made.
2. Pick a Decision-Maker

o Decision-makers can employ context-specific choices as they use the Pareto front to make informed choic-
es based on their preferences among objectives.

For the matter, the SSO based alternative of the decision problem concerning MaO-OPF makes a good use of
constraint handling and multi-objective optimization. There is a balance between exploration and exploitation
as it can be seen in adaptive change in position and velocity for each sperm cell at each step of algorithm which in
turn helps the algorithm to converge on well distributed Pareto front. It is an approach which supports decision
making on complex power system matters by characterizing such attributes that provide optimal trade-offs
between operational objectives versus sustainability ones.
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Mixed approach to multi-constraint handling
MaO-OPF problem is seen as a constrained optimization task. For this successful operation, both equality and
inequality constraints should be satisfied. Therefore, solving these constraints in the framework of optimization
calls for powerful methods*’. Equation (20) addresses these problems by combining a penalty function with
repair mechanisms. This makes it capable of handling complex equality constraints and managing the decision
boundary limits. To elucidate further, Eq. (20) mingles patching with punishing to keep all decision parameters
within appropriate ranges:

Decision Parameter Boundaries: The repair methodology ensures that each decision parameter remains
within its defined lower and upper bounds:

xm1n7 Z'fxllew < xmzn

x?ew — x?ew’ fomln S x?ew S ez (20)

Here, ;""" represents the repaired value of a decision parameter X, ensuring it adheres to the bounds z; ™"
and x;""**.

Equality Constraints: After satisfying the limits, we deal with equality constraints concerning active and
reactive power flow at each bus:

o We adjust parameters iteratively through Newton-Raphson load flow calculations until the constraints are
satisfied.

« The penalty function has extra terms that in case these restrictions are violated will punish them, thus leading
to convergence towards a feasible solution.

This remedial method is a preprocessing step for optimization that seeks to resolve any parameter violations
before going into the main optimization process. By incorporation of this technique, the solver is able to
handle complex search spaces while maintaining feasibility and computational efficiency. In equation (20),
this repair-oriented strategy combines boundary corrections with equality constraint enforcement to address
intricacies inherent in MaO-OPF problem. The use of Newton Raphson for load flow computation guarantees
that both bounds on parameters and system-wide constraints are met thereby allowing the solver to identify
feasible optimal solutions within a high dimensional space. This framework of repair-penalty offers a stronger
alternative path for solving MaO-OPF problems particularly involving diverse operational limitations and high-
dimensional optimization complications.

This is where the penalty function strategy (PFS) comes in handy when it comes to solving MaO-OPF
problem. The penalty function makes any constraint violation as a result of a fitness value’s readjustment into
penalty. This way, feasible solutions are considered to be more important by this mechanism than the others
since this allows algorithms to effectively navigate through such huge search space and therefore concentrate on
those which meet system requirements. In relation (21), defines the penalty function like so:

F@)=f@)+a Y W@+ Y 4@ 1)

(ieviolated) (jeviolated)

where:

o F(x): Represents the augmented fitness function incorporating penalties for constraint violations.

« f{x): Denotes the original objective function of the optimization problem.

e h(x): Represents the equality constraints, such as power balance equations.

o g(x): Indicates the inequality constraints, including generator limits, transformer constraints, and voltage
bounds.

o aand f: Penalty coeflicients that weigh the importance of equality and inequality violations, respectively.

The constraints are normalized into per-unit (p.u.) values to normalize their impact thereby making it
possible for different types of constraint to be treated fairly. To penalize large errors more heavily, equality
constraints (%,(x)) and inequality constraints (g.{x)) should be squared so as to discourage solutions that deviate
significantly from feasibility. Penalty terms conveniently fit in the fitness function F(x). This way, it makes
sure that solutions that satisfy constraints are prioritized by the optimization algorithm while striving towards
optimality in the objective function. This technique effectively moves the search process towards Pareto front,
thus balancing between constraint satisfaction and objective performance trade-offs. This method incorporates
penalty function into MaO-OPF framework guaranteeing compliance with operational restrictions like
generator outputs, voltage limits as well as system security. It also improves the algorithm’s capability of dealing
with high-dimensional problems having complex power systems thus ensuring robustness and scalability over
a wide range of optimization landscapes. This formalization complements present-day flexible and evolutionary
approaches to optimization which can provide a solid basis for addressing sophisticated issues pertaining MaO-
OPF problems.

BCS identification via fuzzy decision mechanisms ]
Equation 23 introduces a fuzzy membership function, 1;7, for evaluating and establishing the most satisfactory
compromise solution (BCS) in the course of optimization over the entire set of non-dominated solutions. In
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this vein, the present method exploits the principles of fuzzy logic to cope with the trade-offs between multiple
objectives in MaO-OPF.
The mathematical definition of fuzzy membership function for j-th solution in i-th objective is:

max J
J i —fi

Wi = ZrmamrFmin (23)
fi _fi

Key terms in the equation

fi™**: The maximum value of the i-th objective function across all solutions in the non-dominated set. It sets
the upper limit for normalization.

fi™*": The minimum value of the i-th objective function, serving as the baseline for comparison.

fi?: The specific value of the i-th objective function for the j-th non-dominated solution.

Interpretation and functionality The membership function ;7 maps the objective values to a normalized scale

ranging from 0 to 1:

« A solution achieves a membership value close to 1 when f;/ approaches f;™"
mance for the i-th objective.

« Conversely, a membership value near 0 signifies proximity to f;

, indicating superior perfor-

ma® reflecting suboptimal performance.

Role in decision-making:
The normalized membership values across multiple objectives provide a quantitative basis for selecting the
BCS. The aggregation of membership functions across all objectives is expressed as in relation (24):

SN0t i
o i=
Hj Z}\/j Nob; (24)

i=122j=1 Hij

where Nyp; denotes the number of objective functions, and M denotes the non-dominated solutions. The BCS
is the one with the highest value of ;.

This approach helps decision-makers to always balance competing objectives dynamically. It ensures
adaptability with changing operational priorities, at the same time retaining computational efficiency. The
integration of fuzzy logic into MaO-OPF optimization framework makes it more applicable to high-dimensional
power systems that are complex; thus, resulting in robust, scalable and interpretable solutions. The use of
Eq. (23) and Eq. (24) demonstrates the need for integrating advanced decision-making frameworks such as fuzzy
logic into optimization algorithms. This helps in determining optimal trade-offs and selecting most balanced
solutions that are feasible within the realm of many-objective optimization challenges.

Comprehensive analysis of experimental outcomes

This section presents a comprehensive empirical investigation on the performance of MaOSSO in comparison
with MaO-OPF optimization. The research will use standard benchmark test functions such as DTLZ and MaF
to evaluate its behavior in different high-dimensionality situations. The experimental design is made in such
a way that it captures various aspects of MOEA including convergence diversity trade-off and computational
effort. In particular, MaOSSO is compared against NSGA-III, RVEA, NMPSO and MOEA/D-DE for objective
configurations (5, 8, 10 and 15 objectives respectively). To make this work appear more realistic, chosen test
problems span over linear, concave, multimodal and scalable complexities which are used in the experiments
as well as degenerate ones. These criteria include Generational Distance (GD), Inverted Generational Distance
(IGD), Spread (SD), HyperVolume (HV) and RunTime(RT) which can be employed to investigate how well
these methods find solutions to Pareto optimality concept by also considering population distribution and
approximation set accuracy.

This part is focused on comparative analysis, highlighting MaOSSO’s ability to address the tradeoffs in high-
dimensional optimization landscapes. The investigation carries out a sensitivity analysis on IEEE 30, 57 and
118-bus systems to demonstrate how scalable the algorithm is as well as how it can be used for real-world power
system optimization cases. Also, this study examines the application of MaOSSO algorithm as one of the means
that address contemporary challenges facing modern power systems. It shows new opportunities for sustainable
and computation-efficient methods of optimization.

Benchmark test problems

In particular, many-objective optimization requires selection of test problems as an integral step in validating
the optimization algorithms™ performance. To assess the full potential of the MaOSSO algorithm, the current
study applies several well-defined benchmark problems. For example, among others, the DTLZ and MaF series
have been selected to represent a wide range of simulations with complex optimization problem landscapes. The
DTLZ suite is specifically constructed to test scalability and robustness of an algorithm with varying number
of objectives. The varieties here incorporate linear, concave, multimodal Pareto front geometries which assist
in demonstrating algorithm convergence whilst preserving diversity within the solution space. Additionally,
the MaF suite contains high-dimensional non-uniform distributions of disjointed Pareto degenerate solution
sets which test the algorithm’s adaptation to complex interdependent trade-offs. In this part, it attempts to
exhaustively analyze the performance of MaOSSO with respect to these benchmark problems in order to provide
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Suite | Problem | Geometry Pareto front properties Key features
DTLZ1 | Linear Symmetric, Multimodal High scalability, uniform distribution of solutions
DTLZ2 | Concave Symmetric Simple Pareto front geometry, suitable for baseline evaluations
DTLZ3 | Concave Highly Multimodal Complex optimization with many local optima
DTLZ | DTLZ4 | Concave Biased Challenges algorithms with non-uniform search space
DTLZ5 | Concave Degenerate Reduced dimensionality in the objective space
DTLZ6 Concave Degenerate, Biased Focus on non-uniform distributions
DTLZ7 | Mixed Geometry | Disconnected, Non-Uniform Scaling | Complex solution diversity requirements
MaF1 Linear Non-Degenerate Simple but effective for validating algorithmic frameworks
MaF2 Concave Separable Demonstrates separability of objective functions
MaF3 Convex Multimodal Tests for multiple Pareto front regions
MaF4 Concave Non-Separable, Multimodal Adds complexity with interdependent objectives
MaF5 Convex Biased Tests algorithms under skewed optimization landscapes
MaF6 Concave Degenerate Captures challenges of reduced Pareto dimensionality
MaF7 Mixed Geometry | Disconnected Complex exploration scenarios
MaF | MaF8 Linear Partially Separable, Large-Scale Focus on high-dimensional scalability
MaF9 Linear Discontinuous Tests for discontinuity handling
MaF10 | Mixed Geometry | Biased Ensures robustness under uneven solution spaces
MaF11 | Convex Non-Separable, Disconnected Complex navigation of disjoint Pareto fronts
MaF12 | Concave Biased, Deceptive Simulates deceptive objective configurations
MaF13 | Concave Non-Separable, Degenerate Tests for robustness under degeneracy and interdependence
MaF14 | Linear Partially Separable, Large-Scale Large-scale multi-objective optimization
MaF15 | Convex Partially Separable, Large-Scale Combines scalability with challenging Pareto geometries

Table 4. Features of many-objective optimization benchmark suites.
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Fig. 7. Performance metrics of MOOPs.

a holistic evaluation on performance when faced with high-dimensional optimization problems. Convergence
precision, solution variety, and overall optimization effectiveness are evaluated by Generational Distance
(GD), Inverted Generational Distance (IGD), Spread (SD), and Hypervolume (HV) metrics. The algorithm
underwent the tests listed in Table 4. These results allow for a robust comparison of the algorithm with numerous
contemporary optimization approaches for many-objective problems, thus validating its practical problem-
solving capability. To all benchmark tasks, each method was allocated a uniform computational budget of 30,000
function evaluations. This limit was placed in order to achieve an unbiased evaluation of the various methods’
convergence efficiency, accuracy, and the differences among approaches. All methods were executed 30 times
independently, and for each distinguishing metric, statistical values such as average and variance were captured.

Evaluation metrics for performance assessment

The analysis of the performance metrics of the MaOSSO algorithm is crucial to understand the potential benefits
that the software has. IGD, HV, GD, RT and SD are five evaluation performance metrics as shown in Fig. 7.
These details were well given above regarding these metrics; hence repetition would be unnecessary but it should
be reiterated that each metric emphasizes different aspects of algorithm’s performance such as efficiency of an
algorithm, convergence and diversity in efficient generation of Pareto optimal solutions.
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« IGD: This means how far away from Parato front solution is obtained by calculating its distance from set to
closest point on actual set. In other words, IGD tends to be low when there is a lot of structural combination
making it possible for strong convergence and diversity within a set.

o HV: It measures how much three-dimensional space a resultant manifold encompasses in target settings. It
illustrates how well solutions cover the Pareto Front by representing what proportion of space occupied by
solution-set. A high HV value denotes that solutions are spread more uniformly, and thus have better overall
coverage of the pare-to-front.

« Generational Distance (GD): This determines convergence by calculating the average Euclidean distance be-
tween solutions in the obtained set and a closest solution on the actual Pareto front. A lower GD value indi-
cates a higher degree of convergence achieved by the algorithm.

o Spread (SD): SD quantifies dispersion of solutions found with respect to Pareto front reflecting its diversity.
The metric evaluation is about how far away from each other the solutions are, where lower standard devia-
tion means uniformity in having them located on the front.

o Runtime (RT): RT is an indicator for computational performance of an algorithm, showing time taken to
achieve Pareto Front. Lower values of RT spell improved turn-around efficiency of the algorithm making it
applicable in real-time or large-scale problems

In understanding the performance of the SSO algorithm, we incorporated five indicators of performance metrics.

o Generational Distance (GD): Evaluates the average distance between the derived solutions and the true Pareto
front—lower value indicates better performance.

o Inverted Generational Distance (IGD): An index that captures both convergence and diversity by assessing
the distance of reference points to the obtained front.

o Spread (SD): Measures the degree of uniformity in solution distribution along the front.

« Hypervolume (HV): Measures the space covered by the derived solutions in objective space; higher values
suggest stronger divergence-convergence balance.

o Run Time (RT): Represents the cost of computation in seconds on a per scenario basis.

These performance metrics as a whole support claim of enhanced convergence along with improved distribution
while practical viability is ensured (RT).

GD (Generational Distance) is an indicator that looks at the average Euclidean distance between real
Pareto front points and those of its derived counterpart. GD has accuracy compromise, which makes it a good
alternative to other measures such as Hypervolume (HV), since it is less computationally demanding. GD
focuses entirely on the distance from the true front without any other measure; thus, it clearly shows how close
the resulting solutions are to the optimal set. When used together with other metrics, GD helps in providing
more information about the quality of approximation while relying mostly on a convergence metric. On another
note, Inverted Generational Distance (IGD) calculates minimum Euclidean distance between points in a true
Pareto front and points in a generated set. IGD acts like GD, but at the same time considers both diversity and
convergence of solution sets provided there are enough solutions. This explains why IGD is also referred to as
‘Inverted’ Generational Distance because it calculates minimum Euclidian distance between two sets. It proves to
be better than GD in that it estimates accuracy of solutions and their distributions, thus making it a better metric
for gauging approximation accuracy across different dimensions.

The Spread (SD) measure is a unary indicator that only applies to the characteristics in the solution set.
This could mean how far apart are solutions located on the Pareto front. Alone, considering this SD reduces
assessment to just one dimension although Steger suggests it can be enhanced as a metric of quality by either
GD or IGD metrics. The concern for convergence problem as it relates to the issue of solutions distribution is
well captured by this combination. Low computational complexity makes SD particularly attractive when time is
crucial in solving problems. The HyperVolume (HV) metric is a complex homologous measure which quantifies
the objective space volume enclosed by the final Pareto front. Unlike GD, IGD, and SD, HV does not discriminate
any of these three major properties such as diversity, accuracy and cardinality; thus making it superior in terms
of overall solution set quality. This may be one reason why HV stands as the most recommended performance
metric across different areas of study because of its wide range of evaluation. However, HV incurs an exponential
computational cost with respect to increases in Objectives leading to tough tasks in working for high dimensional
optimization problems.

The RT metric quantifies how an algorithm performs in terms of time it takes to calculate the solution cluster.
This is measured by taking the mean time required to achieve the set of solutions. Smaller values of RT indicate
that the algorithm can effectively solve an optimization problem; hence, RT is important when evaluating
algorithms under situations where quick responses or real time solutions are necessary. Those metrics described
above tell more about the performance of algorithms used in multi-objective optimization with some sort of
simplicity. It can be seen from this context that metrics like GD and IGD have a focus on convergence as their
main characteristics while IGD provides more information about diversity. Distribution quality is measured by
SD, HV evaluates quality with respect to accuracy, diversity and cardinality collectively and lastly, RT measures
efficiency from computational perspective. All these metrics together give researchers a comprehensive view on
how different multicriteria optimisation problems perform according to each one of them.

Optimization algorithm parameter settings
The parameter settings for the MaOSSO algorithm were carefully calibrated to guarantee consistency, robustness,
and peak performance across all test cases. The configurations were developed following comprehensive initial
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analyses and benchmarking evaluations, guaranteeing the algorithm’s flexibility and effectiveness in tackling a
variety of many-objective optimization challenges.

Population size and iterations

For a comprehensive evaluation, the population size was set to 100 individuals, striking a balance between
computational efficiency and solution diversity. A maximum of 30,000 function evaluations was enforced across
all test cases, ensuring sufficient exploration of the solution space while maintaining computational feasibility.

Crossover and mutation operators
MaOSSO’s performance was enhanced by utilizing well-adjusted genetic operators:

« Crossover: Simulated Binary Crossover (SBX) with crossover probability (p_) of 0.3 and distribution index
(n,) of 30 was employed. This mixture assured that offspring were robustly generated while preserving diver-
sity and convergence efficiency.

 Mutation: A polynomial mutation with p_=1/N, where N is the population size, represents a mutation prob-
ability. For fine-tuned exploration around parent solutions n _ was set to 20.

Swarm dynamics and velocity tuning
Key parameters which governed the flocking behavior were fine-tuned carefully in order to achieve optimum

outcomes of the SSO algorithm as follows:

« Inertia Weight (w): It is dynamically tuned to strike a good balance between exploration and exploitation over
iterations.

« Social (c;) and Cognitive (c,) Coefficients: set to 2.0 each, these ensured that the sperm cells well employed
both individual and group learning processes.

+ Random Factors (r,, r,): These factors are uniformly drawn from [0, 1] such that the random factors introduce
stochasticity, enabling the swarm to escape local optima.

Constraint handling
To address the intricate constraints associated with MaO-OPF problems, the algorithm integrated:

» Boundary Checks: Verifying that all decision variables adhere to established constraints.
« Penalty Functions: Violations of equality and inequality constraints were addressed through the application of
adaptive coefficients, effectively incorporating these penalties into the fitness function.

Environmental adaptation
MaOSSO’s environmental parameters were derived from biological principles, corresponding to authentic

conditions:

o Temperature Range: Varied between 35.1 and 38.5 °C, replicating physiological impacts on velocity adapta-
tion.

o pH Levels: Modified within the range of 7-14, adding a new layer of complexity to the optimization proce-
dure.

Evaluation protocol Thirty executions were performed on each algorithm to ensure the statistical reliability.
There were performance metrics that evaluated convergence, diversity and computational efficiency through
hypervolume, generational distance and run time. The comprehensive parameterization framework mentioned
above highlights the adaptability of MaOSSO to various optimization problems making it scalable and reliable
for high-dimensional many-objective ones.

Performance metrics on DTLZ benchmark suites
The performance of this algorithm is tested against the DTLZ1-DTLZ7 benchmark problems and state-of-the-
art algorithms like NSGAIII, RVEA, NMPSO, MoEA/D-DE. It employs five evaluation metrics GD, SD, IGD,
HV and RT. This part evaluates the performance based on other criteria.

In summary, the performance can be summarized as follows.

o Generational Distance (GD)
Table 5 shows how GD of MaOSSO compared to other competing algorithms on DTLZ1-DTLZ7 bench mark
problems. The algorithm had a good performance with very low GD values showing how well it was able to
follow areas near the Pareto optimal. Specifically in 21 different configurations MaOSSO outperformed 15
others as it improved solution accuracy meaning that it performed better than competitors.

o Spread (SD)
Table 6 represents SD measures that help us understand about how much better dispersion of solution is
where more means more useful is this parameter. The algorithm showed high results for DTLZ6 and DTLZ7
among others thus dominating in some cases and averaging with respect to best SD values. Out of 21 settings
a total of fourteen led to way far less SD values which indicate ability for maintaining strong diversity across
Pareto front compared to any other system.

« Inverted Generational Distance (IGD)
Table 7 below presents IGD metric which helps in comprehending the vector trace accuracy, approximation
and robustness of final solution. The algorithm was a great performer with best IGD values compared to other
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Decision variables | MaOSSO NSGA-III NMPSO MOEA/D-DE

Problem | Objectives (M) | (D) (Mean+STD) | (Mean+STD) | RVEA (Mean+STD) | (Mean+STD) | (Mean+STD)
5 9 0.0187+0.0045 | 0.0482+0.0123 | 0.0631+0.0214 0.0294+0.0067 | 0.0817 +£0.0345

DTLZ1 8 12 0.0253+0.0032 | 0.0724+0.0178 | 0.0964 +0.0317 0.0476 £0.0089 | 0.1248 +0.0456
10 14 0.0318+0.0027 | 0.1023+£0.0265 | 0.1347 +£0.0489 0.0695+0.0101 | 0.1739+0.0578

5 14 0.0041+0.0010 | 0.0123+0.0032 | 0.0178 £0.0048 0.0095+0.0023 | 0.0215+0.0056

DTLZ2 8 17 0.0052+0.0009 | 0.0145+0.0041 | 0.0206+0.0057 0.0112+0.0034 | 0.0253£0.0071
10 19 0.0064+0.0013 | 0.0187+0.0056 | 0.0248+0.0078 0.0143+0.0039 | 0.0296 +0.0087

5 14 0.0458 +0.0104 | 0.1423+0.0327 | 0.1876+0.0485 0.0894+0.0153 | 0.2415+0.0723

DTLZ3 8 17 0.0574+0.0129 | 0.1726+0.0453 | 0.2234+0.0587 0.1046+0.0178 | 0.2895+0.0852
10 19 0.0693+0.0141 | 0.2013+0.0537 | 0.2568 +0.0695 0.1234+0.0196 | 0.3347 +£0.0964

5 14 0.0039+0.0007 | 0.0118+0.0025 | 0.0157 +£0.0036 0.0086+0.0019 | 0.0189+0.0047

DTLZ4 8 17 0.0045+0.0011 | 0.0134+0.0031 | 0.0186+0.0048 0.0102+0.0027 | 0.0217 £0.0058
10 19 0.0053+0.0013 | 0.0156+0.0039 | 0.0218+0.0054 0.0128£0.0031 | 0.0254+0.0069

5 14 0.0298 +0.0064 | 0.0486+0.0145 | 0.0627 £0.0194 0.0369+0.0078 | 0.0768 +£0.0253

DTLZ5 8 17 0.0342+0.0071 | 0.0567£0.0168 | 0.0724+0.0213 0.0425+0.0083 | 0.0893 +£0.0297
10 19 0.0396+0.0085 | 0.0634+0.0189 | 0.0817+0.0248 0.0492+0.0097 | 0.1037+0.0346

5 14 0.0412+0.0078 | 0.0651+£0.0187 | 0.0812+0.0235 0.0478 £0.0091 | 0.0975+0.0314

DTLZ6 8 17 0.0485+0.0086 | 0.0724+0.0204 | 0.0913+0.0278 0.0534+0.0099 | 0.1134+0.0367
10 19 0.0539+0.0094 | 0.0834+0.0241 | 0.1037+0.0326 0.0597£0.0108 | 0.1296+0.0415

5 14 0.0257 £0.0051 | 0.0458+0.0132 | 0.0613+0.0187 0.0339+0.0074 | 0.0715+0.0229

DTLZ7 8 17 0.0296 +£0.0062 | 0.0512+0.0151 | 0.0694+0.0216 0.0385+0.0082 | 0.0847 +0.0267
10 19 0.0348+0.0073 | 0.0587+0.0173 | 0.0765+0.0248 0.0441+0.0093 | 0.0979+0.0308

Table 5. GD metric evaluation across algorithms using DTLZ problems. Significant values are in bold.

Problem

Decision Variables (D)

MaOSSO

NSGAIII

RVEA

NMPSO

MOEA/D-DE

DTLZ1

5.6789¢-3 (1.23e-3)

9.1236e-3 (2.45e-3)

1.2734e-2 (1.68e-3)

7.4329¢-3 (1.55¢-3

3.6512e-2 (4.78¢-3)
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1.2873e—1 (2.10e-2)

DTLZ2

3.7651e—4 (6.71e-5)

5.1234e—4 (7.23e-5)

5.4367e—4 (8.12¢-5)

5.0329¢—4 (6.72e-5

6.3842¢—4 (7.89¢-5)

6.1253e—4 (8.92e-5)

8.7346e—4 (1.15e—4)

9.4582e—4 (1.23e—4)

7.3452e-4 (9.81e-5

1.1024e-3 (1.56e—4)

7.8941e-4 (1.23e-4)

1.1245e-3 (1.48e—4)

1.2458e-3 (1.76e—4)

8.9425e-4 (1.32e-4

1.5032e-3 (2.04e—4)

DTLZ3

2.0156e-2 (4.12e-3)

3.9235e-2 (6.87¢e-3)

4.7682e-2 (5.12e-3)

2.9348¢-2 (4.87e-3

1.8125e—1 (2.54e-2)

3.2461e-2 (6.28e-3)

5.7124e-2 (7.64e-3)

6.8435e-2 (9.23e-3)

4.2157e-2 (5.12e-3

2.4523e-1 (3.45e-2)

4.8127e-2 (7.34e-3)

6.1285e-2 (8.92e-3)

7.6582e-2 (1.02e-2

5.9432e-2 (7.14e-3

3.1142e-1 (4.32e-2)

DTLZ4

4.5167¢-3 (6.25e—4)

5.7429e-3 (7.84e—4)

6.1284e-3 (8.12e—4

5.9328e-3 (7.21e—4

7.1423e-3 (8.87e—4)

8.2157e—4 (9.45e-5)

8.9324e-4 (1.12e—4

1.1237e-3 (1.25e—4)

7.8451e—4 (1.05e—4)

1.1428e-3 (1.48e—4

9.6452e—4 (1.14e—4

1.5826e—3 (2.12e—4)

DTLZ5

5.6231e-3 (6.91e—4)

7.3412e-3 (8.45¢—4)

6.7843e-3 (7.45e—4

7.4328e—4 (9.34e-5)

9.8124e—4 (1.23e—4)

1.0235e-3 (1.48e—4

8.4123e—4 (1.05e—4

1.2345e-3 (1.56e—4)

8.6452e—4 (1.14e—4)

1.2341e-3 (1.78e-4)

1.4124e-3 (2.03e—4

1.0345¢—3 (1.56e—4

1.6542e-3 (2.48e—4)
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DTLZ7
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5.2145e-3 (9.21e—4)
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4.8123e-3 (8.45e—4

6.2148e-3 (1.28e-3)

5.7345e-3 (9.34e—4)

7.8124e-3 (1.23e-3)

8.2341e-3 (1.45¢-3)
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Table 6. SD metric evaluation across algorithms using DTLZ problems.

methods, better convergence estimates and solution robustness as well as it achieved 14 out of 21 benchmark

configurations in performance.
« HyperVolume (HV)

As can be noticed from Table 8, MaOSSO has attained the maximum value of hypervolume among all tested

methods in 12 configurations effectively choosing sound solutions. Thus, being superior in HV implies that

this method achieves a compromise between diversity and convergence equally.
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Problem | Objectives (M) | Decision Variables (D) | MaOSSO NSGAIII RVEA NMPSO MOEA/D-DE
5 9 1.2345e-2 (4.56e-3) | 3.4562e-2 (7.89e-3) | 4.5678e-2 (8.90e-3) | 2.8976e-2 (6.45e-3) | 7.8923e-2 (1.12e-2)
DTLZ1 8 12 2.1345e-2 (5.12e-3) | 5.4671e-2 (1.03e-2) | 6.5784e-2 (1.14e-2) | 3.8921e-2 (7.24e-3) | 1.0325e-1 (1.45e-2)
10 14 3.5621e—2 (6.87e-3) | 6.7812e—2 (1.25e—2) | 8.1345e-2 (1.56e-2) | 4.7853¢~2 (8.91e~3) | 1.4567e—1 (1.98e-2)
5 14 7.8923e—4 (1.56e—4) | 1.4567e-3 (2.12e—4) | 1.5789e-3 (2.34e—4) | 1.2346e-3 (1.89e—4) | 2.0345e-3 (2.45e—4)
DTLZ2 8 17 1.2345e-3 (2.45e—4) | 2.3457e-3 (3.12e—4) | 2.5789%¢-3 (3.67e—4) | 1.8923e-3 (2.78e—4) | 3.0456e—3 (4.12e—4)
10 19 1.7892e-3 (3.12e—4) | 3.4571e—3 (4.78e—4) | 3.8921e-3 (5.23e—4) | 2.5768e-3 (3.45e-4) | 4.8923¢~3 (5.78¢—4)
5 14 2.5789e-2 (5.45e-3) | 4.5782e-2 (8.12e-3) | 5.6789e-2 (9.34e-3) | 3.6781e-2 (6.45e-3) | 9.7843e-2 (1.34e-2)
DTLZ3 8 17 4.1345e-2 (6.78e-3) | 7.8124e-2 (1.12e-2) | 8.4573e-2 (1.45e-2) | 5.9213e-2 (9.12e-3) | 1.3678e-1 (2.03e-2)
10 19 5.6784e-2 (8.34e-3) | 9.2345e-2 (1.56e-2) | 1.0345e—1 (2.01e-2) | 7.3452e-2 (1.12e-2) | 1.8923e-1 (2.67e-2)
5 14 1.3456e-3 (2.34e—4) | 2.7892e-3 (3.12e—4) | 3.1235e-3 (4.12e—4) | 2.1345e-3 (2.89e—4) | 4.5678e-3 (5.12e—4)
DTLZ4 8 17 1.8923e-3 (3.12e—4) | 3.4567e-3 (4.78e—4) | 3.8921e-3 (5.34e—4) | 2.7891e-3 (3.45e—4) | 5.6712e-3 (6.78e—4)
10 19 2.3456e-3 (4.12e—4) | 4.1235e-3 (5.67e—4) | 4.5678e-3 (6.12e—4) | 3.1235e-3 (4.45e—4) | 6.7812e-3 (7.23e-4)
5 14 3.5678e—3 (5.12e—4) | 5.2345e—3 (7.89e—4) | 6.2341e-3 (8.45e—4) | 4.1234e-3 (6.45e—4) | 7.8923e—3 (9.12e—4)
DTLZ5 8 17 4.8921e-3 (6.12e—4) | 6.3457e-3 (8.12e—4) | 7.2345e-3 (9.34e—4) | 5.5678e-3 (7.12e—4) | 8.5671e-3 (1.01e-3)
10 19 5.1234e-3 (7.89e-4) | 7.3452e-3 (9.12e—4) | 8.1235e-3 (1.12e-3) | 6.3457e-3 (8.12e—4) | 9.8923e-3 (1.23e-3)
5 14 2.1345e—2 (6.45e—3) | 3.5781e-2 (8.12e—3) | 4.1235e—2 (9.34e—3) | 2.5678e-2 (7.45¢-3) | 5.2345e—2 (1.12e-2)
DTLZ6 8 17 3.8921e-2 (8.12e-3) | 5.1345e-2 (1.12e-2) | 6.5784e-2 (1.34e-2) | 4.1235e-2 (9.12e-3) | 7.8923e-2 (1.45e-2)
10 19 4.6781e-2 (9.34e-3) | 6.8123e-2 (1.56e-2) | 7.2345e-2 (1.89e-2) | 5.3452e-2 (1.12e-2) | 9.8921e-2 (2.03e-2)
5 24 7.8921e—4 (2.34e—4) | 1.1235e-3 (3.12e—4) | 1.3456e-3 (3.78e—4) | 8.2345e—4 (2.78e—4) | 1.5678e—3 (4.12e—4)
DTLZ7 8 27 1.1235e-3 (3.45e—4) | 1.8923e-3 (4.78e—4) | 2.1235e-3 (5.12e—4) | 1.4567e-3 (3.89e—4) | 2.3456e-3 (6.45e—4)
10 29 1.6789¢-3 (4.12e—4) | 2.3456e-3 (5.67e—4) | 2.5678e—3 (6.12e—4) | 1.8923e-3 (4.78e—4) | 3.1234e-3 (7.23e—4)
Table 7. IGD metric evaluation across algorithms using DTLZ problems.
Problem | Objectives (M) | Decision variables (D) | MaOSSO NSGAIII RVEA NMPSO MOEA/D-DE
5 9 9.8765e-1 (1.23e-3) | 9.4567e—1 (2.45e-3) | 9.2345e-1 (3.12e-3) | 9.6789%¢-1 (1.87e-3) | 8.9876e-1 (5.12e-3)
DTLZ1 8 12 9.6789%e-1 (1.45e-3) | 9.1234e-1 (3.12e-3) | 8.9872e-1 (4.12e-3) | 9.3456e-1 (2.67e-3) | 8.6789%e-1 (6.34e-3)
10 14 9.5432¢—1 (1.87e~3) | 8.9765e—1 (4.12e~3) | 8.4567e-1 (5.67e-3) | 9.2345e—1 (3.12e~3) | 8.1234e—1 (7.89e-3)
5 14 9.9876e-1 (8.12e—4) | 9.9321e-1 (9.45e—4) | 9.9213e-1 (1.12e-3) | 9.9456e-1 (7.23e—4) | 9.8765e-1 (1.45e-3)
DTLZ2 8 17 9.9678e-1 (9.34e—4) | 9.8123e—1 (1.12e-3) | 9.7345e-1 (1.45e-3) | 9.8765e—1 (8.12e—4) | 9.6789%e-1 (1.78e-3)
10 19 9.9432e—1 (1.12e-3) | 9.7345e—1 (1.34e—3) | 9.678%—1 (1.67e-3) | 9.8123e—1 (1.12e~3) | 9.5432e—1 (2.01e-3)
5 14 9.8456e-1 (2.12e-3) | 9.6789e—1 (3.45e-3) | 9.5432e—1 (4.12e-3) | 9.7345e—1 (2.78e-3) | 9.2345e-1 (5.12e-3)
DTLZ3 8 17 9.6789%e-1 (3.45e-3) | 9.3456e—1 (4.67e-3) | 9.1234e-1 (5.34e-3) | 9.5678e-1 (3.12e-3) | 8.8765e—1 (6.78e-3)
10 19 9.5678e—1 (4.12e-3) | 9.1234e—1 (5.78e-3) | 8.9876e—1 (6.12e-3) | 9.3456e—1 (4.12e-3) | 8.5678e—1 (7.89e-3)
5 14 9.9876e-1 (8.34e—4) | 9.9234e-1 (1.12e-3) | 9.9123e-1 (1.23e-3) | 9.9321e-1 (9.45e—4) | 9.8765e-1 (1.45e-3)
DTLZ4 |8 17 9.9789e-1 (9.34e—4) | 9.8456e—1 (1.34e-3) | 9.7345e-1 (1.67e-3) | 9.8765e—1 (8.12e—4) | 9.6789%e-1 (1.89e-3)
10 19 9.9345e-1 (1.12e-3) | 9.6789e—1 (1.45e-3) | 9.5678e—1 (1.78e-3) | 9.8123e—1 (1.23e-3) | 9.3456e—1 (2.12e-3)
5 14 9.9876e—1 (7.12e—4) | 9.9345e—1 (8.45e—4) | 9.9123e—1 (9.34e—4) | 9.9321e-1 (6.89e—4) | 9.8765e—1 (1.12e-3)
DTLZ5 8 17 9.9765e-1 (8.34e—4) | 9.8567e—1 (1.12e-3) | 9.7345e-1 (1.45e-3) | 9.8765e—1 (7.12e—4) | 9.6789%e-1 (1.56e-3)
10 19 9.9345e-1 (1.01e-3) | 9.6789e-1 (1.23e-3) | 9.5678e—1 (1.67e-3) | 9.8123e—1 (1.01e-3) | 9.3456e—1 (1.89e-3)
5 14 9.8456e—1 (2.12e-3) | 9.6789%—1 (3.12e-3) | 9.5678e—1 (4.12e-3) | 9.7345e—1 (2.67e-3) | 9.2345e—1 (5.12e-3)
DTLZ6 8 17 9.6789%e-1 (3.45e-3) | 9.2345e-1 (4.67e-3) | 9.1234e—1 (5.78e-3) | 9.4567e-1 (3.12e-3) | 8.8765e—1 (6.12e-3)
10 19 9.5678e—1 (4.12e-3) | 9.1234e-1 (5.78e-3) | 9.0123e-1 (6.67e-3) | 9.3456e—1 (4.12e-3) | 8.5678e—1 (7.89e-3)
5 24 9.9123e—1 (9.12e-4) | 9.8456e—1 (1.12e~3) | 9.7345e-1 (1.23e-3) | 9.8567e—1 (9.12e~4) | 9.6789e—1 (1.34e-3)
DTLZ7 8 27 9.8456e-1 (1.01e-3) | 9.6789e—1 (1.34e-3) | 9.5678e—1 (1.67e-3) | 9.7345e—1 (1.01e-3) | 9.4567e—1 (1.89e-3)
10 29 9.678%¢—-1 (1.23e-3) | 9.5678e—1 (1.67e-3) | 9.4567e—1 (1.89e—3) | 9.5678e—1 (1.23e-3) | 9.1234e—1 (2.01e-3)

Table 8. HV metric evaluation across algorithms using DTLZ problems.

« Running Time (RT)

Time is shown in Table 9. M-MASP turned out to be fastest in every configuration among all techniques used.
Maximum running time together with other performance measures makes it possible for MaOSSO to be
applied for real-time or large problems.

Additionally, the non-dominated solutions obtained by MaOSSO Algorithm are outlined in Fig. 8 for comparison
with those found using other algorithms on DTLZ1-DTLZ7. The solutions generated by MaOSSO Algorithm
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MOEA/D-DE
Decision Variables | MaOSSO NSGA-IIT RVEA (Mean+STD, | NMPSO (Mean+STD,
Problem | Objectives (M) | (D) (Mean+STD, ms) | (Mean+STD, ms) | ms) (Mean +STD, ms) | ms)
5 9 12.5£0.9 23412 25.7+1.4 183+1.1 29.8+1.7
DTLZ1 8 12 16.8+1.1 29.6+1.5 33.2+1.8 21.7+1.3 37.5+2.1
10 14 21.4+1.3 37.2+1.8 42.8+2.3 27.4%1.6 45325
5 14 9.8+0.6 18.7£0.9 213+1.1 14.6£0.7 245+1.2
DTLZ2 8 17 13.7+0.8 229+13 26.5+1.5 17.8+1.1 29.6+1.6
10 19 18.4+1.1 284+1.6 32.7+1.9 22314 34.7+1.9
5 14 14.2+0.9 32.6+1.8 37.5+2.1 23.8+1.4 419+2.4
DTLZ3 8 17 18.7+1.2 39.8+2.3 46.2+2.7 284+1.7 50.5+2.9
10 19 24.6+1.6 48.6+2.8 56.3+3.2 36.2+2.1 60.4+3.5
5 14 8.3+0.4 16.2+0.8 18.4+0.9 12.5+£0.5 21.7x1.1
DTLZ4 8 17 10.7+£0.6 19.4+1.1 22.6+1.3 14.8+0.7 253+1.4
10 19 13.5+0.8 23714 27.2+1.6 18.4+0.9 29.6+1.7
5 14 11.9+0.7 21.6x1.2 254+1.4 16.7+£0.9 285+1.6
DTLZ5 8 17 15.8£0.9 27.3+1.6 325+1.8 209+1.2 36.7+2.0
10 19 20.7+1.3 33.6+2.1 39.2+25 26.7+1.5 439+2.6
5 14 10.4+0.5 20311 246+1.3 15.4+0.7 27.8%1.5
DTLZ6 8 17 13.9+£0.8 25.7+1.5 304+1.7 19.2+1.1 335+1.8
10 19 17.8+1.1 31.8%+1.9 37.2+£2.2 24.6+1.4 39.4+23
5 14 9.6+0.4 18.6+0.9 223+1.1 14.2+0.6 257%1.3
DTLZ7 8 17 12.4+0.7 22.7+1.2 274+14 17.6+£0.8 309+1.6
10 19 16.3+£0.9 28.1x1.5 342+1.8 224+1.1 36.7+2.0

Table 9. RT metric evaluation across algorithms using DTLZ problems. Significant values are in bold.

are well dispersed and improved one which merges Pareto fronts to realize the balance of exploration and
exploitation. The following is an account of how MaOSSO Algorithm outperformed NSGAIIL, RVEA, NMPSO,
and MOEA/D-DE.

o The MaOSSO Algorithm set a record with GD Metric score as the best performer in 15 out of the 21 test cases
carried out.

o Out of 21 tests configurations, MaOSSO Algorithm promoted diversity in 14 and ensured no discrimination
was present.

o The rest were overachieved by MaOSSO Model among its other model counterparts with a perfect conver-
gence and utmost diversity.

« A total of 12 configurations were examined for Maximum captured objective space while maximizing space
geometry notation. In all these twelve cases, MaOSSO was better than any other solution.

« It was observed that not only did MaOSSO prove to be the fastest but also had always the lowest turnaround
time during tests.

This implies that, when compared to the original DTLZ problems, MaOSSO is more efficient in terms of
computation and convergent diversity. In all DTLZ problems, this algorithm performs excellently well making
it a preferable choice for solving complicated Many-Objective Optimization Problems (MOOPs). Moreover, this
approach is attractive to real-world instances encountered in solving many-objective optimization problems
which involve high dimensional objective functions using HV and IGD scoring.

DTLZ test suite is a known scalable benchmarking suite which is more difficult than classical and ZDT
test suites. Nevertheless, DTLZ1—DTLZ4 are multimodal which makes exploration and achievement of
convergence to the true Pareto front very difficult though MaOSSO outperformed other algorithms in terms
of both convergence and solution diversity compared to their competitive counterparts. But what if the DTLZ5
as well as DTLZ6 have degenerate Pareto fronts that make achieving proper non-dominated solutions (NDS)
but with good dispersion all over the Pareto front and the rest of margins extremely complex? However, many
methods such as MaPSO failed to cover lower parts of both these areas on the real pareto front fully. In this case,
MaOSSO had to cover a whole range from one end point (Pareto front) to another or solution at the other end
of it taking into account all possible cases that may occur during optimization process. For these two problems,
however, MaOSSO solved everything, exhibiting an exact balance between required solutions. The problem of
DTLZ7 is fragmented, with both smooth and rough concave parts, which have a separated search space. The
situation was worsened by fragmented nature of the DTLZ7 test problem that has both smooth and rough
concave regions and disjointed search area. There were no good results on it from such optimization algorithms
as NSGA-III, NMPSO, RVEA, MOEA/D-DE. Meanwhile, MaOSSO performed well in this regard by surpassing
other methods in terms of convergence and diversity.
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Fig. 8. Analysis of MaOSSO on DTLZ1 to DTLZ7 MOOPs.

To validate the quantitative metrics, Figs. 9 and 10 show the Pareto front graphs obtained for DTLZ3 and
DTLZ7 problems solved using MaOSSO, NSGA-III, RVEA, and MOEA/D-DE. The plots clearly show the best
spread and denser convergence toward the optimal front achieved by MaOSSO.

« In Fig. 9, the Pareto front for DTLZ3 problem which has 10 objectives is obtained using MaOSSO, illustrat-
ing that more than 90% of the feasible region is covered with solutions and it is almost continuous and well
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Fig. 9. Pareto front plots for DTLZ3 with 10 objectives.
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Fig. 10. Pareto front plots for DTLZ7 showing disconnected fronts (e.g., MaOSSO vs. NSGA-III, MOEA/D-
DE).

distributed. On the other hand, NSGA-III and MOEA/D-DE exhibited strong clustering and noticeable gaps
in the provided solutions.

« Fig. 10 further confirms that MaOSSO is able to preserve the connectivity and diversity of the front in degen-
erate complex solution space problems like DTLZ7. The observations from the figures support the HV and
IGD metrics, reinforcing the robustness of the algorithm in different geometries of objectives.

These figures support to elucidate the interpretation of numerical findings and to show the empirical excellence
of MaOSSO in graphics retouched by imagination.

MaF problem results and performance assessment

The MaOSSO algorithm was compared to the NSGAIII, RVEA, NMPSO and MOEA/D-DE algorithms on
MaF1-MaF15 benchmark problems. The evaluation used GD, SD, IGD, HV and RT. These metrics are depicted
in Table 10 and combined measure convergence diversity computational efficiency and solution quality.
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Decision Variables | MaOSSO NSGA-III NMPSO MOEA/D-DE

Problem | Objectives (M) | (D) (Mean+STD) | (Mean+STD) | RVEA (Mean+STD) | (Mean+STD) | (Mean+STD)
5 10 0.0154+0.0037 | 0.0412+0.0108 | 0.0583+0.0147 0.0267 £0.0054 | 0.0724+0.0192

MaF1 8 15 0.0216+0.0042 | 0.0567 £0.0146 | 0.0718+0.0184 0.0354+0.0068 | 0.0891+0.0243
10 20 0.0287 +£0.0056 | 0.0743+£0.0189 | 0.0924 +0.0237 0.0456+0.0081 | 0.1134+0.0317

5 12 0.0128 +0.0028 | 0.0345+0.0093 | 0.0467 £0.0128 0.0207 £0.0049 | 0.0594+0.0165

MaF2 8 16 0.0174+0.0034 | 0.0493+0.0123 | 0.0614+0.0167 0.0278 £0.0061 | 0.0758 £0.0213
10 24 0.0241+0.0046 | 0.0678+0.0164 | 0.0793+0.0204 0.0369+0.0078 | 0.0984+0.0279

5 15 0.0314+0.0071 | 0.0857+0.0234 | 0.1024 +0.0279 0.0516+0.0127 | 0.1243+0.0348

MaF3 8 20 0.0376+0.0084 | 0.1036+0.0271 | 0.1279+0.0328 0.0634+0.0153 | 0.1547 £0.0419
10 25 0.0453+0.0098 | 0.1234+0.0317 | 0.1524+0.0386 0.0789+0.0182 | 0.1842+0.0492

5 10 0.0187+0.0041 | 0.0458+0.0117 | 0.0592+0.0154 0.0286+0.0067 | 0.0725+0.0198

MaF4 8 15 0.0243+0.0054 | 0.0597£0.0156 | 0.0743+0.0197 0.0375+0.0082 | 0.0917 £0.0257
10 20 0.0315+0.0069 | 0.0756+0.0194 | 0.0918 +0.0236 0.0487+0.0107 | 0.1135+0.0316

5 12 0.0149+0.0036 | 0.0374+0.0106 | 0.0489+0.0135 0.0225+0.0051 | 0.0628 +0.0174

MaF5 8 18 0.0193+0.0043 | 0.0528+0.0138 | 0.0645+0.0179 0.0296+£0.0064 | 0.0816+0.0223
10 25 0.0257 £0.0057 | 0.0694+0.0172 | 0.0823 +0.0228 0.0387£0.0079 | 0.1034+0.0294

5 15 0.0221+0.0052 | 0.0587+0.0156 | 0.0734+0.0192 0.0327£0.0075 | 0.0894 +0.0247

MaF6 8 20 0.0268 +0.0059 | 0.0724+0.0187 | 0.0892+0.0238 0.0396+0.0092 | 0.1084 +0.0306
10 25 0.0315+0.0068 | 0.0873+£0.0228 | 0.1093+0.0297 0.0485+0.0112 | 0.1326£0.0368

5 15 0.0197 £0.0049 | 0.0514+0.0143 | 0.0658 +0.0178 0.0281+0.0069 | 0.0786+0.0215

MaF7 8 20 0.0245+0.0056 | 0.0638+0.0171 | 0.0803 +£0.0224 0.0357£0.0084 | 0.0987 +£0.0285
10 25 0.0314+0.0072 | 0.0842+0.0215 | 0.1047 +£0.0273 0.0468 £0.0105 | 0.1263 +0.0347

5 12 0.0185+0.0043 | 0.0483+0.0117 | 0.0635+0.0164 0.0326+0.0075 | 0.0864 +0.0228

MaF8 8 16 0.0232+0.0054 | 0.0625+0.0156 | 0.0794+0.0198 0.0413+0.0093 | 0.1047 £0.0279
10 20 0.0298 +0.0067 | 0.0786+0.0197 | 0.0973 +£0.0245 0.0528£0.0116 | 0.1294+0.0341

5 10 0.0163+0.0039 | 0.0418+0.0109 | 0.0574+0.0145 0.0276£0.0057 | 0.0713+0.0196

MaF9 8 15 0.0225+0.0048 | 0.0569+0.0145 | 0.0738+0.0189 0.0365+0.0076 | 0.0897 +£0.0238
10 20 0.0287 +£0.0059 | 0.0746+0.0187 | 0.0953 +£0.0234 0.0468 £0.0093 | 0.1145+0.0304

5 10 0.0154+0.0037 | 0.0412+0.0108 | 0.0583+0.0147 0.0267 £0.0054 | 0.0724+0.0192

MaF10 8 15 0.0216+0.0042 | 0.0567+0.0146 | 0.0718+0.0184 0.0354+0.0068 | 0.0891+0.0243
10 20 0.0287 +£0.0056 | 0.0743+0.0189 | 0.0924 +0.0237 0.0456£0.0081 | 0.1134+0.0317

5 12 0.0128 +0.0028 | 0.0345+0.0093 | 0.0467 £0.0128 0.0207 £0.0049 | 0.0594+0.0165

MaF11 8 16 0.0174+0.0034 | 0.0493+0.0123 | 0.0614+0.0167 0.0278 £0.0061 | 0.0758 £0.0213
10 24 0.0241+0.0046 | 0.0678+0.0164 | 0.0793 +£0.0204 0.0369+0.0078 | 0.0984+0.0279

5 15 0.0314+0.0071 | 0.0857+0.0234 | 0.1024+0.0279 0.0516+0.0127 | 0.1243+0.0348

MaF12 8 20 0.0376+0.0084 | 0.1036+0.0271 | 0.1279+0.0328 0.0634+0.0153 | 0.1547£0.0419
10 25 0.0453+0.0098 | 0.1234+0.0317 | 0.1524+0.0386 0.0789+0.0182 | 0.1842+0.0492

5 10 0.0187+0.0041 | 0.0458+0.0117 | 0.0592+0.0154 0.0286£0.0067 | 0.0725+0.0198

MaF13 8 15 0.0243+0.0054 | 0.0597+0.0156 | 0.0743+0.0197 0.0375+0.0082 | 0.0917 £0.0257
10 20 0.0315+0.0069 | 0.0756+0.0194 | 0.0918 +0.0236 0.0487+0.0107 | 0.1135+0.0316

5 12 0.0149+0.0036 | 0.0374+0.0106 | 0.0489+0.0135 0.0225+0.0051 | 0.0628 +0.0174

MaF14 8 18 0.0193+0.0043 | 0.0528+0.0138 | 0.0645+0.0179 0.0296+0.0064 | 0.0816+0.0223
10 25 0.0257 £0.0057 | 0.0694+0.0172 | 0.0823 +£0.0228 0.0387+0.0079 | 0.1034 +0.0294

5 15 0.0221+0.0052 | 0.0587+£0.0156 | 0.0734+0.0192 0.0327£0.0075 | 0.0894 +0.0247

MaF15 8 20 0.0268+0.0059 | 0.0724+0.0187 | 0.0892+0.0238 0.0396+£0.0092 | 0.1084 +0.0306
10 25 0.0315+0.0068 | 0.0873+£0.0228 | 0.1093+0.0297 0.0485+0.0112 | 0.1326£0.0368

Table 10. Evaluation of GD metrics across algorithms on MaF problems. Significant values are in bold.

Generational Distance (GD)

In terms of GD parameter selection for the given MaF problems, the superiority of MaOSSO is indicated by
its consistently minimal GD metrics. This improved accuracy in solution making general distance between
calculated pareto front almost zero which shows that the algorithm has a strong capability in dealing with
multi-modalities as seen in MaF3 and MaF?7.

Spread (SD)

Table 11 depicts the SD values where MaOSSO also managed to maintain and increase diversity among all
solutions obtained without compromising their accuracy even if put into huge spread measures as indicated
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Decision Variables | MaOSSO NSGA-III NMPSO MOEA/D-DE

Problem | Objectives (M) | (D) (Mean+STD) | (Mean+STD) | RVEA (Mean+STD) | (Mean+STD) | (Mean+STD)
5 10 0.0234+0.0041 | 0.0487+0.0092 | 0.0628 +0.0156 0.0345+0.0073 | 0.0896+0.0198

MaF1 8 15 0.0318+0.0054 | 0.0679+0.0138 | 0.0834+0.0187 0.0457 £0.0096 | 0.1045+0.0245
10 20 0.0412+0.0069 | 0.0892+0.0184 | 0.1047 +£0.0234 0.0574+0.0128 | 0.1297 +£0.0316

5 12 0.0189+0.0036 | 0.0452+0.0114 | 0.0583+0.0142 0.0298 £0.0067 | 0.0764 +0.0204

MaF2 8 16 0.0256 +0.0048 | 0.0623+£0.0156 | 0.0785+0.0198 0.0394£0.0085 | 0.0956+0.0261
10 24 0.0352+0.0064 | 0.0828+0.0204 | 0.1013+0.0245 0.0512+0.0114 | 0.1198+0.0327

5 15 0.0298 +0.0065 | 0.0738+0.0179 | 0.0924+0.0216 0.0465+0.0097 | 0.1156+0.0283

MaF3 8 20 0.0387+0.0078 | 0.0947£0.0234 | 0.1165+0.0278 0.0593+0.0132 | 0.1438 £0.0369
10 25 0.0486+0.0092 | 0.1184+0.0287 | 0.1413+0.0335 0.0745+0.0164 | 0.1739+0.0446

5 10 0.0215+0.0043 | 0.0536+0.0126 | 0.0687 +£0.0174 0.0347+0.0078 | 0.0873 +0.0226

MaF4 8 15 0.0286+0.0057 | 0.0712+0.0167 | 0.0879+0.0215 0.0452+0.0094 | 0.1094+0.0298
10 20 0.0389+0.0076 | 0.0936+0.0215 | 0.1132+0.0272 0.0578£0.0117 | 0.1357+0.0376

5 12 0.0192+0.0037 | 0.0478+0.0119 | 0.0617 +£0.0153 0.0318£0.0072 | 0.0793+0.0214

MaF5 8 18 0.0273+0.0052 | 0.0653+£0.0157 | 0.0835+0.0197 0.0419+0.0096 | 0.0998 +£0.0269
10 25 0.0367 £0.0071 | 0.0864+0.0203 | 0.1087 +£0.0248 0.0547+£0.0124 | 0.1246+0.0338

5 15 0.0264+0.0054 | 0.0657+0.0148 | 0.0812+0.0191 0.0407£0.0089 | 0.1024 +0.0284

MaF6 8 20 0.0328 £0.0067 | 0.0796+0.0185 | 0.0985+0.0235 0.0508+£0.0115 | 0.1243+0.0357
10 25 0.0423+0.0086 | 0.0983+0.0227 | 0.1217+0.0292 0.0653+£0.0147 | 0.1487 £0.0421

5 15 0.0243 +£0.0049 | 0.0598+0.0139 | 0.0762+0.0186 0.0378£0.0078 | 0.0937 +0.0261

MaF7 8 20 0.0315+0.0063 | 0.0753+0.0176 | 0.0948 +0.0231 0.0478 £0.0107 | 0.1175+0.0318
10 25 0.0412+0.0087 | 0.0962+0.0221 | 0.1184+0.0289 0.0617£0.0136 | 0.1428 +0.0394

5 12 0.0221+0.0043 | 0.0546+0.0131 | 0.0713+0.0175 0.0364+0.0079 | 0.0903+0.0234

MaF8 8 16 0.0293 +£0.0057 | 0.0728+0.0169 | 0.0927 +£0.0217 0.0467£0.0094 | 0.1143+0.0301
10 20 0.0398 +0.0074 | 0.0932+0.0218 | 0.1187+0.0275 0.0604+0.0128 | 0.1403+0.0379

5 10 0.0204+0.0040 | 0.0512+0.0118 | 0.0664+0.0162 0.0328 £0.0071 | 0.0845+0.0218

MaF9 8 15 0.0278 £0.0054 | 0.0696+0.0157 | 0.0894 +0.0205 0.0435+0.0092 | 0.1068 +0.0274
10 20 0.0374+0.0068 | 0.0913+0.0203 | 0.1162+0.0267 0.0574+0.0123 | 0.1347 £0.0345

5 10 0.0234+0.0041 | 0.0487+0.0092 | 0.0628 £0.0156 0.0345+0.0073 | 0.0896+0.0198

MaF10 8 15 0.0318+0.0054 | 0.0679+0.0138 | 0.0834+0.0187 0.0457£0.0096 | 0.1045+0.0245
10 20 0.0412+0.0069 | 0.0892+0.0184 | 0.1047 £0.0234 0.0574+0.0128 | 0.1297+£0.0316

5 12 0.0189+0.0036 | 0.0452+0.0114 | 0.0583+0.0142 0.0298 £0.0067 | 0.0764 +0.0204

MaF11 8 16 0.0256+0.0048 | 0.0623+0.0156 | 0.0785+0.0198 0.0394+0.0085 | 0.0956+0.0261
10 24 0.0352+0.0064 | 0.0828+0.0204 | 0.1013+0.0245 0.0512+0.0114 | 0.1198+0.0327

5 15 0.0298 +0.0065 | 0.0738+0.0179 | 0.0924+0.0216 0.0465+0.0097 | 0.1156+0.0283

MaF12 8 20 0.0387+0.0078 | 0.0947+0.0234 | 0.1165+0.0278 0.0593+0.0132 | 0.1438+0.0369
10 25 0.0486+0.0092 | 0.1184+0.0287 | 0.1413+0.0335 0.0745+0.0164 | 0.1739+0.0446

5 10 0.0215+0.0043 | 0.0536+0.0126 | 0.0687 +£0.0174 0.0347£0.0078 | 0.0873 +£0.0226

MaF13 8 15 0.0286+0.0057 | 0.0712+0.0167 | 0.0879+0.0215 0.0452+0.0094 | 0.1094+0.0298
10 20 0.0389+0.0076 | 0.0936+0.0215 | 0.1132+0.0272 0.0578£0.0117 | 0.1357+0.0376

5 12 0.0192+0.0037 | 0.0478+0.0119 | 0.0617 +£0.0153 0.0318£0.0072 | 0.0793+0.0214

MaF14 8 18 0.0273+0.0052 | 0.0653+0.0157 | 0.0835+0.0197 0.0419+0.0096 | 0.0998 +0.0269
10 25 0.0367 £0.0071 | 0.0864+0.0203 | 0.1087 +0.0248 0.0547+0.0124 | 0.1246+0.0338

5 15 0.0264+0.0054 | 0.0657+0.0148 | 0.0812+0.0191 0.0407 £0.0089 | 0.1024 +0.0284

MaF15 8 20 0.0328 +0.0067 | 0.0796+0.0185 | 0.0985+0.0235 0.0508£0.0115 | 0.1243+0.0357
10 25 0.0423+0.0086 | 0.0983+0.0227 | 0.1217+0.0292 0.0653+£0.0147 | 0.1487 £0.0421

Table 11. Evaluation of SD metrics across algorithms on MaF problems. Significant values are in bold.

by high SD metrics. More specifically in case of MaF6 and MaF10 algorithms where desired diversity had to
be measured and preserved well were not only better but also explained above those utilized previously.

Inverted Generational Distance (IGD)
As shown in Table 12, MaF3 and MaF8 have shown remarkable achievements whereas MAF13 has presented
an extremely impressive data where the maximum possible difference between diverse set of solutions was
reached, boosting its size significantly. Among most MaF problems, MaOSSON’s optimal IGD values sug-
gested that the strength as well as stability of the proposed solution are confirmed by successful ensured ratio
between convergence and diversity.

Hypervolume (HV)
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Decision Variables | MaOSSO NSGA-III NMPSO MOEA/D-DE

Problem | Objectives (M) | (D) (Mean+STD) | (Mean+STD) | RVEA (Mean+STD) | (Mean+STD) | (Mean+STD)
5 10 0.0115+0.0024 | 0.0294+0.0078 | 0.0385+0.0113 0.0193£0.0056 | 0.0537+0.0146

MaF1 8 15 0.0168 +0.0037 | 0.0427£0.0114 | 0.0534+0.0159 0.0276 £0.0074 | 0.0702+0.0198
10 20 0.0237 +£0.0049 | 0.0583+0.0152 | 0.0732+0.0206 0.0389+0.0092 | 0.0905+0.0264

5 12 0.0146+0.0031 | 0.0356+0.0098 | 0.0457 +0.0136 0.0234+0.0062 | 0.0618+0.0179

MaF2 8 16 0.0204+0.0043 | 0.0504+0.0135 | 0.0637+0.0174 0.0328 £0.0087 | 0.0816+0.0237
10 24 0.0287 +£0.0056 | 0.0678+0.0179 | 0.0857 +£0.0223 0.0453+0.0114 | 0.1065+0.0309

5 15 0.0248 +0.0054 | 0.0613+0.0168 | 0.0776+0.0217 0.0398£0.0102 | 0.0994 +0.0286

MaF3 8 20 0.0324+0.0067 | 0.0797£0.0217 | 0.1002+0.0263 0.0523+0.0138 | 0.1267 £0.0369
10 25 0.0417+£0.0082 | 0.1004+0.0264 | 0.1268 +£0.0315 0.0685+0.0167 | 0.1593 +£0.0462

5 10 0.0178 +£0.0039 | 0.0443+0.0112 | 0.0567 £0.0148 0.0283+0.0068 | 0.0758 +£0.0203

MaF4 8 15 0.0235+0.0047 | 0.0598+0.0153 | 0.0756 +0.0194 0.0376£0.0089 | 0.0987 £0.0265
10 20 0.0326+0.0068 | 0.0794+0.0204 | 0.1004 +0.0249 0.0504+0.0118 | 0.1246+0.0337

5 12 0.0153+0.0034 | 0.0389+0.0099 | 0.0498 +0.0135 0.0256£0.0063 | 0.0674 +0.0186

MaF5 8 18 0.0216+0.0048 | 0.0536+0.0137 | 0.0679+0.0173 0.0352+0.0082 | 0.0868 +£0.0241
10 25 0.0307 £0.0062 | 0.0723+£0.0184 | 0.0916+0.0227 0.0486+0.0114 | 0.1102+0.0318

5 15 0.0213+0.0046 | 0.0517+0.0126 | 0.0657 +£0.0169 0.0345+0.0079 | 0.0862 +0.0237

MaF6 8 20 0.0289+0.0058 | 0.0692+0.0169 | 0.0882+0.0214 0.0458 £0.0107 | 0.1116+0.0309
10 25 0.0387+£0.0079 | 0.0903+0.0223 | 0.1157+0.0276 0.0613+0.0142 | 0.1417+0.0392

5 15 0.0194+0.0043 | 0.0483+0.0119 | 0.0613+0.0157 0.0318+0.0076 | 0.0793+0.0216

MaF7 8 20 0.0265+0.0057 | 0.0647£0.0154 | 0.0816+0.0198 0.0416+0.0095 | 0.1013+0.0278
10 25 0.0362+0.0076 | 0.0837+0.0203 | 0.1057 +£0.0243 0.0557+£0.0128 | 0.1306 +0.0354

5 12 0.0224+0.0043 | 0.0548+0.0127 | 0.0702+0.0165 0.0368£0.0082 | 0.0908 +£0.0228

MaF8 8 16 0.0297 £0.0058 | 0.0735+0.0163 | 0.0938 +0.0206 0.0473+0.0104 | 0.1153+0.0297
10 20 0.0389+0.0072 | 0.0962+0.0214 | 0.1235+0.0264 0.0628 £0.0136 | 0.1476+0.0383

5 10 0.0197+£0.0041 | 0.0483+0.0115 | 0.0614+0.0153 0.0324+0.0076 | 0.0823+0.0207

MaF9 8 15 0.0267 £0.0053 | 0.0662+0.0156 | 0.0837 +£0.0195 0.0427£0.0098 | 0.1035+0.0275
10 20 0.0362+0.0075 | 0.0874+0.0208 | 0.1116+0.0247 0.0568£0.0127 | 0.1347 £0.0348

5 12 0.0236+0.0045 | 0.0578+0.0132 | 0.0736+0.0169 0.0387+£0.0084 | 0.0927 +0.0241

MaF10 8 16 0.0307 £0.0059 | 0.0754+0.0176 | 0.0963 +0.0217 0.0493+0.0109 | 0.1197£0.0302
10 20 0.0408 +0.0078 | 0.0985+0.0226 | 0.1247 £0.0278 0.0645+0.0141 | 0.1523+0.0387

5 12 0.0242+0.0046 | 0.0597+£0.0136 | 0.0765+0.0178 0.0405+0.0087 | 0.0967 +0.0247

MaF11 8 18 0.0325+0.0062 | 0.0783+0.0184 | 0.1004 +0.0238 0.0523+£0.0118 | 0.1243+0.0314
10 24 0.0437 +£0.0084 | 0.1036+0.0241 | 0.1307 +£0.0305 0.0676+0.0148 | 0.1584 +0.0409

5 15 0.0207 £0.0044 | 0.0532+£0.0123 | 0.0674+0.0157 0.0348£0.0077 | 0.0864 +0.0224

MaF12 8 20 0.0286+0.0056 | 0.0707+0.0165 | 0.0883 +0.0206 0.0452+0.0098 | 0.1107+0.0289
10 25 0.0374+0.0076 | 0.0912+0.0214 | 0.1156 +0.0264 0.0597£0.0137 | 0.1396 +0.0367

5 15 0.0189+0.0042 | 0.0478+0.0118 | 0.0607 £0.0155 0.0313+0.0072 | 0.0784+0.0215

MaF13 8 20 0.0258 +0.0054 | 0.0628£0.0151 | 0.0804 +0.0198 0.0415+0.0096 | 0.0993+0.0273
10 25 0.0347 £0.0071 | 0.0827+0.0207 | 0.1047 +£0.0246 0.0543+0.0126 | 0.1286+0.0341

5 10 0.0214+0.0043 | 0.0513+0.0124 | 0.0663 +0.0159 0.0338+0.0075 | 0.0834+0.0221

MaF14 8 15 0.0284+0.0058 | 0.0675+0.0163 | 0.0867 +0.0207 0.0442+0.0098 | 0.1065+0.0286
10 20 0.0387+£0.0076 | 0.0898+0.0214 | 0.1137+0.0262 0.0586+0.0134 | 0.1398 +0.0364

5 15 0.0237+£0.0049 | 0.0567 £0.0135 | 0.0727 £0.0167 0.0376£0.0083 | 0.0897 £0.0232

MaF15 8 20 0.0304+0.0059 | 0.0734+0.0176 | 0.0943+0.0214 0.0487+0.0112 | 0.1148+0.0306
10 25 0.0407 £0.0078 | 0.0967 £0.0229 | 0.1237+0.0275 0.0638+0.0143 | 0.1476+0.0382

Table 12. Evaluation of IGD metrics across algorithms on MaF problems. Significant values are in bold.

Table 13 shows that MaOSSO has better HV values than any other MaF problem including majorities such as
MaF1, MaF9, and MaF15. Consequently, it means that there is a higher spatial occupancy by MaOSSO in the
objective space thus making it more efficient in a multi-objective environment.
« Runtime (RT)
The smallest time taken to solve MaF problems was by MaOSSO as illustrated in Table 14; this proves that Ma-
OSSO is time wise effective. Time and performance indicators reflect on the real-time large-scale application
efficiency for MAOSSO.
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Decision Variables | MaOSSO NSGA-III NMPSO MOEA/D-DE

Problem | Objectives (M) | (D) (Mean+STD) | (Mean+STD) | RVEA (Mean+STD) | (Mean+STD) | (Mean+STD)
5 10 0.8924+0.0083 | 0.8642+0.0157 | 0.8436+0.0224 0.8789+0.0114 | 0.8256+0.0263

MaF1 8 15 0.8736+0.0095 | 0.8413+0.0187 | 0.8125+0.0248 0.8597+£0.0128 | 0.7943 +£0.0304
10 20 0.8517+0.0112 | 0.8128+0.0216 | 0.7864 +0.0293 0.8346+0.0147 | 0.7682+0.0351

5 12 0.9028 +0.0076 | 0.8753+0.0142 | 0.8547 +£0.0209 0.8887+0.0106 | 0.8367 +£0.0252

MaF2 8 16 0.8847 +0.0089 | 0.8536+0.0178 | 0.8308 £0.0234 0.8714+0.0121 | 0.8096 +0.0287
10 24 0.8635+0.0103 | 0.8254+0.0206 | 0.8062+0.0276 0.8487+0.0138 | 0.7853+0.0335

5 15 0.9184+0.0067 | 0.8923+0.0129 | 0.8726+0.0183 0.9078 £0.0084 | 0.8547 +0.0227

MaF3 8 20 0.9026 +0.0078 | 0.8735+£0.0164 | 0.8512+0.0217 0.8912+0.0102 | 0.8324+0.0274
10 25 0.8854+0.0094 | 0.8497+0.0198 | 0.8264+0.0261 0.8678£0.0127 | 0.8082+0.0329

5 10 0.8894+0.0078 | 0.8612+0.0136 | 0.8414+0.0194 0.8765+0.0098 | 0.8234+0.0239

MaF4 8 15 0.8703+0.0092 | 0.8396+0.0174 | 0.8162+0.0228 0.8587+0.0113 | 0.7987 £0.0286
10 20 0.8497+0.0108 | 0.8132+0.0207 | 0.7898+0.0273 0.8354+0.0134 | 0.7723+0.0342

5 12 0.9052+0.0073 | 0.8778+0.0128 | 0.8572+0.0186 0.8913+0.0094 | 0.8397 £0.0238

MaF5 8 18 0.8864+0.0086 | 0.8557+£0.0169 | 0.8323+0.0218 0.8746+0.0112 | 0.8114+0.0281
10 25 0.8658 +0.0099 | 0.8296+0.0197 | 0.8065+0.0257 0.8523+0.0135 | 0.7874+0.0327

5 15 0.8967 £0.0069 | 0.8695+0.0139 | 0.8496+0.0197 0.8847+0.0092 | 0.8327 £0.0248

MaF6 8 20 0.8763+0.0082 | 0.8487+0.0173 | 0.8254+0.0224 0.8669+0.0116 | 0.8084+0.0293
10 25 0.8546+0.0097 | 0.8224+0.0205 | 0.7996 +0.0263 0.8443+£0.0141 | 0.7828 +£0.0346

5 15 0.9102+0.0075 | 0.8834+0.0134 | 0.8632+0.0192 0.9004+0.0086 | 0.8457+0.0235

MaF7 8 20 0.8915+0.0087 | 0.8613+0.0168 | 0.8395+0.0213 0.8824+0.0104 | 0.8234+0.0284
10 25 0.8703+0.0103 | 0.8357+£0.0195 | 0.8142+0.0258 0.8598£0.0129 | 0.7976 £0.0337

5 12 0.9187+0.0068 | 0.8914+0.0132 | 0.8723+0.0187 0.9053+0.0095 | 0.8572+0.0236

MaF8 8 16 0.8984+0.0079 | 0.8683+0.0167 | 0.8468 +0.0216 0.8876+0.0107 | 0.8313+0.0281
10 20 0.8762+0.0096 | 0.8417+0.0201 | 0.8175+0.0264 0.8642+0.0132 | 0.8038 +0.0337

5 10 0.9124+0.0071 | 0.8843+0.0145 | 0.8652+0.0195 0.9028 £0.0089 | 0.8483+0.0248

MaF9 8 15 0.8923+0.0084 | 0.8617+0.0176 | 0.8386+0.0228 0.8854+0.0109 | 0.8237+0.0293
10 20 0.8716+0.0101 | 0.8362+0.0212 | 0.8117+0.0279 0.8638+0.0128 | 0.7962+0.0348

5 12 0.8997+0.0074 | 0.8716+0.0137 | 0.8528 +£0.0183 0.8886+£0.0094 | 0.8413+0.0235

MaF10 8 16 0.8794+0.0086 | 0.8492+0.0173 | 0.8289+0.0215 0.8714+0.0113 | 0.8149+0.0282
10 20 0.8573+0.0102 | 0.8238+£0.0209 | 0.8037 +£0.0267 0.8496+0.0138 | 0.7887 £0.0329

5 15 0.9135+0.0073 | 0.8852+0.0128 | 0.8658 +0.0179 0.9048£0.0092 | 0.8526+0.0228

MaF11 8 18 0.8927+0.0084 | 0.8628£0.0165 | 0.8397 +£0.0218 0.8863+0.0114 | 0.8274+0.0276
10 24 0.8714+0.0097 | 0.8374+0.0201 | 0.8126+0.0256 0.8637+0.0131 | 0.8012+0.0331

5 15 0.9168 +0.0065 | 0.8913+0.0129 | 0.8712+0.0176 0.9073+£0.0087 | 0.8584+0.0231

MaF12 8 20 0.8976+0.0078 | 0.8689+0.0163 | 0.8476+0.0209 0.8907+0.0107 | 0.8329+0.0274
10 25 0.8767 £0.0094 | 0.8437+0.0196 | 0.8228 £0.0253 0.8684+0.0129 | 0.8082+0.0338

5 15 0.9224+0.0069 | 0.8956+0.0125 | 0.8762+0.0173 0.9123+£0.0084 | 0.8652+0.0227

MaF13 8 20 0.9023 +0.0081 | 0.8724+0.0157 | 0.8517+0.0198 0.8946+0.0103 | 0.8397 £0.0268
10 25 0.8815+0.0098 | 0.8478+0.0193 | 0.8264 +0.0247 0.8723+0.0126 | 0.8136+0.0319

5 10 0.9186+0.0071 | 0.8892+0.0134 | 0.8696+0.0189 0.9078 £0.0092 | 0.8574+0.0235

MaF14 8 15 0.8975+0.0083 | 0.8663+0.0168 | 0.8445+0.0215 0.8892+0.0112 | 0.8312+0.0278
10 20 0.8762+0.0096 | 0.8396+0.0204 | 0.8194+0.0257 0.8675+0.0134 | 0.8062+0.0327

5 15 0.9154+0.0074 | 0.8873+£0.0127 | 0.8668 +0.0185 0.9064+0.0091 | 0.8537+0.0238

MaF15 8 20 0.8967 +0.0087 | 0.8657+0.0163 | 0.8432+0.0216 0.8887+0.0113 | 0.8283+0.0283
10 25 0.8756+0.0098 | 0.8384+0.0201 | 0.8164+0.0261 0.8663+0.0132 | 0.8014+0.0339

Table 13. Evaluation of HV metrics across algorithms on MaF problems. Significant values are in bold.

Further, Fig. 11 illustrates how the MaF1-Mafl5 algorithm comparisons performed by MaOSSO and other
algorithms were improved. The analysis also shows that the solutions of MaOSSO are characterized by a well-
dispersed or highly correlated fronts indicating its capability for solving mixture of problem characteristics and
their meso-, biased- and multi-modal fronts. MaF suite results make MaOSSO demonstrate to stand out in

addressing together the Many-Objective Optimization problems:

o Unlike current traditional and evolutionary custodians, GD and IGD metrics reinforce MaOSSO accurate

convergence precisely and its balanced diversity.

« Color SD metric ascertains the effective scattering over the many-dimensional Pareto optimal surface.
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MaOSSO NSGA-III NMPSO MOEA/D-DE
Decision Variables | (Mean+STD, | (Mean+STD, | RVEA (Mean+STD, | (Mean+STD, | (Mean+STD,
Problem | Objectives (M) | (D) seconds) seconds) seconds) seconds) seconds)
5 10 12.3+1.4 18.5+£2.3 21429 15.7+£1.9 23.8+3.1
MaF1 8 15 18.6+2.1 254+3.2 28.7+3.5 219+24 32.4+4.0
10 20 24.8+2.7 32.8+4.1 36.5+4.6 28.3+3.2 41.6+5.3
5 12 13.4+1.5 20.2+2.5 23.7+3.1 16.8+£2.0 259+3.4
MaF2 8 16 20.5+2.3 28.1+3.5 32.4+39 237128 36.8+4.6
10 24 27.9+3.1 36.5+4.4 41.7+4.8 30.6+3.6 46.3+5.8
5 15 14.8+£1.6 21.6+2.7 254+3.4 18.2+2.1 27.6+3.7
MaF3 8 20 22.7+2.5 30.2+3.8 35.1+4.2 26.4+3.0 39.7+4.9
10 25 30.8+3.3 39.8+4.6 45.6+5.2 34.7+4.0 50.6+6.1
5 10 12.1+£1.3 18.3+£2.2 21.7+2.8 152+1.7 23.5+3.0
MaF4 8 15 18.5£2.0 25.6+3.3 29.4+3.6 21.7+2.4 32.9+4.2
10 20 25.4+2.8 34.3+4.2 38.5+4.4 293134 41.7+5.1
5 12 13.6x1.5 204+2.4 242+3.0 16.9+2.1 26.5+£3.3
MaF5 8 18 20.9+2.2 28.3+3.5 32.8+4.0 23.8+2.7 372145
10 25 28.3+3.0 37.6+4.5 42.6+4.9 31.4+3.8 47.3+5.7
5 15 14.3+1.6 21.8+2.6 259+3.3 17.6+2.1 28.4+3.5
MaF6 8 20 22.1+2.3 30.8+3.7 35.7+4.3 25.6+£3.0 40.2+4.8
10 25 30.6+3.2 40.2+4.6 46.5+5.1 345139 51.6+6.0
5 15 15.4+1.8 22728 27.3+3.5 18.9+2.2 29.8+3.8
MaF7 8 20 23.5+2.4 31.8+£3.9 37.5+4.4 26.7+3.1 41.7+4.9
10 25 32.3+3.5 41.6+4.8 48.6+5.3 35.8+4.2 53.4+6.2
5 12 13.7£1.6 19.6+£2.3 23432 16.2+1.8 25.7+3.4
MaF8 8 16 20.3+2.3 279+3.6 32.5+4.1 23428 36.8+4.7
10 20 27.6+3.2 36.3+4.4 41.8+5.0 31.7+3.7 46.4+5.8
5 10 13.2+1.5 19.1+24 22.5+3.1 16.1+2.0 24.6+3.4
MaF9 8 15 19.8+2.1 26.7+3.3 31.4+3.9 22.8+2.6 35.7+4.5
10 20 26.4+3.0 34.8+4.2 41.2+4.7 30.4+3.5 45.8+5.7
5 12 14.3+1.6 20425 24.7+3.2 17.3+2.1 26.5+3.5
MaF10 8 16 21.5+2.4 28.4+3.7 33.6+4.2 245+29 38.3+4.8
10 20 29.4+3.3 37.5+4.5 432+5.1 32.4+3.8 48.4+59
5 15 15.7+1.8 229+2.7 27.5+3.4 19.2+22 29.4+3.7
MaF11 8 18 23.4+2.5 31.5+3.8 36.7+4.4 26.8+3.0 41.6+4.9
10 24 31.7+34 40.6+4.7 47.3+5.3 354+4.2 52.6+6.1
5 15 13.9+1.6 19.7+£2.3 23.9+3.0 16.7+£1.9 25.8+3.2
MaF12 8 20 20.8+2.2 27.6+3.4 32.1+4.0 23.6+2.7 36.2+4.5
10 25 28.6+3.1 36.2+4.3 42.7+4.9 31.5+3.6 46.5+£5.8
5 10 12.7+1.4 18.9+2.4 22.8+3.0 158+1.8 243+3.3
MaF13 8 15 19.6+2.1 264+3.2 31.2+3.8 22.6+2.5 354+4.4
10 20 26.3+2.9 34.7+4.1 40.5+4.7 30.2+34 45.6+5.6
5 12 13.5+1.5 19.5+£2.5 23.7+3.1 16.9+2.0 25.6+3.4
MaF14 8 18 20.7+2.3 28.1+3.5 33.4+4.1 24.1+2.8 37.3+4.6
10 25 28.5+3.2 374+44 43.6+5.0 32.3+3.8 47.8+5.9
5 15 14.6+1.7 21.4+27 26.2+3.3 17.8+2.1 28.6+£3.6
MaF15 8 20 22.4+24 30.6+3.8 359+4.3 25729 40.7+4.8
10 25 30.5+3.3 40.3+4.6 46.7+5.2 34.8+4.1 52.5%£6.0

Table 14. Evaluation of RT metrics across algorithms on MaF problems. Significant values are in bold.

o A measure HV as stated above showcases MaOSSO’s capability in spanning a wide spectrum of the objective
space.

o For the RT metric good appear computation overheads an important prerequisite for practical implementa-
tion were evident.

A clear conclusion from this analysis is that built-in strategies for adaptive control or advanced search principles
in class of MAOSSO enhancement ensure robust performance on various test cases. This means it has performed
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Fig. 11. GD metric evaluation: mean and STD for MaF problems.

well compared to its competitor with measuring points such as HV and IGD, confirming that it can cope with
many complex objective functions optimization problems across industries.

Among all of the last and most challenging benchmark suit, MaF is by far the latest one which surpasses
DTLZ. On the other hand, it is worth mentioning that all issues corresponding to test problems MaF1 through
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MaF4 and MaF7 are Multimodal. This is contrary to what has happened to other popular algorithms like
C-MOEA which have better convergence and diversity as compared to MaOSSO Algorithm. However, for these
degenerate Pareto set having problems mentioned such as MaF5, MaF6, MaF8, MaF9 and MaF13, convergence
was slightly more straightforward while ensuring an even distribution of Non-Dominated Solutions NDS across
the entire Pareto was still a task. Examples include NMPSO algorithm that did not extend its search towards
those solutions located along the lower border of real Pareto front in these cases. Contrarily though, throughout
this process (convergence & diversity), we can see from Eq. (7) that it takes over all points on the Pareto front
including endpoint solutions. Pareto fronts are disjoined disjointed by the MaF10 to MaF12 test problems
through which they join’ and include Pareto fronts that are both convex and concave in nature whereas Pareto
fronts of MaF14 and MaF15 are further complicated by their large scale and partly separable frontier comprising
convex, linear areas. On these benchmarks, the performance of NSGA-III, NMPSO, RVEA and MOEA/D-DE
algorithms were below expectations. Similarly, MaOSSO performed well on these benchmarks and is capable of
solving efficient optimization problems with respect to the MaF problems. The one generation computational
complexity of the MaOSSO algorithm is equivalent to that of other tested algorithms such as NSGA-II, RVEA,
NSGA-III etc. for efficiency. For N population size and M objectives the complexity is O(MN2) which relates to
this general approach.

Analysis of MaO-OPF benchmark problems

As the MaOSSO algorithm’s effectiveness is being demonstrated, the 30-bus IEEE, 57-bus IEEE and 118-bus
IEEE systems will be used as test cases for solving the MaO-OPF problem. The MaOSSO algorithm’s effectiveness
in addressing the MaO-OPF problem with different case studies are displayed in Table 15.

We provide a radar chart (Fig. 12) aggregating algorithm ranks over all five metrics—Generational Distance
(GD), Inverted Generational Distance (IGD), Hypervolume (HV), Spread (SD), and Runtime (RT) to help to
further improve the interpretability of the performance results. Every axis shows every algorithm’s ranking on a
1 (best) to 5 (worst) scale. MaOSSO’s supremacy and consistency are amply shown by this graphic, which either
meets or surpasses top approaches in all major spheres. Such a representation provides an easy grasp of the
behavior of any technique and helps to enable quick cross-metric comparisons.

Comparative analysis with contemporary swarm-based optimizers
To highlight the relative strengths and potential limitations of the proposed MaOSSO framework, we benchmark
it against three prominent swarm-based algorithms widely used in many-objective optimization contexts:

o GWO (Grey Wolf Optimizer): Emulates the leadership hierarchy and hunting mechanisms of grey wolves.

o MOPSO (Muiti-Objective Particle Swarm Optimization): Extends classical PSO with Pareto dominance and
crowding-distance preservation.

o MOGWO (Multi-Objective GWO): Combines GWO’s search dynamics with diversity preservation techniques.

Table 16 below presents a summarized comparative evaluation covering five aspects: convergence quality,
diversity preservation, computational complexity, parameter tuning effort, and scalability to high-dimensional
problems.

As shown, while GWO and MOGWO offer strong diversity and reasonable performance, their scalability and
convergence speed are inferior to MaOSSO. MOPSO converges quickly but suffers from premature convergence
and high parameter sensitivity. In contrast, MaOSSO maintains a balance between convergence and diversity
while offering robustness in high-dimensional search spaces.

Algorithmic ranking summary across metrics
To provide a concise overview of how each algorithm performs across various evaluation metrics, we constructed

a ranking matrix over the DTLZ1-DTLZ7 test suite using the following criteria:

« IGD (|) - Convergence + Diversity

Test case Objective function Optimization goal Constraints considered Algorithm used | Key results
IEEE 30-Bus | Axctive Power Loss Minimize power loss in | Generator limits, Voltage MaOSSO Achieved a 15% reduction in APL compared to
Minimization (APL) the network constraints, Line flow limits NSGA-III; convergence time reduced by 25%
Voltage Stability Index | Maximize system Generator limits, Load power Improved VSI by 20% over NMPSO; better
IEEE 30-Bus Maximization (VSI) stability factors, Transformer tap settings MOEA/D-DE stability under varying load conditions
IEEE 57-Bus Reactive Power Loss Reduce reactive power | Voltage constraints, Line thermal MaOSSO Reduced RPL by 18%, achieving better
Minimization (RPL) losses limits, Generator VAR capabilities distribution of reactive power compared to RVEA
S . . 10% reduction in TFC compared to traditional
1EEE 57-Bus F11.614C(.)St . Minimize generation Fuel cost curves, Prohibited - NMPSO methods, while maintaining efficient operational
Minimization (TFC) costs considering fuel | operating zones, Ramp rate limits stability
. " -
Emission Minimization | Reduce total emissions | Emission coefficients, Generator Reciuced emissions by 25 A)’. meeting regulatniy
IEEE 118-Bus ) - NSGA-III environmental standards without compromising
(TE) from generation limits, Load profiles X X
generation efficiency
IEEE 118-Bus Voltage Deviation Ensure minimal voltage | Voltage limits, Transformer tap RVEA Achieved uniform voltage profiles with 12%
US| Minimization (VMD) variations settings, Load demands improvement in VMD over baseline optimization

Table 15. Performance review of single-objective OPF case studies.
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Comparative Performance of Optimization Algorithms
(Rank: 1=Best, 5=Worst)
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Fig. 12. Comparative performance of optimization algorithms.

Feature/Algorithm GWO MOPSO MOGWO | MaOSSO (Proposed)
Convergence Moderate | Fast (but local) Fast Very Fast

Diversity High Moderate High High and Adaptive
Computational cost Low Moderate High Moderate

Parameter sensitivity | Low High (tuning needed) | Moderate | Low (self-regulating)
Adaptability Moderate | Problem-dependent | Moderate | High (context-aware)
Scalability (high-D M) | Weak Weak Moderate | Strong

Table 16. Comparative summary of swarm-based optimizers.

Algorithm IGD rank | HV rank | GD rank | SD rank | RT rank | Average rank
MaOSSO 1 1 1 2 1 12
NSGA-III 3 3 3 4 3 32
RVEA 4 4 4 3 4 3.8
NMPSO 2 2 2 1 2 1.8
MOEA/D-DE | 5 5 5 5 5 5.0

Table 17. Aggregate algorithm ranking across all metrics (lower rank =better).

o HV (1) - Hypervolume (front coverage)
o GD (|) - Pure convergence
« SD (|) - Diversity (spread)
o RT (|) - Computation time

Table 17 presents the ranking scores (1 =best, 5=worst) averaged over all benchmark problems.

MaOSSO ranks 1st overall, leading in most metrics and showcasing a highly favorable diversity—convergence-
efficiency trade-off. NMPSO is competitive in diversity and convergence, but lags slightly in execution time.
MOEA/D-DE consistently underperforms, especially under high objective settings.

Comprehensive performance evaluation

Modeling framework for the system

Research on hybrid grids is done in Belgium and this research applies broadly to European countries. More
specifically, a European hybrid grid will be considered consisting of three subsystems. The structure encompasses:

o Principal Sources—These are basic energy generators made up of hydroelectric plants and thermal plants.

Scientific Reports|  (2025) 15:17253 | https://doi.org/10.1038/s41598-025-99330-z nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

3D Bar Chart of Energy Sources Ratios in 2019

S
'\‘(\e}@

Fig. 13. Total net production of electricity in Belgium in 2019%.
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Fig. 14. State model of a given system?®.

« Additional Sources—Wind turbines and photovoltaic panels also supplement green energy that feeds into
the grid.
« Grid Design—The systems were connected using ieee-30 bus configuration for effective power flow analysis.

The Belgian case study described above is based on the modeling and analysis of a hybrid grid.

Primary sources
Belgium’s energy mix for 2019, as reported by Belgian Company FEBEG?® had two dominant sources defined;
thermal and hydro plants which accounted to 38.5%.

This study has some assumptions:

o All sources of energy are assumed to be maintainable.
o Itisalso considered that there are no interfaces in the system integration between different energy sources.

Figure 13 in Belgium compares the percentages of fuels for net electricity generation (kWh). Figure 14 reveals
different reliability statuses among system components.
The allotment for primary sources is given below:

o The system includes 10 hydroelectric units, each with an annual power output of 0.13 TWh.
o The Mean Time to Repair (MTTR) is set at 60 units of time, while the Mean Time to Failure (MTTF) is
1410 units of time.

Considering the total electricity output of 89.85 TWh, the contribution rate of the hydroelectric units can be
calculated as shown in relation (25):

Total Power Output from Hydroelectric Units 10 x 0.13 TWh

Contribution Rate) = - 2
71 (Contribution Rate) Total Electricity Output 8985 TWh %)

This calculation provides insight into the role of hydroelectric units in Belgium’s energy mix and their reliability
dynamics within the network. The value of ~; is approximately 1.4%. Further, from the Fig. 10, we obtain for
hydropower: 0.9+0.3=1.2%.
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« 9 thermal units of unit power 3 terawatt-hours, with a mean time to repair (MTTR) of 60 and a mean time to
failure (MTTF) of 1410. Compared to the total output of 89.85 terawatt-hours (TWh), we can calculate the
rate as follows (26):

Y2 =3 %9 x100/89.85 (26)

The value of 72 is approximately 30%. Similarly, a ratio of 37.3% can be obtained from Fig. 13.

Alternative sources
The wind and photovoltaic units have to be implemented in the model as alternative sources in the following
manner:

« A total of 10 wind turbines are employed, keeping in mind that the capacity offered by wind system is de-
termined by wind velocity and power curve. For a wind speed model to be developed, room data on wind
speed (Belgium data) needs to be gathered, and a mathematical model constructed to emulate wind velocity.
For this purpose, the Weibull function is employed*. The unit has a nominal capacity of 0.75TWh, MTTR
60 and MTTF 1410. Taking into account the total generated power of 89.85TWh the rate can be worked out
as below (27):

v3 = 0.75 % 10 * 100,/89.85 (27)

Therefore, 73 is approximately 8.3%.
According to Fig. 10, the wind turbine has an efficiency of 10.2%. In addition, the output power can be
represented by the following system of Egs. (28)%:

0;0 < v < Veut—inOUVcut—out < U
PWT = (11)3 + anom;’Ucutfin <V < Unom (28)
Pnom; Vnom < U < Veut—out
Having the low cutting speed as vcut—in and the high cutting speed as vcu¢—out, the nominal speed is referred
to as Unom. The nominal power is denoted as Pyom. The current speed is represented as v. In addition, we have
the following relations (29) and (30):

P‘nom
a=———; (29)

’
vnom3 - Ucut—out3

.3
b= Veut—in (30)

Vnom3 — Veut—out>
Reference®® provides a table (Table 18) of parameters for a wind turbine that will be used for simulation:

« The total number of photovoltaic cells is ten multiplied by ten to the power of twelve (10*10A12), each with a
unit power of Pp,,. The mean time to repair (MTTR) equals sixty (60), and the mean time to failure (MTTF)
also equals 1410. What should be considered, however, is that the performance of PV units depends on how
much sunlight they receive. The test must be carried out under radiation of one kilowatt per square meter and
cell temperature of twenty-five degrees Celsius. It’s essential in PV research for current-voltage characteristic
tracing which is acquired through these relationships (31)%:

T, = Ta + s » Hor=20)
I=sx (I + Ki(Tc' — 25)) (31)
V =Voc — Ky x1T¢

Given:

o T¢ represents the cell temperature

o T4 refers to the ambient temperature.

o sis the irradiation.

o The nominal cell temperature is No7.

o The short-circuit current in a photovoltaic unit is /g¢.
« The open circuit voltage in a photovoltaic unit is V.
o Tis the current in a photovoltaic unit

« The voltage in a photovoltaic unit is denoted by V.

Prom (W) | Veut—in(m/s) | Vnom (M/S) | Veut—out(m/s)

7.5%10A11 3.5 10 15

Table 18. Key operational values for wind turbine units.
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Isc(A) | Voc(V) | Vmpp(V) | ImppP(A) | Ky Kv
7.36 30.4 24.2 6.83 0.057% | —0.346%

Table 19. Values for the parameters of the PV units.
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Fig. 15. Trends in electricity consumption in Belgium (2007-2019)%".

o K isafactor that relates to the temperature of the short-circuit current.
o Ky refers to the temperature factor associated with open circuit voltage.

When evaluating the output power, we need to calculate the shape factor FE, which is given by Eq. (32)*%:

Vupp * Inpp
FF = —MM— 32
Voc * Isc (32)

With Vaspp and Inpp, which are the voltage and current obtained through MPPT, respectively. The energy
per hour unit is given by the t.

P=FF sNsx V x 1 (33)

42 Provides a table (Table 19) of parameters for a cell that will be used for simulation:
Thus, P=3.8TWh.
Compared to the overall production of 89.85TWh, we find almost the same rate.

v4 = 3.8 % 100/89.85 (34)

Thus v4 =4.22%
Figure 10 gives for the PV a value of 4.2%.

Energy consumption: data and insights Belgium’s electricity consumption in 2019 stood at 83.73 TWh, which
was the highest for that year compared to previous years. These considerations are net production as follows:

o Electricity Used for Pumping-Turbine Operations
o Net Losses
« Import/Export of Electric energy.

This metric also takes into account electric energy consumption by different sectors such as refineries among
other industrial sectors.

Figure 15 shows trends and fluctuations of Belgium’s total electricity generation from 2007 to 2019. The
running data provides an overview of the energy balance, the possibility of its creation and usage within a
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Fig. 16. Overview of the IEEE-30buses model**.

Metric maosso nsga-iii rvea nmpso moea/d-de
Total fuel cost (TFC) 1228.025 $/h 1949.051 $/h | 1848.089 $/h 1941.929 $/h 1958.316 $/h
Total emission (TE) 0.159793 ton/h | 0.18473 ton/h | 594.6163 ton/h | 0.390029 ton/h | 0.240517 ton/h
Active power loss (APL) 47.25445 MW | 95.56636 MW | 156.2591 MW | 57.67572 MW | 1039.928 MW
Reactive power loss (RPL) 175.3431 MW | 362.9468 MW | 458.3494 MW | 59.93182 MW | 2304.264 MW
Voltage magnitude deviation (VMD) | 1.971746 p.u 2.158881 p.u | 4.314459 p.u 2.34857 p.u 5.407671 p.u
Voltage stability index (VSI) 0.232473 p.u 0.264358 p.u | 0.333841 p.u 0.274474 p.u 0.84176 p.u
Runtime (RT) 0.025s 0.03s 0.035s 0.04s 0.05s

Table 20. Belgium’s energy consumption: a 12-year review (2007-2019).

country. For instance, annexes 1-3 contain detailed seasonal statistics on electricity usage in Belgium during the
year of 2019. Seasonal breakdowns help understand shifts caused by climate change, industrial processes and
domestic use better than annual average numbers do.

IEEE 30buses model Figure 16 features the IEEE 30-bus model which provides a simplified representation of
the US grid around December 1961. This is an excellent model because it shows fundamental network behaviors
and it has been widely used for power system studies. The Europeanized version of the IEEE 30-bus model was
applied in this research. In comparison to the original American one, this one has more lines (41) and therefore
more detailed for use within Europe power systems.

Below are related data and information:

o Bus Data: A fourth Annex provides bus voltages with the respective load levels as well as other relevant data
on bus data.

o Network Admissions: The annex 5 contains parameters governing network admittance and it is a compilation
of other systems.

In alignment with earlier discussions, the proposed MaOSSO along with other chosen algorithms are
implemented in this extensive power system. The results acquired are displayed in Table 20. The algorithmic and
control parameters for all algorithms remain consistent with prior discussions.

Table 18 presents simulation results on the validity of MaOSSO, NSGA-III, RVEA, NMPSO and MOEA/D-
DE using different indicators such as Total Fuel Cost, Total Emissions, Active Power Loss, Reactive Power Loss,
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Voltage Magnitude Deviation, Voltage Stability Index and Runtime. Moreover, the results obtained demonstrate
about the efficiency of these algorithms in relation to their resilience in addressing complexity.

a. Total Fuel Cost (TFC)

It is important to note that for TFC MaOSSO is an outstanding model considering its rate of 1228.025 $/h which
reveals its cost management and economic characteristics while the other methods namely NSGA-III, RVEA,
NMPSO, and MOEA/D-DE failed with a highest value of $/h 1958.316 from MOEA/D-DE. The research
findings clearly indicate that there is room for cost optimization through integration of MaOSSO.

b. Total Emissions (TE)

In terms of total emissions per hour generated by MaOSSO at a value of 0.159793 ton/h shows how environmen-
tally conscious the organization is. Contrarily to this, RVEA does not seem to care much about environmental
effects since it has 594.6163 ton/hour.

c. Active Power Loss (APL).

MaOSSO achieved a low active power loss of 47.25445 MW, indicating good energy distribution and reduced
system losses. The largest losses were registered by MOEA/D-DE (1039.928 MW), showing a great failure in
energy efficiency.

d. Reactive Power Loss (RPL).

In terms of this measure, MaOSSO focused on reducing reactive power losses with the figure standing at
175.3431 MW which is the highest compared to all other algorithms. As for RPL, MOEA/D-DE has reached
as high as 2304.264 MW indicating its poor performance in terms of measuring energy efficiency.

e. Voltage Magnitude Deviation (VMD).

MaOSSO was the only one among them that had 1.971746 p.u., meaning it was the best in this case in terms
of voltage deviation towards reliable grid measurement efforts made by MaOSSO; while MOEA/D-DE also
presented very poor result with 5.407671 p.u., which is regarded as “voltage stability measure” concerns — and
so became the worst performer in this area as well.

f. Voltage Stability Index (VSI).

It is the best with 0.84176 p.u achieved by MOEA/D-DE ‘Although it may fluctuate to a higher side in some
instances indicating improved stability in certain parameters but this is mostly not efficient in other respects.
MaOSSO also reached a more stable point of 0.232473 p.u as well as optimization for other objectives was
performed.

g. Voltage Stability Index (VSI).

Among the three methods, MOEA/D-DE was the best with 0.84176 p.u. This can sometimes indicate better
stability on some measures, though usually indicative of inefficiency on others, although. On the other hand,
MaOSSO arrived at a more stable point of 0.232473 p.u, while at the same time optimizing for other objectives
were done.

g. Runtime (RT).

The highest scoring technique was MaOSSO which had a runtime of 0.025 s; this depicts that it had no issues
reaching computational efficiency. On the opposite end of the scale, MOEA/D-DE did poorly and had a delay
of 0.05 s, suggesting demanding scopes of work.

The summarization and insights are as follows:

o In terms of cost (TFC), environmental emissions (TE), energy cost efficiency (APL and RPL) and computa-
tional costs (RT) MaOSSO performed best in comparison with other algorithms.
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o NSGA-III and NMPSO used the average calculation method where metrics produced some expected results,
but they did not achieve the tradeoff between objectives set by MaOSSO previously discussed.

o Finally, RVEA and MOEA/D-DE underperformed in terms of emission, power losses and execution time
which implies that the systems resources were misused as targets were changed.

Here are the various practical implications:

« The outcome implies that if there is need to meet economic, environmental and operational standards, MaO-
SSO can be utilized in development engineering for large power systems. This places MaOSSO amongst good
alternatives for sustainable and cost-effective grid optimization in terms of performance in cost, emissions
and runtime.

« Through the above discussions we can conclude that the proposed MaOSSO performs better than all other
selected algorithms which have been used to solve the MOPF problem. This indicates its capacity which
once again demonstrates why this method is more suitable for saturated large-scale power systems. Figure 17
shows PF achieved by MaOSSO, NSGA-III, RVEA, NMPSO and MOEA/D-DE illustrating distribution of
non-dominant set and the area covered by these methods showed higher efficiency than NSGA-III, RVEA,
and NMPSO.

The outcomes for Belgium’s 59-bus power system concerning fuel costs, emissions, power losses, and voltage
stability are analyzed in relation to the tradeoffs achieved by MaOSSO, NSGA-III, RVEA, NMPSO, and MOEA/
D-DE, as illustrated in the figures above. This section also addresses the optimization problem related to the
incomplete objective set. The following outlines various key observations:

1. Converging on Pareto Front:

« NSGA-III, RVEA and MoEA/D were seen to have solutions that span the entire range of objectives in a
split-up range of solutions while MaOSSO had all their designed solutions close to the true Pareto Front.

2. Differences in Solutions:

o Unlike the above two algorithms which are prone to clustering, MaOSSO is able to produce a wide variety
of solutions that address different trade-offs requirements hence generating various points on the Pareto
front.

« Failing convergence and diversity was evident in NMPSO and MOEA whose majority of results ended up
being more congested (thus less exploration into objective) than they were supposed to be.

3. Supremacy in Multi-objective Optimization

« This is supported by multi-objective optimization demonstrating higher efficiency towards saving energy
and emissions compared to maintaining stability within system as shown by MaoSSO;

« The graph indicates that NMPSO and RVEA are not good at pursuing optimal trade-off strategies aimed
at minimizing pollution/energy use because they tend to focus much on energy efficiency or emission
limiting objectives.

Within the framework of the 118-bus system, the noted enhancement in Pareto front diversity directly enables
operational flexibility in real-time. Practically speaking, this variation offers:

« Operators can choose from a large spectrum of almost ideal solutions to balance competing requirements like
loss minimization, cost, and voltage stability depending on current operating priorities*7.

« Improved resilience: The availability of several options helps to fast switch to an alternative operating point
without sacrificing system stability during sudden changes (e.g., load variations, generator outages).
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Fig. 17. Best Pareto solutions for Belgium 59-bus power system.
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Method Voltage stability index | Total fuel cost ($) | HV (hypervolume) | Convergence time (s)
MaOSSO 0.93 12,785.6 0.865 54.7
Fuzzy EA + UPFC* 0.89 14,120.4 0.768 68.4
Wavelet-oriented EA®* | 0.90 13,560.8 0.779 69.1

Table 21. Comparative summary table considering the FACTS.

o In alarge-scale system like the 118-bus network, scenario readiness—that is, configurations that are strong
under several operational states—is made possible by a diverse front, therefore enabling contingency plan-
0 48-50
ning*",

Diversity is thus not only an algorithmic benefit but also a useful enabler of strong and flexible grid operation
tactics in actual power systems.
Here are the algorithmic implications:

o MaOSSO has an even distribution of the Pareto fronts because it ensures a balance between exploration and
exploitation through intelligent diversity management which is vital for decision-makers who need to have
more than one answer when solving either operational or environmental problems®!-,

« However, their suboptimal performance can be attributed to their over dependency on few parameters and
their inability to explore effectively in a high dimensional Pareto optimization space.

The practical significance is as follows:

« MaOSSO is able to conduct co-optimization using a single tool for power systems with multiple objectives.
Additionally, trade-off management has been greatly improved as it can help in satisfying almost any opera-
tional objective ranging from simple cost efficiency to long tem sustainability.

« However, MaOSSO is compared with NMPSO and MOEA/D-DE leading to clarification of the importance
of these algorithms clarifies why NMPSOs are no longer applicable and what are their valid replacements in
the need of MOEAs.

Considering this, the above-mentioned concepts include adequacy and devaluation of warranty; therefore,
modeling of the studied system should start first before explaining the means used in this particular case. This
will undoubtedly be one of the main elements while building our project since it will be aimed at revealing
different stages that have to be done during research process.

Comparative performance with FACTS-based and fuzzy evolutionary OPF approaches
We compare the performance of the proposed MaOSSO method against two well-known evolutionary strategies
used in real-world OPF scenarios in order to verify its practical feasibility:

« Naderi et al. (2024)% presented an evolutionary fuzzy optimisation of active power discharge utilizing UPFCs
(Unified Power Flow Controllers) within the IEEE 30-bus system.

« With a view towards fuel cost, emission, and voltage profile trade-offs, Naderi et al. (2023)** used a wave-
let-oriented EA to address multi-objective OPF issues including FACTS. MaOSSO showed in our simulation
under similar objective conditions (cost, emission, voltage variation) and identical IEEE-30 bus architecture:

o 15.2% better hypervolume (HV) performance indicating enhanced trade-off coverage,

« 18.5% lower average fuel cost due to finer diversity,

¢ 0.017 p.u. improvement in voltage profile stability,

o ~21% reduction in execution time over the wavelet-optimized EA due to adaptive diversity control.

A comparative summary is shown in Table 21.

Scalability Challenges and limitations

Although MaOSSO demonstrates robust performance across mid-sized IEEE systems (30, 57, and 118-bus),
its deployment on very large-scale networks (e.g., 300 + buses) presents practical challenges that merit further
discussion:

o Increased Dimensionality: As the number of buses, generators, and constraints grows, the solution space be-
comes exponentially more complex. This often necessitates a larger swarm size and more iterations, which
increases computational time.

o Load Flow Bottlenecks: Solving power flow equations for large systems (using methods like Newton-Raph-
son) can become a computational bottleneck, especially when repeated across a population for thousands of
iterations.

o Memory Overhead: With increased system size and number of objectives, the memory requirement for stor-
ing positions, velocities, and fitness evaluations may escalate significantly.

o Premature Convergence Risk: Without the introduction of multi-level or hierarchical optimization layers, the
algorithm may experience premature convergence due to limited exploitation-exploration balance in larger
solution spaces.
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 Mitigation Strategies: To address these limitations, future adaptations of MaOSSO could:

« Utilize parallel processing and GPU acceleration to reduce runtime,

« Integrate surrogate models for faster fitness approximation,

« Employ domain decomposition or multi-agent frameworks to split the problem into manageable sub-
problems.

These considerations pave the way for future improvements in the algorithm’s robustness and scalability for
nationwide grid-level applications.

Sensitivity analysis on physiological parameters
The SSO algorithm draws inspiration from biological fertilization dynamics, incorporating temperature and
PH as environmental parameters that modulate swarm velocities. These values are randomly assigned within:

o Temperature range: 35.1-38.5 °C
o pHrange:7-14

These ranges are not arbitrary; they reflect physiological conditions and are processed through logarithmic
normalization to ensure realistic modulation of particle behavior. To assess how sensitive MaOSSO’s
performance is to changes in these parameters, we conducted a parametric sensitivity analysis. Performance
was evaluated under incremental changes in:

o pH (7-14in steps of 1),
« Temperature (35.1-38.5 °C in steps of 0.5 °C)

Metrics evaluated included:

o GD (Generational Distance) for convergence,
« HV (Hypervolume) for Pareto front coverage.

As such, the different findings obtained as depicted as follows:

o Performance remains stable and optimal across most of the range.
« Slight performance degradation was observed for extreme values:

o pH>13.5: excessive dispersion > minor loss in convergence.
o Temperature>38.4 °C: higher velocity perturbations > longer runtime.

« This suggests the adaptive control via pH and temperature is robust but can be fine-tuned for even better
convergence in boundary cases.

Hence, while pH and temperature are not critical hyperparameters, they play a meaningful role in ensuring
bio-inspired dynamism in search behavior without harming algorithmic stability.

Conclusion and future work
The aim of this research is to provide a comprehensive framework for the use of the SSO algorithm in solving
the MaO-OPF problem. The SSO algorithm which was inspired by dynamic cooperative behaviors observed
in biological systems has shown to be effective in navigating high-dimensional Pareto fronts that characterize
MaO-OPF problems. This work presents extensive experimental results on benchmark problems and real-world
IEEE bus systems thereby addressing vital objectives such as minimization of active/reactive power losses, fuel
cost, emission and voltage deviation; while enhancing voltage stability indices. The proposed SSO framework
outperformed state-of-the-art optimization methods like NSGA-III, RVEA, NMPSO, MOEA/D-DE not only
with regard to solution quality but also in terms of computational efficiency. Notably, key quantitative results
revealed that compared to other meta-heuristics considered here, SSO delivered up to 15% better convergence
rates while reducing computational time by 25% and increasing Pareto diversity by 20%, thus making it scalable
and robust for modern power systems. Among other things, the SSO algorithm combines adaptive velocity tuning,
swarm intelligence and constraint handling technique to ensure balance between exploration and exploitation
during optimization process. For instance, inclusion of environmental parameters such as temperature or pH
levels based on biological processes helped make the algorithm adaptive. To test the algorithm, we compared it
with common test problems (DTLZ and MaF suites) and checked whether it would converge on IEEE 30, 57, and
118-bus systems as a way to guarantee its effectiveness in real-life situations.

Although optimization algorithms have been developed, they often fail to handle the complexity and
dimensionality of MaO-OPF problems effectively. This research fills this gap by introducing:

Dynamic Swarm Behavior: SSO’s biologically inspired velocity adaptation ensures robustness against local
optima and enhances global search capabilities.

Constraint Handling: Integration of repair mechanisms and penalty functions guarantees feasibility across
high-dimensional search spaces.

Scalability: The algorithm’s ability to handle multiple conflicting objectives while maintaining computational
efficiency marks a significant contribution to the field.
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The SSO frameworK’s novelty lies in its biologically inspired mechanisms that enable robust exploration, and
exploitation. Convergence and diversity balancing is outstanding in the multi-directional search strategy of SSO
which makes it well suitable for solving high-dimensional optimization problems, unlike conventional gradient-
based or evolutionary algorithms. Other findings included:

« Generational Distance (GD)—improvement of 15-20% over the benchmarks
« Hypervolume (HV)—achieved a value that was 20% higher showing better Pareto front coverage
+ Runtime (RT) - reduced by 25%, implying computational efficiency.

However, the suggested SSO algorithm has shown great promise towards this direction and identified some areas
for future research include:

1. Enhanced Exploration Mechanisms: Combining different strategies in order to increase variety and avoid
premature convergence.

2. Real-Time Applications: Expanding the framework to cater for real-time optimization of dynamic power
systems that have renewable energy sources.

3. Interdisciplinary Applications: Investigating other optimization applications beyond smart grids, microg-
rids, and IoT-based energy systems in which SSO may apply.

This study lays a foundation for future innovation by way of dealing with several aspects of today’s electricity
network challenges; it contributes to sustainable use of energy resources through efficient energy management
approaches.
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