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In this work, we investigate the stochastic traveling wave solutions for the generalized nonlinear 
Schrödinger equation under the influence of the Wiener process. It encompasses weak nonlocality 
related parameters and higher order dispersion with higher order nonlinearity. In order to solve this 
problem, the improved modified extended tanh function approach is used in conjunction with an 
appropriate traveling wave transformation to produce new, various, and effective soliton solutions 
for the proposed model using the computational tool Wolfram Mathematica. We used MATLAB 
packages to create both 2D and 3D visual representations of the equation in order to better understand 
its physical meaning. The graphical representations provide useful insights into several aspects of 
the dynamics of the problem. Our range of solutions includes dark, bright, singular solitons, Jacobi 
elliptic functions, exponential, periodic, and singular periodic solutions, all of which may be obtained 
by varying the values of our parameters. This paper represents the first time insertion of stochastic 
influences into a specified nonlinear wave equation, including impact analysis. Our computer 
study validates the efficacy and adaptability of our approach in solving a broad range of nonlinear 
phenomena in the field of mathematical science and many other fields.
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The nonlinear evolution equations (NLEEs) provide accurate descriptions and simulations for nonlinear 
processes that appear in domains including engineering, physics, computational mathematics, chemistry, 
and biological sciences1–4. In the field of nonlinear sciences, nonlinearity plays a vital role in the dynamics 
of waves. A concentrated research effort has been underway in recent years to solve analytical problems for 
NLEEs, specifically single-wave solutions. Researchers have created a number of methods, including computer 
algorithms and analytical and numerical methodologies, to effectively answer NLEEs and offer insights into 
complex processes. Numerous techniques, including the Hirota bilinear method5, the modified generalized 
Riccati equation mapping approach6, the IME tanh-function method7–9, the modified extended direct algebraic 

method10–12, the Lie symmetry analysis approach13, the extended F- expansion method14, Khater’s algorithm15, 

Hirota’s method16, the 
(

G′

G
, 1

G

)
−expansion method17, and numerous more, have been developed for analyzing 

this data (see18,19).
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Solitons, which are stable, nondispersive wave phenomena that maintain their structure and speed during 
propagation, are sometimes referred to as solitary wave solutions20,21. These solutions are unique in that they can 
maintain their original shape even in the face of specific alterations. They may be found in a wide range of physical 
systems, such as nonlinear optics22 and water waves23. Solitons are particularly significant for understanding and 
modeling wave behavior since they often do not exhibit singularities24.

The Schrödinger equation was developed by Erwin Schrödinger in 1925 and formally published in 192625. 
This equation served as the foundation for his further scientific endeavors. Among the extraordinary nonlinear 
situations that arise from mathematical modeling, the non-linear Schrödinger equation (NLSE) has a prominent 
place. Differential equations with deterministic models were widely used in the physical sciences to explore 
natural processes up to the 1950s. It is apparent, however, that the phenomena of the modern world are not 
deterministic. However, the evolution of nonlinear dispersive waves is significantly influenced by random 
fluctuations in the NLSE. They can cause departures from the deterministic predictions of the equation because 
they are caused by noise or errors in the original circumstances or by outside causes. Recent developments in 
soliton solutions and techniques relevant to stochastic optical communication systems are not covered in the 
current literature survey. A more thorough context would be provided by including research like Secer et al.’s 
study on stochastic pure-cubic optical solitons26, Kamel et al.’s analysis of soliton solutions in nonlinear optical 
media27, and Alkhidhr’s investigation of stochastic solutions for nonlinear Schrödinger equations in optical fiber 
communications28. Furthermore, the study by Alzahrani et al. on soliton solutions of the stochastic perturbed 
Schrödinger-Hirota equation29 and recent work in30 on stochastic optical solutions for the (2+1)-dimensional 
NLSE provide important insights into contemporary approaches. Wavelet-based techniques have shown promise 
in capturing the dynamics of complex systems with higher-order dispersion and nonlocal interactions. To 
illustrate its resilience to such complexity, Zhang et al. (2017) created a high-order wavelet integral collocation 
approach for nonlinear boundary value problems31. Similarly, Gunzburger et al. (2014) highlighted the accuracy 
and versatility of an adaptive wavelet stochastic collocation approach designed for irregular solutions of 
stochastic partial differential equations32. These works would highlight the originality of the suggested solutions 
in the context of stochastic nonlinear Schrödinger equations and offer a more thorough knowledge of wavelet-
based techniques if they were included in the literature review31,33,34.

Existing research has looked extensively at deterministic wave equations and their solutions, such as solitons, 
periodic waves, and localized structures in nonlinear systems. However, most research focuses on idealized 
systems and ignores the influence of noise. Researchers have investigated how random perturbations impact 
wave dynamics using stochastic partial differential equations (SPDEs), but extensive analytical and numerical 
investigations on the equation in this study are lacking. Theoretical and practical benefits of studying these 
fluctuations include improved prediction and control of wave dynamics in real-world applications, as well as 
a deeper knowledge of wave statistical behavior in complex systems. Numerous methods have been developed 
to examine and predict these fluctuations, including numerical simulations and stochastic analysis, which offer 
important insights into how these fluctuations affect wave propagation35,36. While previous research has focused 
on deterministic solutions, the impact of stochastic noise on wave propagation for the nonlinear system under 
consideration in this study is not well known. There is a paucity of systematic research into how varied noise 
levels affect wave stability, form, and evolution. Furthermore, present numerical models do not give enough 
information on the transition from deterministic to stochastic wave behaviors under different noise levels.

Motivation and novelty of this study
The need to account for random effects in the analysis, prediction, modeling, and simulation of physical 
systems is now widely accepted. Random variations throughout time are incorporated into stochastic models37. 
Thermal fluctuations and spontaneous emissions may be simulated using stochastic NLSE. Many authors 
examined the existence and uniqueness of stochastic nonlinear stochastic exponential smoothing with additive 
or multiplicative noise. Stochastic NLSE is also analyzed by numerical methods38,39. SPDEs are expansions of 
classical partial differential equations that include randomness, generally via stochastic processes such as Wiener 
noise, to characterize uncertain systems. They are commonly used in physics, finance, and engineering to 
describe phenomena such as turbulent fluid flow, quantum field fluctuations, and financial market dynamics40,41. 
To close the gap in the literature, this work incorporates a stochastic factor into the governing wave equation 
and thoroughly investigates its implications. The paper investigates how varying noise levels affect wave stability, 
localization, and energy distribution using both analytical and numerical modeling approaches. The process 
entails solving the SPDE under various noise settings and displaying the results with 3D and 2D charts to identify 
significant patterns and trends.

Stochastic generalized NLSE description
This research represents a novel search for the exact solutions for the stochastic generalized NLSE. According 
to42, an overall NLSE affects how light waves propagate by including both fourth-order dispersion effects and 
Kerr nonlinearity which can be read as:

	
iRt + 1

24η1Rxxxx + η2 |R|2 R = 0, i =
√

−1.� (1)

As explained in42, the model indicated above has to be improved by adding a new element to take into 
consideration the impact of weak nonlocality.

	
iRt + 1

24η1Rxxxx + η2 |R|2 R + η3R
(
|R|2

)
xx

= 0,� (2)
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and adding the noise effect, Eq. (2) becomes:

	
iRt + 1

24η1Rxxxx + η2 |R|2 R + η3R
(
|R|2

)
xx

+ ϱRdW

dt
= 0,� (3)

where the time and spatial dimensions are represented, respectively, by the variables t and x in this configuration. 
R(x, t) is used to represent the complicated amplitude of the electric field. The 4th-order dispersion is described 
by the coefficient η1, while the cubic non-linearity coefficient is shown by η2. The consideration of nonlocal effects 
becomes more crucial when addressing the propagation of tiny wavelengths in various optical transmission sub-
materials. In this case, the Kerr nonlinearity is encapsulated by the phrase |R|2 R, whereas the influence of 4th-
order dispersion is described by the term Rxxxx. Additionally, the presence of weak nonlinearity is indicated 
by the phrase R

(
|R|2

)
xx

. In recent times, the aforementioned model has been used to study the localization 
of optical pulses within guided wave structures, especially when a quasiperiodic linear component is present43. 
Where W(t) denotes the Wiener process function and dW

dt  denotes the white noise but ϱ denotes the white noise 
intensity. The Wiener process function has the following properties44,45: 

	 i.	 For t ≥ 0, W (t) has continuous trajectories.
	ii.	 For s < t, W (t) − W (s) has independent increments.
	iii.	 W (t) − W (s) has a normal distribution with variance = t − s and mean = 0.

Adding noise to Eq. (2) results in a SPDE with a Wiener process (dW). This adjustment adjusts for random 
variations in physical systems caused by external disturbances, measurement noise, or inherent system 
variability. The inclusion of the parameter ϱR dW/dt improves the equation’s ability to predict real-world 
occurrences when perfect deterministic behavior is insufficient. This method is critical for studying the 
stability and resilience of wave propagation, soliton dynamics, and other nonlinear systems in the presence of 
randomness. In addition, the updated Eq. () has a wide range of practical applications, including optical fiber 
communications, where noise represents the effect of amplified spontaneous emission (ASE) on signal integrity. 
In Bose-Einstein condensates, it represents quantum fluctuations that impact particle interactions. Similarly, in 
fluid and plasma physics, stochastic concepts assist in understanding wave turbulence and instabilities. By adding 
noise, researchers may investigate how randomness impacts system evolution, forecast long-term behavior, and 
devise ways for reducing noise-induced distortions in practical applications.

Thus, the search for soliton solutions in the aforementioned models serves as our primary source of 
inspiration. We want to do this by utilizing the improved modified extended (IME) tanh function approach, a 
freshly developed and trustworthy technology. The approach has the potential to resolve unresolved issues from 
earlier research7,8,46. Finding analytical solutions for a particular generalized nonlinear Schrödinger problem is 
the primary goal of the improved modified extended tanh-function approach. Simplifying the equation while 
maintaining its essential features is its main goal. The process of standardization facilitates the identification of 
precise solutions, providing important information about the behavior of the system that the nonlinear partial 
differential equation (NLPDE) describes36,47. For the purpose of regulating atmospheric gravity waves, preserving 
wave stability, and avoiding dispersion, the found solitons are vital to atmospheric study. Understanding the 
patterns of global air circulation and how they impact weather events requires the preservation of long-range 
coherent wave structures8.

The success of the suggested approach in solving particular problems and their capacity to yield precise 
answers define how successful they are compared to existing methods; computing efficiency, generality, and ease 
of implementation are all significant considerations in this assessment.

The outline of the paper goes like this: The soliton theory and NLSEs history are introduced in general 
and given a theoretical foundation in “Introduction” section; the suggested model to be studied and its 
practical applications are briefly described in “Stochastic generalized NLSE description” section; and the main 
characteristics of the IME tanh function approach are presented in “The IME tanh function approach” section. 
In “Novel stochastic soliton solutions extraction” section, we will do a thorough symbolic computation using 
Wolfram Mathematica®, beginning with the non-linear equation itself, to arrive at a few families of exact stochastic 
solutions. One should establish some constraint conditions in order to prove the existence of some approved 
solutions. Understanding the physical importance of this non-linear system can be aided by the obtained data. 
Various of the retrieved solutions are illustrated using 2D, 3D, and contour representations in “Graphical and 
physical interpretation for the influence of noise onthe extracted solutions” section. A few findings are presented 
at the end of “Conclusions” section.

The IME tanh function approach
In this section, we present the salient features of the IME tanh function approach, which will be used in this 
manuscript as well as a comparative analysis with alternative approaches.

Mathematical procedures of the IME tanh function approach
By beginning to think about the subsequent NLPDE9,48:

	 K (Ψ, Ψt, Ψx, Ψxx, Ψxxx, Ψtt, . . .) = 0,� (4)

here K denotes a polynomial of its argument Ψ(x, t) in addition to their corresponding partial differentiation.
Algorithm (1): The upcoming transformation shall be applied to convert the NLPDE in Eq. (4) to a non-

linear ordinary differential equation (NLODE):
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	 Ψ(x, t) = Z(ζ), ζ = αx − νt,� (5)

where Z  represents the solution, while α and ν are unknown constants which shall be evaluated later on in the 
work’s procedures. Next, we insert Eq. (5) into Eq. (4). Thus, we are able to construct the required NLODE as 
described below:

	 L(Z, Z ′, Z ′′, Z ′′′, . . .) = 0.� (6)

Algorithm (2): The scheme defines the solution’s form of Eq. (6) to be:

	
Z(ζ) =

N∑
i=0

AiGi(ζ) +
N∑

i=1

BiG−i(ζ),� (7)

where Ai and Bi (i = 1, 2, ...,N) represent some constant parameters of the solution equation which will be 
calculated, supplying the requirement that AN and BN cannot both be zero at the same time.

Algorithm (3): The homogeneous balancing principle (HBP) is implemented in Eq. (6) to estimate the 
positive integer N. In addition the function G(ζ) fulfils the subsequent requirement:

	

(
dG
dζ

)2

= τ0 + τ1G(ζ) + τ2G2(ζ) + τ3G3(ζ) + τ4G4(ζ),� (8)

while τl (l = 0, 1, 2, 3, 4) are real-valued constants which will help us in finding possible cases of solutions.
The parameters in the supplied differential equation in (8) are determined based on the wave system’s 

physical properties, ensuring that the generated solutions match the intended wave patterns. τ0, τ1, τ2, τ3, 
and τ4 determine the kind of wave solution (e.g., solitary waves, periodic waves, or localized structures). Their 
selection is often influenced by system restrictions, dispersion relations, and stability parameters, which help 
decide whether the wave retains its shape over time or evolves into a different shape.

Eq. (8) has the following general solutions with different possible values of τ0, τ1, τ2, τ3 and τ4:
Family 1: When τ0 = τ1 = τ3 = 0, the following solutions are raised:

	
G(ζ) =

√
−τ2

τ4
sech [ζ

√
τ2] , τ2 > 0, τ4 < 0,

	
G(ζ) =

√
−τ2

τ4
sec

[
ζ
√

−τ2
]

, τ2 < 0, τ4 > 0.

These solutions are localized and describe soliton-like structures. The sech function corresponds to bright 
solitons, while the sec function represents singular periodic structures. Family 2: When τ1 = τ3 = 0, the 
following solutions are raised:

	
G(ζ) =

√
− µ2τ2

(2µ2 − 1) τ4
cn

[
ζ

√
τ2

2µ2 − 1

]
, τ2 > 0, τ4 < 0, τ0 =

µ2 (
1 − µ2)

τ2
2

4 (2µ2 − 1)2 τ4
,

	
G(ζ) =

√
− µ2

(2 − µ2) τ4
dn

[
ζ

√
τ2

2 − µ2

]
, τ2 > 0, τ4 < 0, τ0 =

(
1 − µ2)

τ2
2

(2 − µ2)2 τ4
,

	
G(ζ) =

√
− µ2τ2

(µ2 + 1) τ4
sn

[
ζ

√
−τ2

µ2 + 1

]
, τ2 < 0, τ4 > 0, τ0 = µ2τ2

2

(µ2 + 1)2 τ4
.

	
G(ζ) = ϵ

√
− τ2

2τ4
tanh

(√
−τ2

2 ζ
)

, τ2 < 0, τ4 > 0, τ0 = τ2
2

4τ4
,

	
G(ζ) = ϵ

√
τ2

2τ4
tan

(√
τ2

2 ζ
)

, τ2 > 0, τ4 > 0, τ0 = τ2
2

4τ4
,

where µ is the modulus of the Jacobi elliptic functions, 0 ≤ µ ≤ 1 and ϵ = ±1. These solutions describe periodic 
and quasi-periodic wave structures, in addition to the dark solitons.

Family 3: When τ0 = τ1 = τ4 = 0 the following solution is raised:

	
G(ζ) = −τ2

τ3
sech 2

(√
τ2

2 ζ

)
, τ2 > 0,

	
G(ζ) = −τ2

τ3
sec2

(√
−τ2

2 ζ

)
, τ2 < 0.
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These solutions represent double-hyperbolic solitons or bistable states, often found in nonlinear wave equations 
with external forcing.

Family 4: When τ3 = τ4 = 0, the following solution is raised:

	
G(ζ) = − τ1

2τ2
+ exp (ϵ

√
τ2 ζ) , τ2 > 0, τ0 = τ2

1

4τ2
,

	
G(ζ) = − τ1

2τ2
+ ϵτ1

2τ2
sin

(√
−τ2 ζ

)
, τ0 = 0, τ2 < 0,

	
G(ζ) = − τ1

2τ2
+ ϵτ1

2τ2
sinh (2

√
τ2 ζ) , τ0 = 0, τ2 > 0,

	
G(ζ) = ϵ

√
−τ0

τ2
sin

(√
−τ2 ζ

)
, τ1 = 0, τ0 > 0, τ2 < 0,

	
G(ζ) = ϵ

√
τ0

τ2
sinh (

√
τ2 ζ) , τ1 = 0, τ0 > 0, τ2 > 0.

These solutions describe exponentially growing and oscillatory modes.
By extending these solutions to stochastic optical models, we gain valuable insights into noise-driven 

instabilities, soliton interactions, and optical signal processing in nonlinear optical media. Algorithm (4): We 
can raise a polynomial in G(ζ) by inserting a solution that appears to be stated in Eq. (7) and Eq. (8) into Eq. (6). 
The process of equalizing the coefficients of Gi(ζ), (i = 0, ±1, ±2, ...), to zero produces a family of non-linear 
algebraic equations (NLAEs) that may be tackled and solved using Wolfram Mathematica®. Consequently, there 
are several precise solutions for the traveling wave in Eq. (4) that we may acquire.

A comparative analysis with alternative approaches
In comparison to Hirota’s technique49 and the variational iteration method (VIM)50, the IME tanh-function 
approach has significant benefits in terms of accuracy, computing efficiency, and wider applicability. The IME 
tanh-function technique offers a more straightforward and methodical means of obtaining accurate answers 
with less algebraic complexity than Hirota’s method, which mostly depends on bilinear transformations 
and necessitates costly symbolic calculations. Similarly, VIM is computationally costly and frequently 
requires numerous correction functionals and convergence monitoring, even though it iteratively improves 
approximations and might be useful for nonlinear situations. On the other hand, the IME tanh-function 
method improves efficiency by achieving faster convergence with fewer repetitions. Furthermore, numerical 
comparisons show that it retains excellent accuracy, as evidenced by a more stable solution structure and smaller 
residual errors. Additionally, its versatility encompasses a wider range of nonlinear partial differential equations, 
such as integrable and non-integrable systems, where conventional approaches could encounter difficulties with 
singularities or divergence. As a strong substitute for current techniques, the IME tanh-function approach offers 
a balance between accuracy, efficiency, and broad application.

Novel stochastic soliton solutions extraction
This section makes use of the IME tanh function approach to build every potential solution for Eq. (3). For this 
aim, we suppose the following wave transformation:

	 R = H(ζ) ei(βx−ωt+ϱW (t)−ϱ2t), ζ = αx − νt,� (9)

where H(ζ) is the amplitude of the complex-enveloped solution, β denotes the wave number, ω is the frequency 
shift, while ϱ represents the intensity of the white noise W(t).

Using the aforementioned transformation in Eq. (9) and its corresponding derivatives into Eq. (3) and by 
separating the real and imaginary components, one can find the real part as:

	
α4η1H(4) + 24η2H3 − 6α2β2η1H′′ + 48α2η3H

(
HH′′ +

(
H′)2

)
+

(
β4η1 + 24ω + 24ϱ2)

H = 0,� (10)

and the imaginary part as

	 α3βη1H(3) −
(
αβ3η1 + 6ν

)
H′ = 0.� (11)

By integrating Eq. (11) with respect to ζ  with considering the integration constant to be zero, then plugging what 
we obtained into Eq. (10), one can find the following ODE:

	

α7βη2
1H(4) + α2H3 (

48αβ3η1η3 + 24αβη1η2 + 288η3ν
)

+ 48α5βη1η3H
(
H′)2

+α2 (
−5αβ5η2

1 + 24αβη1ω + 24αβη1ϱ2 − 36β2η1ν
)

H = 0.
� (12)

Thus, by applying the HBP presented in Section 3 between H(4) and H (H′)2, one can find that N = 1. After 
that, one can build up the form of the exact solution for Eq. (3) as read below:
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H = A0 + A1G(ζ) + B1

G(ζ) .� (13)

Eq. (12) yields a polynomial in G(ζ) when the restriction in Eq. (8) is substituted with the solution form in Eq. 
(13). We have a system of NLAEs when we set the sum of all terms with the same powers to zero. We can solve 
these equations using Wolfram Mathematica® to create the following situations. The requirement is provided that 
neither A1 nor B1 be zero simultaneously.

Family (1) : If τ0 = τ1 = τ3 = 0, then

Set (1.1) : A0 = A1 = 0, τ2 = −
2αβ2 + αη2

η3
+ 12ν

βη1

2α3 ,

B1 = ±
√

α2β2η2
1 (16β4η2

3 − 4β2η2η3 − η2
2) − 24αβη3η1 (4βη3 (α (ω + ϱ2) − βν) + η2ν) − 144η2

3ν2

8α2β
√

3η1η3
3τ4

.
 

Set (1.2) : A0 = B1 = 0, A1 = ±
√

3τ4 (ϑ + αβη3 (βη3 (2α (ω + ϱ2) + 33βν) + 18η2ν))
η3 (31β6η2

3 + 36β4η2η3 + 9β2η2
2) ,

η1 = − 216η2
3ν2

αβη3 (βη3 (2α (ω + ϱ2) + 33βν) + 18η2ν) − ϑ
, τ2 =

αβ2η2
3

(
2α

(
ω + ϱ2)

− 3βν
)

− ϑ

6α3βη2
3ν

,

where ϑ =
√

α2β3η3
3

(
βη3

(
4α2 (ω + ϱ2)2 + 132αβν (ω + ϱ2) − 27β2ν2

)
+ 36η2ν (2α (ω + ϱ2) − 3βν)

)
.

By considering solution set (1.1), the exact solutions can be obtained as follows:
(1.1,1)If τ2 > 0, τ4 < 0, so:

	

R1.1,1(x, t) =
(

±
√

1
3 α2β2η2

1(16β4η2
3−4β2η2η3−η2

2)−8αβη3η1(4βη3(α(ω+ϱ2)−βν)+η2ν)−48η2
3ν2

8α2β
√

−η1η3
3τ2

cosh [(αx − νt)√τ2]
)

×ei(βx−ωt+ϱW (t)−ϱ2t),

� (14)

 which represents a hyperbolic solution such that
η1η3

3( 1
3 α2β2η2

1
(
16β4η2

3 − 4β2η2η3 − η2
2
)

− 8αβη3η1
(
4βη3

(
α

(
ω + ϱ2)

− βν
)

+ η2ν
)

− 48η2
3ν2) < 0.

(1.1,2) If τ2 < 0, τ4 > 0, so:

	

R1.1,1(x, t) =
(

±
√

1
3 α2β2η2

1(16β4η2
3−4β2η2η3−η2

2)−8αβη3η1(4βη3(α(ω+ϱ2)−βν)+η2ν)−48η2
3ν2

8α2β
√

−η1η3
3τ2

cos
[
(αx − νt)

√
−τ2

])

×ei(βx−ωt+ϱW (t)−ϱ2t),

� (15)

 which represents a periodic solution such that
η1η3

3( 1
3 α2β2η2

1
(
16β4η2

3 − 4β2η2η3 − η2
2
)

− 8αβη3η1
(
4βη3

(
α

(
ω + ϱ2)

− βν
)

+ η2ν
)

− 48η2
3ν2) > 0.

When we consider the solutions set (1.2), we are able to establish the following exact solutions for Eq. (3):
(1.2,1) If τ2 > 0 and τ4 < 0, then:

	
R1.2,1(x, t) =

(
±

√
− 3τ2(ϑ+αβη3(βη3(2α(ω+ϱ2)+33βν)+18η2ν))

η3(31β6η2
3+36β4η2η3+9β2η2

2) sech [(αx − νt)√τ2]
)

ei(βx−ωt+ϱW (t)−ϱ2t), � (16)

 which represents a bright soliton solution such that 
(
ϑ + αβη3

(
βη3

(
2α

(
ω + ϱ2)

+ 33βν
)

+ 18η2ν
))

> 0 
and η3

(
31β6η2

3 + 36β4η2η3 + 9β2η2
2
)

< 0. The sech-type solution is a well-known soliton solution in 
nonlinear optics, appearing in self-focusing optical media such as fiber optics and photonic crystals.

(1.2,2) If τ2 < 0 and τ4 > 0, so:

	
R1.2,2(x, t) =

(
±

√
− 3τ2(ϑ+αβη3(βη3(2α(ω+ϱ2)+33βν)+18η2ν))

η3(31β6η2
3+36β4η2η3+9β2η2

2) sec
[
(αx − νt)

√
−τ2

])
ei(βx−ωt+ϱW (t)−ϱ2t), � (17)

 which denotes a singular periodic solution such that 
(
ϑ + αβη3

(
βη3

(
2α

(
ω + ϱ2)

+ 33βν
)

+ 18η2ν
))

> 0 
and η3

(
31β6η2

3 + 36β4η2η3 + 9β2η2
2
)

> 0. The sec-type solution suggests periodic wave behavior, possibly 
modeling nonlinear wave patterns in optical lattices.

In the presence of stochastic perturbations, these solutions can describe stable pulses that resist dispersion, 
which is crucial for optical communication systems.

Family (2) : If τ1 = τ3 = A0 = 0, then we construct different solutions’ sets as:
Set (2.1) : 

A1 = ±α
√

− η1τ4
2η3

, B1 = 0, τ2 =
−α2β2η1η3∓

√
3(α4η1η3(−η1(η3(β4−16α4τ0τ4)+4β2η2)−32η3(ω+ϱ2)))

2α4η1η3
,

ν = ±
β

(√
3(α4η1η3(−η1(η3(β4−16α4τ0τ4)+4β2η2)−32η3(ω+ϱ2)))−α2η1(11β2η3+6η2)

)

72αη3
.
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Set (2.2) : 

A1 = 0, B1 = ±α
√

− η1τ0
2η3

, τ2 =
−α2β2η1η3∓

√
3(α4η1η3(−η1(η3(β4−16α4τ0τ4)+4β2η2)−32η3(ω+ϱ2)))

2α4η1η3
,

ν = ±
β

(√
3(α4η1η3(−η1(η3(β4−16α4τ0τ4)+4β2η2)−32η3(ω+ϱ2)))−α2η1(11β2η3+6η2)

)

72αη3
.

Set (2.3) : A1 = ±α
√

− η1τ4
2η3

, B1 = ±α
√

− η1τ0
2η3

,

τ2 =
−α2η1η3(36α2√

τ4τ0+β2)∓
√

3(α4η1η3(η1(η3(512α4τ0τ4+32α2β2√
τ4τ0−β4)−4β2η2)−32η3(ω+ϱ2)))

2α4η1η3
,

ν = ±
β

(
α2η1(η3(48α2√

τ4τ0−11β2)−6η2)+
√

3(α4η1η3(η1(η3(512α4τ0τ4+32α2β2√
τ4τ0−β4)−4β2η2)−32η3(ω+ϱ2)))

)

72αη3 .
When selecting the solutions’ set (2.1), the corresponding exact solutions will be:
(2.1,1) If τ2 < 0, τ4 > 0 and τ0 = τ2

2
4τ4

, then:

	
R2.1,1(x, t) = 1

2α

√
η1τ2

η3
tanh

[
(αx − νt)

√
−τ2

2

]
ei(βx−ωt+ϱW (t)−ϱ2t),� (18)

which is a dark soliton solution provided that η1η3 < 0.
(2.1,2) If τ2 > 0, τ4 > 0 and τ0 = τ2

2
4τ4

, then:

	
R2.1,2(x, t) = 1

2α

√
−η1τ2

η3
tan

[
(αx − νt)

√
τ2

2

]
ei(βx−ωt+ϱW (t)−ϱ2t),� (19)

which is a singular periodic solution by providing that η1η3 < 0.

(2.1,3) If τ2 > 0, τ4 < 0, τ0 = µ2(1−µ2)τ2
2

(2µ2−1)2
τ4

, and 0 < µ ≤ 1, then the solution will be a JEF such that 

η1η3 > 0 as:

	
R2.1,3(x, t) = ±αµ

√
− η1τ2

2η3 (1 − 2µ2)cn(αx − νt)ei(βx−ωt+ϱW (t)−ϱ2t).� (20)

The cn function corresponds to periodic wave trains, appearing in nonlinear optical fibers and waveguides. 
When setting µ = 1, one could find the following bright soliton solution:

	
R2.1,4(x, t) = ±α

√
η1τ2

2η3
sech[αx − νt]ei(βx−ωt+ϱW (t)−ϱ2t).� (21)

(2.1,4) If τ2 > 0, τ4 < 0, τ0 = (1−µ2)τ2
2

(2−µ2)2
τ4

, and 0 < m ≤ 1, then a JEF solution is found providing that 

η1η3 > 0:

	
R2.1,5(x, t) = ±αµ

√
η1

2η3 (2 − µ2)dn(αx − νt)ei(βx−ωt+ϱW (t)−ϱ2t).� (22)

The dn function corresponds to periodic wave trains, appearing in nonlinear optical fibers and waveguides. As a 
particular case, when µ = 1, a bright soliton solution can be evaluated as:

	
R2.1,6(x, t) = ±α

√
η1

2η3
sech[αx − νt]ei(βx−ωt+ϱW (t)−ϱ2t).� (23)

(2.1,5) If τ2 < 0, τ4 > 0, τ0 = µ2τ2
2

(µ2+1)2
τ4

, and 0 < µ ≤ 1, then a JEF solution is found providing that 

η1η3 < 0:

	
R2.1,7(x, t) = αµ

√
η1τ2

2η3 (µ2 + 1) sn(αx − νt)ei(βx−ωt+ϱW (t)−ϱ2t).� (24)

The sn-type solution describes breather modes, which arise in stochastic optical solitons where noise influences 
pulse evolution. A particular case, when µ = 1, a dark soliton solution is raised:
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R2.1,8(x, t) = 1

2

√
η1τ2

η3
tanh[αx − νt]ei(βx−ωt+ϱW (t)−ϱ2t).� (25)

In stochastic optics, these solutions are essential for modeling modulated wave packets, where noise-driven 
instabilities can induce chaotic wave structures.

Through Set (2.2), the solutions are obtained as follows:
(2.2,1) If τ2 < 0, τ4 > 0 and τ0 = τ2

2
4τ4

, one can obtain a singular soliton solution provided that η1η3 < 0:

	
R2.2,1(x, t) = 1

2α

√
η1τ2

η3
coth

[
(αx − νt)

√
−τ2

2

]
ei(βx−ωt+ϱW (t)−ϱ2t).� (26)

(2.2,2) If τ2 > 0, τ4 > 0 and τ0 = τ2
2

4τ4
, one can construct a singular periodic solution provided that 

η1η3 < 0:

	
R2.2,2(x, t) = 1

2α

√
−η1τ2

η3
cot

[
(αx − νt)

√
τ2

2

]
ei(βx−ωt+ϱW (t)−ϱ2t).� (27)

(2.2,3) If τ2 > 0, τ4 < 0, τ0 = µ2(1−µ2)τ2
2

(2µ2−1)2
τ4

, η1η3 < 0 and 0 ≤ µ < 1, we construct a JEF solution which 

reads as:

	
R2.2,3(x, t) = ±α

√
−η1 (1 − µ2) τ2

2η3 (1 − 2µ2) nc(αx − νt)ei(βx−ωt+ϱW (t)−ϱ2t).� (28)

As a particular case, when µ = 0, a singular periodic solution is raised below:

	
R2.2,4(x, t) = ±α

√
−η1τ2

2η3
sec[αx − νt]ei(βx−ωt+ϱW (t)−ϱ2t).� (29)

(2.2,4) If τ2 > 0, τ4 < 0, τ0 = (1−µ2)τ2
2

(2−µ2)2
τ4

, and 0 < µ < 1, then a JEF solution is found providing that 

η1η3 > 0:

	
R2.2,5(x, t) = ±ατ2

µ

√
η1 (1 − µ2)
2η3 (2 − µ2)nd(αx − νt)ei(βx−ωt+ϱW (t)−ϱ2t).� (30)

(2.2,5) If τ2 < 0, τ4 > 0, τ0 = µ2τ2
2

(µ2+1)2
τ4

, 0 ≤ µ ≤ 1 and η1η3 < 0, then a JEF solution shall be acquired 

as:

	
R2.2,6(x, t) = α

√
η1τ2

2η3 (µ2 + 1)ns(αx − νt)ei(βx−ωt+ϱW (t)−ϱ2t)� (31)

By setting either µ = 0 or µ = 1, one can build up either a singular periodic solution or a singular soliton 
solution, respectively as follows:

	
R2.2,7(x, t) = α

√
η1τ2

2η3
csc[αx − νt]ei(βx−ωt+ϱW (t)−ϱ2t),� (32)

	
R2.2,8(x, t) = 1

2α

√
η1τ2

η3
coth[αx − νt]ei(βx−ωt+ϱW (t)−ϱ2t).� (33)

Through Set (2.3), the solutions are obtained as below:
(2.3,1) If τ2 < 0, τ4 > 0 and τ0 = τ2

2
4τ4

, one can establish a singular soliton solution by providing that 

η1η3 < 0:

	
R2.3,1(x, t) = α

√
η1τ2

η3
csch

[
(αx − νt)

√
−2τ2

]
ei(βx−ωt+ϱW (t)−ϱ2t).� (34)
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(2.3,2) If τ2 > 0, τ4 > 0, and τ0 = τ2
2

4τ4
, one can evaluate a singular periodic solution under the condition 

that η1η3 < 0:

	
R2.3,1(x, t) = α

√
−η1τ2

η3
csc

[
(αx − νt)

√
2τ2

]
ei(βx−ωt+ϱW (t)−ϱ2t).� (35)

Family (3) : If τ0 = τ1 = τ4 = 0, then, in this case, we construct a set of solutions as:

	
A0 = ±

√
α2β2η2

1 (−16β4η2
3 + 4β2η2η3 + η2

2) + 24αβη3η1 (4βη3 (α (ω + ϱ2) − βν) + η2ν) + 144η2
3ν2

4
√

6
√

−αβη2
3 (αβη1 (2β2η3 + η2) + 12η3ν)

,

	
B1 = ±

η3
(
αβη1

(
2β2η3 + η2

)
+ 12η3ν

)2 √
1
6 α2β2η2

1 (−16β4η2
3 + 4β2η2η3 + η2

2) + 4αβη3η1 (4βη3 (α (ω + ϱ2) − βν) + η2ν) + 24η2
3ν2

4α2η1τ3 (−αβη2
3 (αβη1 (2β2η3 + η2) + 12η3ν))3/2 ,

	
A1 = 0, τ2 = −

2αβ2 + αη2
η3

+ 12ν
βη1

2α3 .

By denoting δ1 = −αβη2
3

(
αβη1

(
2β2η3 + η2

)
+ 12η3ν

)
,

δ2 = 4βη3
(
α

(
ω + ϱ2)

− βν
)

+ η2ν, δ3 = −16β4η2
3 + 4β2η2η3 + η2

2 ,

and δ4 = 1
6 α2β2δ3η2

1 + 4αβδ2η3η1 + 24η2
3ν2, one could find the following solutions:

(3.1)

	
R3.1(x, t) =

(
±1

4

√
δ4

δ1
∓

√
δ1δ4 (cosh [(αx − νt)√τ2] + 1)

2α4β2η1η3
3τ2

)
ei(βx−ωt+ϱW (t)−ϱ2t),� (36)

which denotes a hyperbolic solution such that δ1δ4 > 0.
(3.2)

	
R3.2(x, t) =

(√
±1

4
δ4

δ1
∓

√
δ1δ4 cos2 [

1
2 (αx − νt)

√
−τ2

]
2α4β2η1η3

3τ2

)
ei(βx−ωt+ϱW (t)−ϱ2t),� (37)

which denotes a periodic wave solution such that δ1δ4 > 0.
Family (4) : If τ3 = τ4 = 0, then, in this case, we construct multiple sets of solutions as:

Set (4.1) : A0 = A1 = τ1 = 0, B1 = ±
α

√
τ0 (η1 (α2τ2 (α2τ2 + β2) + β4) + 24 (ω + ϱ2))

β
√

6η2
,

η3 = − 3β2η1η2

η1 (α2τ2 (α2τ2 + β2) + β4) + 24 (ω + ϱ2) , ν =
α

(
η1

(
α4τ2

2 − 5β4)
+ 24

(
ω + ϱ2))

36β
.

Set (4.2) : A0 = ±
α

√
−τ2

√
η1 (α2τ2 (α2τ2 + β2) − 2β4) − 48 (ω + ϱ2)

4β
√

3η2
, A1 = 0,

B1 = ±
α

√
−τ0

√
η1 (α2τ2 (α2τ2 + β2) − 2β4) − 48 (ω + ϱ2)

2β
√

3η2
, τ1 = ±2

√
τ2τ0,

η3 = 6β2η1η2

η1 (α2τ2 (α2τ2 + β2) − 2β4) − 48 (ω + ϱ2) , ν =
α

(
48

(
ω + ϱ2)

− η1
(
α4τ2

2 + 10β4))
72β

.

From Set (4.1), one can able to construct the upcoming solutions such that 
η2(η1

(
α4τ2

2 + α2β2τ2 + β4)
+

(
ω + ϱ2)

) > 0:
(4.1,1) If τ0 > 0 and τ2 < 0, then one can find a singular periodic solution, which shall be read as:

	
R4.1,1(x, t) = 2α

β

√
−η1 (α4τ2

2 + α2β2τ2 + β4) + ω + ϱ2

η2τ2
csc

[
(αx − νt)

√
−τ2

]
ei(βx−ωt+ϱW (t)−ϱ2t),� (38)

(4.1,2) If τ0 > 0 and τ2 > 0, then one can build up a singular soliton solution as follows:

	
R4.1,2(x, t) = 2α

β

√
η1 (α4τ2

2 + α2β2τ2 + β4) + ω + ϱ2

η2τ2
csch [(αx − νt)

√
τ2] ei(βx−ωt+ϱW (t)−ϱ2t).� (39)

From Set (4.2),

	
R4.2(x, t) = ± α

4β




√
−τ2 (η1 (α2τ2 (α2τ2 + β2) − 2β4) − 48 (ω + ϱ2))

3η2
+

τ1

√
− η1(α2τ2(α2τ2+β2)−2β4)−48(ω+ϱ2)

3η2τ2

e
√

τ2(αx−νt) − τ1
2τ2



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	 ×ei(βx−ωt+ϱW (t)−ϱ2t), � (40)

which represents an exponential solution under the conditions that e
√

τ2(αx−νt) − τ1
2τ2

̸= 0 and
η2

(
η1

(
α2τ2

(
α2τ2 + β2)

− 2β4)
− 48

(
ω + ϱ2))

< 0.

Graphical and physical interpretation for the influence of noise on the extracted 
solutions
In this part of the article, one can see an explanation of the impact of applying the white noise on some of the 
resulting solutions. Using MATLAB software, we investigate the effect of adding this noise with different intensities 
using 3D and 2D graphical representations of the obtained solutions. These graphical representations will show 
the robustness of the obtained solutions by considering the noise. Figure 1 represents the 3D representations 
of Eq. (18) with η1 = 2, η2 = 2, η3 = −2, ω = 0, β = 0, α = −2, τ0 = −2, τ4 = −2. These plots 
demonstrate how rising noise intensity (ϱ) imparts greater unpredictability into wave dynamics. For small 
values of ϱ, the solution stays smooth, similar to a deterministic wave. As ϱ grows, the solution becomes more 
volatile, indicating the impact of random disturbances on the wave’s stability and structure. This phenomenon 
is important in physical systems such as optical fibers, Bose-Einstein condensates, and fluid turbulence, where 
noise affects wave propagation. The surface flattens and the signal level drops as the noise intensity rises, 
according to observations. Utilizing different noise intensities, a 2D graph of Eq. (18) is depicted in Fig. 2. These 
plots show how the wave solution changes over time with varied noise strengths. The deterministic solution 
(ϱ = 0) has a smooth transition, but raising ϱ adds deviations, generating variations around the mean solution. 
This represents how external disturbances or intrinsic system noise impact wave stability, which can result in 
diffusion-like spreading, instability, or disruption of the wave profile depending on the noise intensity. With 
η1 = −2, η3 = −2, ω = 0, β = 0, 3D plots of Eq. (21) are displayed in Fig. 3. These visuals demonstrate how 
increasing noise intensity (ϱ) affects the wave profile. For smaller ϱ, the wave is reasonably smooth and steady. 
As ϱ increases, the wave shows abnormalities and variations, reflecting the impact of random disturbances. Such 
noise effects in physical systems might reflect external disturbances in fluid dynamics, optical wave propagation, 

Fig. 1.  3D visualizations of stochastic solution of Eq. (18).
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or quantum systems, where random fluctuations affect wave behavior and stability. Higher noise levels result 
in localized energy concentration or dissipation, which drastically alters the initial wave shape. By applying 
different noise intensities, a 2D graph of Eq. (21) is depicted in Fig. 4. This graph plots wave amplitude over time 
for various noise levels. When increasing ϱ, it causes random fluctuations and broadens the wave profile. This 
illustrates noise-induced dispersion and diffusion effects, which may be observed in real-world applications 
such as signal transmission in noisy channels, fluid turbulence, and stochastic resonance in nonlinear systems.

Fig. 3.  3D graphical plots of stochastic solution of Eq. (21).

 

Fig. 2.  2D plots of stochastic solution of Eq. (18) with different intensities.
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Conclusions
The generalized stochastic nonlinear Schrödinger equation’s exact, soliton solutions are the main topic of this 
article. Many parameters of the nonlinearity and a parameter linked to weak nonlocality were the characteristics 
of the equation in addition to the influence of Brownian motion. To solve this difficult problem, we used the 
tried-and-true method known as the improved modified extended tanh-function methodology. Through the 
use of this technique along with the proper traveling wave transformations, we were able to develop novel and 
very effective solitary-wave solutions for this model. We used MATLAB to create both 2D and 3D graphical 
representations in order to obtain an understanding of the equation’s physical consequences. Deep insights into 
a variety of facets of the behavior of the equation are provided by these visualizations. By adjusting the parameter 
values, we were able to reveal several other solutions, such as {dark, bright, singular} solitons, Jacobi elliptic 
functions, exponential, periodic, and singular periodic solutions. This work incorporates stochastic effects into 
a nonlinear wave equation, revealing new details on how noise affects wave stability, localization, and energy 
distribution. Unlike prior deterministic investigations, our results show that increasing noise levels cause major 
changes in wave dynamics, such as diffusion, instability, and pattern development. In the fields of mathematical 
science and engineering, our computational research highlights the method’s efficacy and adaptability in handling 
a broad spectrum of nonlinear issues. The restricted applicability of this approach to a wide range of equations 
and potential convergence issues may occasionally make it less dependable in yielding accurate solutions. This 
study’s findings are relevant to stochastic optical communication systems, where understanding noise-induced 
wave dynamics can improve fiber optic transmission, soliton-based communication, and nonlinear signal 
processing. The insights also apply to laser dynamics, quantum optics, and nonlinear photonics, aiding in the 
development of robust communication protocols and enhanced noise management techniques.

Data availibility
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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