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Identification of stochastic optical
solitons in a generalized NLSE
characterized by fourth order
dispersion and weak nonlocality
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In this work, we investigate the stochastic traveling wave solutions for the generalized nonlinear
Schroédinger equation under the influence of the Wiener process. It encompasses weak nonlocality
related parameters and higher order dispersion with higher order nonlinearity. In order to solve this
problem, the improved modified extended tanh function approach is used in conjunction with an
appropriate traveling wave transformation to produce new, various, and effective soliton solutions
for the proposed model using the computational tool Wolfram Mathematica. We used MATLAB
packages to create both 2D and 3D visual representations of the equation in order to better understand
its physical meaning. The graphical representations provide useful insights into several aspects of
the dynamics of the problem. Our range of solutions includes dark, bright, singular solitons, Jacobi
elliptic functions, exponential, periodic, and singular periodic solutions, all of which may be obtained
by varying the values of our parameters. This paper represents the first time insertion of stochastic
influences into a specified nonlinear wave equation, including impact analysis. Our computer

study validates the efficacy and adaptability of our approach in solving a broad range of nonlinear
phenomena in the field of mathematical science and many other fields.
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The nonlinear evolution equations (NLEEs) provide accurate descriptions and simulations for nonlinear
processes that appear in domains including engineering, physics, computational mathematics, chemistry,
and biological sciences'™. In the field of nonlinear sciences, nonlinearity plays a vital role in the dynamics
of waves. A concentrated research effort has been underway in recent years to solve analytical problems for
NLEEs, specifically single-wave solutions. Researchers have created a number of methods, including computer
algorithms and analytical and numerical methodologies, to effectively answer NLEEs and offer insights into
complex processes. Numerous techniques, including the Hirota bilinear method®, the modified generalized
Riccati equation mapping approach®, the IME tanh-function method’~%, the modified extended direct algebraic

method!-12, the Lie symmetry analysis approach!?, the extended F- expansion method!, Khater’s algorithm!,

Hirota’s method'®, the ( ¢ , é) —expansion method!”, and numerous more, have been developed for analyzing

kel
this data (see'®1).
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Solitons, which are stable, nondispersive wave phenomena that maintain their structure and speed during
propagation, are sometimes referred to as solitary wave solutions?*2!. These solutions are unique in that they can
maintain their original shape even in the face of specific alterations. They may be found in a wide range of physical
systems, such as nonlinear optics?? and water waves?>. Solitons are particularly significant for understanding and
modeling wave behavior since they often do not exhibit singularities®*.

The Schrodinger equation was developed by Erwin Schrédinger in 1925 and formally published in 1926%.
This equation served as the foundation for his further scientific endeavors. Among the extraordinary nonlinear
situations that arise from mathematical modeling, the non-linear Schrodinger equation (NLSE) has a prominent
place. Differential equations with deterministic models were widely used in the physical sciences to explore
natural processes up to the 1950s. It is apparent, however, that the phenomena of the modern world are not
deterministic. However, the evolution of nonlinear dispersive waves is significantly influenced by random
fluctuations in the NLSE. They can cause departures from the deterministic predictions of the equation because
they are caused by noise or errors in the original circumstances or by outside causes. Recent developments in
soliton solutions and techniques relevant to stochastic optical communication systems are not covered in the
current literature survey. A more thorough context would be provided by including research like Secer et al’s
study on stochastic pure-cubic optical solitons?®, Kamel et al’s analysis of soliton solutions in nonlinear optical
media?’, and Alkhidhr’s investigation of stochastic solutions for nonlinear Schrédinger equations in optical fiber
communications®®. Furthermore, the study by Alzahrani et al. on soliton solutions of the stochastic perturbed
Schrédinger-Hirota equation®® and recent work in*® on stochastic optical solutions for the (2+1)-dimensional
NLSE provide important insights into contemporary approaches. Wavelet-based techniques have shown promise
in capturing the dynamics of complex systems with higher-order dispersion and nonlocal interactions. To
illustrate its resilience to such complexity, Zhang et al. (2017) created a high-order wavelet integral collocation
approach for nonlinear boundary value problems?!. Similarly, Gunzburger et al. (2014) highlighted the accuracy
and versatility of an adaptive wavelet stochastic collocation approach designed for irregular solutions of
stochastic partial differential equations®2. These works would highlight the originality of the suggested solutions
in the context of stochastic nonlinear Schrodinger equations and offer a more thorough knowledge of wavelet-
based techniques if they were included in the literature review>!3>34,

Existing research has looked extensively at deterministic wave equations and their solutions, such as solitons,
periodic waves, and localized structures in nonlinear systems. However, most research focuses on idealized
systems and ignores the influence of noise. Researchers have investigated how random perturbations impact
wave dynamics using stochastic partial differential equations (SPDEs), but extensive analytical and numerical
investigations on the equation in this study are lacking. Theoretical and practical benefits of studying these
fluctuations include improved prediction and control of wave dynamics in real-world applications, as well as
a deeper knowledge of wave statistical behavior in complex systems. Numerous methods have been developed
to examine and predict these fluctuations, including numerical simulations and stochastic analysis, which offer
important insights into how these fluctuations affect wave propagation®>3¢. While previous research has focused
on deterministic solutions, the impact of stochastic noise on wave propagation for the nonlinear system under
consideration in this study is not well known. There is a paucity of systematic research into how varied noise
levels affect wave stability, form, and evolution. Furthermore, present numerical models do not give enough
information on the transition from deterministic to stochastic wave behaviors under different noise levels.

Motivation and novelty of this study

The need to account for random effects in the analysis, prediction, modeling, and simulation of physical
systems is now widely accepted. Random variations throughout time are incorporated into stochastic models*’.
Thermal fluctuations and spontaneous emissions may be simulated using stochastic NLSE. Many authors
examined the existence and uniqueness of stochastic nonlinear stochastic exponential smoothing with additive
or multiplicative noise. Stochastic NLSE is also analyzed by numerical methods*®*. SPDEs are expansions of
classical partial differential equations that include randomness, generally via stochastic processes such as Wiener
noise, to characterize uncertain systems. They are commonly used in physics, finance, and engineering to
describe phenomena such as turbulent fluid flow, quantum field fluctuations, and financial market dynamics?®-4!.
To close the gap in the literature, this work incorporates a stochastic factor into the governing wave equation
and thoroughly investigates its implications. The paper investigates how varying noise levels affect wave stability,
localization, and energy distribution using both analytical and numerical modeling approaches. The process
entails solving the SPDE under various noise settings and displaying the results with 3D and 2D charts to identify
significant patterns and trends.

Stochastic generalized NLSE description

This research represents a novel search for the exact solutions for the stochastic generalized NLSE. According
to*2, an overall NLSE affects how light waves propagate by including both fourth-order dispersion effects and
Kerr nonlinearity which can be read as:

. 1 .
TR + ﬂanx;m:x + 12 |R|2 R =0, = \/jl 1

As explained in*?, the model indicated above has to be improved by adding a new element to take into
consideration the impact of weak nonlocality.

: 1
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and adding the noise effect, Eq. (2) becomes:

) 1 2 2 aw

where the time and spatial dimensions are represented, respectively, by the variables t and x in this configuration.
R(x,t) is used to represent the complicated amplitude of the electric field. The 4th-order dispersion is described
by the coefficient 771, while the cubic non-linearity coeflicient is shown by 1j2. The consideration of nonlocal effects
becomes more crucial when addressing the propagation of tiny wavelengths in varlous optical transmission sub-
materials. In this case, the Kerr nonlinearity is encapsulated by the phrase | R|® R, whereas the influence of 4th-
order dispersion is described by the term Rzuo.. Additionally, the presence of weak nonlinearity is indicated
by the phrase R (|R\ ) . In recent times, the aforementioned model has been used to study the localization
of optical pulses within gulded wave structures, especi Wy when a quasiperiodic linear component is present?3.
Where W(£) denotes the Wiener process function and 2% denotes the white noise but ¢ denotes the white noise
intensity. The Wiener process function has the followmg propertles44 A5,

i. Fort >0, W(t) has continuous trajectories.
ii. Fors <t, W(t) — W(s) has independent increments.
iii. W(t) — W (s) has a normal distribution with variance = ¢ — s and mean = 0.

Adding noise to Eq. (2) results in a SPDE with a Wiener process (dW). This adjustment adjusts for random
variations in physical systems caused by external disturbances, measurement noise, or inherent system
variability. The inclusion of the parameter pR dW/dt improves the equation’s ability to predict real-world
occurrences when perfect deterministic behavior is insufficient. This method is critical for studying the
stability and resilience of wave propagation, soliton dynamics, and other nonlinear systems in the presence of
randomness. In addition, the updated Eq. () has a wide range of practical applications, including optical fiber
communications, where noise represents the effect of amplified spontaneous emission (ASE) on signal integrity.
In Bose-Einstein condensates, it represents quantum fluctuations that impact particle interactions. Similarly, in
fluid and plasma physics, stochastic concepts assist in understanding wave turbulence and instabilities. By adding
noise, researchers may investigate how randomness impacts system evolution, forecast long-term behavior, and
devise ways for reducing noise-induced distortions in practical applications.

Thus, the search for soliton solutions in the aforementioned models serves as our primary source of
inspiration. We want to do this by utilizing the improved modified extended (IME) tanh function approach, a
freshly developed and trustworthy technology. The approach has the potential to resolve unresolved issues from
earlier research”%6. Finding analytical solutions for a particular generalized nonlinear Schrodinger problem is
the primary goal of the improved modified extended tanh-function approach. Simplifying the equation while
maintaining its essential features is its main goal. The process of standardization facilitates the identification of
precise solutions, providing important information about the behavior of the system that the nonlinear partial
differential equation (NLPDE) describes***’. For the purpose of regulating atmospheric gravity waves, preserving
wave stability, and avoiding dispersion, the found solitons are vital to atmospheric study. Understanding the
patterns of global air circulation and how they impact weather events requires the preservation of long-range
coherent wave structures®.

The success of the suggested approach in solving particular problems and their capacity to yield precise
answers define how successful they are compared to existing methods; computing efficiency, generality, and ease
of implementation are all significant considerations in this assessment.

The outline of the paper goes like this: The soliton theory and NLSEs history are introduced in general
and given a theoretical foundation in “Introduction” section; the suggested model to be studied and its
practical applications are briefly described in “Stochastic generalized NLSE description” section; and the main
characteristics of the IME tanh function approach are presented in “The IME tanh function approach” section.
In “Novel stochastic soliton solutions extraction” section, we will do a thorough symbolic computation using
Wolfram Mathematica’, beginning with the non-linear equation itself, to arrive at a few families of exact stochastic
solutions. One should establish some constraint conditions in order to prove the existence of some approved
solutions. Understanding the physical importance of this non-linear system can be aided by the obtained data.
Various of the retrieved solutions are illustrated using 2D, 3D, and contour representations in “Graphical and
physical interpretation for the influence of noise onthe extracted solutions” section. A few findings are presented
at the end of “Conclusions” section.

The IME tanh function approach
In this section, we present the salient features of the IME tanh function approach, which will be used in this
manuscript as well as a comparative analysis with alternative approaches.

Mathematical procedures of the IME tanh function approach
By beginning to think about the subsequent NLPDE®%;

K(qj7\llt7qlz,lpzz,quzz7q/tt,---) :O, (4)
here /C denotes a polynomial of its argument W(z, t) in addition to their corresponding partial differentiation.

Algorithm (1): The upcoming transformation shall be applied to convert the NLPDE in Eq. (4) to a non-
linear ordinary differential equation (NLODE):
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V(z,t) = 2(0), ¢ =ar—uvt, (5)

where Z represents the solution, while a and v are unknown constants which shall be evaluated later on in the

work’s procedures. Next, we insert Eq. (5) into Eq. (4). Thus, we are able to construct the required NLODE as
described below:

Lz, 2z, z" 2" ..)=0. (6)

Algorithm (2): The scheme defines the solution’s form of Eq. (6) to be:

N N
=) G QO+ BG(), (7)
=0 i=1

where 2; and B; (i = 1,2, ...,N) represent some constant parameters of the solution equation which will be
calculated, supplying the requirement that 2y and B cannot both be zero at the same time.

Algorithm (3): The homogeneous balancing principle (HBP) is implemented in Eq. (6) to estimate the
positive integer N. In addition the function G () fulfils the subsequent requirement:

2
(Zf) = 70+ 11G(C) +7aG() + 10 (C) + TG (O), ®)
while 7; (1 =0,1,2, 3,4) are real-valued constants which will help us in finding possible cases of solutions.

The parameters in the supplied differential equation in (8) are determined based on the wave system’s
physical properties, ensuring that the generated solutions match the intended wave patterns. 7o, 71, 72, 73,
and 74 determine the kind of wave solution (e.g., solitary waves, periodic waves, or localized structures). Their
selection is often influenced by system restrictions, dispersion relations, and stability parameters, which help
decide whether the wave retains its shape over time or evolves into a different shape.

Eq. (8) has the following general solutions with different possible values of 7o, 71, 72, 73 and 74:

Family 1: When 70 = 71 = 73 = 0, the following solutions are raised:

=4/- —sech V2], 19 >0, 74 <0,
=,/ —sec C\/*TQ T2 < 0, 74 > 0.

These solutions are localized and describe soliton-like structures. The sech function corresponds to bright
solitons, while the sec function represents singular periodic structures. Family 2: When 7 = 73 = 0, the
following solutions are raised:
2 2) 2
w(L—p )7'2

[ P { [
(2p? —1) 1 422 =1)*m
|: 2:|, T2 >0, 74 <0, 70 = ( ﬂ)2T7
Ve u V 2 (2—p?)" 14
/ ,uTz / _ MQTQQ
g(( ( I: 1 :| s To < 07 T4 > 0, To = 701,24-1)274.

, T2 >0, 74 <0, 70 =

7'2
C), T2<07’T4>0,T0:72,
47y

2
T2

s T2>0,7—4>O,7'0:E,
4

where y1 is the modulus of the Jacobi elliptic functions, 0 < p < 1and € = %1. These solutions describe periodic
and quasi-periodic wave structures, in addition to the dark solitons.
Family 3: When 70 = 71 = 74 = 0 the following solution is raised:

G = — T2 sech? <\/E C) , T2 > 0,
T3 2

Q(C):—TQseCQ( T2 C), 79 < 0.

T3 2
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These solutions represent double-hyperbolic solitons or bistable states, often found in nonlinear wave equations
with external forcing.
Family 4: When 73 = 74 = 0, the following solution is raised:

2

G0 =~ +emleym ), m>0m= T
T1 €T1 .

9(Q) = —5-+5 sin (V=2 (), m=07m<0,
T €T .

G(Q) = 5=+ b (VR ), m=0,7>0,

G(()=¢ —LOSiH(\/—D C), 71 =0,70 > 0,72 <0,
V

G(Q) = ey Zsinhi (v72 O), = 0,70> 0,72 > 0.
2

These solutions describe exponentially growing and oscillatory modes.

By extending these solutions to stochastic optical models, we gain valuable insights into noise-driven
instabilities, soliton interactions, and optical signal processing in nonlinear optical media. Algorithm (4): We
can raise a polynomial in G(¢) by inserting a solution that appears to be stated in Eq. (7) and Eq. (8) into Eq. (6).
The process of equalizing the coefficients of G*({), (¢ = 0, =1, £2, ...), to zero produces a family of non-linear
algebraic equations (NLAEs) that may be tackled and solved using Wolfram Mathematica’. Consequently, there
are several precise solutions for the traveling wave in Eq. (4) that we may acquire.

A comparative analysis with alternative approaches

In comparison to Hirota’s technique?® and the variational iteration method (VIM)*, the IME tanh-function
approach has significant benefits in terms of accuracy, computing efficiency, and wider applicability. The IME
tanh-function technique offers a more straightforward and methodical means of obtaining accurate answers
with less algebraic complexity than Hirota’s method, which mostly depends on bilinear transformations
and necessitates costly symbolic calculations. Similarly, VIM is computationally costly and frequently
requires numerous correction functionals and convergence monitoring, even though it iteratively improves
approximations and might be useful for nonlinear situations. On the other hand, the IME tanh-function
method improves efficiency by achieving faster convergence with fewer repetitions. Furthermore, numerical
comparisons show that it retains excellent accuracy, as evidenced by a more stable solution structure and smaller
residual errors. Additionally, its versatility encompasses a wider range of nonlinear partial differential equations,
such as integrable and non-integrable systems, where conventional approaches could encounter difficulties with
singularities or divergence. As a strong substitute for current techniques, the IME tanh-function approach offers
a balance between accuracy, efficiency, and broad application.

Novel stochastic soliton solutions extraction
This section makes use of the IME tanh function approach to build every potential solution for Eq. (3). For this
aim, we suppose the following wave transformation:

R = H(C) ei(BsztJrQW(t)*QQt)’ C = ar — ut, 9)

where H(¢) is the amplitude of the complex-enveloped solution, 3 denotes the wave number, w is the frequency
shift, while p represents the intensity of the white noise W(t).

Using the aforementioned transformation in Eq. (9) and its corresponding derivatives into Eq. (3) and by
separating the real and imaginary components, one can find the real part as:

A H® 4 24 H? — 60282 H + 480 nsH (7—[7—[” + (H’)Q) + (B*m + 24w + 240°) H = 0, (10)

and the imaginary part as
04351717-{(3> — (aﬁsm + 6u) H =o0. (11)

By integrating Eq. (11) with respect to ¢ with considering the integration constant to be zero, then plugging what
we obtained into Eq. (10), one can find the following ODE:

a7ﬁnf7-l(4> + o?H? (4804,33771773 + 24afninz + 2881731/) + 48&5/3’7711737-1 (H')2

(12)
+a? (—Saﬁsnf + 24afmw + 24aBm o 36627]11/) H=0.

Thus, by applying the HBP presented in Section 3 between H(*) and H (7—[')2, one can find that N = 1. After
that, one can build up the form of the exact solution for Eq. (3) as read below:
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Gg(Q)’

Eq. (12) yields a polynomial in G(¢) when the restriction in Eq. (8) is substituted with the solution form in Eq.
(13). We have a system of NLAEs when we set the sum of all terms with the same powers to zero. We can solve
these equations using Wolfram Mathematica’ to create the following situations. The requirement is provided that
neither 2; nor B be zero simultaneously.
Family (1) : If iy = 71 = 75 = 0, then
2082 4 212 4 12v

n3 Bn1
203 ’

H =2 +2A:G(¢) + (13)

Set(l.l):Qlo =2 =072 =—

. V28202 (16803 — 482nans — n3) — 24aBnsm (4Bns (o (w + 0%) — Br) + 1ov) — 1447302

8a2fB4/3mmniTa

374 (¥ + afns (813 (2a (w + 02) + 338v) + 18n2v))
n3 (318573 + 3684nans + 98%n3) '
_ 2161302 _ af’nj (2a(w+¢?) —38y) — v
= T B (Bns 2a(w 1 02) 1 33Bv) + 8nav) — 9 0 6o? B2y ’

B1

Set (1.2): Ao =B, =0, A; = i\/

where 9 = | /o233 (Bns (402 (w + 02)% + 13208V (w + 02) — 278%v2) + 36n2v (2a (w + 02) — 3Bv))

By considering solution set (1.1), the exact solutions can be obtained as follows:
(1.1L,D)If» > 0, 74 <0, so:

1a2p202(168412 —482n2n3—n2) —8aBnzn1 (48n: +02)—Bu)+nar)—48n2u2
Rita(o,t) = (i \/3a n?(1684n3 n2m3—n3)—8aBnzn (4803 (a(wte?)—Bv)+nzv)—48n? cosh [(az—yt)ﬂ) "

8a28y/—mmnra

Xei([—?zz—mt+gW(t)—ta)
»

which represents a hyperbolic solution such that
mn3 (30>t (16805 — 48°nams — 13) — 8afnsm (48ns (o (w + 0°) — Bv) + n2v) — 48n31°) < 0.
(1.1,2) If 2 < 0, 74 > 0, so:

Lazﬂznz(16341):2—4B21)27)3—7]‘2)—80437)37)1 (4ﬂ7}3((x(u+g2)—(31/)#»7721/)—487]?»2
Riaa(z,t) = (i \/3 L : ;cﬁﬂ\/ﬂnng’m ® cos [(am - l/t)\/—TQ} (
Br—wt+oW (t)—0t)

s

15)

xell

which represents a periodic solution such that
mn3(3028°nt (16803 — 4B%nans — n3) — 8aBnsm (48ns (o (w + %) — Bv) + mov) — 48n31%) > 0.
When we consider the solutions set (1.2), we are able to establish the following exact solutions for Eq. (3):
(1.2,1) If 2 > O and 74 < 0, then:

31 (94+aBnz(Bns(2a(w+02)+338v)+18nv i( Br—w _,2
O ) L
which represents a bright soliton solution such that (19 + afins (6773 (2a (w + Q2) + 3351/) + 187721/)) >0
and 73 (31,8677§ + 368213 —|—9,6’277§) < 0. The sech-type solution is a well-known soliton solution in

nonlinear optics, appearing in self-focusing optical media such as fiber optics and photonic crystals.
(1.2,2) If 2 < 0 and 74 > 0, so:

Risa(s,t) = (:I:\/— 372(19+a3773(5713(2a(w4r92)+33[3u)+187]2v))Sec [(ax —ut) '7—7'2]) ei(Bzﬂ;tﬂnw(t)—gzt)7 17)

3 (318502 +3684n2n3+952132)

which denotes a singular periodic solution such that (19 + afns (,8773 (2a (w + 92) + 336u) + 1877211)) >0
and 73 (31ﬁ6n§ + 368%m21m3 + 9813 ) > 0. The sec-type solution suggests periodic wave behavior, possibly

modeling nonlinear wave patterns in optical lattices.
In the presence of stochastic perturbations, these solutions can describe stable pulses that resist dispersion,
which is crucial for optical communication systems.
Family (2) : If r; = 73 = 2o = 0, then we construct different solutions’ sets as:
Set (2.1)
—a?8%m 7I3¥\/3(0¢4TI1713(—711 (ns (ﬁ4—160447'074)+4/32712)—32773 (w+92)))

— /_TiTa — —
A = ta 213 B1=0,72 2atn1n3 ’

B (\/3((14771% (=m (ns(Br=16a%7074)+482n2) —32n3 (w+0e?)))—a’m (11ﬁ2773+6712))
+ .
T2amns

vV =

Scientific Reports|  (2025) 15:33805 | https://doi.org/10.1038/s41598-025-99415-9 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Y e B L T R B ez
B(\/3(044”1%(77“(ns(647160‘470“)*4/32’72)*32773(“”r@z)))*&zm(11/32n3+6n2))
V= T2am3 )
Set (2.3) : 2, = +« 77721777347 B, = iam7
= —(12171773(3&12\/W-s-ﬁz)ﬂF\/3)(&4711773(711(173(25142(147074_5_32(12/32\/ﬁ_[ﬂ)_ypw)_32”3(w_~_22)))7
a=nNin3

B (a% (m3 (48&2\/7T47'of11ﬁ2)f6n2)+\/3(a4n1n3(m (n3(5120447'0T4+32a2/32\/7747'0754)74[32772)732n3(w+92))))
+ 72amns
When selecting the solutions’ set (2.1), the corresponding exact solutions will be:

.1,1)If2 <0, 74 >0and o = %,then:

vV =

1 i(Bo— _
Ro11(z,t) = 5@ %j tanh {(am —ut) 7%2 ez(ﬂz wt+oeW (t) gzt)7 (18)
3

which is a dark soliton solution provided ‘QLhat mnz < 0.
(2.1,2)If 2 > 0, 74 > Oand 70 = -2, then:

47y
1 i( Ba— _
Roi2(z,t) = 504 —777177-2 tan [(a:c —vt)s/ %} el(ﬂm wtteW () QQt), (19)
3

which is a singular periodic solution by providing that ni1m3 < 0.
,u2 (1 — ,u2 ) 7'22

(21,3) If 2 >0, 74 <0, 70 = (2u2-1)%74

,and 0 < g < 1, then the solution will be a JEF such that

mns > Oas:

. T—w _ 2
Resalont) = o =g, Zgyen(o — el o), @)

The cn function corresponds to periodic wave trains, appearing in nonlinear optical fibers and waveguides.
When setting 4 = 1, one could find the following bright soliton solution:

Raa4(z,t) = £a ?7217'2 sech[ax — yt]ei(ﬁz’“tﬂw(”’@%). (21)
73
_2),2
21,4)Ifs >0, 4 <0, 70 = ((;Pt%’ and 0 < m < 1, then a JEF solution is found providing that
—u2) 1y
mmns > 0:
_ Uit i(ﬁz—wt+gW(t)—g2t)
Roa5(x,t) = o —————dn(az — vt)e . 22
2.1,5(,1) " 2 2= ( ) (22)

The dn function corresponds to periodic wave trains, appearing in nonlinear optical fibers and waveguides. As a
particular case, when 1 = 1, a bright soliton solution can be evaluated as:

Roi6(x,t) = o %sech[(m - Vt]ei(ﬁgc_w“rgw(t)_gzt). (23)
2_2
21,5 If2 <0, 4 >0, 70 = #, and 0 < g < 1, then a JEF solution is found providing that
7 T4

mns < 0:

i 2
Raar(e,) = ou %Sn(aw — p)e(Frmertew =), (24)

The sn-type solution describes breather modes, which arise in stochastic optical solitons where noise influences
pulse evolution. A particular case, when p = 1, a dark soliton solution is raised:
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1 jmm

3 i(pe—wrrow(n=e’) (25)

Rois(z,t) =

tanh[ax — vt]e

In stochastic optics, these solutions are essential for modeling modulated wave packets, where noise-driven
instabilities can induce chaotic wave structures.
Through Set (2.2), the solutions are obtalned as follows:

(2.2,1)If2 <0, 74 >0and 7o = , one can obtain a singular soliton solution provided that 7113 < 0:

47'
1 .
Ra.2,1(x,t) = 7@ 77717;-2 coth {(am — ut),/—%] ei(Br—wtreW(t)—c*t) (26)

2
(22,2) If =2 >0, 74 >0 and 79 = 1%4, one can construct a singular periodic solution provided that

mmns < 0O:

R2'272(m’t) = %a lf% cot |:(Cll' _ l/t)\/T—521| ei(ﬁsztJrQW(t)*gﬂt). (27)
3

2(1_,2),2
223)If2 >0, 4 <0, 70 = w2 (1p 2 2. mns < 0and 0 < p < 1, we construct a JEF solution which

(2u271) T4
reads as:
Ro.2,3(x,t) = +a —Mnc(aﬂc - l/t)ei(ﬁx_“’”gw(t)_ezt). (28)
- 2n3 (1 —2p2)

As a particular case, when ;1 = 0, a singular periodic solution is raised below:

Ra.2.4(z,t) = a —772172 seclax — Vt}ei(ﬁw7Wt+9W(t)792t). (29)
73

224) If 12 >0, 4 <0, 70 = (1=p?)73 ,and 0 < p < 1, then a JEF solution is found providing that

(2-42)"ma

mmnsz > 0O:
+ 1— 2 (B 3
R2A275(1‘,t) _ QT2 L ( 1% ) nd(aa: _ Vt)ez(ﬁm t+oW (t) ta). (30)
Iz 273 (2 — p?)
2_2
(2.2,5)If 2 <0, 74 >0, 70 = ﬁ, 0 < p < landmins < 0, then aJEF solution shall be acquired
" T4
as:
_ mnr i( Br—wt+oW (t)— o2t
Raso(rt) = o |t qyns(om —vp)el (et (31)

By setting either t = 0 or ;1 = 1, one can build up either a singular periodic solution or a singular soliton
solution, respectively as follows:

Ra27(z,t) = ay 77217—2 csclax — 1/75}ei(ﬁ“”’“"t“"’v(t)*ta)7 (32)
T3
a, | mT2 cothlaz — vt]e i(Br—wt+oW (t)—o%t) (33)

Through Set (2.3), the solutions are obtaingd as below:

Ra.2s(x,t) =

l\)\»i

23,1) If 2 <0, 74 >0 and 1o = 47724, one can establish a singular soliton solution by providing that

mmnz < 0O:

Ros,1(x,t) =« 7771]£csch [(aaz - Vt)\/—2T2] ¢i(Br—wtteW ()=o) (34)
3
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2
(2.3,2) If 2 > 0, 74 > 0,and 70 = %, one can evaluate a singular periodic solution under the condition
that mins < O:

Ros,1(z,t) =« —n;]jcsc [(aw - l/t)\/ﬁ} ei(Ba—witew ()=o) (35)
3

Family (3) : If 7o = 71 = 74 = 0, then, in this case, we construct a set of solutions as:

-+ \/azﬁzn% (*165477?, + 452772773 + 77%) + 24Oéﬁ7]3171 (4/6'173 (a (w + QQ) _ ,61/) ¥ T]21/) T 144T]§V2
4\/6\/_0‘577?2, (afm (28213 + n2) + 12n3v)
—g B (aﬂm (2ﬂ2773 + "72) + 12'731’)2 V/Ea2B23 (16407 + 48%n2ns + n3) + daBnsm (4813 (a (w + 0%) — Bv) + 12v) + 249302
= da2nums (—afng (B (28%0s + n2) + 12n50))%/2
2 4 amp 4 12v
208" + n3 + Bn1 ]

203

Ao

)

By

’

A1 =0, 7o = —

By denoting 61 = —a8n3 (aﬁm (262773 + 772) + 127]31/),
82 = 4fns (a (w + 0%) = Bv) + n2v, 63 = —165"03 + 45%n215 + 113,
and 81 = $a” 8203 + 4aBdanzm + 247502, one could find the following solutions:

(3.1)
V010 h —vt)y/ 1 :
Ra.a(w,t) = il % + 104 (cosh (o yl,j W+ €Z(ﬁz_m+gw(t)_gzt), (36)
4\ 6 204 B2mn3 T2
which denotes a hyperbolic solution such that §;04 > 0.
(3.2)
184 V0104 cos? [%(am—l/t)\/—Tg] i(,Bacfwt+QW(t)792t)
RS,Q(CL’J‘:) - - T+ 4122 3 € ) (37)
451 2c /3 7711737'2

which denotes a periodic wave solution such that ;04 > 0.
Family (4) : If 73 = 74 = 0, then, in this case, we construct multiple sets of solutions as:

2 2 2 4 24 2
Set(4.1): o =2 =71 =0, B; = ia\/TO (m (o272 (a T25+§ni+ﬂ )+24(w+o ))7
__ 36%mm2 _a(m (a3 —58") +24 (w+ o))
B T @ (@ n )+ B 2wt D) 365 :
o = 1OV T2/ (0272 (0272 + 52) — 25%) — 48 (w + 0°)
Set (4.2) : o = + N
L VT (027 (0272 + 5%) —267) — 48 (w + ¢?)

79[1207

By = = £2¢/

1 Qﬁ\/% s T1 T270,

B 652171772 L a (48 (w + QZ) —m (a47—22 + 1054))
B (0P (0P + ) - 26 — 48w+ @) 725 ’

From Set (4.1), one can able to construct the wupcoming solutions such that
m(m (a'73 + o + BY) + (w+ 0?)) > 0:
(4.1,1) If 7o > O and 72 < 0, then one can find a singular periodic solution, which shall be read as:

4,2 2122 4 2 X
R (w,8) 2 [ m (13 +a2B%m0 + ) +w+ o cse [(am —ut) /sz] el(ﬂxfwfrFQW(t)*th)’ (38)

B N2T2

(4.1,2) If 79 > O and 72 > 0, then one can build up a singular soliton solution as follows:

9 42 232 1 2
R4A1,2(Jc,t):—a m(afry +o2f2m + B twte csch [(ax — vt
B N2T2

) T ei(ﬁac—wt-ﬁ—gW(t)—gzt). (39)

From Set (4.2),

771(Q2T2(a272+32)—234)748(w+92)
R, (J} t) — ii _ T2 ("71 (a27-2 (a27—2 + 52) - 254) —43 (w + 92)) + 71 \/7 3n272
4.2(T, 1) = 13 312 evTa(az—vt) _ 27712
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Xei(,@sztl»QW(t)fQQt), (40)

which represents an exponential solution under the conditions that eV (=% _ 7 # 0and
M2 (171 ((1272 (a2T2 + BQ) - 2ﬁ4) — 48 (w + 92)) <0,

Graphical and physical interpretation for the influence of noise on the extracted
solutions

In this part of the article, one can see an explanation of the impact of applying the white noise on some of the
resulting solutions. Using MATLAB software, we investigate the effect of adding this noise with different intensities
using 3D and 2D graphical representations of the obtained solutions. These graphical representations will show
the robustness of the obtained solutions by considering the noise. Figure 1 represents the 3D representations
of Eq. (18) with m1 =2, 2 =2, mi3=-2, w=0, § =0, a =—2, 70 = —2, 74 = —2. These plots
demonstrate how rising noise intensity (o) imparts greater unpredictability into wave dynamics. For small
values of g, the solution stays smooth, similar to a deterministic wave. As o grows, the solution becomes more
volatile, indicating the impact of random disturbances on the wave’s stability and structure. This phenomenon
is important in physical systems such as optical fibers, Bose-Einstein condensates, and fluid turbulence, where
noise affects wave propagation. The surface flattens and the signal level drops as the noise intensity rises,
according to observations. Utilizing different noise intensities, a 2D graph of Eq. (18) is depicted in Fig. 2. These
plots show how the wave solution changes over time with varied noise strengths. The deterministic solution
(0 = 0) has a smooth transition, but raising ¢ adds deviations, generating variations around the mean solution.
This represents how external disturbances or intrinsic system noise impact wave stability, which can result in
diffusion-like spreading, instability, or disruption of the wave profile depending on the noise intensity. With
m=—2, n3 =-2, w=0, 8=0,3Dplots of Eq. (21) are displayed in Fig. 3. These visuals demonstrate how
increasing noise intensity (o) affects the wave profile. For smaller g, the wave is reasonably smooth and steady.
As p increases, the wave shows abnormalities and variations, reflecting the impact of random disturbances. Such
noise effects in physical systems might reflect external disturbances in fluid dynamics, optical wave propagation,

[o|=0.1

R2.1,1(z,t)

Ra.1,1(x,t)

7
,
gy

7

Ra.1,1(x,t)

Fig. 1. 3D visualizations of stochastic solution of Eq. (18).
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Fig. 2. 2D plots of stochastic solution of Eq. (18) with different intensities.

|o]=0.1 |o]=0.2

Raa4(z, t)

o
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o
o

W)“"

L ,‘ :““ ! ,'F “m"‘ -

®wo

Ra14(z,t)
Ra1a(z,t)

Fig. 3. 3D graphical plots of stochastic solution of Eq. (21).

or quantum systems, where random fluctuations affect wave behavior and stability. Higher noise levels result
in localized energy concentration or dissipation, which drastically alters the initial wave shape. By applying
different noise intensities, a 2D graph of Eq. (21) is depicted in Fig. 4. This graph plots wave amplitude over time
for various noise levels. When increasing g, it causes random fluctuations and broadens the wave profile. This
illustrates noise-induced dispersion and diffusion effects, which may be observed in real-world applications
such as signal transmission in noisy channels, fluid turbulence, and stochastic resonance in nonlinear systems.

Scientific Reports|  (2025) 15:33805 | https://doi.org/10.1038/s41598-025-99415-9 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

0.7 :
—o|=0.1
gie —10]=0.2
[o]=0.4
i |o|=0.6
|0]=0.8
=04 lel=t
=
é 0.3
0.2 /ff// y
0.1 A/’, e \\\
-8 6 -4 8

Fig. 4. 2D plots of stochastic solution of Eq. (21) with different intensities.

Conclusions

The generalized stochastic nonlinear Schrédinger equation’s exact, soliton solutions are the main topic of this
article. Many parameters of the nonlinearity and a parameter linked to weak nonlocality were the characteristics
of the equation in addition to the influence of Brownian motion. To solve this difficult problem, we used the
tried-and-true method known as the improved modified extended tanh-function methodology. Through the
use of this technique along with the proper traveling wave transformations, we were able to develop novel and
very effective solitary-wave solutions for this model. We used MATLAB to create both 2D and 3D graphical
representations in order to obtain an understanding of the equation’s physical consequences. Deep insights into
avariety of facets of the behavior of the equation are provided by these visualizations. By adjusting the parameter
values, we were able to reveal several other solutions, such as {dark, bright, singular} solitons, Jacobi elliptic
functions, exponential, periodic, and singular periodic solutions. This work incorporates stochastic effects into
a nonlinear wave equation, revealing new details on how noise affects wave stability, localization, and energy
distribution. Unlike prior deterministic investigations, our results show that increasing noise levels cause major
changes in wave dynamics, such as diffusion, instability, and pattern development. In the fields of mathematical
science and engineering, our computational research highlights the method’s efficacy and adaptability in handling
a broad spectrum of nonlinear issues. The restricted applicability of this approach to a wide range of equations
and potential convergence issues may occasionally make it less dependable in yielding accurate solutions. This
study’s findings are relevant to stochastic optical communication systems, where understanding noise-induced
wave dynamics can improve fiber optic transmission, soliton-based communication, and nonlinear signal
processing. The insights also apply to laser dynamics, quantum optics, and nonlinear photonics, aiding in the
development of robust communication protocols and enhanced noise management techniques.

Data availibility
The datasets used and/or analyzed during the current study are available from the corresponding author upon
reasonable request.
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