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Backscatter communication, which transmits information by passively reflecting radio frequency (RF)
signals, has become a focal point of interest due to its potential to significantly enhance the energy
efficiency of Wireless Power (WPMEC) networks and extend the operational lifespan of terminal
devices. However, there is little research on the integration of user cooperation in WPMEC scenarios
within volatile network environments. In this paper, we propose a dynamic task offloading algorithm
for a Backscatter-assisted WPMEC system, which involves two (MDs) and a Hybrid Access Point (HAP)
with user cooperation. We formulate the energy efficiency (EE) maximization problem as a stochastic
programming problem, considering the randomness of task arrivals and time-varying wireless
channels. By leveraging Dinkelbach’s method and stochastic network optimization technique, we
transform the problem into a series of deterministic sub-problems for each time slot, and convert the
non-convex sub-problem into convex ones. We propose a low-complex EE maximization algorithm to
solve the convex problems efficiently. We conduct extensive simulations to validate the performance
of our algorithm under various system parameter settings. Experimental results demonstrate that our
algorithm not only outperforms the benchmark algorithms by approximately 23%, but also stabilize all
queues within the MEC system.
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In recent years, the integration of Internet of Things (IoT) technology with advanced communication systems
has facilitated a wide range of mobile devices (MDs)—such as cameras, sensors, and wearable devices-to collect
and exchange data seamlessly'. This proliferation has given rise to numerous application scenarios that leverage
wireless devices, such as autonomous driving, face recognition, Virtual Reality (VR), and e-health?. However,
these applications often demand substantial computational power and low latency, presenting challenges for
MDs, which typically have limited computing capabilities and limited battery lifespan. Mobile Edge Computing
(MEC) has risen as a effective solution to these challenges. By oftfloading computationally intensive tasks to
MEC servers, MDs with constrained resources can markedly enhance their computational capacity and reduce
latency.

However, wireless devices often have limited battery capacity, which cannot sustain prolonged operation.
Consequently, the frequent replacement of MDs’ batteries presents a significant challenge. Wireless Power
Transfer (WPT) has developed as an potential solution to this challenge**. WPT utilizes a Hybrid Access Point
(HAP) to broadcast Radio Frequency (RF) energy that can be harvested by wireless devices. By integrating
Energy Harvesting (EH) technology, these devices can convert captured RF signals into electrical energy®,
which can then be utilized to process incoming computational tasks. The integration of wireless power and edge
computing technologies in Wireless Powered Mobile Edge Computing (WPMEC) system significantly extends
the battery lifespan of wireless devices and markedly enhances their computational capabilities.

In addition to battery limitations, the double-near-far effect can significantly impact network performance,
with devices far from the HAP experiencing poor channel conditions®. To counteract this issue, a user cooperation
(UC) mechanism has been implemented. In this mechanism, devices that are in close proximity to the HAP
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act as relays, forwarding signals for those located at a greater distance. This strategy not only mitigates the
inefficiency of remote nodes offloading tasks directly to the Access Point (AP) but also optimizes the utilization
of idle computational resources within the network, thereby enhancing the overall computational efficiency
of the system. For example’ demonstrates how user cooperation can boost the computational efficiency of a
WPMEC system under dynamic channel conditions and varying task arrivals. Additionally, other studies, such
as®®, have shown that user cooperation can effectively reduce the impact of the double-near-far effect. However,
the aforementioned studies have not yet explored the potential of Backscatter technology to improve energy
efficiency further.

Backscatter communication (BackCom) has attracted considerable attention in recent years for its novel
approach to wireless communication!®. In BackCom systems, the transmitter operates in full-duplex mode,
functioning in a passive mode. It modulates and reflects the incident signal to the receiver, eliminating the need
to generate a carrier frequency, while simultaneously harvesting energy to support its circuitry consumption'!2,
This method differs from traditional active communication (AC), where the transmitter first harvests energy and
then uses it to transmit data, following the harvest-then-transmit (HT'T) protocol. While AC typically consumes
more energy than BackCom, it generally offers a higher data transfer rate. The trade-offs between EH and data
transfer are inherent in both BackCom and AC.

The motivation behind this study stems from the recognition that while integrating BackCom and AC
paradigms has shown promise in enhancing the energy efficiency (EE) of WPMEC systems®!3, current research
is predominantly confined to static, single-time slot scenarios. These studies often assume constant channel
conditions and user data arrivals, which contrasts sharply with the dynamic, stochastic nature of real-world MEC
networks where data arrivals and channel states are subject to continuous variation. This volatility complicates
the prediction and management of network operations, thereby necessitating the development of robust
algorithms capable of optimizing long-term energy utilization efficiency and maintaining system queue stability.
Addressing these challenges is not only of theoretical interest but also of paramount practical importance, as it
directly impacts the sustainability and reliability of MEC services in fluctuating operational environments. Our
study, therefore, aims to bridge this gap by proposing an algorithmic framework that can adeptly navigate the
complexities of volatile network conditions, ensuring optimal energy efficiency and queue stability in WPMEC
networks.

In this paper, we tackle the long-term EE maximization for a Backscatter assisted WPMEC network with user
cooperation by jointly optimizing the wireless powered time fraction, BackCom offloading time fraction, AC
offloading time fraction, offloading data size and transfer power of MDs. The problem introduces considerable
difficulties in two main aspects: (1) The randomness of task arrivals and fluctuating wireless channel states
impose challenges to achieving optimal EE while ensuring the stability of queue system; (2) The integration
of BackCom and AC brings a strong coupling of energy harvest time and task offloading. To address these
challenges, we formulate a stochastic optimization problem and propose an efficient, low-complexity algorithm
by leveraging techniques such as the Dinkelbach method and the Lyapunov optimization framework. We first
transform the stochastic optimization problem into a series of deterministic problems for each time slot by
leveraging the drift-plus-penalty technique. Then, We transform the non-convex subproblem at each time slot
into a convex optimization problem by employing the variable substitution method for an efficient solution. We
propose a low-complexity dynamic EE maximization algorithm that operates online without requiring prior
system information.

Our primary contributions are listed as follows:

o We introduce a novel dynamic task offloading model to optimize EE for a WPMEC network with integration
of BackCom and AC communication under user cooperation, taking into account the randomness of task
arrival and time-varying wireless channels. Our model effectively balances the trade-off between energy ef-
ficiency and system queues stability, while mitigating the double-near-far effect. Additionally, we explore the
use of variable data weighting to motivate proximal users to relay data for distant users, enhancing overall
network efficiency.

o We have developed an online algorithm to maximize the EE metric of the WPMEC network. This is achieved
by determining the allocation of time fractions, data offloading, transmission power, and backscatter reflec-
tion coeflicients. To address the coupling of control decisions over time, we employ Dinkelbach’s method and
the Lyapunov optimization framework. This approach decouples the stochastic fractional optimization prob-
lem into deterministic sub-problems for each time slot, transforming it into a convex problem that ensures
an efficient and optimal solution. Additionally, by adjusting the control parameter V, our algorithm achieves
a balance between queue length variations and optimization objectives. This capability allows for effective
management of system queue length and stability.

o We present a rigorous mathematical analysis to demonstrate the performance of our proposed algorithm,
which achieves a balanced trade-off between energy efficiency and queue stability within the bounds of
[O(1/V), O(V)]. . Extensive simulation experiments are conducted to verify the algorithm’s effectiveness and
practical applicability. Our algorithm improves energy efficiency by 23% compared to existing benchmark
algorithms, while maintaining stable system queues in dynamic environments.

The rest of this paper is organized as follows: “Related work” presents the details of model for Backscatter-
assisted WPMEC system. In “System model”, we formulate a stochastic programming optimization problem
aiming to maximize energy efficiency. “Problem formulation” details the application of the Dinkelbach’s method
and Lyapunov optimization techniques to simplify the problem, including the algorithm design and theoretical
performance analysis. “Algorithm design” presents an extensive simulation-based evaluation of the proposed
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algorithm’s performance. Finally, we summarize the paper and outline potential directions for future research
in “Simulation results”

Related work

Task offloading in WPMEC

The integration of WPT with MEC as been thoroughly examined in recent studies as an effective solution
for enhancing the energy and computational capacities of wireless devices'*""”. Ernest and Madhukumar'®
introduced an energy efficiency maximization algorithm leveraging multi-agent deep reinforcement learning
for a MEC-supported vehicular network, with jointly considering transmission and computation latencies
outperforming existing strategies. Zhang et al.!® developed an algorithm that optimizes charging times and data
offloading rates for WPMEC sensor system, aiming to enhance computational rates across various scenarios.
Li et al.’ studied the system latency minimization problem for an Intelligent Reflecting Surfaces (IRS)-assisted
multi-ID MEC system, and presented a hybrid multiple access scheme and optimization framework combined
with Frequency Division Multiple Access (FDMA) and Non-Orthogonal Multiple Access NOMA) technologies.
Additionally, in%, the authors introduced a deep reinforcement learning-based approach for WPT-aided
mobile edge computing to dynamically adapt to real-time changes, make swift decisions, and optimize both
task offloading and energy resource allocation. Our previous research’ introduced an online control algorithm
for dynamic task offloading in WPMEC networks under dynamic network conditions, designed to maximize
long-term system energy efficiency. However, the aforementioned studies did not take into account the use of
Backscatter technique to further enhance the energy utilization efficiency of wireless power transfer.

User cooperation in WPMEC

To address the double-near-far effect and optimize resource utilization, numerous researchers have employed
user cooperation mechanisms”??!-23. He et al.?? presented a user cooperation scheme, aiming to maximize
the network’s total throughput by jointly optimizing the local computing frequency, transmit power, task
distribution, and time allocation. Wang et al.2! introduced a user collaborative mechanism for a NOMA
assisted WPT-MEC network, designed an iterative-based optimal algorithm to minimize overall system energy
consumption by leveraging Lagrangian method. Zhang et al.?* presented a hierarchical reinforcement learning-
based algorithm for joint caching and resource allocation in a cooperative MCE system, aiming to optimize
resource utilization and balance server loads through service caching and workload offloading decisions. Sun
et al.?® proposed an iterative optimization algorithm for minimizing end-to-end latency in an MEC network
supporting IoT applications, by jointly optimizing user association and resource allocation in a three-phase
operation protocol. Su et al.” explored optimizing the energy beamforming and resource allocation to enhance
computation efficiency for WPMEC system with the integration of user cooperation and NOMA, taking into
account non-linear energy harvesting model.

Backscatter communication in WPMEC

In recent years, the integration of BackCom and AC has emerged as an effective approach to enhance network
energy efficiency, leveraging the unique characteristics of Backscatter technology to balance transmission rates
and energy consumption, thereby significantly improving the system’s overall performance®?*-%°. Lyu et al.*
proposed a hybrid HTT and BackCom framework for cognitive wireless powered IoT networks, optimizing
time allocation and mode combination to maximize system throughput. Ye et al.*” introduced a bisection-
based iterative algorithm for minimizing data offloading and computing delays in a WPMEC network with
hybrid BackCom and AC for IoT networks. Shi et al.’! proposed a scheme for maximizing the weighted sum
of computation bits in a Backscatter-assisted WPMEC network, considering a practical non-linear EH model
with hybrid HTT and Backscatter communications. Wu and He?® proposed an efficient iterative algorithm for
EE maximization in a multi-access WPMEC system with the help of a relay. Lin et al.>? presents an optimization
framework for a BackCom NOMA system, aiming to maximize the sum uplink rate by optimizing reflection
coefficients and establishing association policies between base stations and backscatter devices. Fu et al.3
addressed the energy efficiency fairness among IoT nodes in a UAV-enabled WPMEC network with integrated
BackCom and AC, proposed an optimization framework that maximizes the worst-case IoT node’s energy
efficiency by jointly optimizing UAV transmit power and trajectory, IoT nodes’ BackCom and AC parameters,
and local computing configurations. However, the aforementioned studies primarily focus on optimizing a
single time slot and do not account for the dynamic fluctuations inherent in MEC network environments.

The prior relevant works are summarized in Table 1, which evaluates the optimization objectives, decision
variables, and solution methods of the models. Unlike existing research on hybrid communication modes (e.g.,
BackCom and active communication) and user cooperation in WPMEC networks®, our work differs in the
following key aspects: (1) Dynamic Network Optimization: We address the challenge of maximizing time-
averaged energy efficiency in dynamic network environments by accounting for the near-far effect through user
cooperation and considering the dynamic variations in nodes’ battery levels. (2) Incentive-Driven Cooperation:
Weighted incentives are introduced to motivate proximal nodes to assist distant nodes in offloading
computational tasks, thereby enhancing cooperative efficiency and improving overall system performance. (3)
Robust Algorithm Design: Leveraging the Lyapunov optimization framework, Dinkelbach’s method, and variable
substitution for convex optimization, we develop an online offloading and resource allocation algorithm. This
algorithm operates independently of statistical or future system information and ensures queue stability under
dynamic conditions.
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Optimization metrics
Task
WPT Task Offloading | arrival | Battery | Reflection
References | Description Solutions duration | allocation | power rate levels | coefficients
18 Maximize the energy-efficient for NOMA networks Learning-based solutions | x % v % X %
19 Enhance computational rates across various scenarios. Learning-based solutions | ./ v X X X X
0 Maximize the data processing rate for relay networks Learning-based solutions | ./ v X X X X
2 Maximize the energy-efficient with the help of a relay BackCom approaches v X v X X v
Data offloading and computing delays minimization with
27
hybrid BackCom and AC BackCom approaches x v v x X X
Maximize the weighted sum of computation bits for non-
31
linear EH model BackCom approaches X v v X X
2 Maximize the sum uplink rate for NOMA networks BackCom approaches X v X
s System latency minimization for IRS-assisted networks IRS approaches v %
8 The user energy efficiency maximization for cooperation- User cooperation
assisted networks frameworks v x X v
. . . User cooperation
9
Enhance computation efficiency for resource allocation frameworks v v v X X X
5 L . User cooperation
25 to-
End-to-end latency minimization for resource allocation frameworks X v v X X X
33 Addressed the energy efficiency fairness for UAV-enabled UAV+User cooperation
networks frameworks x x v x x v
7 Long-term system energy efficiency optimization for dynamic Queue-based solutions v y v v v y
networks
Energy-efficient optimization for with hybrid BackCom and .
Our paper | ) ~.= dynamic networks Queue-based solutions v v v v v v

Table 1. Summary of comparative analysis with relevant works. (“v” ”if the solution satisfies the property,x
”if not)
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Fig. 1. System model of WPMEC network with user-assisted.

System model
We consider a typical WPMEC network that comprises two MDs and a HAP, depicted in Fig. 1. The HAP
directly connects with a MEC server to provide computation task offloading services and equipped with an RF
energy transmitter to support wireless power to MDs. M D, one of the MDs, is located at a significant distance
from the HAP. While M D3, the second MD, is in a more advantageous position due to its proximity to the HAP
and acts as an intermediary. Both MD; and MD5 are equipped with both a BackCom circuit and an AC circuit,
enabling them to select between backscatter and active communication modes. This basic model, which includes
two mobile nodes, can be applied in scenarios such as Intelligent Transportation Systems (ITS), the Industrial
Internet of Things (IIoT), and Smart Cities. By integrating backscatter communication with MEC, it enhances
the data processing rate at the edge and improves overall system energy efficiency.

Time Division Multiple Access (TDMA) technique is utilized to avoid signal interference®*, meaning that
different MD nodes are allocated communication time in discrete time slots. The WPMEC system operates in a
discrete time-slot mode over a time horizon period, with each time slot set to last T'seconds. As depicted in Fig. 2,
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Fig. 2. Time division structure.

each time slot is further divided into five time fractions dedicated to energy harvesting and task processing for
the different MDs. At the start of each time slot, both MDs initiate the capture of RF signals transmitted by the
HAP for the purpose of energy harvesting. A partial offloading strategy is utilized for offloading computational
tasks.

Due to poor channel conditions between MD; and the HAP, compounded by the near-far effect, directly
offloading tasks to HAP is not feasible for the MD;. Instead, MD; offloads tasks to MD2, which forwards them
to the HAP.

The task offloading process in the Backscatter-assisted WPMEC system proceeds through four distinct
phases: (1) WPT Phase, where the HAP wirelessly charges both MD1 and M D2 using RF signals for a duration
of £f; (2) BackCom Phase, during intervals €5 and €4, MD; offloads computational task data to MDs2, which
then offloads the data to the HAP; (3) AC Phase, where M D receives tasks from MD; and offloads them to the
HAP; and (4) Result Return Phase, where the computational results, typically small in size, are returned to MD;.
In this phase, the time slot €%, is negligible and can be approximated as es* = 0.

Note that the two-user basic model presented in this paper can be readily extended to scenarios involving
multiple user nodes. This can be achieved by implementing a matching algorithm to pair distant nodes with
nearby ones. By allocating orthogonal frequency bands to each pair, independent operation can be ensured,
allowing our user cooperation model to be applied effectively to each pair. Here we focus on a single pair of users
within a resource block not only reduces system complexity but also maintains practical relevance.

The key symbols and definitions used in this paper are listed in Table 2.

Energy harvesting model

The HAP, which has a dependable power source, is tasked with transmitting RF energy to the MDs located
throughout its service area. In the initial phase, the HAP broadcasts RF signals to all MDs for a duration of
56. Subsequently, MD; offloads tasks to MD> during the time fraction et using BackCom, while MD; can
simultaneously harvest energy. In a similar fashion, MDs offloads tasks to the HAP during the time fraction &5
using BackCom, and MDj harvests energy. Let E} ,,, and E5 ,,,, denote the harvested energy of MD1 and MD2
in the first phase, respectively. Thus, we have®

Ef wp = 11 Po (€6 + €3) 1)
and

E;,wp = /J’hépﬂ (66 + etl) ) (2)

where 0 < p1 < 1represents the energy conversion efficiency, Py denotes the RF transmission power of the HAP.
h! and h% represent the channel gains from the HAP to MD1 and MD5 respectively, which remain unchanged
within the same time slot.

Dynamic queues model

To simulate the dynamic changes in user task data arrival and node battery levels, we have introduced the
dynamic queuing model. Both MD; and MD2 maintain a buffer queue for caching incoming task, which is
processed on a first-in, first-out (FIFO) principle. Let Q; (t) , ¢ € {1, 2} denote the task queue lengths of MD;
and MD3 at time slot ¢, respectively. The length of queue Q; () evolves as follows:

Qi (t+1) = max [Qi (t) — (di 1o + dior) ,0] + Ai ()i € {1,2}, 3)

where A; (t) represents the task data arriving at the MD; during time slot . We assume that the task arrival is
an arbitrary process over time, there is a upper-bound by Amaz. df 1oc> d o5 represent the offloading task data
and the local processing data at MD;, respectively.

Similarly, we assume that MD nodes are equipped with batteries and maintain a battery energy level queue.
The energy captured through wireless charging is first stored in the batteries, and the battery power is consumed
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Notation | Definition

T The length of a time slot

eb The time fraction for WPT at slot ¢

Ei N 5; The time fraction for offloading by BackCom of MD1 and MD> at slot ¢

sg R 52 The time fraction for offloading by AC of MD; and MD3, at slot ¢

E? The total energy harvested by MDj at slot ¢

E; wp The energy harvested during BackCom communication by MD; at slot ¢

E o The energy harvested by MD; at slot ¢

ht The WPT channel gain between MD; and HAP at slot ¢

gfz,g;a The offloading channel gain between MD; and MD3, MD5 and HAP at slot ¢

P(;‘,P{‘,Pzt The transmit power by AC at HAP, MD;, MDy, at slot ¢

P,b"‘, P3¢ | The circuit power by BackCom and AC at MD;

df loc The amount of tasks processed locally at MD; at slot ¢

d:’ ba The amount of tasks offloaded by BackCom at M D; at slot ¢

df ac The amount of tasks offloaded by AC at MD); at slot ¢

d?,oﬂ' The total of offloading tasks at M D at slot ¢

H: ba The energy consumed by offloading tasks by BackCom at M D; at slot ¢
H f ac The energy consumed by processing tasks at helper at slot ¢

H: of f The total energy consumed by offloading tasks at MD; at slot ¢

t
H1 loc

The energy consumed by processing tasks locally at MD; at slot ¢

Hyot(t) The total energy consumption of MD; and M D5 at slot ¢
Dot (t) The total task processed of MD1 and MDj, at slot ¢

fi The local CPU frequency at MD;

b The CPU cycles required to compute one bit task at MD;
B! The reflection coefficient of MD; at slot ¢

m The energy conversion efficiency of WPT

Ki The computing energy efficiency of MD i

Table 2. Summary of key notations.

for local computing and task offloading. Concurrently, the battery energy level has an upper limit Bp,ax and a
lower limit Brmin. The Bmin level is essential to sustain the basic operations of the MD IoT system?®*. Therefore,
the battery energy level of the M D; dynamically changes as:

Bi (t+ 1) = min {max [B;(t) — H{ 0c — H{ o7, Bmin| + E{, Bmax } , (4)

where HY ;,.and H{ ,; ; represent the energy consumption for local computmg and task ofﬂoadmg, respectively.
The total energy harvested by MD; at slot ¢ is given by E} = Ej ,, + E; 1., where Ef . is as previously
defined, and E 1,, denotes the energy harvested during BackCom data transmission.

Local computing model

Upon task arrival at a node, local processing is prioritized; task offloading is considered only when local
processing is not feasible. Since each MD is equipped with a battery, the maximum duration for local computation
is denoted by 7. Let f1 and fo denote the local CPU frequencies of MD; and MDa, ¢1 and ¢2 denote the
CPU cycles required to process one bit of task at the MD; and MD3, respectively. Furthermore, the maximum
amount of local computation data at MD; cannot exceed the current backlog of Q;(t). Thus, the amount of
locally computed task data can be expressed as

dﬁ,loc = min {Ql (t)a ]:; } (XS {1 2} (5)
and the corresponding energy consumption is®
Hi oo =min {ri (fi)° Qi (t) i, ki (fi)* T} i € {1,2} (6)

where r; denotes the computing energy efficiency parameter of M D;®. The expression r; (fi)> Q; (t) ¢
represents the power consumption used for processing all current task data in queue Q;(¢). Note that if the local
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processing capacity of MD; exceeds the current backlog of Q;(t), then the amount of task for local computing
is Q:(t) and the processing time is %, so we can derive the energy consumption for local computing as

ki (f, i)g %ﬁ)@ =k ( f¢)2 Qi (t) ¢i; otherwise, the amount of task is f;T"/¢;, with the corresponding energy

consumption being r; (fi)® T as in'“,

Task offloading model

BackCom data transmission

During the time period et, MD; offloads tasks to MD- by BackCom. Let 0 < 31 < 1 represent the reflection
coefficient of MD1, where 31 represents the fraction of the received signal that is used as the carrier for data
transfer, and the remaining fraction (1 — 31) is allocated to energy harvesting. Let g}, represent the channel
gain between MD; and MD-. Based on Shannon’s theorem?>?, the amount of tasks offloaded from MD; to MD5
satisfies®

L Pyhl g,
di pa < €1 W log, (1 + Cﬁlao21912> -

where ¢ denotes the performance gap reflecting real modulation'!, o2 is the noise power. The corresponding
energy consumption for the circuit is

Hi . = PP} (8)

where PP is the circuit power consumption of MD; by BackCom, which is a constant value depending on
the circuit structure. By employing BackCom technology, data transmission and energy harvesting occur
concurrently. Thus, the energy harvested by MD; during &} is®

El o = phi Poei (1 - fi) )

After receiving the tasks oftfloaded from MD;, MD3 will relay a portion of them to the HAP. Note that MD will
also offload its tasks to the HAP. At time €5, the task data transmitted by MD> through BackCom is constrained

by

(10)

t t t
db e < 5W log, <1 n Cﬁzp()ilm%a)
g

where (35 is the reflection coefficient of BackCom at MDs. hj represents the channel gain from the HAP to the
MDs at time slot t, and g5, denotes the channel gain from the MD5 to the HAP at time slot £. The corresponding
energy consumption for the circuit is

Hj = Pyeh (11)

where PP is the circuit power consumption of MD2 by BackCom. The energy harvested by BackCom during
t .
gs is
E3,pa = phiPoes (1 - ) (12)
AC data transmission
After the BackCom offloading is completed, the AC mode offloading is initiated, which proceeds through an
offloading process similar to that of BackCom. The AC mode can achieve a higher data transmission rate, but it

is incapable of energy harvesting during the offloading phase. During the time fraction %, the upper limit of the
amount of task from MD; offloading to MD2 can be expressed as

t T
dtl,ac S EQW lOg2 <1 + ‘F)L:gzlz> (13)

where 0 < P{ < Puax represents the transmit power allocated to AC at MD18, o2 is the noise power and gi2
represents the channel gain from MD; and MD5. The corresponding AC offloading energy consumption is

Hiao = (PL + Pi°)e; (14)

where P{'° denotes the circuit power of MD; through AC which is a constant value®.
'The upper limit of the amount task offloading from MD> to HAP by AC during €}, is given by

Pt t
d e < €4W log, (1 + ’jf;?) (15)
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where 0 < P} < Puax denotes the transmit power of the MD» through AC. Let P5“ denote the circuit power
of MD3 through AC. The energy consumed for task offloading AC at MD3 in slot ¢ is

Hjoe= (P2 + P5°) e} (16)

Network stability and utility
In a dynamic WPMEC network system, maintaining stability is vital due to the stochastic arrival of tasks and
varying channel conditions®’. We first define system queue stability as follows.

Definition 1 (Queue stability): A discrete queue Q(¢) is strong stable® if
1 &
Jim =Y E{Q (1)) < oo
t=1
The total processed tasks Dyot (t) and the total energy consumed Fio (t) at time slot t in a WPMEC system, can
be expressed as follows, respectively
Dot (t) = w1 (dtl,loc + dtl,off) + w2 (d;,loc + d;,off - dtl,off) (17)
and
Hiot(t) = Hiyoe + Hi ot + Hatoc + Ha,on (18)
where wy and wo represent the task weights of MD; and MD2 respectively. dZ off = dl ba T dZ ac represent
the total offloading task data at MD;, and HY ¢ = H/ 1, + H; ,. represent the total energy consumptlon of
offloading task at MD;.
Definition 2 (Utility-energy efficiency ): The network utility prg is defined as the time-averaged amount of

computation data achieved per unit of energy consumed?. It represents the ratio of long-term completed tasks
to energy consumed, as follows:

I e 3R D)

PEE = = (19)

i e SR )

)
=
=

—~
o~
=

Problem formulation
Inthispaper, weseektodesignadynamicoffloadingalgorithmtomaximizethe p g  subjecttoconstraintsofthesystem

queue stability, by making decisions on timeallocation e’ = [66 ,eb, eb, el EZ] ,powerallocation P! = [Pf , Pgt] s
reflection coefficients 3¢ = [Bf, 65] and the amount of offloaded tasks d* = [dl bas @1 ac A5 pa, db ac} ateach

time slot t. Simultaneously, our algorithm should ensure the stability of the system network when faced with
randomly arrlvmg task loads and dynamlcally changing wireless channel conditions. By denoting € = {e‘}{*,,

={P"}E,,8={B"YE , andd = {d'}£, the maximization of pg g for a Backscatter-assisted WPMEC
w1th user cooperation can be formulated as the following problem (P0):

PO : Egyaﬁxﬁ PEE (20a)
t t t t t
st. egteltestes+e <T (20b)
Bmin S B’L (t) - H’f,loc - Hf,off + E'f S Bmax7i € {17 2} (ZOC)
Jim —Z]E{Ql )} < o0,i € {1,2} (20d)
df,loc + d;of‘f S Qz(t)7l € {17 2} (206)
di,off S d;,oﬂr (ZOf)
(7), (10), (13), (5) (20g)
£0,€1,€3,5,64 > 0, (20h)
0 < P/, Py < Prax (20i)
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where constraint (20b) ensures that the total offloading time in each slot does not exceed the available time.
Constraint (20c) maintains the battery levels within the allowable range for both mobile devices. Constraints
(20d) guarantee the stability of data queues. Constraint (20e) indicates that the amount of processed task in the
current time slot must not exceed the current queue length. Constraint (20f) guarantees that tasks offloaded by
MD1 to MD2 can be processed within the same slot. Constraints in (20g) denote the maximum offloading data
depending on the channel condition. The problem is a fractional stochastic programming issue, which presents
significant challenges due to the following aspects: (1) The stochastic nature of task arrivals, time-varying
channel conditions, and dynamic battery level changes introduce uncertainty into the optimization challenge;
(2) The temporal coupling in the time fraction and energy consumption exhibited by BackCom and AC poses a
considerable challenge in determining the allocation of offloading time.

Due to the fractional nature of the objective function in problem PO, traditional optimization techniques
aren’t directly applicable. Therefore, we leverage Dinkelbach’s method®, which is widely used for solving
fractional programming problems in energy efficiency optimization, to transform PO into a more tractable form.
Let pr i denote the optimal value of pr £, we obtain Theorem 1.

Theorem 1 The optimal p% g is achieved if and only if

D(t) — pesE(®) =
max, (t) — pErE(t) =0 (1)

Proof According to the Dinkelbach’s algorithm, the objective function of problem P1 can be equivalently refor-
mulated into the following parameterized subtractive form®:

F(v,u) = D(v) — uB(v),

wherev = {g, P, 8, d} and F'(v, u) is a strictly monotonically non-increasing function with respect to u. Here,

u represents the energy efficiency value derived based on v. The Dinkelbach algorithm alternately updates u

and v through iterative optimization. During each iteration, the non-negative parameter u is updated until it

converges to the optimal value p% 5.
Let v* denote the optimal strategy for the problem. At optimality, we have u* = ppp = D(v*)/E(v*),

which satisfies the conditions of Theorem 1. Therefore, Theorem 1 is proven. [

Similar to the Dinkelbach’s method in%, a new parameter u(t) is introduced as follows:

ult) = = o~ Do (1) (22)
K 2 Bror(1)
where ©(0) = 0. Thus, problem PO is transformed into:
PL: max  D(t) - u()E(t) (23a)
st (200) — (204) (23b)

where u(f) is a specified parameter that that needs to be updated at each time slot. It is important to note that
u(t), as determined by (22), will converge to pf over time®. Consequently, this transformation is rjustified
and yields the same optimal solution as PO. While problem P1 is more manageable than problem PO, it still faces
several challenges The constraints (20c) and (20d), along with the equation (4), result in an interdependence of
battery levels across various time slots throughout the period, which means that the current energy consumption
affects future battery levels. Moreover, the unpredictability of the stochastic task arrivals and the fluctuating
channel states add another complexity to the problem. The difficulty in accurately forecasting these elements
leads to an inherent temporal coupling in the decision-making process.

Algorithm design

Lyapunov optimization formulation

To decouple the battery energy level across time slots at MD; and MD2, we utilize two virtual queues for
battery level: B;(t) = Bi(t) — Bmax,? € {1,2}. In order to optimize the task queue and the energy queue

simultaneously, we define a combined queue vector 6 (t) £ {Ql (t), B\Z(t)} ,i € {1, 2}. Following Lyapunov

optimization framework, we obtain the quadratic Lyapunov function and the Lyapunov drift?” as

L(O(t))é% > (Q? (t)+l§?(t)) (24)

i€{1,2}
and
A@@)SE{L({t+1)—L(t)]6(t)} (25)

Based the Lyapunov optimization framework?, one slot drift-plus-penalty of 6 (¢) can be expressed as
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Av (0(t)) = A0 (1) = VE{ Dot (t) — u(t) Eror (t) [ 6 ()} (26)

where control parameter V is positive that helps balance the trade-off between network EE and queue stability.
A higher value of V leads the algorithm to prioritize network EE, which may result in an increased backlog in
the task queue. An upper bound of Ay (6 (t)) are derived as Lemma 1.

Lemma 1 For any control decisions {e, P, 3,d} at each time slot t, the one slot Lyapunov drift-plus-penalty
Ay (6 (t)) has the following upper bound:

Av (0(t)) £ B — VE{ Dot (t) — u(t) Erot(t) | 0(t)}
+ Z {QiOE {Ai(t) = di oc — diom | 0(1) }

ie{1,2}

+§z(t)]E {Ef - Hf,loc - Hf,off | e(t)}}

27)

where B is a positive constant that satisfies the following for all :

1
Bz 5 3 {B|(dheet dion)” + 220 | 000)
i€{1,2} (28)
£ E[BR 4 (e + Hior)” 100}

Proof By using the inequality (maz[a — b,0] + ¢)* < a? +b* + ¢* + 2a (c — b), Va, b, ¢ > 0 and combin-
ing the definition of task queues and battery energy queues Egs. (3)-(4), we have

AQu(1) = 5 (Qult+1 ~ Qi(r)?)

(29)
df joc + d o)+ A2t C
< (. ’;) © + Qi (t) (Ai(t) = disoe — dion) i € {1,2}
5 1 /5 2 D2
ABz(t) = —(B; (t + 1) — Bz(t)
Y |

IA

5 (B2 4 (Hhsoe + Hlon)®] + Bitt) (B! = Hisoe — Hior) i € {1,2)

Combining the above inequalities (29) and (30) proves the result. O

Based on the drift-plus-penalty method, we seek to minimize the upper bound given in the right-hand-size of
(27) at each slot t. Notably the value of A(t), Q;(t) and B;(t) can be observed at the beginning of each time slot
t. By eliminating the constant term in the RHS (right hand side) of (27), the problem P1 can be transformed into
a one-time slot problem as

P2.1: 57%};d - (Ql(t) + CU1V) (di,loc + dtl,off) - (Qz(t) + WQV) (dé,loc + dé,off)

+ (Vult) = Bi(9)) (Hl oo + Hion) + (Vu(t) = Baot)) (Hbsoe + Hion)  C12
+ Bi(t) B} + Ba(t) E3

s.t. (20b) — (20¢), (20€) — (20i) (31b)
Due to the coupling between the parameters ¢, P and 3, the proposed problem P2.1 is still a non-convex

problem. To decouple these parameters, we introduce auxiliary variables ¢} = Pfel, b = Piel, o} = &l b1,
@4 = €5 B>. Then the problem P2.1 can be simplified as:

P22:min > Ci(dijoe + di o)
i€{1,2}
+ C3HY joc + (C3PP* + Cs + Cs) €} + Cst (32a)

+
+ C4H§,1oc + (C4P2ba + Cs + CG) e+ 0450%
+ (Cs + Cs) 66 — C54P:t3 — Caipi + C7€;t; + CSEZ

st ebdelteb+ehrel<T (32b)
Bmin S B’L (t) - Hf,loc - Hf,off + Ef S Bmax7i € {17 2} (32C)
d?,loc + dz,off < Ql(t)vl € {17 2} (32d)
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d?l,ba + di,ac S d;,ba + dé,ac (326)
t t CPohlglagh
dl,ba <eWlog, [ 1+ — .5 (32f)
glo
P t t t
d3 e < €W log, | 1+ %‘qi“% (32g)
gso
t t
i e < W log, ( 1+ L2221 (32h)
eko?
t t
b e < iWlog, (14 L2 (32i)
eho?
£05€1,85,€3,64 > 0, (32j)
0 < ¢l, 5 < PuaxT (32k)

where  Ci1=Qi(t)+wV, Ca=Qa(t) +waV, Cs=Vu(t)—Bi(t), Cs=Vu(t)— Ba(t),
05 = NhipoBl (t), Cﬁ = ,U,héPoBz(t), C7 = Cgplac, Cg = C4P26C.

Lemma 2 P2.2 is a convex optimization problem that can be effectively addressed using convex optimization tools
like CVX0.

Proof In problem (P2.2), the objective function (32a) is linear with respect to all variables. Constraints (32b)-

Pohtatsoh
(32e) are all linear inequality constraints. Whats more, for constraint (32f), log, (1 + CO;# is the
eto

1+ Cpohigizﬁl

5 ) which is concave with respect to (4. Since the perspective operation
o

perspective of log, (

n CPohlglaph

s ) is concave with (4 and €% and (32f) is a convex constraint.
elo
1

preserves convexity’,, ¢} log, (1

For the same reason, (32g)-(321i) are all convex constraints. Thus, P2.2 is a convex optimization problem. [J

According to Lemma 2, at each time slot, we need to solve a convex problem P2.2 that involves a limited num-
ber of variables. This approach allows us to achieve optimal long-term average EE without requiring knowl-
edge of future system information. Our proposed algorithm, the Dynamic Offloading for Backscatter-Assisted
WPMEC Algorithm (DOBAM), is outlined in Algorithm 1.

Scientific Reports |

(2025) 15:16822 | https://doi.org/10.1038/s41598-025-99481 -z nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Input: task arrival A;(¢) at slot ¢; channel gain {h} atslot ¢, gi,, g5, }.
Initialize: ¢ < 0,Q;(0), B;(0),u(0),Vi € {1,2}.

1: fort =1: K do

2:  Observe the current slot system state: A;(t), kL, gtq, g5,
3:  Determinie dj ., e} . based on the current queue lengthQ;(t) according to (5)

and (6).

4:  Calculate the coefficients C'; ~ Cg based on P2.2.

5. cvx_begin

6: Minimize P2.2

7: Subject to (32b)-(32k)

8: cvx_end

9:  Determinie P* and 3* by ;’%
10:  Update the task queue Q;(¢),Vi € {1,2}.
11:  Update the battery queue B;(t),Vi € {1,2}.
12:  Update the energy efficiency w(t).
13:  Output: €°, P and B

14: end for

Algorithm 1. Dynamic offloading for backscatter-assisted WPMEC algorithm (DOBAM).

Algorithm performance analysis

In each time slot, our algorithm solves a convex optimization problem (P2.2) involving 12 decision variables. The
time complexity of solving this problem is O(n3%log(1/€)), where n denotes the number of decision variables
(n=12). Due to the small number of variables, the problem can be efficiently solved using interior-point methods
or tools like CVX, ensuring rapid computation. The effectiveness of our dynamic control algorithms in achieving
the optimal long-term time-average solution is demonstrated through the following theorems.

Theorem 2 The optimal long-average utility function obtained by P1 is limited by a lower bound that is independ-
ent with the time space. The following solutions can be achieved by the algorithm: (1) u(t) > u* — B/(Ve*'®),

(2) All queues Q:(t), B (1), B (t) are mean rate stable, and thus the constraints are satisfied.

Proof For any ¢ > (), by integrating these results to (27) and taking the limit as € — 0, we observe that the
outcome is independent of the queue status 0(t). Thus, we have

Av (8()) € B = VE{Djue(t) = " Bi (0} + Q1) Y E{Ailt) = i — i)
t=1,2
+ ./B\z(t) Z E {E:’* - Hfjoc - Hit,’gff} (33)
t=1,2

< B —VE{D},,(t)} + Vu'E{E}.(t)}

Notice that u(f) is a constant and independent of the current queue status 6(t). By applying the iterated
expectation and summing the above inequality over time ¢ € {0, 1, ..., K — 1}, we obtain:
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E{L[0(K)]} = E{L[0(0)]} = VD> E{Dir()} + V> E{u(t) Euor ()}

K—1 (34)
<K|[B-VWE{E,(t)}]+V lZE {u"} By (t)]
t=0
Dividing both sides of (34) by VK and taking the limit as i —y ~o, and using Jensen’s inequality, we get:
| Kot L Kot
= lim = E{Deor(0)} + lim = B {u(t) B (1))
t=0 t=0
B 1+
< 7~ wE{EL (D)} + ( I{li_{xlmKZ;E{u(t)}> By (t)
t=
K—1
lim iZE{u(t)} <u
K —
Given that 7% t—0 ,, we conclude:
B * * *
0 S V —Uu ]E {Etot(t)} + UE {Etot(t)}) (35)
Thus, we derive that:
u>u* — B (36)

- Vdave
g

Theorem 3 Let E, 77" be the upper bound of e1(t), the time-average sum rate of queue length is bounded by

K-—1
1 = ~ B uEPeT
KlgnooKz;E{Ql(t) +Qa0)+ Ba) + Balt) | < = + (37)
t—

Proof By taking iterated expectation and using telescoping sums over ¢ € {0, 1,..., K — 1}, we have

E{L[O(K)]} — E{L[0(0)]} = VE{Dror(t) — u(t) Evor (t) | 0(£)}

K—1
~ ~ 38
<KB-eY E{@i(0)+ Qa(t) + Bi(®) + Balt) | + VE {u(t) Err (1)) o
t=0
Dividing both sides of (38) by f¢¢, taking K' — oo, rearranging terms yield
B | K=l
R F - D =y upper
Z - lim ZE {@O+ @)+ Bty + Ba) | + VuBZ” > 0 (39)
Rearranging the terms, we obtain:
11— = = B | uBEmer
i — < = _tot
IggnooK;E{Ql(t)-F%(t)+B1(t)+BQ(t)} <Z4v (40)

Thus, the time-average sum rate of the queue lengths is bounded as required. [J

Theorems 2 and 3 provide a comprehensive mathematical performance analysis of our proposed algorithm. The
control parameter V, which serves as a weight balancing the queue stability and optimization objective, is used
to adjust the trade-off between system queue stability and the optimization goal. The above theorems show that
the time-average EE ngE scales as O(1/V), while the queue length increases at a rate of O(V). As V increases,
the algorithm tends to prioritize optimizing the system’s EE, while decreasing V focuses more on stabilizing the
queue length. Thus, we can tune V to achieve a trade-off characterized by [O(1/V), O(V)] between ngr network
EE and task queue length. According to Little’s Law®, latency is proportional to the time-average queue length.
This indicates that our proposed algorithm can effectively balance efficiency and latency, which is crucial in
many real-world applications where both performance and response time are important.
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Simulation results
In this section, extensive numerical simulation are conducted to verify the performance of our proposed
algorithm. Each simulation experiment lasts a total of 5000 time slots, with each time slot lasting for 1 s. We
can also adjust the duration of time slots to accommodate various scenario requirements. The experiments were
conducted on a high-performance computing platform, featuring a 2.10 GHz Intel(R) Xeon(R) Silver 4116 CPU,
with simulations implemented in the Python language.

To simulate the impact of physical distance on the channel, we employed the free-space path loss model to
simulate signal propagation, where the average channel gain h is calculated by the following formula*%:

3x 108 4

h= A"

(41)

where A, is the antenna gain, f. represents the carrier frequency, d. denotes the path loss exponent, and d;
represents the distance between nodes (in meters).

The dynamic channel gams for WPT and task oftloading, following the Rayleigh fading model, are represented
by the vector h* = [a1hl, abh}, a5gls, ahgsa. In the model, the channel fading factors [al,a2,a3,a4]

all follow an exponential distribution with an expectation of 1, simulating the natural variability of wireless
channels. We assume that the vector of fading factors remains constant at [1.0, 1.0, 1.0, 1.0] within a time slot.

To model dynamically varying loads, we employed the most typical exponential distribution to represent task
arrivals, with arrival rates A1 and A2 being 1.2 and 1.5, respectively.

The main source code is available online at https://github.com/Toxic-Gulu/bac-with-ac. Other simulation
parameters are detailed in Table 38.

To comprehensively evaluate the performance of our algorithm, we conducted comparative simulations with
three representative benchmarks as follows:

(1) UC with the AC scheme (UAC)”: In the WPMEC system, task offloading is facilitated through user col-
laboration, where MD; and MD2 communicate exclusively via the AC mode, without the integration of
Backscatter modules. This approach only leverages the AC communication model for data transmission.

(2) UC with the BackCom scheme (UBC)%: The WPMEC network employs a collaborative approach among
users, with inter-user communication solely relying on the Backscatter technique.

Specifically, the HAP continuously broadcasts RF energy to the users throughout each time slot, resulting in the
highest energy expenditure for the HAP due to its non-stop energy emission.

(3) Without UC With Integrated BackCom and AC scheme (BC+AC)*: The WPMEC network forgoes user
collaboration, with MD; and MD3, establishing direct communication links with the HAP. In this configu-
ration, MD; and MD3 are autonomous, eschewing collaborative interactions. Furthermore, each device is
integrated with a Backscatter module, enabling the utilization of both BackCom and AC for their commu-
nication needs.

(4) Random oftloading scheme (ROS): The WPMEC network employs a typical task offloading approach where
MD; and MD> independently offload a random subset of their tasks to the HAP. There is no collaboration
between the two nodes in terms of communication. Importantly, both nodes are not integrated with Backs-
catter modules, and they exclusively utilize AC communication.

Symbol Value
Maximum battery capacity Bmax 50]
Minimum battery capacity Bmin 0]
Transmit power of the AP Py 5W
Noise power a? 1073w

The circuit consumption of the BackCom p%® and p5® | 0.1 W

The circuit consumption of the AC p{© and p5° 0.7 W

CPU frequency of M D1 fy 500 MHz
CPU cycles to compute 1 bit task for M D1 ¢1 490 cycles/bit
CPU frequency of M D5 f2 480 MHz
CPU cycles to compute 1 bit task for M D2 g2 470 cycles/bit
Computing efficiency parameter of M D1 x1 108
Computing efficiency parameter of M D3 ko 10~8
Antenna gain in the channel model A4 3

Carrier frequency in the channel model f. 915 MHz
Path loss exponent in the channel model d. 3

Table 3. Simulation parameters.
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To ensure a fair comparison, all baseline algorithms are implemented utilizing the Lyapunov optimization
framework, which is designed to maintain system stability.

Figure 3 demonstrates the performance comparison of EE under different schemes, with parameters set as
V = 40, ¢ = —16 dB, and W = 1.2 MHz. We find that our proposed algorithm performs the best in terms
of EE, followed by the UBC, then the UAC, the BC+AC ranking fourth, and the ROS method performing the
worst. Compared to the other four schemes, our proposed algorithm has improved the EE by 23%, 38%, 48% and
64%, respectively. This superior performance highlights the advantage of integrating both BackCom and AC.
The scheme of UBC, suffers from limited transmission capability when ( is small, leading to poor performance.
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Although the UAC can transmit sufficient data, its high circuit power consumption results in it ranking third.
Due to the poor channel conditions of remote users, the BC + AC, as well as the ROS method, also have lower
energy efficiency. This indicates that even with the integration of BackCom and AC, poor channel conditions
between MD; and HAP may still limit energy harvesting and task offloading. This further emphasizes the
importance of user cooperation in enhancing the performance of remote users.

Figure 4 illustrates the impact of controlling the performance gap ¢ on EE. The EE for the other four schemes
improve with an increase in ¢, contrasting with the UAC and ROS scheme’s stable EE. Our proposed scheme
consistently delivers the best system performance and the ROS method performing the worst. With ¢ > — 17
dB, the UBC scheme outperforms the UAC scheme in EE, prompting the system to favor the BackCom mode.
Upon reaching a higher threshold, the UAC scheme’s EE matches that of our proposed scheme, leading to its
predominance use by users. Conversely, when ¢ < — 21 dB, our scheme defaults to the AC mode. The BC + AC
and the ROS scheme experience the least performance gains due to suboptimal channel conditions. Overall, the
proposed scheme outshines others in flexibility and adaptability, adeptly tuning to varying ¢ levels for optimal
EE.

Figure 5 demonstrates the impact of network bandwidth on the performance under different schemes, with
the time slot set to 2000. As shown in Fig.5, within the bandwidth range of [1.00, 1.45] x 10% Hz, the EE of all
schemes increases with the expansion of bandwidth. This is attributed to the increased bandwidth allows more
tasks to be transmitted to the edge server for processing using edge computing resources. Our proposed scheme
consistently outperforms other schemes across the different bandwidth scenarios, especially as the bandwidth
approaches 1.45MHz. At this point, the advantage in energy efficiency becomes markedly evident, substantially
outperforming other baseline algorithms. This not only showcases the high adaptability of our scheme in
managing bandwidth but also underscores its effectiveness in utilizing network resources in high-bandwidth
scenarios, thereby maximizing energy efficiency.

In Fig. 6, we evaluate the system performance of various algorithms under different weight configurations,
where the weight w varies in the range [0, 3], with w1 = w/(w+ 1) and w2 = 1/(w + 1). As w increases,
the EE of all schemes generally declines because a higher w implies that tasks offloading from MD; receive
more resources at the expense of overall EE. Our algorithm consistently performs the best across all weight
settings and the ROS algorithm exhibits the poorest performance among the evaluated approaches. Specifically,
at w = 3, our algorithm achieves an EE improvement of 23%, 38%, 46% and 55% over other algorithms. This
demonstrates that our algorithm can more effectively leverage the advantages of the UC scheme, combined
with BackCom and AC. Additionally, Fig. 6 indicates that excessively high weights for edge devices can rapidly
degrade network performance, underscoring the importance of proper weight distribution. In Fig. 6, we observe
an inversion of the black curve, which occurs due to the system’s inclination to allocate more resources to support
the task offloading of MD; as the weight system increases. Schemes without user cooperation, constrained by
the absence of collaborative efforts and poor channel conditions, experience a sharp decline. Consequently, at a
weight coefficient of 0.6, a crossover of the curves is observed, where the EE represented by the black curve falls
below that of any other scheme with user cooperation.
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Fig. 7. Convergence performance of energy efficiency EE versus parameter V.

Figure 7 illustrates the impact of the control parameter V' on EE and average queue length, with the following
parameter settings: ( = —18 dB, W = 1.2 MHz, a distance of 120 m between MD; and MD3, and a task arrival
rate at MD3 of A2 = 1.5 Mbps. As V increases, EE improves, but the system queue length also increases. The
parameter V" acts as a weight in the offset-plus-penalty expression, which balances the optimization objectives.
When V increases, the algorithm places more emphasis on optimizing EE, while reducing its focus on queue
stability, resulting in an increase in the queue length. When V' reaches a certain threshold, the gain in EE becomes
saturated, and further increases in V' no longer significantly affect either the energy efficiency or the queue
length. The experimental results shown in Fig. 7 are consistent with the theoretical analysis presented earlier. In
practical applications, according to Little’s Law, the queue length is directly proportional to user waiting time.
Thus, the value of V' can be adjusted based on the required waiting time to ensure that the system optimizes its
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objective function while satisfying Service Level Agreements (SLA) for time constraints. Physically, decreasing
V accelerates task processing rates, thereby reducing the queue length more rapidly and ensuring system
stability. On the other hand, increasing V' shifts the algorithm’s focus towards maximizing energy efficiency at
the expense of queue stability, which leads to an increase in queue length.

Figure 8 illustrates the optimal time allocation of & versus the performance gap (. Initially, when ¢ is low,
despite the lower energy consumption of the BackCom mode, achieving a larger number of computational bits at
the same energy consumption is challenging. Consequently, MDs prefer the AC mode and allocate more time £
for energy collection to meet data processing needs. As ¢ increases, €; gradually decreases, and when ¢ exceeds
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Fig. 10. Energy efficiency versus different task arrival rate MD5.

— 20 dB, g ~ 0. This is because, as ¢ increases, the BackCom mode can not only achieve more computational
bits at the same energy consumption but also collect sufficient energy to support the circuit consumption under
the AC mode, significantly improving energy efficiency. Therefore, as ¢ increases, users are more inclined to
choose the BackCom mode, using its reflection capability to perform task transmission and energy collection to
meet the circuit consumption*. This scheme ensures that under different ¢ conditions, the system can operate
at the highest efficiency, optimizing energy usage.

Figure 9 illustrates that the EE under varying distances between MD1 and MD», with V' = 40. The distance
between the remote MD and the helper device ranges from 80 to 180 m. It is observed that EE decreases as the
distance increases. This is because an increase in distance leads to a reduction in channel gain, necessitating more
time and higher power to transmit data to maintain a shorter data queue, thereby increasing energy consumption.
This indicates that in practical deployment, the distance between edge node devices and helper devices should
be kept within a reasonable range to avoid a rapid decline in network performance. This assessment not only
quantifies the specific impact of distance on energy efficiency but also emphasizes the importance of considering
the distance factor in the design of efficient networks.

In Fig. 10, we evaluate the EE and the average task queue length as the task arrival rate at MD> varies. The
distance between MD; and MD:x is set to 120 m, and control parameter V is set to 40. As the computation task
data arrival rate at MD3 increases, the EE decreases. The rise in data rate causes the local data queue to expand,
necessitating a higher data transmission rate from the system. This not only entails processing a larger volume
of data but also results in greater energy expenditure to maintain shorter data queues, thereby increasing overall
energy consumption. Despite this trade-off in energy efficiency, our algorithm optimizes energy usage, ensuring
that the system maintains efficient data processing and rapid response capabilities even as data rates increase.

In practice, our algorithm can be deployed on edge servers with substantial computing power, enabling
efficient execution and effective problem solving. The algorithm functions as follows: at the beginning of each
time slot, all MDs transmit their network status information to the edge server, which performs centralized
computation and returns the corresponding decisions to the respective nodes. Since the amount of data
transmitted is minimal, the associated time overhead is negligible.

Our experimental results validate the superior energy efficiency (EE) of our proposed algorithm across various
network settings and parameters. By integrating BackCom with AC, our algorithm achieves EE improvements
of 23%, 38%, 48%, and 64% over the UBC, UAC, BC + AC, and ROS methods, respectively. This enhancement
underscores the critical role of user collaboration in enhancing the performance of remote users and highlights
the importance of considering distance factors in network design. With the increase in bandwidth, particularly
approaching 1.45 MHz, the EE of all schemes significantly improves, indicating that our algorithm can adapt to
high-bandwidth environments and efficiently utilize resources. The increase in the control parameter V' helps
to enhance EE, but there is a saturation point, indicating that parameter adjustment requires precise control. An
increase in the performance gap ¢ makes users more inclined to choose the BackCom mode, further boosting
EE.

In summary, our algorithm can dynamically adjust parameters to accommodate diverse network conditions,
striking a balance between EE and data processing requirements. It exhibits remarkable adaptability and
robustness with respect to bandwidth, control parameter 1/, and performance gap ¢ ensuring optimal energy
efficiency in a wide range of scenarios.
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Conclusions

The integration of BackCom and AC is pivotal for enhancing the performance of WPMEC systems across diverse
user scenarios, as it can efficiently harness the wireless power signal. In this research, we have investigated a user-
collaborative WPMEC system aided by the Backscatter technique, with the objective of maximizing EE within a
fluctuating network environment. To tackle the challenges posed by dynamic task loads and time-varying channel
conditions, we have proposed an online control algorithm. This algorithm utilizes fractional programming,
Lyapunov optimization theory, and convex optimization techniques, which simplifies the problem into a convex
optimization form. It also decouples the stochastic optimization problem into deterministic optimization
sub-problems for each time slot, solving them efficiently. Our simulation results demonstrate that our scheme
significantly enhances EE while ensuring system stability, outperforming existing baseline algorithms.

For future research, we plan to integrate deep reinforcement learning (DRL) and predictive technologies
into the stochastic network queue decision-making process. Specifically, we aim to leverage stochastic network
optimization techniques to ensure system stability and meet long-term average constraints. DRL algorithms,
such as Proximal Policy Optimization (PPO) and Soft Actor-Critic (SAC), will be applied within actor-critic
frameworks to optimize decision-making in dynamic network environments. Additionally, we intend to utilize
Long Short-Term Memory (LSTM) networks and attention mechanisms to predict task flows and network states
in large-scale IoT networks, thereby enhancing the efficiency of system decision-making. This integration is
expected to improve the intelligence and adaptability of our approach. Furthermore, we will investigate dynamic
task offloading strategies within larger-scale IoT user collaboration models in future work, with the goal of
further improving system performance under real-world conditions.
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