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Backscatter communication, which transmits information by passively reflecting radio frequency (RF) 
signals, has become a focal point of interest due to its potential to significantly enhance the energy 
efficiency of Wireless Power (WPMEC) networks and extend the operational lifespan of terminal 
devices. However, there is little research on the integration of user cooperation in WPMEC scenarios 
within volatile network environments. In this paper, we propose a dynamic task offloading algorithm 
for a Backscatter-assisted WPMEC system, which involves two (MDs) and a Hybrid Access Point (HAP) 
with user cooperation. We formulate the energy efficiency (EE) maximization problem as a stochastic 
programming problem, considering the randomness of task arrivals and time-varying wireless 
channels. By leveraging Dinkelbach’s method and stochastic network optimization technique, we 
transform the problem into a series of deterministic sub-problems for each time slot, and convert the 
non-convex sub-problem into convex ones. We propose a low-complex EE maximization algorithm to 
solve the convex problems efficiently. We conduct extensive simulations to validate the performance 
of our algorithm under various system parameter settings. Experimental results demonstrate that our 
algorithm not only outperforms the benchmark algorithms by approximately 23%, but also stabilize all 
queues within the MEC system.
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In recent years, the integration of Internet of Things (IoT) technology with advanced communication systems 
has facilitated a wide range of mobile devices (MDs)—such as cameras, sensors, and wearable devices-to collect 
and exchange data seamlessly1. This proliferation has given rise to numerous application scenarios that leverage 
wireless devices, such as autonomous driving, face recognition, Virtual Reality (VR), and e-health2. However, 
these applications often demand substantial computational power and low latency, presenting challenges for 
MDs, which typically have limited computing capabilities and limited battery lifespan. Mobile Edge Computing 
(MEC) has risen as a effective solution to these challenges. By offloading computationally intensive tasks to 
MEC servers, MDs with constrained resources can markedly enhance their computational capacity and reduce 
latency.

However, wireless devices often have limited battery capacity, which cannot sustain prolonged operation. 
Consequently, the frequent replacement of MDs’ batteries presents a significant challenge. Wireless Power 
Transfer (WPT) has developed as an potential solution to this challenge3,4. WPT utilizes a Hybrid Access Point 
(HAP) to broadcast Radio Frequency (RF) energy that can be harvested by wireless devices. By integrating 
Energy Harvesting (EH) technology, these devices can convert captured RF signals into electrical energy5, 
which can then be utilized to process incoming computational tasks. The integration of wireless power and edge 
computing technologies in Wireless Powered Mobile Edge Computing (WPMEC) system significantly extends 
the battery lifespan of wireless devices and markedly enhances their computational capabilities.

In addition to battery limitations, the double-near-far effect can significantly impact network performance, 
with devices far from the HAP experiencing poor channel conditions6. To counteract this issue, a user cooperation 
(UC) mechanism has been implemented. In this mechanism, devices that are in close proximity to the HAP 
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act as relays, forwarding signals for those located at a greater distance. This strategy not only mitigates the 
inefficiency of remote nodes offloading tasks directly to the Access Point (AP) but also optimizes the utilization 
of idle computational resources within the network, thereby enhancing the overall computational efficiency 
of the system. For example7 demonstrates how user cooperation can boost the computational efficiency of a 
WPMEC system under dynamic channel conditions and varying task arrivals. Additionally, other studies, such 
as8,9, have shown that user cooperation can effectively reduce the impact of the double-near-far effect. However, 
the aforementioned studies have not yet explored the potential of Backscatter technology to improve energy 
efficiency further.

Backscatter communication (BackCom) has attracted considerable attention in recent years for its novel 
approach to wireless communication10. In BackCom systems, the transmitter operates in full-duplex mode, 
functioning in a passive mode. It modulates and reflects the incident signal to the receiver, eliminating the need 
to generate a carrier frequency, while simultaneously harvesting energy to support its circuitry consumption11,12. 
This method differs from traditional active communication (AC), where the transmitter first harvests energy and 
then uses it to transmit data, following the harvest-then-transmit (HTT) protocol. While AC typically consumes 
more energy than BackCom, it generally offers a higher data transfer rate. The trade-offs between EH and data 
transfer are inherent in both BackCom and AC.

The motivation behind this study stems from the recognition that while integrating BackCom and AC 
paradigms has shown promise in enhancing the energy efficiency (EE) of WPMEC systems8,13, current research 
is predominantly confined to static, single-time slot scenarios. These studies often assume constant channel 
conditions and user data arrivals, which contrasts sharply with the dynamic, stochastic nature of real-world MEC 
networks where data arrivals and channel states are subject to continuous variation. This volatility complicates 
the prediction and management of network operations, thereby necessitating the development of robust 
algorithms capable of optimizing long-term energy utilization efficiency and maintaining system queue stability. 
Addressing these challenges is not only of theoretical interest but also of paramount practical importance, as it 
directly impacts the sustainability and reliability of MEC services in fluctuating operational environments. Our 
study, therefore, aims to bridge this gap by proposing an algorithmic framework that can adeptly navigate the 
complexities of volatile network conditions, ensuring optimal energy efficiency and queue stability in WPMEC 
networks.

In this paper, we tackle the long-term EE maximization for a Backscatter assisted WPMEC network with user 
cooperation by jointly optimizing the wireless powered time fraction, BackCom offloading time fraction, AC 
offloading time fraction, offloading data size and transfer power of MDs. The problem introduces considerable 
difficulties in two main aspects: (1) The randomness of task arrivals and fluctuating wireless channel states 
impose challenges to achieving optimal EE while ensuring the stability of queue system; (2) The integration 
of BackCom and AC brings a strong coupling of energy harvest time and task offloading. To address these 
challenges, we formulate a stochastic optimization problem and propose an efficient, low-complexity algorithm 
by leveraging techniques such as the Dinkelbach method and the Lyapunov optimization framework. We first 
transform the stochastic optimization problem into a series of deterministic problems for each time slot by 
leveraging the drift-plus-penalty technique. Then, We transform the non-convex subproblem at each time slot 
into a convex optimization problem by employing the variable substitution method for an efficient solution. We 
propose a low-complexity dynamic EE maximization algorithm that operates online without requiring prior 
system information.

Our primary contributions are listed as follows:

•	 We introduce a novel dynamic task offloading model to optimize EE for a WPMEC network with integration 
of BackCom and AC communication under user cooperation, taking into account the randomness of task 
arrival and time-varying wireless channels. Our model effectively balances the trade-off between energy ef-
ficiency and system queues stability, while mitigating the double-near-far effect. Additionally, we explore the 
use of variable data weighting to motivate proximal users to relay data for distant users, enhancing overall 
network efficiency.

•	 We have developed an online algorithm to maximize the EE metric of the WPMEC network. This is achieved 
by determining the allocation of time fractions, data offloading, transmission power, and backscatter reflec-
tion coefficients. To address the coupling of control decisions over time, we employ Dinkelbach’s method and 
the Lyapunov optimization framework. This approach decouples the stochastic fractional optimization prob-
lem into deterministic sub-problems for each time slot, transforming it into a convex problem that ensures 
an efficient and optimal solution. Additionally, by adjusting the control parameter V, our algorithm achieves 
a balance between queue length variations and optimization objectives. This capability allows for effective 
management of system queue length and stability.

•	 We present a rigorous mathematical analysis to demonstrate the performance of our proposed algorithm, 
which achieves a balanced trade-off between energy efficiency and queue stability within the bounds of 
[O(1/V), O(V)]. . Extensive simulation experiments are conducted to verify the algorithm’s effectiveness and 
practical applicability. Our algorithm improves energy efficiency by 23% compared to existing benchmark 
algorithms, while maintaining stable system queues in dynamic environments.

The rest of this paper is organized as follows: “Related work” presents the details of model for Backscatter-
assisted WPMEC system. In “System model”, we formulate a stochastic programming optimization problem 
aiming to maximize energy efficiency. “Problem formulation” details the application of the Dinkelbach’s method 
and Lyapunov optimization techniques to simplify the problem, including the algorithm design and theoretical 
performance analysis. “Algorithm design” presents an extensive simulation-based evaluation of the proposed 
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algorithm’s performance. Finally, we summarize the paper and outline potential directions for future research 
in “Simulation results”.

Related work
Task offloading in WPMEC
The integration of WPT with MEC as been thoroughly examined in recent studies as an effective solution 
for enhancing the energy and computational capacities of wireless devices14–17. Ernest and Madhukumar18 
introduced an energy efficiency maximization algorithm leveraging multi-agent deep reinforcement learning 
for a MEC-supported vehicular network, with jointly considering transmission and computation latencies 
outperforming existing strategies. Zhang et al.19 developed an algorithm that optimizes charging times and data 
offloading rates for WPMEC sensor system, aiming to enhance computational rates across various scenarios. 
Li et al.5 studied the system latency minimization problem for an Intelligent Reflecting Surfaces (IRS)-assisted 
multi-ID MEC system, and presented a hybrid multiple access scheme and optimization framework combined 
with Frequency Division Multiple Access (FDMA) and Non-Orthogonal Multiple Access (NOMA) technologies. 
Additionally, in20, the authors introduced a deep reinforcement learning-based approach for WPT-aided 
mobile edge computing to dynamically adapt to real-time changes, make swift decisions, and optimize both 
task offloading and energy resource allocation. Our previous research7 introduced an online control algorithm 
for dynamic task offloading in WPMEC networks under dynamic network conditions, designed to maximize 
long-term system energy efficiency. However, the aforementioned studies did not take into account the use of 
Backscatter technique to further enhance the energy utilization efficiency of wireless power transfer.

User cooperation in WPMEC
To address the double-near-far effect and optimize resource utilization, numerous researchers have employed 
user cooperation mechanisms7,9,21–23. He et al.22 presented a user cooperation scheme, aiming to maximize 
the network’s total throughput by jointly optimizing the local computing frequency, transmit power, task 
distribution, and time allocation. Wang et al.21 introduced a user collaborative mechanism for a NOMA 
assisted WPT-MEC network, designed an iterative-based optimal algorithm to minimize overall system energy 
consumption by leveraging Lagrangian method. Zhang et al.24 presented a hierarchical reinforcement learning-
based algorithm for joint caching and resource allocation in a cooperative MCE system, aiming to optimize 
resource utilization and balance server loads through service caching and workload offloading decisions. Sun 
et al.25 proposed an iterative optimization algorithm for minimizing end-to-end latency in an MEC network 
supporting IoT applications, by jointly optimizing user association and resource allocation in a three-phase 
operation protocol. Su et al.9 explored optimizing the energy beamforming and resource allocation to enhance 
computation efficiency for WPMEC system with the integration of user cooperation and NOMA, taking into 
account non-linear energy harvesting model.

Backscatter communication in WPMEC
In recent years, the integration of BackCom and AC has emerged as an effective approach to enhance network 
energy efficiency, leveraging the unique characteristics of Backscatter technology to balance transmission rates 
and energy consumption, thereby significantly improving the system’s overall performance8,26–29. Lyu et al.30 
proposed a hybrid HTT and BackCom framework for cognitive wireless powered IoT networks, optimizing 
time allocation and mode combination to maximize system throughput. Ye et al.27 introduced a bisection-
based iterative algorithm for minimizing data offloading and computing delays in a WPMEC network with 
hybrid BackCom and AC for IoT networks. Shi et al.31 proposed a scheme for maximizing the weighted sum 
of computation bits in a Backscatter-assisted WPMEC network, considering a practical non-linear EH model 
with hybrid HTT and Backscatter communications. Wu and He26 proposed an efficient iterative algorithm for 
EE maximization in a multi-access WPMEC system with the help of a relay. Lin et al.32 presents an optimization 
framework for a BackCom NOMA system, aiming to maximize the sum uplink rate by optimizing reflection 
coefficients and establishing association policies between base stations and backscatter devices. Fu et al.33 
addressed the energy efficiency fairness among IoT nodes in a UAV-enabled WPMEC network with integrated 
BackCom and AC, proposed an optimization framework that maximizes the worst-case IoT node’s energy 
efficiency by jointly optimizing UAV transmit power and trajectory, IoT nodes’ BackCom and AC parameters, 
and local computing configurations. However, the aforementioned studies primarily focus on optimizing a 
single time slot and do not account for the dynamic fluctuations inherent in MEC network environments.

The prior relevant works are summarized in Table 1, which evaluates the optimization objectives, decision 
variables, and solution methods of the models. Unlike existing research on hybrid communication modes (e.g., 
BackCom and active communication) and user cooperation in WPMEC networks8, our work differs in the 
following key aspects: (1) Dynamic Network Optimization: We address the challenge of maximizing time-
averaged energy efficiency in dynamic network environments by accounting for the near-far effect through user 
cooperation and considering the dynamic variations in nodes’ battery levels. (2) Incentive-Driven Cooperation: 
Weighted incentives are introduced to motivate proximal nodes to assist distant nodes in offloading 
computational tasks, thereby enhancing cooperative efficiency and improving overall system performance. (3) 
Robust Algorithm Design: Leveraging the Lyapunov optimization framework, Dinkelbach’s method, and variable 
substitution for convex optimization, we develop an online offloading and resource allocation algorithm. This 
algorithm operates independently of statistical or future system information and ensures queue stability under 
dynamic conditions.
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System model
We consider a typical WPMEC network that comprises two MDs and a HAP, depicted in Fig.  1. The HAP 
directly connects with a MEC server to provide computation task offloading services and equipped with an RF 
energy transmitter to support wireless power to MDs. MD1, one of the MDs, is located at a significant distance 
from the HAP. While MD2, the second MD, is in a more advantageous position due to its proximity to the HAP 
and acts as an intermediary. Both MD1 and MD2 are equipped with both a BackCom circuit and an AC circuit, 
enabling them to select between backscatter and active communication modes. This basic model, which includes 
two mobile nodes, can be applied in scenarios such as Intelligent Transportation Systems (ITS), the Industrial 
Internet of Things (IIoT), and Smart Cities. By integrating backscatter communication with MEC, it enhances 
the data processing rate at the edge and improves overall system energy efficiency.

Time Division Multiple Access (TDMA) technique is utilized to avoid signal interference34, meaning that 
different MD nodes are allocated communication time in discrete time slots. The WPMEC system operates in a 
discrete time-slot mode over a time horizon period, with each time slot set to last T seconds. As depicted in Fig. 2, 

Fig. 1.  System model of WPMEC network with user-assisted.

 

References Description Solutions

Optimization metrics

WPT 
duration

Task 
allocation

Offloading 
power

Task 
arrival 
rate

Battery 
levels

Reflection 
coefficients

18 Maximize the energy-efficient for NOMA networks Learning-based solutions × × ✓ × × ×
19 Enhance computational rates across various scenarios. Learning-based solutions ✓ ✓ × × × ×
20 Maximize the data processing rate for relay networks Learning-based solutions ✓ ✓ × × × ×
26 Maximize the energy-efficient with the help of a relay BackCom approaches ✓ × ✓ × × ✓
27 Data offloading and computing delays minimization with 

hybrid BackCom and AC BackCom approaches × ✓ ✓ × × ×

31 Maximize the weighted sum of computation bits for non-
linear EH model BackCom approaches × ✓ ✓ × × ✓

32 Maximize the sum uplink rate for NOMA networks BackCom approaches × ✓ × × × ✓
5 System latency minimization for IRS-assisted networks IRS approaches ✓ ✓ ✓ × × ×

8 The user energy efficiency maximization for cooperation-
assisted networks

User cooperation 
frameworks ✓ ✓ ✓ × × ✓

9 Enhance computation efficiency for resource allocation User cooperation 
frameworks ✓ ✓ ✓ × × ×

25 End-to-end latency minimization for resource allocation User cooperation 
frameworks × ✓ ✓ × × ×

33 Addressed the energy efficiency fairness for UAV-enabled 
networks

UAV+User cooperation 
frameworks × × ✓ × × ✓

7 Long-term system energy efficiency optimization for dynamic 
networks Queue-based solutions ✓ × ✓ ✓ ✓ ×

Our paper Energy-efficient optimization for with hybrid BackCom and 
AC in dynamic networks Queue-based solutions ✓ ✓ ✓ ✓ ✓ ✓

Table 1.  Summary of comparative analysis with relevant works. (“✓ ”if the solution satisfies the property,“× 
”if not)
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each time slot is further divided into five time fractions dedicated to energy harvesting and task processing for 
the different MDs. At the start of each time slot, both MDs initiate the capture of RF signals transmitted by the 
HAP for the purpose of energy harvesting. A partial offloading strategy is utilized for offloading computational 
tasks.

Due to poor channel conditions between MD1 and the HAP, compounded by the near-far effect, directly 
offloading tasks to HAP is not feasible for the MD1. Instead, MD1 offloads tasks to MD2, which forwards them 
to the HAP.

The task offloading process in the Backscatter-assisted WPMEC system proceeds through four distinct 
phases: (1) WPT Phase, where the HAP wirelessly charges both MD1 and MD2 using RF signals for a duration 
of εt

0; (2) BackCom Phase, during intervals εt
1 and εt

2, MD1 offloads computational task data to MD2, which 
then offloads the data to the HAP; (3) AC Phase, where MD2 receives tasks from MD1 and offloads them to the 
HAP; and (4) Result Return Phase, where the computational results, typically small in size, are returned to MD1. 
In this phase, the time slot εt

s is negligible and can be approximated as εst ≈ 0.
Note that the two-user basic model presented in this paper can be readily extended to scenarios involving 

multiple user nodes. This can be achieved by implementing a matching algorithm to pair distant nodes with 
nearby ones. By allocating orthogonal frequency bands to each pair, independent operation can be ensured, 
allowing our user cooperation model to be applied effectively to each pair. Here we focus on a single pair of users 
within a resource block not only reduces system complexity but also maintains practical relevance.

The key symbols and definitions used in this paper are listed in Table 2.

Energy harvesting model
The HAP, which has a dependable power source, is tasked with transmitting RF energy to the MDs located 
throughout its service area. In the initial phase, the HAP broadcasts RF signals to all MDs for a duration of 
εt

0. Subsequently, MD1 offloads tasks to MD2 during the time fraction εt
1 using BackCom, while MD2 can 

simultaneously harvest energy. In a similar fashion, MD2 offloads tasks to the HAP during the time fraction εt
2 

using BackCom, and MD1 harvests energy. Let Et
1,wp and Et

2,wp denote the harvested energy of MD1 and MD2 
in the first phase, respectively. Thus, we have8

	 Et
1,wp = µht

1P0
(
εt

0 + εt
2
)

� (1)

and

	 Et
2,wp = µht

2P0
(
εt

0 + εt
1
)

,� (2)

where 0 < µ < 1 represents the energy conversion efficiency, P0 denotes the RF transmission power of the HAP. 
ht

1 and ht
2 represent the channel gains from the HAP to MD1 and MD2 respectively, which remain unchanged 

within the same time slot.

Dynamic queues model
To simulate the dynamic changes in user task data arrival and node battery levels, we have introduced the 
dynamic queuing model. Both MD1 and MD2 maintain a buffer queue for caching incoming task, which is 
processed on a first-in, first-out (FIFO) principle. Let Qi (t) , i ∈ {1, 2} denote the task queue lengths of MD1 
and MD2 at time slot t, respectively. The length of queue Qi (t) evolves as follows:

	 Qi (t + 1) = max
[
Qi (t) −

(
dt

i,loc + dt
i,off

)
, 0

]
+ Ai (t) , i ∈ {1, 2},� (3)

 where Ai (t) represents the task data arriving at the MDi during time slot t. We assume that the task arrival is 
an arbitrary process over time, there is a upper-bound by Amax. dt

i,loc, dt
i,off represent the offloading task data 

and the local processing data at MDi, respectively.
Similarly, we assume that MD nodes are equipped with batteries and maintain a battery energy level queue. 

The energy captured through wireless charging is first stored in the batteries, and the battery power is consumed 

Fig. 2.  Time division structure.
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for local computing and task offloading. Concurrently, the battery energy level has an upper limit Bmax and a 
lower limit Bmin. The Bmin level is essential to sustain the basic operations of the MD IoT system34. Therefore, 
the battery energy level of the MDi dynamically changes as:

	 Bi (t + 1) = min
{
max

[
Bi(t) − Ht

i,loc − Ht
i,off , Bmin

]
+ Et

i , Bmax
}

,� (4)

where Ht
i,loc and Ht

i,off  represent the energy consumption for local computing and task offloading, respectively. 
The total energy harvested by MDi at slot t is given by Et

i = Et
i,wp + Et

i,ba, where Et
i,wp is as previously 

defined, and Et
i,ba denotes the energy harvested during BackCom data transmission.

Local computing model
Upon task arrival at a node, local processing is prioritized; task offloading is considered only when local 
processing is not feasible. Since each MD is equipped with a battery, the maximum duration for local computation 
is denoted by T . Let f1 and f2 denote the local CPU frequencies of MD1 and MD2, ϕ1 and ϕ2 denote the 
CPU cycles required to process one bit of task at the MD1 and MD2, respectively. Furthermore, the maximum 
amount of local computation data at MDi cannot exceed the current backlog of Qi(t). Thus, the amount of 
locally computed task data can be expressed as

	
dt

i,loc = min
{

Qi (t) ,
fiT

ϕi

}
, i ∈ {1, 2}� (5)

and the corresponding energy consumption is8

	 Ht
i,loc = min

{
κi (fi)2 Qi (t) ϕi, κi (fi)3 T

}
, i ∈ {1, 2}� (6)

where κi denotes the computing energy efficiency parameter of MDi
8. The expression κi (fi)2 Qi (t) ϕi 

represents the power consumption used for processing all current task data in queue Qi(t). Note that if the local 

Notation Definition

T The length of a time slot

εt
0 The time fraction for WPT at slot t

εt
1, εt

2 The time fraction for offloading by BackCom of MD1  and MD2  at slot t

εt
3, εt

4 The time fraction for offloading by AC of MD1  and MD2  at slot t

Et
i

The total energy harvested by MDi  at slot t

Et
i,wp The energy harvested during BackCom communication by MDi  at slot t

Et
i,ba The energy harvested by MDi  at slot t

ht
i

The WPT channel gain between MDi  and HAP at slot t

gt
12 ,gt

2a
The offloading channel gain between MD1  and MD2 , MD2  and HAP at slot t

P t
0 ,P t

1 ,P t
2 The transmit power by AC at HAP, MD1 , MD2  at slot t

P ba
i ,P ac

i
The circuit power by BackCom and AC at MDi

dt
i,loc The amount of tasks processed locally at MDi  at slot t

dt
i,ba The amount of tasks offloaded by BackCom at MDi  at slot t

dt
i,ac The amount of tasks offloaded by AC at MDi  at slot t

dt
i,off The total of offloading tasks at MDi  at slot t

Ht
i,ba The energy consumed by offloading tasks by BackCom at MDi  at slot t

Ht
i,ac The energy consumed by processing tasks at helper at slot t

Ht
i,off The total energy consumed by offloading tasks at MDi  at slot t

Ht
i,loc The energy consumed by processing tasks locally at MDi  at slot t

Htot(t) The total energy consumption of MD1  and MD2  at slot t

Dtot(t) The total task processed of MD1  and MD2  at slot t

fi The local CPU frequency at MDi

ϕi The CPU cycles required to compute one bit task at MDi

βt
i

The reflection coefficient of MDi  at slot t

µ The energy conversion efficiency of WPT

κi The computing energy efficiency of MD i

Table 2.  Summary of key notations.
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processing capacity of MDi exceeds the current backlog of Qi(t), then the amount of task for local computing 
is Qi(t) and the processing time is Qi(t)ϕi

fi
, so we can derive the energy consumption for local computing as 

κi (fi)3 Qi(t)ϕi
fi

= κi (fi)2 Qi (t) ϕi;  otherwise, the amount of task is fiT /ϕi, with the corresponding energy 
consumption being κi (fi)3 T  as in14.

Task offloading model
BackCom data transmission
During the time period εt

1, MD1 offloads tasks to MD2 by BackCom. Let 0 ≤ β1 ≤ 1 represent the reflection 
coefficient of MD1, where β1 represents the fraction of the received signal that is used as the carrier for data 
transfer, and the remaining fraction (1 − β1) is allocated to energy harvesting35. Let gt

12 represent the channel 
gain between MD1 and MD2. Based on Shannon’s theorem36, the amount of tasks offloaded from MD1 to MD2 
satisfies8

	
dt

1,ba ≤ εt
1W log2

(
1 + ζβt

1P0ht
1gt

12

σ2

)
� (7)

where ζ  denotes the performance gap reflecting real modulation11, σ2 is the noise power. The corresponding 
energy consumption for the circuit is

	 Ht
1,ba = P ba

1 εt
1� (8)

where P ba
1  is the circuit power consumption of MD1 by BackCom, which is a constant value depending on 

the circuit structure. By employing BackCom technology, data transmission and energy harvesting occur 
concurrently. Thus, the energy harvested by MD1 during εt

1 is8

	 Et
1,ba = µht

1P0εt
1

(
1 − βt

1
)

� (9)

After receiving the tasks offloaded from MD1,  MD2 will relay a portion of them to the HAP. Note that MD2 will 
also offload its tasks to the HAP. At time εt

2, the task data transmitted by MD2 through BackCom is constrained 
by

	
dt

2,ba ≤ εt
2W log2

(
1 + ζβt

2P0ht
2gt

2a

σ2

)
� (10)

where βt
2 is the reflection coefficient of BackCom at MD2. ht

2 represents the channel gain from the HAP to the 
MD2 at time slot t, and gt

2a denotes the channel gain from the MD2 to the HAP at time slot t. The corresponding 
energy consumption for the circuit is

	 Ht
2,ba = P ba

2 εt
2� (11)

where P ba
2  is the circuit power consumption of MD2 by BackCom. The energy harvested by BackCom during 

εt
2 is

	 Et
2,ba = µht

2P0εt
2

(
1 − βt

2
)

� (12)

AC data transmission
After the BackCom offloading is completed, the AC mode offloading is initiated, which proceeds through an 
offloading process similar to that of BackCom. The AC mode can achieve a higher data transmission rate, but it 
is incapable of energy harvesting during the offloading phase. During the time fraction εt

3, the upper limit of the 
amount of task from MD1 offloading to MD2 can be expressed as

	
dt

1,ac ≤ εt
3W log2

(
1 + P t

1gt
12

σ2

)
� (13)

where 0 ≤ P t
1 ≤ Pmax represents the transmit power allocated to AC at MD18, σ2 is the noise power and g12 

represents the channel gain from MD1 and MD2. The corresponding AC offloading energy consumption is

	 Ht
1,ac =

(
P t

1 + P ac
1

)
εt

3� (14)

where P ac
1  denotes the circuit power of MD1 through AC which is a constant value8.

The upper limit of the amount task offloading from MD2 to HAP by AC during εt
4 is given by

	
dt

2,ac ≤ εt
4W log2

(
1 + P t

2gt
2a

σ2

)
� (15)
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where 0 ≤ P t
2 ≤ Pmax denotes the transmit power of the MD2 through AC. Let P ac

2  denote the circuit power 
of MD2 through AC. The energy consumed for task offloading AC at MD2 in slot t is

	 Ht
2,ac =

(
P t

2 + P ac
2

)
εt

4� (16)

Network stability and utility
In a dynamic WPMEC network system, maintaining stability is vital due to the stochastic arrival of tasks and 
varying channel conditions37. We first define system queue stability as follows.

Definition 1  (Queue stability): A discrete queue Q(t) is strong stable37 if

	
lim

K→∞

1
K

K∑
t=1

E {Q (t)} < ∞

The total processed tasks Dtot(t) and the total energy consumed Etot(t) at time slot t in a WPMEC system, can 
be expressed as follows, respectively

	 Dtot(t) = ω1
(
dt

1,loc + dt
1,off

)
+ ω2

(
dt

2,loc + dt
2,off − dt

1,off
)

� (17)

and

	 Htot(t) = Ht
1,loc + Ht

1,off + Ht
2,loc + Ht

2,off� (18)

where ω1 and ω2 represent the task weights of MD1 and MD2 respectively. dt
i,off = dt

i,ba + dt
i,ac represent 

the total offloading task data at MDi, and Ht
i,off = Ht

i,ba + Ht
i,ac represent the total energy consumption of 

offloading task at MDi.

Definition 2  (Utility-energy efficiency ): The network utility ρEE  is defined as the time-averaged amount of 
computation data achieved per unit of energy consumed38. It represents the ratio of long-term completed tasks 
to energy consumed, as follows:

	

ρEE =

lim
K→∞

1
K

K−1∑
t=0

E {Dtot(t)}

lim
K→∞

1
K

K−1∑
t=0

E {Htot(t)}

= D(t)
E(t)

� (19)

Problem formulation
In this paper, we seek to design a dynamic offloading algorithm to maximize the ρEE  subject to constraints of the system 
queue stability, by making decisions on time allocation εt =

[
εt

0, εt
1, εt

2, εt
3, εt

4
]

, power allocation P t =
[
P t

1 , P t
2
]

, 
reflection coefficients βt =

[
βt

1, βt
2
]

 and the amount of offloaded tasks dt =
[
dt

1,ba, dt
1,ac, dt

2,ba, dt
2,ac

]
 at each 

time slot t. Simultaneously, our algorithm should ensure the stability of the system network when faced with 
randomly arriving task loads and dynamically changing wireless channel conditions. By denoting ε = {εt}K

t=1, 
P = {P t}K

t=1, β = {βt}K
t=1, and d = {dt}K

t=1 the maximization of ρEE  for a Backscatter-assisted WPMEC 
with user cooperation can be formulated as the following problem (P0): 

	
P 0 : max

ε,P ,β,d
ρEE � (20a)

	 s.t. εt
0 + εt

1 + εt
2 + εt

3 + εt
4 ≤ T � (20b)

	 Bmin ≤ Bi (t) − Ht
i,loc − Ht

i,off + Et
i ≤ Bmax, i ∈ {1, 2} � (20c)

	
lim

K→∞

1
K

K∑
t=1

E {Qi (t)} < ∞, i ∈ {1, 2} � (20d)

	 dt
i,loc + dt

i,off ≤ Qi(t), i ∈ {1, 2} � (20e)

	 dt
1,off ≤ dt

2,off � (20f)

	 (7), (10), (13), (5) � (20g)

	 εt
0, εt

1, εt
2, εt

3, εt
4 ≥ 0, � (20h)

	 0 ≤ P t
1 , P t

2 ≤ Pmax � (20i)
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 where constraint (20b) ensures that the total offloading time in each slot does not exceed the available time. 
Constraint (20c) maintains the battery levels within the allowable range for both mobile devices. Constraints 
(20d) guarantee the stability of data queues. Constraint (20e) indicates that the amount of processed task in the 
current time slot must not exceed the current queue length. Constraint (20f) guarantees that tasks offloaded by 
MD1 to MD2 can be processed within the same slot. Constraints in (20g) denote the maximum offloading data 
depending on the channel condition. The problem is a fractional stochastic programming issue, which presents 
significant challenges due to the following aspects: (1) The stochastic nature of task arrivals, time-varying 
channel conditions, and dynamic battery level changes introduce uncertainty into the optimization challenge; 
(2) The temporal coupling in the time fraction and energy consumption exhibited by BackCom and AC poses a 
considerable challenge in determining the allocation of offloading time.

Due to the fractional nature of the objective function in problem P0, traditional optimization techniques 
aren’t directly applicable. Therefore, we leverage Dinkelbach’s method39, which is widely used for solving 
fractional programming problems in energy efficiency optimization, to transform P0 into a more tractable form. 
Let ρ∗

EE  denote the optimal value of ρEE , we obtain Theorem 1.

Theorem 1  The optimal ρ∗
EE  is achieved if and only if

	
max

ε,P ,β,d
D(t) − ρ∗

EEE(t) = 0� (21)

Proof  According to the Dinkelbach’s algorithm, the objective function of problem P 1 can be equivalently refor-
mulated into the following parameterized subtractive form38:

	 F (v, u) = D(v) − uE(v),

where v = {ε, P , β, d} and F (v, u) is a strictly monotonically non-increasing function with respect to u. Here, 
u represents the energy efficiency value derived based on v. The Dinkelbach algorithm alternately updates u 
and v through iterative optimization. During each iteration, the non-negative parameter u is updated until it 
converges to the optimal value ρ∗

EE .
Let v∗ denote the optimal strategy for the problem. At optimality, we have u∗ = ρ∗

EE = D(v∗)/E(v∗), 
which satisfies the conditions of Theorem 1. Therefore, Theorem 1 is proven. □
Similar to the Dinkelbach’s method in38, a new parameter u(t) is introduced as follows:

	
u(t) = 1

K

K∑
t=1

Dtot(t)
Etot(t)

� (22)

where u(0) = 0. Thus, problem P0 is transformed into: 

	
P 1 : max

ε,P ,β,d
D(t) − u(t)E(t) � (23a)

	 s.t. (20b) − (20i) � (23b)

 where u(t) is a specified parameter that that needs to be updated at each time slot. It is important to note that 
u(t), as determined by (22), will converge to ρ∗

EE  over time38. Consequently, this transformation is rjustified 
and yields the same optimal solution as P0. While problem P1 is more manageable than problem P0, it still faces 
several challenges The constraints (20c) and (20d), along with the equation (4), result in an interdependence of 
battery levels across various time slots throughout the period, which means that the current energy consumption 
affects future battery levels. Moreover, the unpredictability of the stochastic task arrivals and the fluctuating 
channel states add another complexity to the problem. The difficulty in accurately forecasting these elements 
leads to an inherent temporal coupling in the decision-making process.

Algorithm design
Lyapunov optimization formulation
To decouple the battery energy level across time slots at MD1 and MD2, we utilize two virtual queues for 
battery level: B̂i(t) = Bi(t) − Bmax, i ∈ {1, 2}. In order to optimize the task queue and the energy queue 

simultaneously, we define a combined queue vector θ (t) ≜
[
Qi (t) , B̂i(t)

]
, i ∈ {1, 2}. Following Lyapunov 

optimization framework, we obtain the quadratic Lyapunov function and the Lyapunov drift37 as

	
L (θ (t)) ≜ 1

2
∑

i∈{1,2}

(
Q2

i (t) + B̂2
i (t)

)
� (24)

and

	 ∆ (θ (t)) ≜ E {L (t + 1) − L (t) | θ (t)}� (25)

Based the Lyapunov optimization framework37, one slot drift-plus-penalty of θ (t) can be expressed as
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	 ∆V (θ (t)) = ∆ (θ (t)) − V E {Dtot(t) − u(t)Etot (t) | θ (t)}� (26)

 where control parameter V is positive that helps balance the trade-off between network EE and queue stability. 
A higher value of V leads the algorithm to prioritize network EE, which may result in an increased backlog in 
the task queue. An upper bound of ∆V (θ (t)) are derived as Lemma 1.

Lemma 1  For any control decisions {ε, P , β, d} at each time slot t, the one slot Lyapunov drift-plus-penalty 
∆V (θ (t)) has the following upper bound:

	

∆V (θ(t)) ≤ B − V E {Dtot(t) − u(t)Etot(t) | θ(t)}

+
∑

i∈{1,2}

{
Qi(t)E

{
Ai(t) − dt

i,loc − dt
i,off | θ(t)

}

+B̂i(t)E
{

Et
i − Ht

i,loc − Ht
i,off | θ(t)

}}
� (27)

where B is a positive constant that satisfies the following for all t:

	

B ≥ 1
2

∑
i∈{1,2}

{
E

[(
dt

i,loc + dt
i,off

)2 + A2
i (t) | θ(t)

]

+ E
[
Et2

i +
(
Ht

i,loc + Ht
i,off

)2 | θ(t)
]} � (28)

Proof  By using the inequality (max[a − b, 0] + c)2 ≤ a2 + b2 + c2 + 2a (c − b), ∀a, b, c ≥ 0 and combin-
ing the definition of task queues and battery energy queues Eqs. (3)–(4), we have

	

∆Qi(t) = 1
2

(
Qi(t + 1)2 − Qi(t)2)

≤
(
dt

i,loc + dt
i,off

)2 + A2
i (t)

2 + Qi (t)
(
Ai(t) − dt

i,loc − dt
i,off

)
, i ∈ {1, 2}

� (29)

	

∆B̂i(t) = 1
2

(
B̂i(t + 1)2 − B̂i(t)2

)

≤ 1
2

[
Et

i
2 +

(
Ht

i,loc + Ht
i,off

)2
]

+ B̂i(t)
(
Et

i − Ht
i,loc − Ht

i,off
)

, i ∈ {1, 2}
� (30)

Combining the above inequalities (29) and (30) proves the result. □
Based on the drift-plus-penalty method, we seek to minimize the upper bound given in the right-hand-size of 
(27) at each slot t. Notably the value of A(t), Qi(t) and B̂i(t) can be observed at the beginning of each time slot 
t. By eliminating the constant term in the RHS (right hand side) of (27), the problem P1 can be transformed into 
a one-time slot problem as 

	

P 2.1 : min
ε,P ,β,d

− (Q1(t) + ω1V )
(
dt

1,loc + dt
1,off

)
− (Q2(t) + ω2V )

(
dt

2,loc + dt
2,off

)

+
(

V u(t) − B̂1(t)
) (

Ht
1,loc + Ht

1,off
)

+
(

V u(t) − B̂2(t)
) (

Ht
2,loc + Ht

2,off
)

+ B̂1(t)Et
1 + B̂2(t)Et

2

� (31a)

	 s.t. (20b) − (20c), (20e) − (20i) � (31b)

Due to the coupling between the parameters ε, P  and β, the proposed problem P2.1 is still a non-convex 
problem. To decouple these parameters, we introduce auxiliary variables φt

1 = P t
1εt

3, φt
2 = P t

2εt
4, φt

3 = εt
1β1, 

φt
4 = εt

2β2. Then the problem P2.1 can be simplified as: 

	

P 2.2 : min
ε,φ,d

−
∑

i∈{1,2}

Ci

(
dt

i,loc + dt
i,off

)

+ C3Ht
1,loc +

(
C3P ba

1 + C5 + C6
)

εt
1 + C3φt

1

+ C4Ht
2,loc +

(
C4P ba

2 + C5 + C6
)

εt
2 + C4φt

2

+ (C5 + C6) εt
0 − C5φt

3 − C6φt
4 + C7εt

3 + C8εt
4

� (32a)

	 s.t. εt
0 + εt

1 + εt
2 + εt

3 + εt
4 ≤ T � (32b)

	 Bmin ≤ Bi (t) − Ht
i,loc − Ht

i,off + Et
i ≤ Bmax, i ∈ {1, 2} � (32c)

	 dt
i,loc + dt

i,off ≤ Qi(t), i ∈ {1, 2} � (32d)
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	 dt
1,ba + dt

1,ac ≤ dt
2,ba + dt

2,ac � (32e)

	
dt

1,ba ≤ εt
1W log2

(
1 + ζP0ht

1gt
12φt

3

εt
1σ2

)
� (32f)

	
dt

2,ba ≤ εt
2W log2

(
1 + ζP0ht

2gt
2aφt

4

εt
2σ2

)
� (32g)

	
dt

1,ac ≤ εt
3W log2

(
1 + gt

12φt
1

εt
3σ2

)
� (32h)

	
dt

2,ac ≤ εt
4W log2

(
1 + gt

2aφt
2

εt
4σ2

)
� (32i)

	 εt
0, εt

1, εt
2, εt

3, εt
4 ≥ 0, � (32j)

	 0 ≤ φt
1, φt

2 ≤ PmaxT � (32k)

 where C1 = Q1(t) + ω1V , C2 = Q2(t) + ω2V , C3 = V u(t) − B̂1(t), C4 = V u(t) − B̂2(t), 
C5 = µht

1P0B̂1(t), C6 = µht
2P0B̂2(t), C7 = C3P ac

1 , C8 = C4P ac
2 .

Lemma 2  P2.2 is a convex optimization problem that can be effectively addressed using convex optimization tools 
like CVX40.

Proof  In problem (P2.2), the objective function (32a) is linear with respect to all variables. Constraints (32b)–

(32e) are all linear inequality constraints. What’s more, for constraint (32f), log2

(
1 + ζP0ht

1gt
12φt

4

εt
1σ2

)
 is the 

perspective of log2

(
1 + ζP0ht

1gt
12β1

σ2

)
 which is concave with respect to φ4. Since the perspective operation 

preserves convexity41, εt
1 log2

(
1 + ζP0ht

1gt
12φt

4

εt
1σ2

)
 is concave with φ4 and εt

1 and (32f) is a convex constraint. 

For the same reason, (32g)–(32i) are all convex constraints. Thus, P2.2 is a convex optimization problem. □

According to Lemma 2, at each time slot, we need to solve a convex problem P2.2 that involves a limited num-
ber of variables. This approach allows us to achieve optimal long-term average EE without requiring knowl-
edge of future system information. Our proposed algorithm, the Dynamic Offloading for Backscatter-Assisted 
WPMEC Algorithm (DOBAM), is outlined in Algorithm  1. 
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Algorithm 1.  Dynamic offloading for backscatter-assisted WPMEC algorithm (DOBAM).

Algorithm performance analysis
In each time slot, our algorithm solves a convex optimization problem (P2.2) involving 12 decision variables. The 
time complexity of solving this problem is O(n3.5 log(1/ϵ)), where n denotes the number of decision variables 
(n = 12). Due to the small number of variables, the problem can be efficiently solved using interior-point methods 
or tools like CVX, ensuring rapid computation. The effectiveness of our dynamic control algorithms in achieving 
the optimal long-term time-average solution is demonstrated through the following theorems.

Theorem 2  The optimal long-average utility function obtained by P1 is limited by a lower bound that is independ-
ent with the time space. The following solutions can be achieved by the algorithm: (1) u(t) ≥ u∗ − B/(V eave),

(2) All queues Qi(t), B̂m(t), B̂h(t) are mean rate stable, and thus the constraints are satisfied.

Proof  For any ε > 0, by integrating these results to (27) and taking the limit as ε → 0, we observe that the 
outcome is independent of the queue status θ(t). Thus, we have

	

∆V (θ (t)) ≤ B − V E {D∗
tot(t) − u∗E∗

tot(t)} + Qi(t)
∑

t=1,2

E
{

Ai(t) − dt,∗
i,loc − dt,∗

i,off

}

+ B̂i(t)
∑

t=1,2

E
{

Et,∗
i − Ht∗

i,loc − Ht,∗
i,off

}

≤ B − V E {D∗
tot(t)} + V u∗E {E∗

tot(t)}

� (33)

Notice that u(t) is a constant and independent of the current queue status θ(t). By applying the iterated 
expectation and summing the above inequality over time t ∈ {0, 1, ..., K − 1}, we obtain:
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E{L [θ(K)]} − E{L [θ(0)]} − V

K−1∑
t=0

E {Dtot(t)} + V

K−1∑
t=0

E {u(t)Etot(t)}

≤ K [B − V u∗E {E∗
tot(t)}] + V

[
K−1∑
t=0

E {u∗} E∗
tot(t)

] � (34)

Dividing both sides of (34) by VK and taking the limit as K → ∞, and using Jensen’s inequality, we get:

	

− lim
K→∞

1
K

K−1∑
t=0

E {Dtot(t)} + lim
K→∞

1
K

K−1∑
t=0

E {u(t)Etot(t)}

≤ B

V
− u∗E {E∗

tot(t)} +

(
lim

K→∞

1
K

K−1∑
t=0

E {u(t)}

)
E∗

tot(t)

Given that 
lim

K→∞
1
K

K−1∑
t=0

E {u(t)} ≤ u
, , we conclude:

	
0 ≤ B

V
− u∗E {E∗

tot(t)} + uE {E∗
tot(t)}) � (35)

Thus, we derive that:

	
u ≥ u∗ − B

V dave
� (36)

□

Theorem 3  Let Eupper
tot  be the upper bound of e1(t), the time-average sum rate of queue length is bounded by

	
lim

K→∞

1
K

K−1∑
t=0

E
{

Q1(t) + Q2(t) + B̂1(t) + B̂2(t)
}

≤ B

ε
+ uEupper

tot

ε
� (37)

Proof  By taking iterated expectation and using telescoping sums over t ∈ {0, 1, ..., K − 1}, we have

	

E {L[θ(K)]} − E {L[θ(0)]} − V E {Dtot(t) − u(t)Etot(t) | θ(t)}

≤ KB − ε

K−1∑
t=0

E
{

Q1(t) + Q2(t) + B̂1(t) + B̂2(t)
}

+ V E {u(t)Etot(t)}
� (38)

Dividing both sides of (38) by Kε, taking K → ∞, rearranging terms yield

	

B

ε
− lim

K→∞

1
K

K−1∑
t=0

E
{

Q1(t) + Q2(t) + B̂1(t) + B̂2(t)
}

+ V uEupper
tot ≥ 0� (39)

Rearranging the terms, we obtain:

	
lim

K→∞

1
K

K−1∑
t=0

E
{

Q1(t) + Q2(t) + B̂1(t) + B̂2(t)
}

≤ B

ε
+ V

uEupper
tot

ε
� (40)

Thus, the time-average sum rate of the queue lengths is bounded as required. □
Theorems 2 and 3 provide a comprehensive mathematical performance analysis of our proposed algorithm. The 
control parameter V, which serves as a weight balancing the queue stability and optimization objective, is used 
to adjust the trade-off between system queue stability and the optimization goal. The above theorems show that 
the time-average EE ηEE  scales as O(1/V), while the queue length increases at a rate of O(V). As V increases, 
the algorithm tends to prioritize optimizing the system’s EE, while decreasing V focuses more on stabilizing the 
queue length. Thus, we can tune V to achieve a trade-off characterized by [O(1/V), O(V)] between ηEE  network 
EE and task queue length. According to Little’s Law37, latency is proportional to the time-average queue length. 
This indicates that our proposed algorithm can effectively balance efficiency and latency, which is crucial in 
many real-world applications where both performance and response time are important.
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Simulation results
In this section, extensive numerical simulation are conducted to verify the performance of our proposed 
algorithm. Each simulation experiment lasts a total of 5000 time slots, with each time slot lasting for 1 s. We 
can also adjust the duration of time slots to accommodate various scenario requirements. The experiments were 
conducted on a high-performance computing platform, featuring a 2.10 GHz Intel(R) Xeon(R) Silver 4116 CPU, 
with simulations implemented in the Python language.

To simulate the impact of physical distance on the channel, we employed the free-space path loss model to 
simulate signal propagation, where the average channel gain h is calculated by the following formula42:

	
h = Ad(3 × 108

4πfcdi
)de ,� (41)

where Ad is the antenna gain, fc represents the carrier frequency, de denotes the path loss exponent, and di 
represents the distance between nodes (in meters).

The dynamic channel gains for WPT and task offloading, following the Rayleigh fading model, are represented 
by the vector ht =

[
at

1ht
1, at

2ht
2, at

3gt
12, at

4gt
2a

]
. In the model, the channel fading factors 

[
at

1, at
2, at

3, at
4
]

 
all follow an exponential distribution with an expectation of 1, simulating the natural variability of wireless 
channels. We assume that the vector of fading factors remains constant at [1.0, 1.0, 1.0, 1.0] within a time slot.

To model dynamically varying loads, we employed the most typical exponential distribution to represent task 
arrivals, with arrival rates λ1 and λ2 being 1.2 and 1.5, respectively.

The main source code is available online at https://github.com/Toxic-Gulu/bac-with-ac. Other simulation 
parameters are detailed in Table 38.

To comprehensively evaluate the performance of our algorithm, we conducted comparative simulations with 
three representative benchmarks as follows: 

	(1)	 UC with the AC scheme (UAC)7: In the WPMEC system, task offloading is facilitated through user col-
laboration, where MD1 and MD2 communicate exclusively via the AC mode, without the integration of 
Backscatter modules. This approach only leverages the AC communication model for data transmission.

	(2)	 UC with the BackCom scheme (UBC)8: The WPMEC network employs a collaborative approach among 
users, with inter-user communication solely relying on the Backscatter technique.

Specifically, the HAP continuously broadcasts RF energy to the users throughout each time slot, resulting in the 
highest energy expenditure for the HAP due to its non-stop energy emission. 

	(3)	 Without UC With Integrated BackCom and AC scheme (BC+AC)43: The WPMEC network forgoes user 
collaboration, with MD1 and MD2 establishing direct communication links with the HAP. In this configu-
ration, MD1 and MD2 are autonomous, eschewing collaborative interactions. Furthermore, each device is 
integrated with a Backscatter module, enabling the utilization of both BackCom and AC for their commu-
nication needs.

	(4)	 Random offloading scheme (ROS): The WPMEC network employs a typical task offloading approach where 
MD1 and MD2 independently offload a random subset of their tasks to the HAP. There is no collaboration 
between the two nodes in terms of communication. Importantly, both nodes are not integrated with Backs-
catter modules, and they exclusively utilize AC communication.

Symbol Value

Maximum battery capacity Bmax 50 J

Minimum battery capacity Bmin 0 J

Transmit power of the AP P0 5 W

Noise power σ2 10−3  W

The circuit consumption of the BackCom pba
1  and pba

2 0.1 W

The circuit consumption of the AC pac
1  and pac

2 0.7 W

CPU frequency of MD1f1 500 MHz

CPU cycles to compute 1 bit task for MD1ϕ1 490 cycles/bit

CPU frequency of MD2f2 480 MHz

CPU cycles to compute 1 bit task for MD2ϕ2 470 cycles/bit

Computing efficiency parameter of MD1κ1 10−8

Computing efficiency parameter of MD2κ2 10−8

Antenna gain in the channel model Ad 3

Carrier frequency in the channel model fc 915 MHz

Path loss exponent in the channel model de 3

Table 3.  Simulation parameters.
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To ensure a fair comparison, all baseline algorithms are implemented utilizing the Lyapunov optimization 
framework, which is designed to maintain system stability.

Figure 3 demonstrates the performance comparison of EE under different schemes, with parameters set as 
V = 40, ζ = −16 dB, and W = 1.2 MHz. We find that our proposed algorithm performs the best in terms 
of EE, followed by the UBC, then the UAC, the BC+AC ranking fourth, and the ROS method performing the 
worst. Compared to the other four schemes, our proposed algorithm has improved the EE by 23%, 38%, 48% and 
64%, respectively. This superior performance highlights the advantage of integrating both BackCom and AC. 
The scheme of UBC, suffers from limited transmission capability when ζ  is small, leading to poor performance. 

Fig. 4.  Energy efficiency under different algorithms versus the performance gap.

 

Fig. 3.  Energy efficiency under different algorithms.

 

Scientific Reports |        (2025) 15:16822 15| https://doi.org/10.1038/s41598-025-99481-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Although the UAC can transmit sufficient data, its high circuit power consumption results in it ranking third. 
Due to the poor channel conditions of remote users, the BC + AC, as well as the ROS method, also have lower 
energy efficiency. This indicates that even with the integration of BackCom and AC, poor channel conditions 
between MD1 and HAP may still limit energy harvesting and task offloading. This further emphasizes the 
importance of user cooperation in enhancing the performance of remote users.

Figure 4 illustrates the impact of controlling the performance gap ζ  on EE. The EE for the other four schemes 
improve with an increase in ζ , contrasting with the UAC and ROS scheme’s stable EE. Our proposed scheme 
consistently delivers the best system performance and the ROS method performing the worst. With ζ > − 17 
dB, the UBC scheme outperforms the UAC scheme in EE, prompting the system to favor the BackCom mode. 
Upon reaching a higher threshold, the UAC scheme’s EE matches that of our proposed scheme, leading to its 
predominance use by users. Conversely, when ζ < − 21 dB, our scheme defaults to the AC mode. The BC + AC 
and the ROS scheme experience the least performance gains due to suboptimal channel conditions. Overall, the 
proposed scheme outshines others in flexibility and adaptability, adeptly tuning to varying ζ  levels for optimal 
EE.

Figure 5 demonstrates the impact of network bandwidth on the performance under different schemes, with 
the time slot set to 2000. As shown in Fig.5, within the bandwidth range of [1.00, 1.45] × 106 Hz, the EE of all 
schemes increases with the expansion of bandwidth. This is attributed to the increased bandwidth allows more 
tasks to be transmitted to the edge server for processing using edge computing resources. Our proposed scheme 
consistently outperforms other schemes across the different bandwidth scenarios, especially as the bandwidth 
approaches 1.45MHz. At this point, the advantage in energy efficiency becomes markedly evident, substantially 
outperforming other baseline algorithms. This not only showcases the high adaptability of our scheme in 
managing bandwidth but also underscores its effectiveness in utilizing network resources in high-bandwidth 
scenarios, thereby maximizing energy efficiency.

In Fig. 6, we evaluate the system performance of various algorithms under different weight configurations, 
where the weight ω varies in the range [0, 3], with ω1 = ω/(ω + 1) and ω2 = 1/(ω + 1). As ω increases, 
the EE of all schemes generally declines because a higher ω implies that tasks offloading from MD1 receive 
more resources at the expense of overall EE. Our algorithm consistently performs the best across all weight 
settings and the ROS algorithm exhibits the poorest performance among the evaluated approaches. Specifically, 
at ω = 3, our algorithm achieves an EE improvement of 23%, 38%, 46% and 55% over other algorithms. This 
demonstrates that our algorithm can more effectively leverage the advantages of the UC scheme, combined 
with BackCom and AC. Additionally, Fig. 6 indicates that excessively high weights for edge devices can rapidly 
degrade network performance, underscoring the importance of proper weight distribution. In Fig. 6, we observe 
an inversion of the black curve, which occurs due to the system’s inclination to allocate more resources to support 
the task offloading of MD1 as the weight system increases. Schemes without user cooperation, constrained by 
the absence of collaborative efforts and poor channel conditions, experience a sharp decline. Consequently, at a 
weight coefficient of 0.6, a crossover of the curves is observed, where the EE represented by the black curve falls 
below that of any other scheme with user cooperation.

Fig. 5.  Energy efficiency under different algorithms versus bandwidth W.
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Figure 7 illustrates the impact of the control parameter V  on EE and average queue length, with the following 
parameter settings: ζ = −18 dB, W = 1.2 MHz, a distance of 120 m between MD1 and MD2, and a task arrival 
rate at MD2 of λ2 = 1.5 Mbps. As V  increases, EE improves, but the system queue length also increases. The 
parameter V  acts as a weight in the offset-plus-penalty expression, which balances the optimization objectives. 
When V  increases, the algorithm places more emphasis on optimizing EE, while reducing its focus on queue 
stability, resulting in an increase in the queue length. When V  reaches a certain threshold, the gain in EE becomes 
saturated, and further increases in V  no longer significantly affect either the energy efficiency or the queue 
length. The experimental results shown in Fig. 7 are consistent with the theoretical analysis presented earlier. In 
practical applications, according to Little’s Law, the queue length is directly proportional to user waiting time. 
Thus, the value of V  can be adjusted based on the required waiting time to ensure that the system optimizes its 

Fig. 7.  Convergence performance of energy efficiency EE versus parameter V.

 

Fig. 6.  Energy efficiency under different algorithms versus weight ω.
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objective function while satisfying Service Level Agreements (SLA) for time constraints. Physically, decreasing 
V  accelerates task processing rates, thereby reducing the queue length more rapidly and ensuring system 
stability. On the other hand, increasing V  shifts the algorithm’s focus towards maximizing energy efficiency at 
the expense of queue stability, which leads to an increase in queue length.

Figure 8 illustrates the optimal time allocation of ε versus the performance gap ζ . Initially, when ζ  is low, 
despite the lower energy consumption of the BackCom mode, achieving a larger number of computational bits at 
the same energy consumption is challenging. Consequently, MDs prefer the AC mode and allocate more time ε∗

0  
for energy collection to meet data processing needs. As ζ  increases, ε∗

0  gradually decreases, and when ζ  exceeds 

Fig. 9.  Energy efficiency versus different distances between MD1 and MD2.

 

Fig. 8.  The optimal time allocation versus the performance gap.
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− 20 dB, ε∗
0 ≈ 0. This is because, as ζ  increases, the BackCom mode can not only achieve more computational 

bits at the same energy consumption but also collect sufficient energy to support the circuit consumption under 
the AC mode, significantly improving energy efficiency. Therefore, as ζ  increases, users are more inclined to 
choose the BackCom mode, using its reflection capability to perform task transmission and energy collection to 
meet the circuit consumption44. This scheme ensures that under different ζ  conditions, the system can operate 
at the highest efficiency, optimizing energy usage.

Figure 9 illustrates that the EE under varying distances between MD1 and MD2, with V = 40. The distance 
between the remote MD and the helper device ranges from 80 to 180 m. It is observed that EE decreases as the 
distance increases. This is because an increase in distance leads to a reduction in channel gain, necessitating more 
time and higher power to transmit data to maintain a shorter data queue, thereby increasing energy consumption. 
This indicates that in practical deployment, the distance between edge node devices and helper devices should 
be kept within a reasonable range to avoid a rapid decline in network performance. This assessment not only 
quantifies the specific impact of distance on energy efficiency but also emphasizes the importance of considering 
the distance factor in the design of efficient networks.

In Fig. 10, we evaluate the EE and the average task queue length as the task arrival rate at MD2 varies. The 
distance between MD1 and MD2 is set to 120 m, and control parameter V is set to 40. As the computation task 
data arrival rate at MD2 increases, the EE decreases. The rise in data rate causes the local data queue to expand, 
necessitating a higher data transmission rate from the system. This not only entails processing a larger volume 
of data but also results in greater energy expenditure to maintain shorter data queues, thereby increasing overall 
energy consumption. Despite this trade-off in energy efficiency, our algorithm optimizes energy usage, ensuring 
that the system maintains efficient data processing and rapid response capabilities even as data rates increase.

In practice, our algorithm can be deployed on edge servers with substantial computing power, enabling 
efficient execution and effective problem solving. The algorithm functions as follows: at the beginning of each 
time slot, all MDs transmit their network status information to the edge server, which performs centralized 
computation and returns the corresponding decisions to the respective nodes. Since the amount of data 
transmitted is minimal, the associated time overhead is negligible.

Our experimental results validate the superior energy efficiency (EE) of our proposed algorithm across various 
network settings and parameters. By integrating BackCom with AC, our algorithm achieves EE improvements 
of 23%, 38%, 48%, and 64% over the UBC, UAC, BC + AC, and ROS methods, respectively. This enhancement 
underscores the critical role of user collaboration in enhancing the performance of remote users and highlights 
the importance of considering distance factors in network design. With the increase in bandwidth, particularly 
approaching 1.45 MHz, the EE of all schemes significantly improves, indicating that our algorithm can adapt to 
high-bandwidth environments and efficiently utilize resources. The increase in the control parameter V  helps 
to enhance EE, but there is a saturation point, indicating that parameter adjustment requires precise control. An 
increase in the performance gap ζ  makes users more inclined to choose the BackCom mode, further boosting 
EE.

In summary, our algorithm can dynamically adjust parameters to accommodate diverse network conditions, 
striking a balance between EE and data processing requirements. It exhibits remarkable adaptability and 
robustness with respect to bandwidth, control parameter V , and performance gap ζ  ensuring optimal energy 
efficiency in a wide range of scenarios.

Fig. 10.  Energy efficiency versus different task arrival rate MD2.
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Conclusions
The integration of BackCom and AC is pivotal for enhancing the performance of WPMEC systems across diverse 
user scenarios, as it can efficiently harness the wireless power signal. In this research, we have investigated a user-
collaborative WPMEC system aided by the Backscatter technique, with the objective of maximizing EE within a 
fluctuating network environment. To tackle the challenges posed by dynamic task loads and time-varying channel 
conditions, we have proposed an online control algorithm. This algorithm utilizes fractional programming, 
Lyapunov optimization theory, and convex optimization techniques, which simplifies the problem into a convex 
optimization form. It also decouples the stochastic optimization problem into deterministic optimization 
sub-problems for each time slot, solving them efficiently. Our simulation results demonstrate that our scheme 
significantly enhances EE while ensuring system stability, outperforming existing baseline algorithms.

For future research, we plan to integrate deep reinforcement learning (DRL) and predictive technologies 
into the stochastic network queue decision-making process. Specifically, we aim to leverage stochastic network 
optimization techniques to ensure system stability and meet long-term average constraints. DRL algorithms, 
such as Proximal Policy Optimization (PPO) and Soft Actor-Critic (SAC), will be applied within actor-critic 
frameworks to optimize decision-making in dynamic network environments. Additionally, we intend to utilize 
Long Short-Term Memory (LSTM) networks and attention mechanisms to predict task flows and network states 
in large-scale IoT networks, thereby enhancing the efficiency of system decision-making. This integration is 
expected to improve the intelligence and adaptability of our approach. Furthermore, we will investigate dynamic 
task offloading strategies within larger-scale IoT user collaboration models in future work, with the goal of 
further improving system performance under real-world conditions.

Data availability
Data are contained within the article.
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