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Vision Transformer-based detectors have achieved remarkable success in the field of object detection, 
but the application of these models to high-resolution remote sensing imagery faces challenges in 
computational costs and performance bottlenecks due to the increased computational complexity 
required to process high-resolution imagery, especially when capturing fine-grained edge features. 
Therefore, there is significant potential for performance optimization. To address these challenges, we 
propose an improved EMF-DETR based on RT-DERT-ResNet-18. EMF-DETR introduces a multi-scale 
edge-aware feature extraction network named MEFE-Net. The network improves object recognition 
and localization capabilities by extracting multi-scale features and enhancing edge information for 
targets at each scale, demonstrating exceptional performance in small object detection. To further 
enhance feature representation, the model introduces the CSFCN method, which adaptively adjusts 
contextual information and precisely calibrates spatial features, ensuring accurate alignment and 
optimization of features across different scales. In evaluations on the VisDrone2019 dataset, the 
proposed method achieved a 2.0% improvement in mAP compared to the baseline model, with 
increases of 1.5% and 2.6% in small (APS) and medium (APM) object detection respectively. Meanwhile, 
the number of parameters was reduced by 20.22%, demonstrating not only improved detection 
accuracy but also lower computational cost, highlighting its practical application potential in remote 
sensing image analysis.
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Object detection in remote sensing imagery has become a critical area of research in computer vision, with 
significant application potential across various fields, including environmental monitoring, disaster response, 
land management, and national defense1. The rapid advancement of high-resolution remote sensing technology 
enables detailed representation of geospatial targets but also exacerbates the challenges associated with detecting 
small-scale objects. Unlike regular-sized targets, small-scale objects (such as vehicles and compact structures) 
in high-resolution images face three primary limitations: (1) limited spatial coverage (often spanning only a few 
tens of pixels), (2) ambiguous feature representations (with poorly defined edges), and (3) increased susceptibility 
to imaging noise2. These characteristics fundamentally limit the effectiveness of conventional detection methods 
in complex operational scenarios. For instance, densely distributed geographical elements in high-resolution 
images introduce severe background interference, while variations in imaging across different platforms increase 
the uncertainty of target features. To address these challenges, it is essential to develop a robust framework 
for detecting small-scale objects in high-resolution images. This requires innovative algorithms that enhance 
feature representation and leverage multi-scale modeling, ultimately enabling precise target recognition and 
localization in challenging environments.

With the rapid development of deep learning and substantial advancements in hardware computational 
capabilities, the field of computer vision has made breakthrough progress, particularly in object detection 
algorithms. Early classical object detectors were primarily based on Convolutional Neural Networks (CNNs), 
such as the R-CNN series3–6, SSD series7,8, and YOLO series9–17. Among these, the R-CNN series models 
(including Fast R-CNN, Faster R-CNN, and Mask R-CNN) have played a pivotal role in object detection tasks. 
Through a series of key technological innovations, the R-CNN series has gradually overcome the limitations 
of earlier models, and the theoretical contributions of the R-CNN series (such as the anchor mechanism and 
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RoI operations) remain fundamental components in modern object detection algorithms. However, despite 
achieving high detection accuracy, R-CNN models suffer from slow training and inference speeds, poor real-
time performance, and limited small object detection capabilities, which hinder their applicability in real-time 
scenarios. In contrast, the YOLO series models have gained widespread attention due to their computational 
efficiency and outstanding real-time detection capabilities. However, YOLO models exhibit higher miss rates and 
lower detection accuracy for small objects, primarily because their representations are compressed into smaller 
regions after downsampling in feature maps, resulting in sparse features and weakened detail preservation. This 
presents a significant challenge for small object detection. While CNNs are effective at extracting local features 
and achieving high precision in object detection and recognition tasks, their convolutional operations have 
inherent limitations. Specifically, CNNs often struggle to capture global information and cannot explicitly learn 
long-range dependencies. This limitation makes it challenging to extract meaningful global context from limited 
features when processing high-resolution images. Therefore, addressing these challenges and enhancing the 
performance of small object detection performance has become a key research focus in the field.

In recent years, Carion et al.18 introduced the Detection Transformer (DETR) model, representing a 
groundbreaking approach that successfully integrated Transformer19 and self-attention mechanisms into the 
object detection for the first time. This marks a significant advancement in the field. DETR simplifies the object 
detection pipeline by providing an end-to-end training framework while eliminating complex components such 
as Region Proposal Networks (RPN) and Non-Maximum Suppression (NMS) that were commonly used in 
traditional methods. DETR utilizes object queries and its attention mechanism to extract object-specific features 
from global information and generates a set of predictions through a feed-forward neural network (FFN). The 
Hungarian algorithm is then used to assign labels to these predictions. This end-to-end approach not only 
simplifies the detection process compared to traditional methods but also enhances the model’s adaptability to 
objects of varying scales, shapes, and quantities. However, despite these significant progress achievements, DETR 
still faces several challenges in practical applications. For instance, DETR struggles with high computational 
complexity, slow convergence during training, and optimization issues, particularly in high-resolution image 
detection tasks. Its performance remains particularly inadequate in scenarios involving small object detection 
and complex backgrounds. To address these limitations, researchers have proposed several improvements, such 
as Deformable DETR20 and DN-DETR21, which have set the foundation for algorithms like RT-DETR22. These 
developments suggest that DETR-based methods are gradually maturing. However, DETR’s performance in 
detecting objects in high-resolution images and real-time applications continues to be limited by computational 
efficiency and convergence speed issues. Further improvements are still needed, especially for small object 
detection and complex background handling.

In high-resolution remote sensing images, objects typically appear small and densely packed, resulting in 
limited pixel information and sparse features. This makes it challenging to distinguish between objects and the 
background. During the multi-scale feature fusion process, the alignment of low-resolution semantic information 
with high-resolution detailed features becomes problematic. Additionally, the features of small-scale objects can 
be easily overwhelmed by larger ones, and background noise is amplified during fusion, further degrading small 
objects detection performance. To enhance the accuracy of small object detection in high-resolution images, 
developing more adaptive context modeling methods and optimizing multi-scale feature fusion strategies are 
imperative. Addressing these issues is fundamental for advancing the field.

To address the challenges of neglecting or losing small objects in complex backgrounds, insufficient multi-
scale fusion, limited context modeling, and the ​speed-accuracy trade-off in small object detection, we propose 
EMF-DETR. This method aims to improve the performance of DETR-based models in small object detection tasks ​
through enhanced edge information extraction and dynamic adjustment strategies. The framework comprises 
three key components: a Multi-Scale Edge Feature Enhancement Backbone (MEFE-Net), a Transformer-based 
encoder-decoder architecture, and a Context and Spatial Feature Calibration Network (CSFCN)23. Experimental 
results demonstrate that our approach effectively overcomes small object detection challenges in high-resolution 
images, achieving enhanced robustness and ​superior accuracy.

Our main contributions are summarized as follows:
(1) We propose a novel backbone architecture, MEFE-Net, which employs the MSEI Block to divide 

feature maps into multiple scales via average pooling for enhanced multi-scale feature extraction. At each 
scale, WTConv24 captures fine-grained image details and high-frequency information of the image, while the 
EEnhance module improves edge feature representation. This design effectively ​extracts fine details from high-
resolution images and strengthens the model’s ​edge perception capability.

(2) To tackle the challenges posed by high-resolution and large-scale remote sensing images in object 
detection—such as variations in scale, the loss of local details, and inadequate fusion of features across different 
levels—we present the Context and Spatial Feature Calibration Network (CSFCN) module. The Context 
Feature Calibration (CFC) module employs a ​cascaded pyramid pooling structure to capture nested contextual 
information. It aggregates pixel-specific context through similarity-based contextual aggregation, enabling 
precise calibration. Simultaneously, the Spatial Feature Calibration (SFC) module partitions features along the 
channel dimension into multiple sub-feature groups. These sub-features are then propagated across respective 
channels via learnable sampling mechanisms, achieving adaptive spatial feature calibration. This innovative 
architecture significantly improves overall detection accuracy and robustness.

(3) We comprehensively evaluate the proposed method on the VisDrone2019 dataset25 to evaluate its 
effectiveness and efficiency. Experimental results demonstrate that our approach not only matches but surpasses 
current state-of-the-art object detectors in both detection accuracy and computational efficiency, confirming its 
practical superiority.
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Related methods
CNN-based object detection
The evolution of deep learning-based object detection algorithms can be summarized in several key stages. 
Initially, R-CNN generates region proposals using selective search, cropping each candidate region to input 
into a CNN for feature extraction. Classification and localization are carried out using a classifier and a linear 
regression model. While this approach showes promise, it comes with a high computational cost. Next, Fast 
R-CNN improves upon this method by introducing the Region of Interest (RoI) Pooling layer, which standardizes 
candidate regions of varying sizes into a fixed-size feature map. This innovation allows for the sharing of features 
across all candidate regions, thereby enhancing computational efficiency. Faster R-CNN further advances​​ the 
framework by introducing Region Proposal Networks (RPNs) to generate high-quality candidate boxes in real-
time. This development enables end-to-end training and significantly increases detection speed.

Despite improvements in accuracy, many object detection methods still face challenges such as low 
computational efficiency, limited performance in detecting small and densely packed targets, and complex 
training and optimization processes. These issues hinder their application in real-time, resource-constrained, or 
complex scene settings. To address these challenges, single-stage object detectors gradually emerge, with notable 
models including the SSD series, YOLO series and its variants, the EfficientDet series26, and RefineDet27 models. 
The SSD (Single Shot Multibox Detector) performs detection across multiple scale feature maps, effectively 
balancing speed and accuracy, and excels in complex scenes. The YOLO (You Only Look Once) series redefines 
object detection as a regression task. The first YOLO model transformes object detection into a regression 
problem, and since then, it has undergone several iterations. YOLOv3 introduces multi-scale predictions and 
employes a deeper backbone network (Darknet-53), enhancing its feature extraction capabilities. YOLOv5 is 
known for its highly modular architecture, which allows for easier adjustment, expansion, and deployment, 
achieving impressive detection performance and speed across various domains. YOLOv7 adoptes dynamic label 
assignment strategies to improve the detection of multi-scale targets and to reduce the rates of small target 
misses. YOLOv8 adopts an anchor-free design to directly predict the center point and bounding box dimensions 
of objects. This simplification of the model structure improves detection accuracy. Finally, YOLOv10 introduces 
NMS-free (Non-Maximum Suppression) training, achieving competitive performance with low inference 
latency. The continuous evolution of the YOLO series, especially with the latest version, YOLOv12, has built 
a concise and efficient framework centered around attention mechanisms, significantly enhancing detection 
performance while maintaining high detection speed.

The YOLO series is popular in the industry due to its real-time performance, simple architecture, and 
advantages in multi-scale detection. However, CNN-based object detection models have inherent limitations 
in local feature extraction. These models struggle to balance global semantic understanding with the retention 
of fine-grained details. Additionally, they depend on manually designed mechanisms such as anchor boxes and 
non-maximum suppression, which can limit their performance based on predetermined parameter settings. 
While they achieve excellent results in object detection tasks, this non- end-to-end architecture hinders the 
models’ ability to optimize adaptively.

Transformer-based object detection
Vaswani et al.19 proposed a novel network architecture, the Transformer model, based on the self-attention 
mechanism, which is used to compute dependencies between input elements and capture global contextual 
information. This subsequently became a cornerstone in natural language processing and other related fields. 
Later, researchers attempted to apply the self-attention mechanism in visual detection tasks, leading to the 
development of the Transformer-based object detection model, which has led a deep learning revolution 
in the field of object detection and has driven the cutting-edge development of this area through a series of 
optimizations. By eliminating the need for region proposal-based methods traditionally used in detectors, 
Transformer-based object detection model introduces an end-to-end detection framework that greatly simplifies 
the pipeline of conventional approaches. Over time, several improved versions have been proposed to enhance 
the model’s efficiency and accuracy. Initially, Vision Transformer (ViT) is a model that applies the Transformer 
architecture to computer vision tasks. Its core idea is to divide an image into multiple patches and treat these 
patches as a sequence, which is then processed by the Transformer to achieve global modeling. ViT is the first 
to demonstrate the effectiveness of a pure Transformer architecture in image classification tasks, successfully 
breaking the dominance of traditional CNNs in visual tasks. DETR (Detection Transformer) (2020) is the first 
model to employ a Transformer for end-to-end object detection. Its innovative design removes the reliance on 
anchor boxes and utilizes a standard Transformer architecture to directly predict object categories and bounding 
boxes. However, DETR faces challenges in training speed, especially when trained on the COCO dataset, where 
its convergence is slow, and it also has limitations in small object detection. To address these issues, Deformable 
DETR (2021) introduces a novel deformable attention mechanism. By incorporating deformable convolutions, 
Deformable DETR is able to flexibly focus on important regions in the image, rather than performing calculations 
over the entire image, thus significantly improving training speed and performance, particularly for small 
object detection. DINO (2021) further refines DETR’s training strategy by introducing self-supervised learning 
techniques aimed at optimizing the model’s performance in the presence of noisy data. The self-supervised 
learning approach enhances the model’s object recognition capability, providing a substantial advantage in rare 
object detection tasks. DAB-DETR28 reintroduces learnable anchor boxes into DETR to enable the model to 
adapt to objects of different sizes while also accelerating model convergence. Group-DETR29 divides objects 
into different groups for processing and introduces additional supervision. This improvement in the training 
approach enhances the model’s detection performance and efficiency in complex scenarios. Cascade DETR30 
introduces a cascade decoder architecture, progressively refining detection accuracy. Unlike traditional single 
decoders, Cascade DETR utilizes multiple cascaded decoders to iteratively optimize detection results, improving 
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detection precision, particularly for challenging-to-detect objects. In an effort to further improve the efficiency 
and accuracy of DETR, Efficient DETR31 proposes a computationally more efficient method by modifying the 
computational mechanism within the Transformer architecture. This modification enables the model to operate 
more efficiently on large-scale datasets, making it particularly suitable for real-time object detection applications. 
DETR++32 combines both self-attention and region-based attention mechanisms to further enhance the model’s 
precision and efficiency, which excels in handling multiple objects in complex scenes, especially when detecting 
small and overlapping objects. To address the high computational cost of DETR, RT-DETR22 introduces an 
efficient hybrid encoder design that decouples intra-scale feature interactions and cross-scale feature fusion, 
enabling more efficient handling of multi-scale features. Additionally, an IoU-aware query selection method 
is proposed to optimize the initialization of object queries, thereby improving both detection accuracy and 
efficiency. AO2-DETR33 addresses the complex processing steps and feature misalignment issues in arbitrary-
oriented object detection by introducing a directional proposal generation mechanism, a guided proposal 
refinement module, and a rotation-aware set matching loss. PR-Deformable DETR34 addresses challenges 
such as small object detection, size variations, and dispersed object distribution by introducing an adaptive 
feature fusion pyramid network, a Res-Deformable Encoder, and a dynamic reference point module decoder. 
BiF-DETR35 combines CNNs and pyramid-pooled transformer blocks, addressing challenges in multi-scale and 
small object detection, semantic differences in feature maps, and data imbalance with a Coordination Attention 
mechanism and Cascade Mixture Data Augmentation technique.

These models have progressively improved DETR’s performance, incorporating innovations ranging from 
efficiency optimizations to accuracy enhancements. They not only propel the development of object detection 
but also lay a solid foundation for addressing more complex application scenarios.

Methods
Overall architecture
This paper adopts RT-DETR-ResNet-1822 as the baseline framework. RT-DETR is an end-to-end object detector 
based on the DETR architecture, which removes the need for Non-Maximum Suppression (NMS). This design 
achieves significantly lower latency than traditional CNN-based object detectors like the YOLO series. RT-
DETR employs ResNet36 as its backbone, leveraging residual blocks to address vanishing gradients and network 
degradation in deep architectures. During feature extraction, the stacking of multiple convolutional layers 
enhances feature representation capability. However, since each convolution operation has a local receptive field, 
individual kernels can only process localized image regions. Although the receptive field expands with network 
depth, integrating long-range contextual information remains challenging. This limitation is particularly 
pronounced when detecting small objects against complex backgrounds.

This paper introduces EMF-DETR, an enhanced end-to-end framework for small object detection that 
extends RT-DETR with innovative multi-scale edge information extraction and feature calibration. As illustrated 
in Fig. 1, EMF-DETR comprises three core components: (1) MEFE-Net - a multi-scale edge feature enhancement 
backbone, (2) a Transformer encoder-decoder for prediction generation, and (3) CSFCN (which effectively 
mines contextual and spatial information). First, MEFE-Net functions as the backbone for feature extraction. 
It incorporates a built-in Multi-Scale Edge Information (MSEI) module that integrates edge information from 
feature maps of different scales, resulting in multi-scale feature maps (S3-S5). Next, the AIFI module processes 
the lowest-resolution S5 feature map. It performs intra-scale feature interaction using attention mechanisms to 
fuse contextual information at each spatial location, ultimately producing a refined feature map, F5. The feature 
maps S3, S4, and F5 undergo further processing through the Cross-Scale Feature Fusion Module (CCFM), a 
CNN-based component that models cross-scale dependencies. This module facilitates interaction between 
features across scales, improving the representation of key features while minimizing redundant information 
and ensuring high-quality cross-scale feature representations. Subsequently, contextual features are refined 
using the CFC module, while spatial features are calibrated through the SFC module. An Uncertainty-Minimal 
Query Selection strategy is applied to the integrated features, prioritizing high-confidence queries for decoder 
input. This approach ​reduces detection ambiguity during the process. Finally, the decoder and detection head 
decode the optimized query features to generate bounding boxes and classification results for the objects.

The proposed EMF-DETR effectively handles small object detection, resolving feature integration issues for 
objects of different scales in complex backgrounds.

Multi-scale edge feature enhancement backbone
Module structure
In high-resolution remote sensing image object detection, models face several challenges. These include high 
false-negative rates for small objects, confusion between objects and their backgrounds, inaccurate boundary 
localization, limited multi-scale detection capabilities, and heightened sensitivity to noise and interference. In 
complex backgrounds, such as vegetation and roads, it becomes difficult for the model to differentiate between 
targets, like vehicles and buildings, and the background, especially when they share similar colors and textures. 
Target boundaries may appear blurred due to limitations in resolution or occlusions, making it difficult for the 
model to accurately determine the boundaries. This leads to reduced localization accuracy. For targets that occupy 
only a few dozen pixels, edge information becomes the most discriminative feature. To tackle these challenges, 
we propose MEFE-Net, a multi-scale edge feature enhancement backbone that extracts features at various scales 
and enhances edge information for each scale. This approach significantly improves the distinction between 
objects and the background, thereby enhancing target localization accuracy and increasing the robustness and 
precision of small object detection.

The backbone network, as illustrated in Fig. 2, consists of four stages (Stage 1 to Stage 4). Each stage features 
a combination of convolutional layers and MSEI Blocks, resulting in a five-layer feature pyramid. For an input 
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image of size C×H×W, initial feature extraction is performed using convolutional layers (Conv). In the following 
stages, feature extraction continues with Conv modules, followed by MSEI Blocks for enhancement. As the 
network depth increases, the resolution gradually decreases, allowing the network to capture more abstract and 
higher-order features.

The MSEI Block is based on the CSP37 architecture, as shown in Fig. 3. In this structure, the input feature 
map is partitioned into two branches, each ​processing features independently through dedicated pathways. The 
mathematical formulation is expressed in Eq. (1):

The input feature map X ∈ RC× H× W  undergoes a convolution to expand the number of channels and is 
then evenly split into two parts.

	 X1, X2 = Split(X, sizes = (C, C )) � (1)

Fig. 2.  The overall architecture of MEFE-Net. MEFE-Net adopts a hierarchical network, using convolutional 
layers to down-sample the input image and extracting features through multiple MSEI Blocks.

 

Fig. 1.  Overall structure of the proposed model.
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where X? ∈ RC× H× W , X2 ∈ RC× H× W .
Following this architecture, the extracted features undergo cross-layer fusion. This design minimizes 

computational redundancy while preserving feature integrity, promoting stable gradient propagation and 
thereby improving model training efficiency and feature representation capability.

WaveletTransformConvolution (WTConv)
In CNNs, expanding the receptive field enhances feature detection capability, particularly for complex scenes. 
However, conventional approaches for receptive field enlargement often result in prohibitive parameter growth, 
consequently increasing computational overhead and model complexity. As shown in Fig. 4, WTConv represents 
an innovative large-kernel convolution technique that employs wavelet transforms to mitigate the parameter 
expansion problem inherent in receptive field scaling. This method achieves equivalent receptive field coverage 
with substantially fewer parameters. Furthermore, through cascaded operations, WTConv demonstrates 
enhanced sensitivity to low-frequency signals while superior spatial information preservation.

WTConv applies a 2D wavelet transforms to individual input channel, enabling the separation of low-
frequency and high-frequency information. This 2D wavelet transform utilizes four distinct filters: LL, which 
captures low-frequency information; LH, which captures horizontal information; HL, which captures vertical 
information; and HH, which captures diagonal information. As shown in Eq. (2), these filters form an orthogonal 
basis.

	
fLL = 1

2

[ 1 1
1 1

]
, fLH = 1

2

[ 1 −1
1 −1

]
, fHL = 1

2

[ 1 1
−1 −1

]
, fHH = 1

2

[ 1 −1
−1 1

]
� (2)

Applying these filters, as shown in Eq. (3).

	 [XLL, XLH , XHL, XHH ] = Conv5× 5 ([fLL, fLH , fHL, fHH ] , X) � (3)

Conv represents the convolution operation, fLL is the low-pass filter, and fLH , fHL, fHH  are a set of high-
pass filters. XLL is the low-frequency component of X, and XLH , XHL, XHH  are the horizontal, vertical, and 
diagonal high-frequency components, respectively. These four filters form a set of orthogonal bases, and through 
the inverse wavelet transform (IWT), also known as transpose convolution, we can obtain Eq. (4).

	 X = Conv5× 5 − transposed ([fLL, fLH , fHL, fHH ] , [XLL, XLH , XHL, XHH ]) � (4)

Fig. 4.  Architecture of the WTConv.

 

Fig. 3.  The structure of the MSEI Block. The MSEI Block consists of a 1 × 1 convolutional layer, a CSEI module, 
and another 1 × 1 convolutional layer, designed for efficient feature extraction and integration.

 

Scientific Reports |        (2025) 15:15371 6| https://doi.org/10.1038/s41598-025-99835-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Recursively decompose the low-frequency component XLL to obtain the cascaded wavelet decomposition. The 
decomposition at each level is shown in Eq. (5).

	
X

(i)
LL, X

(i)
LH , X

(i)
HL, X

(i)
HH = W T 5× 5

(
X

(i−1)
LL

)
� (5)

where X
(i)
LL = X , and i represents the current level.

This approach decouples convolution operations from frequency components, ​allowing small convolution 
kernels to ​efficiently process larger regions. ​The hierarchical decomposition exponentially expands the receptive 
field ​while maintaining parameter efficiency. ​By isolating high and low-frequency information, small kernels ​
specialize in respective frequency bands. ​Notably, enhanced low-frequency response ​improves shape-related 
feature extraction.

MSEI block
The MSEI Block is a CNN module designed to enhance multi-scale edge features representation in images, as 
shown in Fig. 3. By extracting features from four different scales, it aims to capture edge feature information 
across different scales, with a focus on details such as edges and gradients. This approach ultimately improves the 
model’s robustness and enhances the feature representation capability of the image data.

In the MSEI Block, feature extraction is performed using CSEI modules. The ​structure of the CSEI modules 
is shown in Fig. 5. First, a local convolutional layer is applied to extract local features, followed by an average 
pooling convolutional layer for adaptive pooling of the input, which reduces the spatial resolution of the image 
to different scales. For each scale, wavelet transform convolution (WT) is used to expand the ​receptive field. 
This approach effectively improves the network’s ability to fit data and resist interference while also reducing the 
number of parameters and the model complexity. The EEnhancer module strengthens edge information in the 
image by emphasizing key details. It extracts edge information by calculating the difference between the input 
feature map and its average pooling result, then applies the Sigmoid activation function to weight this edge 
information. The enhanced edge information is finally added to the original input, as shown in Fig. 5. Ultimately, 
the locally convoluted image and the feature maps enhanced at various scales are concatenated, integrating 

Fig. 5.  CSEI module architecture. The module applies four distinct pooling scales, performing edge 
information enhancement at each scale and integrating results through a series of convolutional operations. 
This approach leverages different receptive fields to capture multi-scale fine-grained details.
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information from different scales and types. This fusion enhances the model’s understanding of both image 
details and the overall structure, resulting in richer feature representations.

Key Module of CSEI Operation in MEFE-Net: Let the input be x ∈ RC× H× W , and B = {b1, b2, . . . , bn} 
represent a set of n different pooling scales.

Local Feature Extraction: The input x passes through a 3 × 3 convolutional layer to extract local features, 
as shown in Eq. (6):

	 xlocal = Conv3× 3 (x) � (6)

where xlocal ∈ RC× H× W  represents the feature map after local convolution processing. Multi-scale Feature 
Extraction: For each scale b ∈ B, the following operations are performed:

a. Adaptive Average Pooling: The input x undergoes adaptive average pooling, yielding a feature map of size 
b × b as described in Eq. (7):

	 xb = AdaptiveAvgP ool2d (x, b) � (7)

where xb ∈ RC× b× b is the pooled feature map.
b. Feature Extraction: The pooled feature map xb processed for multi-scale feature extraction as shown in 

Eqs. (8), (10):
WTConv2d Operation:

	 x′
b = W T Conv2d1× 1 (xb) � (8)

where x′
b ∈ RC× b× bis the feature map after the WTConv2d operation.

Channel Adjustment: A 1 × 1 convolution is applied to adjust the channel number to C
|B| , as shown in 

Eq. (9):

	
x′ ′

b = Conv1× 1

(
x′

b , C
|B|

)
� (9)

where x′ ′
b ∈ R

C
|B| × b× b is the channel-adjusted feature map, and |B| is the number of scales, C represents the 

number of input channels.
Apply depthwise separable convolution to the feature map x′ ′

b  for further feature extraction:

	 x′ ′ ′
b = Conv3× 3 (x′ ′

b , 3) � (10)

where x′ ′ ′
b ∈ R

C
|B| × b× b is the feature map after depthwise separable convolution.

c. Edge Enhancement for Each Scale: For each scale feature map x′ ′ ′
b , edge enhancement is performed 

through the EEnhancer module, as described in Eq. (11):

	 x̂b = x′ ′ ′
b + Conv3× 3 (x′ ′ ′

b − AvgP ool (x′ ′ ′
b )) � (11)

where x̂b ∈ RC× H× W  represents the enhanced edge feature map, the symbol + denotes the fusion of global 
information with local details, and the symbol − denotes the residual computation of edges and details.

Feature Aggregation and Final Output: The enhanced feature maps from all scales are concatenated along the 
channel dimension and processed through the final convolutional layer, as shown in Eq. (12):

	 x̂ = Conv1× 1 (concat (xlocal, x̂1, x̂2, . . . , x̂n)) � (12)

where x̂ ∈ RC× H× W  is the final multi-scale enhanced feature map, and the final convolution operation 
adjusts the concatenated feature map to the desired output dimensions.

The MSEI Block employs a CSP branch structure to minimize redundant computations, ​enabling effective 
capture of local details while incorporating global contextual information across scales. By integrating local 
information with global structural insights from various scales, this architecture significantly enhances the 
ability to process objects of different sizes and levels of detail. This design highlights the contours of objects while 
maintaining a lightweight performance, resulting in richer gradient flow information and improved resistance to 
complex background noise. Consequently, the MSEI Block demonstrates exceptional efficacy in detecting small 
objects and capturing fine-grained details.

Context and spatial feature calibration network
One of the main limitations of the DETR model lies in its limited local receptive field. While the Multi-Head 
Self-Attention (MHSA) mechanism in Transformers effectively captures global context, it struggles to handle 
multi-scale information. Furthermore, many existing methods frequently neglect critical challenges such 
as contextual misalignment and feature misalignment, wherein fine-grained features are often obscured by 
background noise, ​thereby degrading detection accuracy. To address these challenges, this paper introduces the 
Context and Spatial Feature Calibration Network, aiming to enhance multi-scale information fusion, feature 
alignment, and local context modeling in CNNs, especially when processing high-resolution remote sensing 
images in complex scenes.
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Context feature calibration module
The CFC module ​enhances the model’s perceptual capacity through ​multi-scale feature aggregation, ​employing 
a local attention mechanism to ​precisely align fine-grained features, ensuring effective fusion and alignment of ​
cross-scale features. The ​structural design of the CFC module is ​illustrated in Fig. 6.

The input feature map first undergoes four different sizes of adaptive average pooling operations to generate 
the Key and Value, extracting multi-scale contextual information. Next, the similarity between the Query 
and Key is calculated using matrix multiplication, producing a similarity map. The attention weights are then 
computed with the softmax function. Based on these attention weights, the Value is weighted and fused to obtain 
the contextual features. Finally, the local attention module, CRB, is applied to refine these contextual features. 
The adjusted contextual features are added to the original input features, enhancing detailed information and 
generating the final output.

The CFC module first reduces the channel dimension of the input image, as shown in Eq. (13):

	 xreduced = Conv3× 3 (x) � (13)

The operation Conv (· ) is a 3 × 3 convolution used to reduce the number of channels.
Queries, keys, and values are then computed through convolution operations, as defined in Eqs. (14), (15), 

and (16):

	 query = query_conv1× 1 (xreduced) ∈ R32× H× W � (14)

	 key = key_conv1× 1(key_psp(xreduced) ∈ R32× S � (15)

	 value = value_conv1× 1(value_psp(xreduced )) ∈ R
C
2 × S � (16)

The query_conv is a convolutional layer used to generate the query feature map, the key_psp(xreduced) 
represents the feature map obtained through multi-scale pooling applied to the reduced feature map, key_conv 
performs a convolution on the pooled feature map, producing an output of size 32 × S, where S is the spatial 
dimension of the pooled feature map. The value_psp (xreduced) is obtained by applying pooling to the reduced 
feature map, where the number of channels passing through query_conv and key_conv is adjusted to 32 and 
the number of channels passing through value_conv remains unchanged.

The similarity is computed and normalized using the softmax function, as shown in Eq. (17):

	 sim_map = softmax
(
query · keyT

)
� (17)

The context is obtained by performing a weighted summation of the value feature map using the similarity map, 
as shown in Eq. (18):

	 context = value · sim_mapT � (18)

As shown in Eq. (19), the contextual information is further processed through the local attention CRB.

	 x̂ = local__attention (context) � (19)

The details of the calculation of local__attention are shown in Eqs. (20), (21) and (22):
Input dimensionality reduction (using 1 × 1convolution):

	 X′ = Conv1× 1(X, in_channels = Cin, out_channels = Cinter, kernel = 1)� (20)

Fig. 6.  Implementation pipeline of the context feature calibration module. Where N = H × W  and M 
denote the total number of pixels and contexts, the symbol ×  represents a matrix multiplication, the symbol 
+ represents an element-wise summation, the CRB is a local attention module designed to enhance feature 

representation by capturing both global and local contextual information.
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Restoring channels (using 3 × 3 convolution):

	 Y = Conv3× 3(X′ , in_channels = Cinter, out_channels = Cin, kernel = 3)� (21)

Activation function (Tanh):

	 Z = T anh (Y ) � (22)

where: X  is the input feature map, Cin​ is the number of input channels, Cinter  is the intermediate channel size, 
Z  is the output feature map with local attention applied.

The final output is the summation of the original feature map and the enhanced feature map, as shown in 
Eq. (23).

	 xout = x + x̂ � (23)

Spatial feature calibration module
The SFC module ​facilitates effective cross-scale feature fusion, ​precisely aligning high-level semantic features with 
low-level detail-oriented features. By ​integrating complementary features across scales, this module ​augments 
the model’s ​multi-scale object recognition capacity in high-resolution imagery. The ​architectural design of the 
SFC module is ​depicted in Fig. 7.

The module processes two feature types: Semantic Feature (SF) and Context Feature (CF). First, the SF 
undergoes convolution to enhance semantic information before upsampling to match CF resolution ensuring 
spatial alignment. Meanwhile, CF ​is refined through convolution to extract fine-grained details, such as edges 
and textures. Next, processed SF and CF are concatenated, after which spatial offsets are computed. These offsets 
comprise two components controlling horizontal and vertical deformation, indicating positional adjustments ​
across scales. Spatial sampling ​applies computed offsets for multi-scale alignment. Finally, dynamic weighting ​
employs 1 + tanh function to clamp weights within [0, 2], preventing gradient explosion. This weighting scheme 
balances SF and CF contributions, yielding a fused feature map ​with preserved multi-scale context.

In the SFC module, xCF  and xSF  are the contextual feature map and semantic feature map, respectively, 
and are processed using convolution, as shown in Eq. (24).

	 xSF = conv_323× 3 (xSF ) , xCF = conv_83× 3 (xCF ) � (24)

The semantic feature map xSF  is then upsampled to match the size of the contextual feature map, as shown in 
Eq. (25).

	 xSF = interpolate (xSF , size (xCF )) � (25)

The contextual feature map xCF  and the semantic feature map xSF  are concatenated and the offset is computed 
through convolution, as shown in Eq. (26).

	 O = conv_offset (concat( xCF , xSF )) � (26)

Fig. 7.  Detailed overview of the spatial feature calibration module. Where F? and F↕ represent 
high-resolution features and low-resolution features, respectively. ∆ ↕ represents offset maps, 
∆ ↕ ∈ R(2× G)× H× W , G is the number of groups, the symbol ×  represents a matrix multiplication, the 
symbol + represents an element-wise summation.
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conv_offset is a convolutional layer used to compute the offset, where 
conv_offset : R2C× H× W → R(2G+2)× H× W , G is the number of groups, O is the offset generated by the 
offset prediction network.

The offset O is decomposed into low-resolution offsets Ol and high-resolution offsets Oh, as shown in in 
Eq. (27).

	 Ol = O[:, 0 : 2G, :, :], Oh = O[:, 2G : 4G, :, :] � (27)

Grid Generation: A standard grid G ∈ RN× H× W × 2 is generated, where N  is the batch size, as shown in 
Eq. (28).

	 Gi,j =
( 2j

Wc−1 − 1, 2i
Hc−1 − 1

)
� (28)

Offset Grid Calculation: The low-resolution offset grid Gl and high-resolution offset grid Gh​ are computed, as 
shown in in Eq. (29):

	 Gl = G + Ol
norm

, Gh + Oh
norm

� (29)

Grid sampling is applied to the contextual and semantic feature maps, as shown in Eq. (30).

	 xCF = grid_sample(xCF , Gl), xSF = grid_sample(xSF , Gh) � (30)

grid_sample is an operation used to sample a feature map according to a given grid.
The attention is computed using the tanh activation function and fused, as shown in Eqs. (31) and (32).

	 att = 1 + tanh (O[ :, 4G : ])� (31)

	 xSF = att [:, 0 : 1] · xSF + att [:, 1 : 2] · xCF � (32)

The final output is the weighted semantic feature map, as shown in Eq. (33).

	 xout = xSF � (33)

Experiments and discussion
Dataset
The VisDrone 2019 dataset is a large-scale, high-resolution collection of UAV-captured images and videos 
designed for multi-object detection, tracking, and classification tasks. It ​contains 288 video clips (totaling 
261,908 frames) alongside ​10,209 static images. This dataset features over 2.6 million manually annotated object 
bounding boxes across all frames, covering various object categories, including pedestrians, cars, bicycles, and 
tricycles. The dataset captures diverse environmental contexts, encompassing both urban and rural scenes with 
varying object scales and occlusion levels. It includes objects in both sparse and densely clustered configurations, 
making it particularly suitable for evaluating and improving small object detection algorithms. The data collection 
process accounts for varying weather and lighting conditions, introducing realistic challenges encountered 
in real-world applications. We selected images for our object detection task from the VisDrone 2019 dataset, 
which is organized into 6,471 training images, 548 validation images, and 3,190 test images. The specific types 
and quantities are illustrated in Fig. 8. VisDrone 2019 is especially effective for detecting densely packed small 
objects and partially occluded targets, ​serving as a standard benchmark in UAV vision research and performance 
evaluation.

Evaluation metrics
In this paper, we adopt the mean Average Precision (mAP) as the primary metric to evaluate the performance 
of the algorithm. This has been widely proven to be an effective evaluation method38. We strictly follow the 
mainstream COCO evaluation metrics to assess the overall performance of the model. (1) The Average Precision 
(AP) value is computed by averaging mAP scores calculated at IoU thresholds ranging from 0.5 to 0.95 with 
a step size of 0.05. Specifically, AP@0.5 and AP@0.75 refer to the mAP values calculated at IoU thresholds of 
0.5 and 0.75, respectively. (2) AP Across Scales assesses model performance by categorizing objects into small, 
medium, and large based on their area. Specifically, objects smaller than 32 × 32 pixels are classified as small, 
those larger than 96 × 96 pixels are classified as large, and objects with sizes in between fall into the medium 
category. By calculating the mAP for each of these object size categories, we can gain a deeper understanding of 
the model’s performance across different object sizes.

The mAP is defined as the average of the AP across all classes. It can be calculated using the following formula:
For each class, the AP is calculated by computing precision and recall at different thresholds, followed by 

averaging the results. The specific methods for calculating Precision(P) and Recall(R) are outlined in Eq. (34) 
and Eq. (35), respectively.

	 P = T P
T P +F P � (34)

	 R = T P
T P +F N � (35)
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where TP denotes the true positive scenario, in which a sample is correctly predicted to be positive, FP represents 
the false positive case, where a sample is incorrectly predicted to be positive despite being negative, and FN 
signifies the false negative scenario, where a sample is erroneously predicted to be negative whereas it is actually 
positive.

AP and mAP are calculated as shown in Eqs. (36) and (37).
Formula for AP:

	 AP =
∫ 1

0P (r) dr � (36)

where: P (r) is the precision at a given recall level.
Formula for mean Average Precision (mAP):

	 mAP = 1
n

∑ n

i=1APi � (37)

where N is the number of classes. APi is the Average Precision for class i.
The F1 curve is typically calculated by adjusting the threshold to obtain different values of precision and 

recall. A higher F1 score indicates that the model is better at balancing precision and recall. If the value of the 
curve is closer to 1, it means the model’s performance is better.

The formula for calculating the F1 score is as shown in Eq. (38).

	 F 1 = 2× P× R
P+R � (38)

Implementation details
In this study, the model is implemented using the PyTorch framework and trained on an NVIDIA 4090 GPU 
with 24GB of memory. The batch size is set to 4, and the input image resolution is 640 × 640 pixels to ensure 
comprehensive coverage of spatial details and features. The training is conducted over 150 epochs. For the 
hyperparameter settings, all parameters—except for the number of workers, batch size, and total epochs—are 
adjusted based on the specific experimental setup and requirements. The remaining parameters are configured 
according to the officially recommended best practices of RT-DETR22 to maintain the rigor of the experiment. 
The detailed experimental environment for training and testing is listed in Table 1.

Index curve analysis
To validate the effectiveness of our proposed method, we integrate five advanced modules into the baseline 
RTDETR architecture for ablation studies:

(1) Additive Token Mixer39: A cross-channel interaction mechanism from Transformer-based models. We 
replace the decoder’s self-attention layer in RTDETR with this module, denoted as RTDETR-AdditiveTokenMixer. 
(2) KAGNConv2DLayer40: KAGNConv2DLayer is a convolutional layer that replaces the traditional linear 
convolutional kernel with a nonlinear function, enabling nonlinear transformations. By efficiently capturing 
nonlinear relationships, it enhances the model’s generalization ability and efficiency. We introduce it into the 
RTDETR encoder and name it RTDETR-KAGNConv2DLayer. (3) Local feature extraction41: An efficient 
convolution operation from ELAN networks for local structure modeling. We integrate it into the encoder, 
denoted as RTDETR-Local feature extraction. (4) SPD-Conv42: A space-to-depth convolution block proposed 

Fig. 8.  Details of the VisDrone 2019 dataset.
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for preserving fine-grained information in low-resolution scenarios. (5) Omni-Kernel43: A multi-scale receptive 
field module combining global, large, and local branches. We insert SPD-Conv and Omni-Kernel in RTDETR’s 
encoder, named RTDETR-SPDConv-OmniKernel.

Analysis of F1 value curve
As shown in Fig. 9, when the Confidence value is 0.373, the best F1 score of the RTDETR algorithm is 0.51. 
In Fig. 9b, the RTDETR-AdditiveTokenMixer algorithm has the best F1 score of 0.51 at a Confidence value of 
0.376. In Fig. 9c, the RTDETR-KAGNConv2DLayer algorithm achieves the best F1 score of 0.51 at a Confidence 
value of 0.383. When the Confidence value is 0.386, the RTDETR-Local feature extraction algorithm in Fig. 9d 
achieves the best F1 score of 0.50. In Fig. 9e, the RTDETR-SPDConv-OmniKernel algorithm has the best F1 
score of 0.51 at a Confidence value of 0.383. Lastly, when the Confidence value is 0.388, the best F1 score of 0.54 
is achieved by Our method, as shown in Fig. 9f.

Precision value curve analysis
As shown in Fig. 10, when the Confidence value is 0.967, the best Precision value of the RTDETR algorithm is 1. 
In Fig. 10b, the RTDETR-AdditiveTokenMixer algorithm achieves the best Precision value of 1 at a Confidence 
value of 0.971. When the Confidence value is 0.966, the best Precision value of the RTDETR-KAGNConv2DLayer 
algorithm is 1, as shown in Fig. 10c. In Fig. 10d, the RTDETR-Local feature extraction algorithm has the best 
Precision value of 1 at a Confidence value of 0.969. In Fig. 10e, the RTDETR-SPDConv-OmniKernel algorithm 
achieves the best Precision value of 1 at a Confidence value of 0.963. Lastly, in Fig. 10f, our method achieves the 
best Precision value of 1 at a Confidence value of 0.969.

Precision-recall value curve analysis
The Precision-Recall (PR) curve is an important tool for evaluating the performance of object detection models. 
It shows the relationship between precision and recall at different confidence thresholds. The PR curve plots 
recall on the vertical axis and precision on the horizontal axis, representing the model’s performance at various 
confidence thresholds. The larger the area under the curve, the better the model’s performance. Figure  11 
illustrates the PR curves for different RTDETR-based algorithms.

In Fig. 11a, the RTDETR algorithm achieves the best Precision-Recall value of 0.468 at mAP@0.5. In Fig. 11b, 
the RTDETR-AdditiveTokenMixer algorithm achieves the best Precision-Recall value of 0.464 at mAP@0.5. 
In Fig. 11c, the RTDETR-KAGNConv2DLayer algorithm achieves the best Precision-Recall value of 0.466 at 
mAP@0.5. In Fig. 11d, the RTDETR-Local feature extraction algorithm achieves the best Precision-Recall value 
of 0.454 at mAP@0.5. In Fig. 11e, the RTDETR-SPDConv-OmniKernel algorithm achieves the best Precision-
Recall value of 0.464 at mAP@0.5. Finally, in Fig. 11f, our method achieves the best Precision-Recall value of 
0.499 at mAP@0.5.

Ablation experiments
In this section, we present the results of an ablation study conducted on the VisDrone 2019 dataset, aimed at 
evaluating the effectiveness of each module proposed in our model. Table 2 shows the results of the ablation 
experiments.

In this ablation study, we evaluate the performance of the baseline model and its combinations with the 
MEFE-Net and CSFCN modules, providing an in-depth analysis of their impact on model performance. The 
experimental results show that the baseline model achieves an AP50 of 43.8%, with APM and APL at 36.4% and 
43.2%, respectively,

The experimental results show that the mAP of the baseline model reached 26.0%, with AP50, APM and APL 
of 43.8%, 36.4% and 43.2%, respectively, demonstrating superior performance in detecting medium and large 
objects. However, the baseline model exhibits limitations in small object detection, with an APs of only 18.1%. 
This performance gap indicates that while the baseline model effectively recognizes large objects, it struggles 
with small object detection, particularly in terms of precision.

After incorporating MEFE-Net, the model’s AP50 and AP75 increase to 45.1% and 27.3%, respectively, 
showing improvements of 1.3% and 1.1% over the baseline model. Furthermore, the model’s performance on 
small and medium object detection also improves, with APS and APM rising to 18.7% and 37.6%, respectively, 
reflecting improvements of 0.6% and 1.2%. Additionally, MEFE-Net significantly reduces the model’s parameter 
count, indicating that it achieves a balance between improved detection accuracy and computational efficiency. 

Environment Description

GPU NVIDIA GeForce RTX 4090

CPU AMD EPYC 7453 28-Core Processor

VRAM 24GB

Operating system Ubuntu 20.04.3

Deep learning framework Pytorch1.13

CUDA version 11.7

Language Python3.8.10

Table 1.  Experimental environment.
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Although APL slightly decreases, MEFE-Net overall enhances the model’s multi-scale feature learning capability 
by reinforcing edge details and local information processing, thereby improving small object detection 
performance.

When CSFCN is added to the model, AP50 and AP75 reach 44.3% and 27.1%, respectively, with increases 
of 0.5% and 0.9% over the baseline. The model also shows notable improvements in small and medium object 
detection, with APS and APM increasing by 0.7% and 0.6%, respectively. This suggests that CSFCN improves the 
model’s robustness and detection capability through multi-scale contextual feature fusion. However, the inclusion 
of CSFCN introduces additional modules and parameters, leading to an increase in the model’s parameter count.

Finally, when both MEFE-Net and CSFCN are combined, the model reached 28.0% at mAP, a 2% 
improvement compared to 26.0% in the baseline model, and achieves an AP50 of 46.6% and an AP75 of 28.6%, 
representing significant performance improvements of 2.8% and 2.4%, respectively. For small, medium, and 
large object detection, the model achieves APS, APM, and APL of 19.6%, 39%, and 43.8%, with improvements of 
1.5%, 2.6%, and 0.6%, respectively, compared to the baseline. This demonstrates that the combination of MEFE-
Net and CSFCN significantly enhances the model’s comprehensive detection ability, especially in terms of small 
and medium object detection. MEFE-Net enhances edge details and local information processing, while CSFCN 
improves multi-scale feature fusion, enabling better perception of objects at different scales. The complementary 
effects of these modules substantially improve detection accuracy. Additionally, due to the efficient reduction in 
computational complexity by MEFE-Net, the final model’s parameter count is 15.86M, achieving a good balance 
between accuracy and computational cost.

Fig. 9.  Analysis of the F1 value curve.
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Effectiveness analysis of the proposed MEFE-Net
We propose a multi-scale edge feature information-focused network that incorporates the ideas of CSPNet, 
effectively enhancing gradient flow, reducing computational cost, and alleviating the vanishing gradient 
problem. To evaluate the effectiveness of the proposed MEFE-Net, we integrate it with various models and 
conduct experiments on the VisDrone dataset. The results demonstrate that the proposed feature extraction 
network performs excellently across different network architectures, and the incorporation of MEFE-Net leads 
to significant improvements in multiple metrics. Table 3 shows the results on the VisDrone dataset. Specifically, 
after adding MEFE-Net, both YOLOv8 and YOLOv10 show improvements in AP50, AP75, and small object 
detection (APS), highlighting the effectiveness of MEFE-Net in enhancing small object recognition. For 
RTDETR, after integrating MEFE-Net, AP50 and AP75 increase by 1.3% and 1.1%, respectively, with further 
improvements in APS. Additionally, the integration of MEFE-Net optimizes feature fusion and computational 
efficiency, reducing model parameter count while boosting overall performance. Although MEFE-Net slightly 
decreases APL in YOLOv10 and RTDETR, it significantly enhances the target detection capability of the original 
models, particularly in fine-grained object recognition.

Comparison with state-of-the-art models
We conducted comprehensive comparative experiments on the VisDrone dataset, evaluating the proposed model 
against other state-of-the-art object detection models. The experimental results demonstrate that the proposed 
EMF-DETR outperforms in various object detection metrics, particularly in small object and multi-scale object 

Fig. 10.  Analysis of precision value curve.
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detection. Table 4; Fig. 12 outline a comparison of various object detection models on the VisDrone dataset. 
Compared to the YOLO series models, such as YOLOv5l, YOLOv6m, YOLOv7x, YOLOv8m, YOLOv9m, 
YOLOv10m, and the latest YOLOv11l, the proposed model shows significant advantages in performance 
and exhibits the highest accuracy on mAP, particularly in small object detection precision (APS), achieving 
increases of 4.7%, 7.6%, 1.7%, 5.6%, 5.9%, 6%, and 4.2%, respectively. Additionally, the model has a relatively low 
parameter count of 15.86 M, showcasing high computational efficiency. In comparison with other DETR-based 
object detection models, the proposed model maintains excellent detection performance with fewer parameters. 
Compared to D-fine-m, the proposed model shows clear advantages in AP50 and AP75, with improvements of 

Model mAP AP50 AP75 APS APM APL Para

Baseline 26.0 43.8 26.2 18.1 36.4 43.2 19.88 M

+MEFE-Net 27.0 45.1 27.3 18.7 37.6 40.8 14.63 M

+CSFCN 26.8 44.3 27.1 18.8 37 42.3 21.12 M

+MEFE-Net + CSFCN 28.0 46.6 28.6 19.6 39 43.8 15.86 M

Table 2.  Detection results of the algorithm using different modules.

 

Fig. 11.  Analysis of precision-recall value curve.
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3.7% and 2.7%, respectively, and particularly excels in small object detection (APS) with a 1.8% improvement. 
When compared to Deformable-DETR, the proposed model demonstrates a more comprehensive performance 
lead. Our proposed approach achieves an FPS of 58.4, demonstrating a strong performance with a good balance 
between efficiency and accuracy.

The Fig. 13 visualizes the model’s object detection results in terms of predicted bounding box localization. 
We evaluate detection performance using True Positives (TP), False Positives (FP), and False Negatives (FN). 
Specifically, green boxes represent correctly detected objects, where both the position and class match the ground 
truth annotations. Blue boxes indicate correctly localized objects, but with a mismatch in class between the 
prediction and ground truth. Red boxes highlight missed detections, where the model fails to identify the object.

Feature attention visualization
We evaluate the model’s performance through heatmap visualization analysis, which provides an intuitive 
representation of the model’s focus on different regions. The heatmap uses color gradients to indicate the 
attention distribution across the image, especially for small object detection in dense or complex backgrounds, 
allowing us to clearly identify the regions or objects that the model focuses on. As shown in the Fig. 14, darker 
areas represent regions with higher attention from the model. In the baseline model’s heatmap, the detected 
object regions are more dispersed, particularly in areas with small objects or rich details, where the concentrated 
regions in the heatmap are fewer, leading to imprecise object localization and boundary detection. Additionally, 
background noise can interfere with object recognition, particularly in complex and multi-scale scenes, where 
the boundaries of objects are less clear.

In our proposed model, the heatmap exhibits more concentrated object regions, especially for small objects 
and complex backgrounds. The dense regions in the heatmap correspond more accurately to the object locations, 
particularly in small object detection, such as small objects on road lanes, where the improvement is especially 
evident. This improvement is attributed to the introduction of the cross-attention mechanism and multi-scale 
feature fusion, which optimizes the accuracy of object localization. The offset learning and adaptive feature 
fusion precisely align the feature maps, reducing interference from the background. Finally, the enhancement 
of edge features improves the recognition of fine details, allowing clearer identification of object boundaries, 
particularly in complex scenes and multi-object detection tasks.

Conclusion
In this paper, we propose EMF-DETR, a novel model designed to address challenges such as sparse feature 
representation, insufficient localization features for small-scale targets, and inadequate multi-scale fusion in 
high-resolution remote sensing images. The core innovation lies in the MEFE-Net, which enhances the target 

Model mAP AP50 AP75 APS APM APL Para GFLOPs FPS

Baseline 26.0 43.8 26.2 18.1 36.4 43.2 19.88 M 56.9 61.4

Faster R-CNN 17.1 34.2 16.3 11.7 28.5 32.6 41.70 M 251.2 15.2

YOLOv5l 24.9 41.2 25.3 14.9 37.7 43.1 53.14 M 134.7 50.8

YOLOv6m 21.7 36.5 21.9 12.0 34.2 44.2 34.90 M 85.8 69.5

YOLOv7x 26.8 46.5 26.5 17.9 37.9 41.4 70.88 M 189.1 24.11

YOLOv8m 23.4 39.3 23.4 14.0 35.8 42.4 25.85 M 78.7 75.4

YOLOv9m 24.1 40.1 24.6 13.7 37.4 47.9 32.57 M 130.8 60.98

YOLOv10m 23.3 38.9 23.8 13.6 35.8 43.8 16.46 M 63.50 68.8

YOLOv11l 25.1 41.5 25.9 15.4 37.7 46.9 25.29 M 86.60 78.0

D-fine-m 25.7 39.6 23.4 15.8 32.7 42.3 19.19 M 56.37 46.9

Deformbale-DETR 25.4 44.0 24.8 17.1 35.5 38.6 40.96 M 173.0 34.0

RTDETR-fasternet 24.8 42.0 24.7 17 35 40.2 21.53 M 54.9 60.9

RTDETR- mobilenetv4 22.5 38.4 22.3 14.8 32 36.3 11.32 M 39.5 56.0

Our method 28.0 46.6 28.6 19.6 39 43.8 15.86 M 56.9 58.4

Table 4.  Comparison with state-of-the-art models on the visdrone dataset.

 

Model mAP AP50 AP75 APS APM APL Para

YOLOv8 23.4 39.3 23.4 14 35.8 42.4 25.85 M

YOLOv8 + MEFE-Net 24.1 40.5 24.4 14.6 36.3 45.6 24.14 M

YOLOv10 23.3 38.9 23.8 13.6 35.8 43.8 16.46 M

YOLOv10 + MEFE-Net 24.3 40.8 24.7 14.6 36.9 42.6 16.98 M

RTDETR 26.0 43.8 26.2 18.1 36.4 43.2 19.88 M

RTDETR + MEFE-Net 27.0 45.1 27.3 18.7 37.6 40.8 14.63 M

Table 3.  The effectiveness analysis of MEFE-Net.
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feature recognition and edge information extraction capabilities. Leveraging WTConv’s ​large receptive field 
and lightweight architecture, we ​achieve computational efficiency ​without sacrificing accuracy. To address 
pixel context mismatch and spatial feature misalignment induced by repeated downsampling operations, we 
introduce the CSFCN. This module performs contextual and channel features calibration, resulting in significant 
performance enhancement. Extensive experiments on the VisDrone 2019 dataset demonstrate that our method 
outperforms competing models across various evaluation metrics. Compared with the baseline model, our 
approach ​achieves comprehensive improvements with a 20.22% reduction in parameters, effectively reducing 
computational overhead. This advancement establishes a robust framework ​while providing new perspectives 
for high-resolution object detection.

Despite achieving competitive accuracy and parameter efficiency, our model exhibits limitations in real-time 
processing due to computational complexity constraints. ​Future work will focus on optimizing high-resolution 
image processing speed ​while maintaining accuracy, towards enabling real-time monitoring applications.

Fig. 12.  The detection AP of different models and parameters of the model.
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Fig. 13.  Visualization of the detection results of our method.
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Data availability
Data is available in Public data warehouse. Visdrone2019 data set: ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​V​i​s​D​r​o​n​e​/​V​i​s​D​r​o​n​e​-​D​a​
t​a​s​e​t​​​​​.​​
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