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Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths globally, owing 
to its high recurrence rate of 50 to 70% within five years. Despite known associations of certain 
DNA damage and repair (DDR) genes with tumor recurrence and drug resistance, a comprehensive 
understanding of DDR pathways’ role in predicting HCC recurrence and therapeutic responses remains 
elusive. Addressing this gap could offer significant advancements in prognostic and therapeutic 
strategies for HCC. This study used 769 RNA sequencing samples from public datasets and 53 samples 
from Xiangya Hospital for DDR model training and validation. It came out that DDR pathways were 
significantly enriched in samples with P53 mutations. Next, among the 173 combinations of algorithms 
and parameters, CoxBoost + RSF, Lasso [fold = 10] + RSF, and Lasso [fold = 50] + RSF demonstrated the 
best performance. The average AUC values of 1 to 5 years and the average concordance index (C-index) 
value were around 0.7. The risk scores were increased in tumors with recurrence, P53 mutation, and 
higher TNM stages. High-risk groups, characterized by enriched DDR pathways, exhibited lower 
CD8 + T cell infiltration and poorer responses to immunotherapy using atezolizumab and bevacizumab, 
emphasizing the potential of DDR signatures as valuable prognostic and therapeutic biomarkers. In 
conclusion, the DDR signatures associated with P53 mutations can predict recurrence and therapeutic 
response in HCC, highlighting their potential as prognostic and therapeutic biomarkers.
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Hepatocellular carcinoma (HCC) is a major contributor to cancer-related deaths globally1, with alarmingly high 
postoperative recurrence rates of 50% to 70% within five years2. While the clinical characteristics influencing 
HCC recurrence risk are well-documented3–5, the molecular mechanisms remain poorly understood. This gap 
in knowledge impedes the development of effective postoperative strategies to reduce recurrence risk. Current 
adjuvant target therapies, including sorafenib, had failed to improve recurrence-free survival (RFS) in HCC6. 
Similarly,  transcatheter arterial chemoembolization showed limited efficacy in preventing postoperative 
recurrence7. Although combining atezolizumab and bevacizumab has significantly extended overall survival 
(OS) in advanced HCC8,9, it has been less effective in prolonging RFS in the whole population of resectable HCC 
tumors with high recurrence risk10. Traditional immune therapy biomarkers such as programmed cell death 1 
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ligand 1 (PD-L1) expression, tumor mutational burden, and microsatellite instability, offered limited predictive 
value for HCC treatment outcomes11. This underscored an urgent need for novel molecular panels to better 
predict postoperative recurrence and inform treatment strategies.

P53 played a crucial role in the initiation and progression of tumors12–14, primarily through the activation 
of DNA damage and repair (DDR), inhibition of the cell cycle, and promotion of apoptosis15. P53 mutations 
were associated with HCC recurrence, leading to shorter OS and RFS among patients16. DDR was essential 
for repairing gene mutations and maintaining genomic stability17–20. Limited evidence suggested that DDR 
promote tumor recurrence. For example, DDR-induced reactivation of Octamer-Binding transcription factor 
4 led to tumor recurrence21 , and upregulation of DDR genes in glioblastoma promoted tumor progression and 
recurrence22. Interestingly, defects in DDR could activate anti-tumor effects via various mechanisms23–25. For 
instance, the accumulation of mutations caused by DDR defects generated tumor-specific neoantigens, which 
in turn activate anti-tumor immunity26. DNA damage-induced activation of the cGAS-STING pathway fostered 
type I IFN signaling and enhanced anti-tumor immune responses27,28. DNA damage could also lead to increased 
expression of PD-L129,30 , and triggered immune responses through cell death signals31. Therefore, molecules in 
the DDR pathway had the potential to serve as predictive markers for immunotherapy32.

Molecular models were widely utilized for predicting cancer prognosis and guiding treatment options33–35. 
With advancements in machine learning, combining various algorithms and selecting the most effective ones are 
crucial for enhancing model performance36,37. In this study, we applied 173 distinct combinations of machine 
learning algorithms to datasets from TCGA-LIHC, PLANET, GSE76427, GSE14520, and the Xiangya cohort. 
Our model was designed to predict HCC recurrence and treatment response by leveraging DDR signatures 
associated with P53 mutations. Our analysis explored the relationship between DDR signatures and factors 
such as the immune microenvironment, drug sensitivity and responsiveness to immunotherapy. These findings 
highlighted the potential of DDR signatures as prognostic and therapeutic biomarkers in HCC.

Material and methods
Collection and sequence of clinical HCC samples
In this study, we collected frozen tumor tissues from 53 HCC patients who underwent resection at Xiangya 
Hospital, Central South University, between 2017 and 2020. All of them had a confirmed diagnosis of HCC 
without any other primary tumors, had not received any treatment prior to surgery, and had not undergone 
postoperative immunotherapy. A follow-up was conducted to monitor RSF, with the follow-up endpoint being 
August 2024. These patients served as a validation cohort for our model. Additionally, we collected HCC tissues 
for Cytometry by Time-Of-Flight (CyTOF) and RNA sequencing from 16 patients, which were reported in our 
previous article38. The RNA sequencing data were supposed to be used in calculating the DDR model-derived 
risk score for each sample. And the matched CyTOF data were to be used in assessing intra-tumoral immune 
cell infiltration between the high and low-risk groups. The collection and handling of clinical specimens were 
approved by the Ethics Committee of Xiangya Hospital, Central South University (approval number: 202401014). 
Samples meeting quality control standards were sequenced on the BGI platform, with a sequencing depth of 
10G, producing raw FASTQ data. The data were processed using fastp (version 0.20.1) to remove adapters and 
low-quality reads, yielding clean data. Hisat2 (version 2.2.1) was used for aligning to the GRCh38 reference 
genome, and featureCounts (version 2.6.0) was employed to obtain read counts, which were then normalized to 
TPM and log2 transformed.

Public data collection and batch effect removal
For recurrence analysis, publicly available transcriptomic sequencing data were gathered from tumor resection 
specimens of HCC patients, including datasets from the Cancer Genome Atlas Liver Hepatocellular Carcinoma 
(TCGA-LIHC), PLANET, GSE76427, and GSE14520. Clinical data, mutation information, and bulk RNA 
sequencing raw expression files for the TCGA-LIHC cohort were retrieved from https://portal.gdc.cancer.gov. 
The gene expression matrix was normalized to TPM and log2 transformed. Samples with P53 mutations, identified 
as single nucleotide polymorphism or deletion, were annotated as P53-mutant, while others were labeled as P53-
wild type. From the initial 377 samples, those without recurrence time and those within non-primary tumors 
were excluded, resulting in 364 samples for further analysis. For the PLANET cohort39, clinical information 
and raw expression files were acquired from ​h​t​t​p​s​:​​/​/​f​i​g​s​​h​a​r​e​.​c​​o​m​/​a​r​t​​i​c​l​e​s​​/​d​a​t​a​s​​e​t​/​P​L​A​​N​E​T​_​c​o​​h​o​r​t​/​2​3​7​3​2​3​7​0. 
Average expression was calculated when multiple tumor samples were available for a single patient, followed by 
TPM normalization and log2 transformation. Samples missing recurrence time and those categorized as non-
primary tumors were excluded, resulting in 55 samples for downstream analysis. Gene Expression Omnibus 
(GEO) data with the accession numbers of GSE76427 and GSE14520 were downloaded from GEO database40,41. 
After excluding samples with missing recurrence times, 108 and 242 samples were retained from GSE76427 and 
GSE14520, respectively. Each dataset had low-variance genes with an inter-sample variance below 0.2 removed. 
Batch effects were assessed using principal component analysis (PCA) and removed using the ComBat method 
from the sva package to minimize technical variation and enhance data consistency and comparability.

For analysis of therapy response, we applied the HCC transcriptomic sequencing data with therapy 
response information from the European Genome-phenome Archive, with dataset ID EGAD00001008128 
and EGAD0000100813042. EGAD00001008128 contains raw RNA sequencing data from tumor samples of 358 
patients who participated in the GO30140 (NCT02715531) phase 1b or IMbrave150 (NCT03434379) phase 3 
trials and received treatment with either atezolizumab combined with bevacizumab, atezolizumab alone, or 
sorafenib. EGAD00001008130 contains therapy response and survival outcome. These raw data were processed 
using fastp (version 0.20.1) to remove adapters and low-quality reads, yielding clean data. Hisat2 (version 2.2.1) 
was used for aligning to the GRCh38 reference genome, and featureCounts (version 2.6.0) was employed to 
obtain read counts, which were then normalized to TPM and log2 transformed.
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Enrichment analysis and survival analysis
All analyses were performed using R software (version 4.3.2). Gene sets related to DNA damage repair were 
obtained from MSigDB43, enriched through Gene Ontology44, Kyoto Encyclopedia of Genes and Genomes45, 
Reactome46, and WikiPathways, along with gene sets summarized by Michele Olivieri et al.47, aggregating 
to a total of 430 gene sets. GSEA enrichment analysis was conducted using GSEA (version 4.3.3). Gene sets 
with an FDR < 25% and nominal p-value < 5% were considered significantly enriched, and the genes within 
these significant gene sets were subjected to univariate Cox regression analysis. RFS-related univariate Cox 
regression analysis was performed using the survival package. Genes with a Cox regression p-value < 0.05 in 
both the training and independent validation cohorts were intersected to identify prognostic genes significantly 
associated with RFS for subsequent model development. The survival and survminer packages were used to 
generate Kaplan–Meier plots illustrating the relationship between model risk scores and survival probability. For 
significant genes in the model, enrichment analysis was conducted using Enrichr-KG (maayanlab.cloud), and 
chord diagrams were drawn using the circlize package to depict the pathway-gene relationships and biological 
functions.

Model training and validation
The TCGA-LIHC cohort was used as the training set, PLANET as validation set 1, GSE76427 and GSE14520 
combined as validation set 2, and the Xiangya cohort as an independent validation set. A total of 10 machine 
learning algorithms were integrated: CoxBoost, Random Survival Forests (RSF), Lasso, stepwise Cox, Gradient 
Boosting Machine (GBM), Ridge, Elastic Net (Enet), SuperPC, survival-support vector machines (survival-
SVMs), and plsRcox. These algorithms were widely used for published survival models37,48–50. By adjusting 
cross-validation folds, stepwise regression directions, and penalty terms, 173 algorithm combinations were 
generated. These combinations were used to train 173 prognostic models on the training set. The pROC and 
ggplot2 packages facilitated the computation and visualization of AUC heatmaps for 1 to 5 years and calculated 
the concordance index (C-index) of the models. The mosaic::zscore function of the mosaic package was used 
to standardize risk scores within each cohort. The mosaic::zscore function automatically transformed the data 
into a standard normal distribution (mean = 0, standard deviation = 1). Samples with risk scores higher than 
cohort mean were divided into the high-risk group, while the others were in the low-risk group. The survminer 
package was employed to illustrate survival probability differences between high and low-risk groups using 
Kaplan–Meier (KM) plots. Univariate and multivariate Cox regression analyses were conducted using the 
survival package, with forest plots drawn using the forestplot package to evaluate the independent predictive 
effect of risk scores on RFS. The ggplot2 package generated bar plots showcasing the most important features in 
the random forest model.

Immune infiltration algorithms and CyTOF analysis
Four immune microenvironment scoring methods—ESTIMATE51, xCELL52, IPS53, and TIDE54—were 
applied to score the training and validation sets. Five immune infiltration algorithms—xCELL, CIBERSORT55, 
CIBERSORT absolute, MCPcounter, and TIDE—were used for differential analysis of immune-infiltrating cells 
between high and low-risk groups in the training set. CyTOF was conducted by SendiBio, as described in our 
previous publication38. Cell clustering and t-SNE dimensionality reduction of CyTOF data were performed 
using FCS Express 7.

Drug sensitivity analysis
The oncoPredict R package was utilized to predict drug responses for each sample56. CTRP was used for RNA-
seq data, and GDSC2 for microarray data. Drug sensitivity scoring was performed for both high and low-risk 
groups in the training and validation sets, with significance tested using the Wilcoxon test. The intersection 
of differential drugs in each cohort provided representational differential drugs. Violin plots illustrated the 
inter-group differences in drug sensitivity scores, while scatter plots showcased the correlation between drug 
sensitivity scores and risk scores.

Cell lines and cell cultures
LO2 (normal liver cell line), Hep3B, HCCLM3, HepG2, and MHCC97H (Human liver cancer cell line) were 
purchased from the Chinese Academy of Sciences Typical Culture Preservation Center Cell Bank. All cell lines 
were maintained in Dulbecco Modified Eagle culture-medium (DMEM) (10–013-CVRC, Corning, Suzhou, 
Jiangsu, China) containing 10% FBS (SA301.02, Cellmax, Beijing, China) in a humidified incubator containing 
5% CO2 at 37 °C. All cells were free of mycoplasma contamination.

Cell count kit-8 (CCK-8) proliferation test
Cell proliferation was detected by CCK-8 assay (BS350B, Biosharp, Beijing, China); cells of logarithmic growth 
stage (2000 cells per well) were inoculated on 96-well plates. At specific time points (24, 48, 72 h), cells were 
added with CCK-8 solution 10 μL per well and incubated at 37 ℃ for two hours. The absorbance value at 450 nm 
was calculated by spectrophotometry three times every 24 h.

RNA isolation and real-time quantitative polymerase chain reaction (PCR)
Total RNA is extracted using AG RNAex Pro reagent (AG21101, AG, Changsha, Hunan, China). The RNA 
concentration was quantified using NanoDrop™ One. 1.5  μg RNA was transferred to cDNA using the Evo 
M-MLV RT Kit (AG11728, AG, Changsha, Hunan, China). The SYBR Green PCR Mastermix Kit (AG11718, 
AG, Changsha, Hunan, China) was used to amplify PCR on QuantStudio™ real-time fluorescent quantitative 
PCR software. 2-ΔΔCt computes values for quantitative analysis. Primers are as follows:
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POLR3G:
F: ​T​A​G​G​G​A​G​C​A​G​T​G​C​C​T​T​T​C​A​G.
R: ​G​T​G​G​G​G​G​T​G​G​T​T​T​C​A​A​C​A​C​T.
GAPDH:
F: ​C​A​G​G​A​G​G​C​A​T​T​G​C​T​G​A​T​G​A​T.
R: ​G​A​A​G​G​C​T​G​G​G​G​C​T​C​A​T​T​T.
Using GAPDH as the internal parameter, the 2 − ΔΔCt value was calculated for quantitative analysis.

Western blotting
Extract total protein with radio immunoprecipitation assay buffers containing phosphatase and protease 
inhibitors. After separation by SDS-PAGE, the proteins were transferred to a polyvinylidene fluoride membrane 
at 250 mA for 90 min and blocked with 5% skim milk. Subsequently, the membrane was incubated with primary 
antibody at 4℃ for 12 h. Subsequently, the membrane and the secondary antibody were incubated at 37℃ for 
60 min. After 3 washes with TBST, the ChemiDoc XRS Image system detected the signal. Finally, the protein was 
quantitatively analyzed using Image J software. Antibodies used were as followed: POLR3G (03G240603, 1:1000, 
AWA40802, Abiowell, Changsha, Hunan, China), β-Tubulin (21,000,383, 1:20,000, HRP-66240, Proteintech, 
Wuhan, Hubei, China).

EdU detection
3000 cells were inoculated on a 96-well plate. Cells were maintained with 20  μM EdU (C0078S, Beyotime, 
Shanghai, China) for 2 h and fixed with 4% paraformaldehyde. The cells were then treated with 50 μl Click 
Additive Solution. For 30  min, washed with 0.5% Triton X-100 (AWH0299a, Abiowell, Changsha, Hunan, 
China), stained with DAPI solution (AWC0292, Abiowell, Changsha, Hunan, China), and images were collected 
under the microscope.

Small interference RNA (siRNA) transfection
Sequentials were ordered from OBIO (https://www.obiosh.com/) for siRNA transfection targeting POLR3G, 
and Lipo3000 (L3000-015, Invitrogen, California, USA) was utilized for transfection. The specific sequences for 
each siRNA are as follows:

Si-NC.
Forward: ​U​U​C​U​C​C​G​A​A​C​G​U​G​U​C​A​C​G​U​T​T.
Reverse: ​A​C​G​U​G​A​C​A​C​G​U​U​C​G​G​A​G​A​A​T​T.
Si-POLR3G.
Forward: ​U​A​A​A​G​G​A​A​G​A​G​G​A​C​G​U​G​C​U​G​C​U​U​A​U​T​T.
Reverse: ​A​U​A​A​G​C​A​G​C​A​C​G​U​C​C​U​C​U​U​C​C​U​U​U​A​T​T.

Transwell migration
Cell migration experiments were performed in a 24-well transwell plate (8.0 µm pore size, Corning Life Sciences, 
Costar, USA). Stably transduced cells were treated with trypsin and adjusted to 3 × 105 cells/mL after counting. 
Then, 600 µL of complete medium containing 30% (v/v) serum was added to the lower chamber, 200 µL of the 
cell suspension was added to the upper chamber, and the cells were cultured for 48 h. The cells in the upper 
chamber were removed, and the cells remaining on the membrane were fixed with 4% paraformaldehyde solution 
(AWI0056b, Abiowell, Changsha, Hunan, China). After staining with 0.1% crystal violet solution (AWI0364a, 
Abiowell, Changsha, Hunan, China), the cells were observed under a microscope and imaged. All experiments 
were repeated three times.

Statistics analysis
All analyses were performed using R software (version 4.3.2) and GraphPad Prism 10. The Kruskal–Wallis 
test was utilized for multiple group comparisons. This was followed by Dunn’s post-hoc comparisons between 
subgroups, whose p-value was adjusted by the Bonferroni correction. The Wilcoxon rank-sum test was used 
for two-group comparisons. The Kaplan–Meier method was applied to estimate survival probabilities, with 
the log-rank test used for comparing survival curves between different groups. Univariate and multivariate 
Cox regression analyses were performed using the Cox proportional hazards model to evaluate the impact of 
variables on survival time. The Pearson correlation coefficient was calculated to assess the linear relationship 
between variables and quantify the strength of their association. A p-value of less than 0.05 was considered 
indicative of statistical significance.

Results
DDR genes associated with P53 mutations in HCC recurrence
Our methodology was illustrated in Fig. 1. Five pathway enrichment methods, including Kyoto Encyclopedia of 
Genes and Genomes pathway enrichment, Wikipathway pathway enrichment, Reactome pathway enrichment, 
Gene Ontology pathway enrichment, and Michele Olivieri et al. pathway enrichment. The findings consistently 
indicated that P53-mutant HCC exhibited a higher enrichment in DDR pathways, particularly in mismatch 
repair, homologous recombination, base excision repair, nucleotide excision repair, and in the regulation of 
DNA repair gene transcription by P53 (Supplementary table 1). In contrast, there was no notable enrichment 
of genes linked to DDR in wild-type P53 HCC (Fig. 2A). After the elimination of batch effects from different 
datasets, the distribution of each data is scattered and uniform, indicating that the data of various data sets are 
consistent and comparable. As a result, the analysis outcomes can be deemed relatively more reliable (Fig. 2B). 
Univariate Cox regression analysis was carried out on genes that exhibited significant enrichment in the DDR 
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pathway across both the training and validation datasets. Subsequently, 106 prognostic genes that displayed 
a substantial association with RFS were pinpointed and incorporated into the model construction (Fig.  2C; 
Supplementary table 2).

Development and validation of DDR model for HCC recurrence
We identified 106 DDR genes in the training and validation sets through univariate Cox regression analysis 
based on RFS. We employed 173 combinations of algorithms and parameters to construct predictive models 
and evaluate the AUC and C-index over 1 to 5  years (Fig.  3A-B) (Supplementary table 3). CoxBoost + RSF, 
Lasso [fold = 10] + RSF, and Lasso [fold = 50] + RSF were among the best models, with an average AUC and 
average C-index around 0.7. The DDR genes set includes BCL7A, HDAC2, PRKCQ, NPM1, ERCC6, UBB, 
RAD54B, CCT2, MAPKAPK5, PSMD9, NUP85, CCNB1, POLR3G, EEF1E1, CHD1L, GTF3C3, SFN, THOC5, 
TTF2. The weight of each gene in the model was examined using the top three algorithms and parameters, 
revealing consistent results across all three algorithmic combinations. This indicated the relative reliability of our 
results; consistent findings were observed when employing diverse combinations of algorithms (Fig. 3C). The 
pathway analysis of the DDR genes set indicated that the primary enriched pathways were the P53 signaling and 
nucleotide excision repair pathways (Fig. 3D). Furthermore, we extensively summarized the published models 
and AUC values for predicting HCC recurrence utilizing various molecular features (Supplementary table 4).

The high-risk group presented worse clinical prognosis
To better understand the influence of risk scores on clinical features and prognosis, we analyzed RFS and clinical 
characteristics within both the high and low-risk groups. We utilized the LASSO [fold = 10] + RSF algorithm 
to conduct Kaplan–Meier curve analysis and log-rank tests across the TCGA, PLANET, and GEO cohorts. 
Consistently, the high-risk group showed a lower survival rate in all three cohorts. The Hazard Ratios were 115, 
3.5, and 2.3 in the TCGA, PLANET, and GEO cohorts, respectively, with significant differences in log-rank 
P-values (log-rank P < 0.0001, log-rank P = 0.0030, and log-rank P < 0.0001). This implied that our risk score 
was predictive of HCC prognosis (Fig. 4A). Univariate Cox regression analysis showed that high-risk group was 
a significant risk factor (Fig. 4B), and further multivariate Cox regression analyses emphasized that the high-
risk group was an independent poor prognostic factor (Hazard Ratios (95% CI): 100.9 (48.79,208.7)) (Fig. 4C). 

Fig. 1.  Study design flowchart. The TCGA-LIHC dataset was utilized as the training set, while the PLANET, 
GEO, and the Xiangya cohorts were employed as the validation sets. To identify prognostic genes associated 
with RFS, univariate Cox regression analysis was conducted on DDR pathway genes notably enriched in 
P53-mutated samples, identifying 106 candidate genes. Evaluation metrics, such as the AUC and C-index, 
were used to assess the performance of 173 algorithm and parameter combinations. The optimal algorithm 
combination was selected to generate DDR signatures with the highest predictive significance for RFS. 
Subsequently, the HCC patient cohort was stratified into high and low DDR groups for comparative analysis. 
Differences in survival probability, clinical characteristics, microenvironment scores, immune cell infiltration, 
drug sensitivity patterns, and response to immunotherapy were assessed between these two groups.
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Further analysis of clinical features showed that the high-risk group was linked to recurrence type, pathological 
grade, stage, T stage, and presence of P53 mutation, yet it displayed no significant associations with recurrence 
site, N stage, M stage, age, or gender (Fig. 4D-L).

Fig. 2.  DDR genes associated with P53 mutations in HCC recurrence. (A) GSEA map of five pathway 
enrichment methods with P53 mutation as a grouping in the training and validation set. (B) Pre-batch and 
post-batch effects PCA plots in the training and validation sets. (C) Venn diagram of genes significantly 
associated with RFS in training and validation sets.
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Fig. 3.  Development and validation of DDR model for HCC recurrence. (A) Heat map of AUC values and 
3-year average AUC values of the top 60 algorithms and parameter combinations in the training and validation 
sets. (B) Heat maps of 1-, 2-, 4-, and 5-year AUC and c-index values for the top 10 algorithms and parameter 
combinations in the training and validation sets. (C) The lollipop plot showed the three optimal model 
combinations to score the importance of DDR genes. (D) The chord plot showed the related pathways enriched 
by DDR genes.
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The high-risk group demonstrated lower microenvironment score and decreased CD8 + T cell 
infiltration
ESTIMATE Score, xCELL Score, IPS, and TIDE were used to evaluate the immune infiltration of high and 
low-risk groups in the model (Fig. 5A; Supplementary table 5). Elevated ESTIMATE, xCELL, and IPS scores 
were linked to increased immune infiltration, whereas higher TIDE scores were associated with a poorer 
response to immunotherapy. In the training set and the two verification sets, the high-risk group was related 
to low StromalScore (ESTIMATEScore), ESTIMATEScore (ESTIMATEScore), StromaScore (xCELL Score) 
and MicroenvironmentScore (xCELL Score) and high dysfunction (TIDE Score). In the training set and only 
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one validation set, the high-risk group was associated with low ImmuneScore (xCELL Score) scores and high 
Exclusion (TIDE Score)) and TIDE (TIDE Score)). In the training set alone, the high-risk group was associated 
with low ImmuneScore (ESTIMATE Score), MHC (IPS), and IPS (TIDE) scores. In the PLANET cohort, we 
observed no significant differences in Exclusion and TIDE scores between high and low-risk groups, which may 
be attributed to the cohort’s limited sample size (N = 55). However, analysis of the two larger cohorts (TCGA and 
GEO) revealed significant differences in Exclusion and TIDE scores, suggesting enhanced immune exclusion in 
high-risk groups. This indicates that the high-risk group resembled cold tumors and may have exhibited limited 
responsiveness to immune checkpoint monoclonal antibodies like anti-PD1, whereas the low-risk group may 
potentially benefit from immunotherapy. In the TCGA cohort, we applied five immune infiltration algorithms, 
including xCELL, CIBERSORT, CIBERSORT absolute, MCPcounter, and TIDE. Among these, four algorithms 
consistently indicated lower infiltration of CD8 + T cells in the high-risk group (Fig. 5B; Supplementary table 5). 
RNA sequencing of 16 HCC patients in the Xiangya cohort was used to calculate the DDR model-derived risk 
score for each sample. Subsequently, matched CyTOF was used to assess the difference in immune infiltration 
between the high and low-risk groups. CyTOF analysis demonstrated decreased immune cell infiltration in 
the high-risk group. Subsequent examination of cell subsets revealed reduced CD8 + T cell infiltration and an 
elevated level of depleted CD8 + T cells in the high-risk group (Fig. 5C-F; Supplementary table 5). This indicates 
that the low-risk group could potentially respond well to immunotherapy, whereas the high-risk group may 
exhibit characteristics resembling a cold tumor phenotype.

The high-risk group exhibited a poorer response to immunotherapy using Atezolizumab 
+ Bevacizumab
Drug sensitivity scores were calculated for the high-risk and low-risk groups in a training set and two 
validation sets. The overlap of these scores pinpointed two specific drugs (MK-2206 and BI-2536) (Fig. 6A). 
The drug sensitivity scores for the two drugs revealed that the high-risk group in all three cohorts exhibited 
higher sensitivity to MK-2206, whereas the low-risk group demonstrated a stronger sensitivity to BI-2536. The 
sensitivity of MK-2206 was positively correlated with the risk scores in all three cohorts, suggesting that MK-
2206 may be considered to increase the treatment effect in this subset of patients in the high-risk group; However, 
the correlation coefficient is limited (R2 = 0.08). The inverse correlation between the drug sensitivity and risk 
score of BI-2536 indicated its potential to improve treatment effectiveness in low-risk patient groups. However, 
it was worth noting that the correlation coefficient was moderate (R2 = 0.36) (Fig. 6B-C). The recurrence risk 
score model was utilized to evaluate the three drug regimens within the IMbrave150 and GO30140 cohorts. 
The analysis indicated a poorer prognosis for the high-risk group in the IMbrave 150 immunotherapy cohort 
(receiving Atezolizumab +  Bevacizumab​) (Fig.  6D-E; Supplementary table 5). This observation implied a 
potential resistance to immunotherapy using Atezolizumab + Bevacizumab within the high-risk group.

POLR3G promoted the proliferation and migration of HCC cells in vitro
One of core gene in the DDR genes set is POLR3G. We explored the expression and function of POLR3G 
in vitro in HCC. PCR and western blot results showed that POLR3G levels were significantly higher in HCC 
cell lines compared to LO2 cells (Fig. 7A-B). We chose the Hep3B and HCCLM3 cell lines, which exhibited 
relatively high POLR3G expression, for gene silencing and functional experiments. CCK-8 and EdU assays in 
both cell lines revealed decreased cell proliferation capacity upon POLR3G silencing (Fig.  7C-F). Transwell 
migration assays were carried out to validate the role of POLR3G in promoting migration in HCC. Consistently, 
the transwell migration tests demonstrated a notable decrease in the migratory capacity of Si-POLR3G-HEP3B 
and Si-POLR3G-HCCLM3 cells compared to the control group (Fig. 7G-H). In summary, our study revealed 
that POLR3G enhances the proliferation and migration of HCC cells in vitro.

Discussion
HCC is an aggressive and recurrent malignant tumor that often responds poorly to immunotherapy57. Identifying 
biomarkers that predict recurrence and immune efficacy is therefore essential to optimizing treatment strategies 
for those most likely to benefit.

In our study, we examined the role of DDR signatures related to P53 mutations in predicting HCC recurrence 
and response to immunotherapy. By employing datasets from TCGA-LIHC, PLANET, GSE76427, GSE14520, 
and the Xiangya cohort, we utilized 173 diverse combinations of machine learning algorithms to construct 
predictive DDR signatures. We analyzed microenvironment scores, immune cell infiltration, drug sensitivity 
analysis, and immunotherapy prognosis in both high and low-risk patient groups. POLR3G was a protein-coding 
gene that encoded a critical component of the RNA polymerase III complex and possessed chromatin-binding 
activity58. It localized primarily to the cytoplasm and nucleolus59. Recent studies have established POLR3G as 

Fig. 4.  The high-risk group presented worse clinical prognosis. (A) Kaplan–Meier curves of RFS based on 
the log-rank test in TCGA, PLANET, and GEO for the high and low-risk groups. (B) Forest plot of univariate 
Cox regression of risk scores and clinical parameters. (C) Forest plot of multivariate Cox regression of risk 
scores and clinical parameters. (D) Combined violin and box plots of risk scores and type of recurrence. (E) 
Combined violin and box plots of risk scores and recurrence tissue. (F) Combined violin and box plots of risk 
scores and pathological grades. (G) Combined violin and box plots of risk scores and stages. (H) Combined 
violin and box plots of risk scores and T.stage. (I) Combined violin and box plots of risk scores and N.stage. 
(J) Combined violin and box plots of risk scores and P53 mutation type. (K) Combined violin and box plots of 
risk scores and gender. (L) Combined violin and box plots of risk scores and age.
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a critical regulator of genomic stability through its direct involvement in homologous recombination-mediated 
DNA double-strand break repair60,61. These findings demonstrated POLR3G was essential for maintaining DNA 
repair fidelity. Accumulating evidence indicated that POLR3G played a pivotal role in driving the progression 
of multiple cancers, including bladder, breast, lung, and prostate cancer62–65. Based on these findings regarding 
POLR3G’s dual roles in DNA damage and repair response and oncogenesis, we investigated its expression and 
function in vitro for HCC.

Our analysis of public transcriptomic datasets revealed higher immune microenvironment and CD8 + T cell 
infiltration scores in the low-risk group compared to the high-risk group. These findings were confirmed by 
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CyTOF results from the Xiangya cohort. Previous studies have shown that lower levels of tumor-infiltrating 
CD8 + T cells were associated with worse immunotherapy response66,67. Our analysis of the IMbrave150 
immunotherapy cohort revealed poorer OS in the high-risk group, indicating a correlation between DDR and 
immunotherapy (Atezolizumab + Bevacizumab) resistance9. Targeting DDR might be a potential combination 
strategy for activating the tumor immune microenvironment and enhancing immunotherapy in HCC. For 
example, inhibitors of poly ADP-ribose polymerase (PARP), ataxia telangiectasia-mutated (ATM), significantly 
up-regulated STING pathway to activate CD8 + T cells and enhanced the efficacy of anti-PD-L168–72. The inhibitor 
of ataxia telangiectasia and Rad3-related (ATR) induced synthetic lethality in mismatch repair-deficient cells to 
augment immunotherapy response73.

Current post-surgery target therapies and immunotherapies for high-risk recurrent HCC remain ineffective. 
Trials like IMbrave050 and STORM failed to demonstrate significant prolongation of survival6,10 . In our study, 
MK-2206 and BI-2536 showed potential as therapeutic agents, with MK-2206 being more effective in the high-
risk group and BI-2536 in the low-risk subset; however, this correlation needs validation in larger cohorts74,75.

Our model had several distinct advantages over existing molecular models in predicting HCC recurrence 
and therapy response. For instance, in predicting 1-year recurrence, our model achieved an average AUC 
value of 0.752, surpassing the earlier models whose AUC values ranged from 0.598 to 0.661. (Tang et al.76 
microvascular invasion-related genes model, AUC = 0.655; Long et al.77 DNA methylation driver genes model, 
AUC = 0.661; Kong et al.78 recurrence-related genes model, AUC = 0.598; Wang et al.79 Seven core genes model, 
AUC = 0.616). Similar results were observed for the 2–5 years AUC values76–79. Another key strength of our 
approach lied in the application of 173 machine learning algorithm combinations, which offered more robust 
and reliable predictions. Moreover, unlike models validated solely on publicly available transcriptome data80–82, 
our model underwent validation with the Xiangya cohort, which significantly bolstered its clinical relevance 
and stability. Furthermore, unlike other models relying on TIDE algorithms instead of HCC immunotherapy 
cohorts to predict immunotherapy response83,84, we utilized real HCC immunotherapy cohorts to demonstrate 
the predictive value of our model.

While our study presented promising findings, it also had several limitations. Firstly, the analysis at the single-
cell level is constrained due to the lack of single-cell transcriptome data with RFS information. Subsequent 
studies can pay attention to the collection of RFS information in single-cell sequencing experiment. Secondly, 
the study’s brevity limited our exploration of the functional roles of the genes involved in the models. To gain a 
comprehensive understanding, future research could investigate how these genes contribute to HCC recurrence 
and response to immunotherapy, elucidating their mechanisms of action. Thirdly, while MK-2206 and BI-2536 
have shown potential as therapeutic agents for HCC, their roles were not comprehensively studied here. Future 
investigations should delve deeper into their mechanisms and efficacy, aiming to solidify their potential as viable 
drug targets for HCC treatment.

Conclusion
In conclusion, our study identified DDR signatures associated with P53 mutations to predict HCC recurrence 
and treatment response, highlighting their potential as prognostic and therapeutic biomarkers.

Fig. 5.  The high-risk group demonstrated lower microenvironment score and decreased CD8 + T cell 
infiltration. (A) Box plots of four immune infiltration scores in the high and low-risk groups in the training 
and validation set. The asterisks represented the statistical P-value (*P < 0.05; **P < 0.01; ***P < 0.001; 
****P < 0.0001). (B) Box plot of the scores of five immune infiltration algorithms in the high and low-risk 
groups of the TCGA cohort. The asterisks represented the statistical P-value (*P < 0.05; **P < 0.01; ***P < 0.001; 
****P < 0.0001). (C) CyTOF plot of Xiangya cohort of immune infiltration in the high and low-risk groups. (D) 
Quantitative analysis of the proportion of immune cells in the high and low-risk groups in the Xiangya cohort. 
The asterisks represented the statistical P-value (*P < 0.05). (E) CyTOF plot of Xiangya cohort of CD8 + T cell 
infiltration and exhausted CD8 + T cell infiltration in the high and low-risk groups. (F) Quantitative analysis of 
the proportion of CD8 + T cells and the proportion of exhausted CD8 + T cells in the high and low-risk groups 
of the Xiangya cohort. The asterisks represented the statistical P-value (*P < 0.05).
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Fig. 6.  The high-risk group exhibited a poorer response to immunotherapy using Atezolizumab 
+ Bevacizumab. (A) Drugs with significant differences in drug sensitivity scores between the high and low-risk 
groups were intersected in the three cohorts. (B) The drug sensitivity scores of MK − 2206 and BI − 2536 were 
compared in the high-low risk groups of the three cohorts. (C) Correlation analysis of risk score and drug 
sensitivity score between the high and low-risk groups. (D) Kaplan–Meier curves showed progression-free 
survival probability in the high and low-risk groups of the IMbrave150 and GO30140 cohorts. E. Kaplan–
Meier curves showed overall survival probability in the high and low-risk groups of the IMbrave150 and 
GO30140 cohorts.
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Fig. 7.  POLR3G promoted the proliferation and migration of HCC cells in vitro. (A) POLR3G mRNA 
expression in normal liver cells and HCC cell lines. (B) POLR3G protein expression in normal liver cells and 
HCC cell lines. (C-D) CCK-8 suggested that the knockdown of POLR3G suppressed the proliferation of HCC 
cells. The asterisks represented the statistical P-value (*P < 0.05; **P < 0.01). (E–F) EdU suggested that the 
knockdown of POLR3G suppressed the proliferation of HCC cells. The asterisks represented the statistical 
P-value (*P < 0.05). (G-H) Transwell migration tests suggested that the knockdown of POLR3G suppressed the 
migration of HCC cells. The asterisks represented the statistical P-value (*P < 0.05).
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Data availability
The datasets analyzed during the current study are available in the TCGA database ​(​​​h​t​t​p​s​:​/​/​p​o​r​t​a​l​.​g​d​c​.​c​a​n​c​e​
r​.​g​o​v​/​​​​​)​, the GEO database (https://www.ncbi.nlm.nih.gov/gds/?term =), the PLANET cohort ​h​t​t​p​s​:​​​/​​/​f​i​g​s​h​a​
r​​e​.​c​o​​m​/​a​r​​t​i​c​l​​e​​s​/​d​a​t​a​​s​​e​t​/​P​​L​A​​N​E​T​​_​c​o​h​​o​r​t​/​2​3​7​3​2​3​7​0, HCC transcriptomic sequencing data with therapy ​r​e​s​
p​o​n​s​e information from the European Genome-phenome Archive, with dataset ID EGAD00001008128 and 
EGAD00001008130, the transcriptome and CyTOF data from Xiangya can be obtained by contacting the corre-
sponding author with a formal request.

Code availability
All code generated for analysis is available from the corresponding author upon request.
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