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Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths globally, owing
to its high recurrence rate of 50 to 70% within five years. Despite known associations of certain

DNA damage and repair (DDR) genes with tumor recurrence and drug resistance, a comprehensive
understanding of DDR pathways'’ role in predicting HCC recurrence and therapeutic responses remains
elusive. Addressing this gap could offer significant advancements in prognostic and therapeutic
strategies for HCC. This study used 769 RNA sequencing samples from public datasets and 53 samples
from Xiangya Hospital for DDR model training and validation. It came out that DDR pathways were
significantly enriched in samples with P53 mutations. Next, among the 173 combinations of algorithms
and parameters, CoxBoost + RSF, Lasso [fold =10] + RSF, and Lasso [fold =50] + RSF demonstrated the
best performance. The average AUC values of 1 to 5 years and the average concordance index (C-index)
value were around 0.7. The risk scores were increased in tumors with recurrence, P53 mutation, and
higher TNM stages. High-risk groups, characterized by enriched DDR pathways, exhibited lower
CD8+T cell infiltration and poorer responses to immunotherapy using atezolizumab and bevacizumab,
emphasizing the potential of DDR signatures as valuable prognostic and therapeutic biomarkers. In
conclusion, the DDR signatures associated with P53 mutations can predict recurrence and therapeutic
response in HCC, highlighting their potential as prognostic and therapeutic biomarkers.
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Hepatocellular carcinoma (HCC) is a major contributor to cancer-related deaths globally!, with alarmingly high
postoperative recurrence rates of 50% to 70% within five years®. While the clinical characteristics influencing
HCC recurrence risk are well-documented?-®, the molecular mechanisms remain poorly understood. This gap
in knowledge impedes the development of effective postoperative strategies to reduce recurrence risk. Current
adjuvant target therapies, including sorafenib, had failed to improve recurrence-free survival (RFS) in HCCS.
Similarly, transcatheter arterial chemoembolization showed limited efficacy in preventing postoperative
recurrence’. Although combining atezolizumab and bevacizumab has significantly extended overall survival
(OS) in advanced HCC®?, it has been less effective in prolonging RFS in the whole population of resectable HCC
tumors with high recurrence risk!?. Traditional immune therapy biomarkers such as programmed cell death 1

1Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China. ?Key
Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University,
Changsha 410008, Hunan, China. *Department of Oncology, Changde Hospital, Xiangya School of Medicine,
Central South University (The first people’s hospital of Changde city), Changde 415000, Hunan, China. “Jiayao
Ma and Diya Tang: These authors contributed equally to this work and shared first authorship. *‘email:
chenyihong@csu.edu.cn; xiaozemindoc@163.com

Scientific Reports|  (2025) 15:14939 | https://doi.org/10.1038/s41598-025-99853-5 nature portfolio


http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-99853-5&domain=pdf&date_stamp=2025-4-28

www.nature.com/scientificreports/

ligand 1 (PD-L1) expression, tumor mutational burden, and microsatellite instability, offered limited predictive
value for HCC treatment outcomes!'!. This underscored an urgent need for novel molecular panels to better
predict postoperative recurrence and inform treatment strategies.

P53 played a crucial role in the initiation and progression of tumors'*~!%, primarily through the activation
of DNA damage and repair (DDR), inhibition of the cell cycle, and promotion of apoptosis'®. P53 mutations
were associated with HCC recurrence, leading to shorter OS and RFS among patients'®. DDR was essential
for repairing gene mutations and maintaining genomic stability!’~2’. Limited evidence suggested that DDR
promote tumor recurrence. For example, DDR-induced reactivation of Octamer-Binding transcription factor
41ed to tumor recurrence?! , and upregulation of DDR genes in glioblastoma promoted tumor progression and
recurrence??. Interestingly, defects in DDR could activate anti-tumor effects via various mechanisms**-%°. For
instance, the accumulation of mutations caused by DDR defects generated tumor-specific neoantigens, which
in turn activate anti-tumor immunity?®. DNA damage-induced activation of the cGAS-STING pathway fostered
type I IFN signaling and enhanced anti-tumor immune responses®”-?3. DNA damage could also lead to increased
expression of PD-L1%% | and triggered immune responses through cell death signals®!. Therefore, molecules in
the DDR pathway had the potential to serve as predictive markers for immunotherapy?2.

Molecular models were widely utilized for predicting cancer prognosis and guiding treatment options
With advancements in machine learning, combining various algorithms and selecting the most effective ones are
crucial for enhancing model performance®*?’. In this study, we applied 173 distinct combinations of machine
learning algorithms to datasets from TCGA-LIHC, PLANET, GSE76427, GSE14520, and the Xiangya cohort.
Our model was designed to predict HCC recurrence and treatment response by leveraging DDR signatures
associated with P53 mutations. Our analysis explored the relationship between DDR signatures and factors
such as the immune microenvironment, drug sensitivity and responsiveness to immunotherapy. These findings
highlighted the potential of DDR signatures as prognostic and therapeutic biomarkers in HCC.
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Material and methods

Collection and sequence of clinical HCC samples

In this study, we collected frozen tumor tissues from 53 HCC patients who underwent resection at Xiangya
Hospital, Central South University, between 2017 and 2020. All of them had a confirmed diagnosis of HCC
without any other primary tumors, had not received any treatment prior to surgery, and had not undergone
postoperative immunotherapy. A follow-up was conducted to monitor RSE, with the follow-up endpoint being
August 2024. These patients served as a validation cohort for our model. Additionally, we collected HCC tissues
for Cytometry by Time-Of-Flight (CyTOF) and RNA sequencing from 16 patients, which were reported in our
previous article®®. The RNA sequencing data were supposed to be used in calculating the DDR model-derived
risk score for each sample. And the matched CyTOF data were to be used in assessing intra-tumoral immune
cell infiltration between the high and low-risk groups. The collection and handling of clinical specimens were
approved by the Ethics Committee of Xiangya Hospital, Central South University (approval number: 202401014).
Samples meeting quality control standards were sequenced on the BGI platform, with a sequencing depth of
10G, producing raw FASTQ data. The data were processed using fastp (version 0.20.1) to remove adapters and
low-quality reads, yielding clean data. Hisat2 (version 2.2.1) was used for aligning to the GRCh38 reference
genome, and featureCounts (version 2.6.0) was employed to obtain read counts, which were then normalized to
TPM and log2 transformed.

Public data collection and batch effect removal

For recurrence analysis, publicly available transcriptomic sequencing data were gathered from tumor resection
specimens of HCC patients, including datasets from the Cancer Genome Atlas Liver Hepatocellular Carcinoma
(TCGA-LIHC), PLANET, GSE76427, and GSE14520. Clinical data, mutation information, and bulk RNA
sequencing raw expression files for the TCGA-LIHC cohort were retrieved from https://portal.gdc.cancer.gov.
The gene expression matrix was normalized to TPM and log2 transformed. Samples with P53 mutations, identified
as single nucleotide polymorphism or deletion, were annotated as P53-mutant, while others were labeled as P53-
wild type. From the initial 377 samples, those without recurrence time and those within non-primary tumors
were excluded, resulting in 364 samples for further analysis. For the PLANET cohort®, clinical information
and raw expression files were acquired from https://figshare.com/articles/dataset/PLANET_cohort/23732370.
Average expression was calculated when multiple tumor samples were available for a single patient, followed by
TPM normalization and log2 transformation. Samples missing recurrence time and those categorized as non-
primary tumors were excluded, resulting in 55 samples for downstream analysis. Gene Expression Omnibus
(GEO) data with the accession numbers of GSE76427 and GSE14520 were downloaded from GEO database**4!,
After excluding samples with missing recurrence times, 108 and 242 samples were retained from GSE76427 and
GSE14520, respectively. Each dataset had low-variance genes with an inter-sample variance below 0.2 removed.
Batch effects were assessed using principal component analysis (PCA) and removed using the ComBat method
from the sva package to minimize technical variation and enhance data consistency and comparability.

For analysis of therapy response, we applied the HCC transcriptomic sequencing data with therapy
response information from the European Genome-phenome Archive, with dataset ID EGAD00001008128
and EGAD00001008130%2. EGAD00001008128 contains raw RNA sequencing data from tumor samples of 358
patients who participated in the GO30140 (NCT02715531) phase 1b or IMbravel50 (NCT03434379) phase 3
trials and received treatment with either atezolizumab combined with bevacizumab, atezolizumab alone, or
sorafenib. EGAD00001008130 contains therapy response and survival outcome. These raw data were processed
using fastp (version 0.20.1) to remove adapters and low-quality reads, yielding clean data. Hisat2 (version 2.2.1)
was used for aligning to the GRCh38 reference genome, and featureCounts (version 2.6.0) was employed to
obtain read counts, which were then normalized to TPM and log2 transformed.
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Enrichment analysis and survival analysis

All analyses were performed using R software (version 4.3.2). Gene sets related to DNA damage repair were
obtained from MSigDB*, enriched through Gene Ontology**, Kyoto Encyclopedia of Genes and Genomes*’,
Reactome®®, and WikiPathways, along with gene sets summarized by Michele Olivieri et al.¥’, aggregating
to a total of 430 gene sets. GSEA enrichment analysis was conducted using GSEA (version 4.3.3). Gene sets
with an FDR<25% and nominal p-value<5% were considered significantly enriched, and the genes within
these significant gene sets were subjected to univariate Cox regression analysis. RFS-related univariate Cox
regression analysis was performed using the survival package. Genes with a Cox regression p-value <0.05 in
both the training and independent validation cohorts were intersected to identify prognostic genes significantly
associated with RFS for subsequent model development. The survival and survminer packages were used to
generate Kaplan—-Meier plots illustrating the relationship between model risk scores and survival probability. For
significant genes in the model, enrichment analysis was conducted using Enrichr-KG (maayanlab.cloud), and
chord diagrams were drawn using the circlize package to depict the pathway-gene relationships and biological
functions.

Model training and validation

The TCGA-LIHC cohort was used as the training set, PLANET as validation set 1, GSE76427 and GSE14520
combined as validation set 2, and the Xiangya cohort as an independent validation set. A total of 10 machine
learning algorithms were integrated: CoxBoost, Random Survival Forests (RSF), Lasso, stepwise Cox, Gradient
Boosting Machine (GBM), Ridge, Elastic Net (Enet), SuperPC, survival-support vector machines (survival-
SVMs), and plsRcox. These algorithms were widely used for published survival models®”*8-*°. By adjusting
cross-validation folds, stepwise regression directions, and penalty terms, 173 algorithm combinations were
generated. These combinations were used to train 173 prognostic models on the training set. The pROC and
ggplot2 packages facilitated the computation and visualization of AUC heatmaps for 1 to 5 years and calculated
the concordance index (C-index) of the models. The mosaic::zscore function of the mosaic package was used
to standardize risk scores within each cohort. The mosaic::zscore function automatically transformed the data
into a standard normal distribution (mean=0, standard deviation=1). Samples with risk scores higher than
cohort mean were divided into the high-risk group, while the others were in the low-risk group. The survminer
package was employed to illustrate survival probability differences between high and low-risk groups using
Kaplan-Meier (KM) plots. Univariate and multivariate Cox regression analyses were conducted using the
survival package, with forest plots drawn using the forestplot package to evaluate the independent predictive
effect of risk scores on RES. The ggplot2 package generated bar plots showcasing the most important features in
the random forest model.

Immune infiltration algorithms and CyTOF analysis

Four immune microenvironment scoring methods—ESTIMATE®!, xCELL%?, IPS®, and TIDE>—were
applied to score the training and validation sets. Five immune infiltration algorithms—xCELL, CIBERSORT®,
CIBERSORT absolute, MCPcounter, and TIDE—were used for differential analysis of immune-infiltrating cells
between high and low-risk groups in the training set. CyTOF was conducted by SendiBio, as described in our
previous publication®. Cell clustering and t-SNE dimensionality reduction of CyTOF data were performed
using FCS Express 7.

Drug sensitivity analysis

The oncoPredict R package was utilized to predict drug responses for each sample®®. CTRP was used for RNA-
seq data, and GDSC2 for microarray data. Drug sensitivity scoring was performed for both high and low-risk
groups in the training and validation sets, with significance tested using the Wilcoxon test. The intersection
of differential drugs in each cohort provided representational differential drugs. Violin plots illustrated the
inter-group differences in drug sensitivity scores, while scatter plots showcased the correlation between drug
sensitivity scores and risk scores.

Cell lines and cell cultures

LO2 (normal liver cell line), Hep3B, HCCLM3, HepG2, and MHCC97H (Human liver cancer cell line) were
purchased from the Chinese Academy of Sciences Typical Culture Preservation Center Cell Bank. All cell lines
were maintained in Dulbecco Modified Eagle culture-medium (DMEM) (10-013-CVRC, Corning, Suzhou,
Jiangsu, China) containing 10% FBS (SA301.02, Cellmax, Beijing, China) in a humidified incubator containing
5% CO, at 37 °C. All cells were free of mycoplasma contamination.

Cell count kit-8 (CCK-8) proliferation test

Cell proliferation was detected by CCK-8 assay (BS350B, Biosharp, Beijing, China); cells of logarithmic growth
stage (2000 cells per well) were inoculated on 96-well plates. At specific time points (24, 48, 72 h), cells were
added with CCK-8 solution 10 pL per well and incubated at 37 °C for two hours. The absorbance value at 450 nm
was calculated by spectrophotometry three times every 24 h.

RNA isolation and real-time quantitative polymerase chain reaction (PCR)
Total RNA is extracted using AG RNAex Pro reagent (AG21101, AG, Changsha, Hunan, China). The RNA
concentration was quantified using NanoDrop™ One. 1.5 pg RNA was transferred to cDNA using the Evo
M-MLV RT Kit (AG11728, AG, Changsha, Hunan, China). The SYBR Green PCR Mastermix Kit (AG11718,
AG, Changsha, Hunan, China) was used to amplify PCR on QuantStudio™ real-time fluorescent quantitative
PCR software. 2-AACt computes values for quantitative analysis. Primers are as follows:
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POLR3G:

F: TAGGGAGCAGTGCCTTTCAG.

R: GTGGGGGTGGTTTCAACACT.

GAPDH:

F: CAGGAGGCATTGCTGATGAT.

R: GAAGGCTGGGGCTCATTT.

Using GAPDH as the internal parameter, the 2 — AACt value was calculated for quantitative analysis.

Western blotting

Extract total protein with radio immunoprecipitation assay buffers containing phosphatase and protease
inhibitors. After separation by SDS-PAGE, the proteins were transferred to a polyvinylidene fluoride membrane
at 250 mA for 90 min and blocked with 5% skim milk. Subsequently, the membrane was incubated with primary
antibody at 4°C for 12 h. Subsequently, the membrane and the secondary antibody were incubated at 37°C for
60 min. After 3 washes with TBST, the ChemiDoc XRS Image system detected the signal. Finally, the protein was
quantitatively analyzed using Image ] software. Antibodies used were as followed: POLR3G (03G240603, 1:1000,
AWA40802, Abiowell, Changsha, Hunan, China), B-Tubulin (21,000,383, 1:20,000, HRP-66240, Proteintech,
Wuhan, Hubei, China).

EdU detection

3000 cells were inoculated on a 96-well plate. Cells were maintained with 20 uM EdU (C0078S, Beyotime,
Shanghai, China) for 2 h and fixed with 4% paraformaldehyde. The cells were then treated with 50 pl Click
Additive Solution. For 30 min, washed with 0.5% Triton X-100 (AWH0299a, Abiowell, Changsha, Hunan,
China), stained with DAPI solution (AWC0292, Abiowell, Changsha, Hunan, China), and images were collected
under the microscope.

Small interference RNA (siRNA) transfection
Sequentials were ordered from OBIO (https://www.obiosh.com/) for siRNA transfection targeting POLR3G,
and Lipo3000 (L3000-015, Invitrogen, California, USA) was utilized for transfection. The specific sequences for
each siRNA are as follows:

Si-NC.

Forward: UUCUCCGAACGUGUCACGUTT.

Reverse: ACGUGACACGUUCGGAGAATT.

Si-POLR3G.

Forward: UAAAGGAAGAGGACGUGCUGCUUAUTT.

Reverse: AUAAGCAGCACGUCCUCUUCCUUUATT.

Transwell migration

Cell migration experiments were performed in a 24-well transwell plate (8.0 um pore size, Corning Life Sciences,
Costar, USA). Stably transduced cells were treated with trypsin and adjusted to 3 x 10° cells/mL after counting.
Then, 600 uL of complete medium containing 30% (v/v) serum was added to the lower chamber, 200 pL of the
cell suspension was added to the upper chamber, and the cells were cultured for 48 h. The cells in the upper
chamber were removed, and the cells remaining on the membrane were fixed with 4% paraformaldehyde solution
(AWT0056b, Abiowell, Changsha, Hunan, China). After staining with 0.1% crystal violet solution (AW10364a,
Abiowell, Changsha, Hunan, China), the cells were observed under a microscope and imaged. All experiments
were repeated three times.

Statistics analysis

All analyses were performed using R software (version 4.3.2) and GraphPad Prism 10. The Kruskal-Wallis
test was utilized for multiple group comparisons. This was followed by Dunn’s post-hoc comparisons between
subgroups, whose p-value was adjusted by the Bonferroni correction. The Wilcoxon rank-sum test was used
for two-group comparisons. The Kaplan-Meier method was applied to estimate survival probabilities, with
the log-rank test used for comparing survival curves between different groups. Univariate and multivariate
Cox regression analyses were performed using the Cox proportional hazards model to evaluate the impact of
variables on survival time. The Pearson correlation coefficient was calculated to assess the linear relationship
between variables and quantify the strength of their association. A p-value of less than 0.05 was considered
indicative of statistical significance.

Results

DDR genes associated with P53 mutations in HCC recurrence

Our methodology was illustrated in Fig. 1. Five pathway enrichment methods, including Kyoto Encyclopedia of
Genes and Genomes pathway enrichment, Wikipathway pathway enrichment, Reactome pathway enrichment,
Gene Ontology pathway enrichment, and Michele Olivieri et al. pathway enrichment. The findings consistently
indicated that P53-mutant HCC exhibited a higher enrichment in DDR pathways, particularly in mismatch
repair, homologous recombination, base excision repair, nucleotide excision repair, and in the regulation of
DNA repair gene transcription by P53 (Supplementary table 1). In contrast, there was no notable enrichment
of genes linked to DDR in wild-type P53 HCC (Fig. 2A). After the elimination of batch effects from different
datasets, the distribution of each data is scattered and uniform, indicating that the data of various data sets are
consistent and comparable. As a result, the analysis outcomes can be deemed relatively more reliable (Fig. 2B).
Univariate Cox regression analysis was carried out on genes that exhibited significant enrichment in the DDR
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Fig. 1. Study design flowchart. The TCGA-LIHC dataset was utilized as the training set, while the PLANET,
GEO, and the Xiangya cohorts were employed as the validation sets. To identify prognostic genes associated
with RFS, univariate Cox regression analysis was conducted on DDR pathway genes notably enriched in
P53-mutated samples, identifying 106 candidate genes. Evaluation metrics, such as the AUC and C-index,
were used to assess the performance of 173 algorithm and parameter combinations. The optimal algorithm
combination was selected to generate DDR signatures with the highest predictive significance for RFS.
Subsequently, the HCC patient cohort was stratified into high and low DDR groups for comparative analysis.
Differences in survival probability, clinical characteristics, microenvironment scores, immune cell infiltration,
drug sensitivity patterns, and response to immunotherapy were assessed between these two groups.

pathway across both the training and validation datasets. Subsequently, 106 prognostic genes that displayed
a substantial association with RFS were pinpointed and incorporated into the model construction (Fig. 2C;
Supplementary table 2).

Development and validation of DDR model for HCC recurrence

We identified 106 DDR genes in the training and validation sets through univariate Cox regression analysis
based on RFS. We employed 173 combinations of algorithms and parameters to construct predictive models
and evaluate the AUC and C-index over 1 to 5 years (Fig. 3A-B) (Supplementary table 3). CoxBoost+RSE
Lasso [fold=10]+RSE, and Lasso [fold=50]+RSF were among the best models, with an average AUC and
average C-index around 0.7. The DDR genes set includes BCL7A, HDAC2, PRKCQ, NPM1, ERCC6, UBB,
RAD54B, CCT2, MAPKAPKS, PSMD9, NUP85, CCNB1, POLR3G, EEF1E1, CHD1L, GTF3C3, SFN, THOCS,
TTF2. The weight of each gene in the model was examined using the top three algorithms and parameters,
revealing consistent results across all three algorithmic combinations. This indicated the relative reliability of our
results; consistent findings were observed when employing diverse combinations of algorithms (Fig. 3C). The
pathway analysis of the DDR genes set indicated that the primary enriched pathways were the P53 signaling and
nucleotide excision repair pathways (Fig. 3D). Furthermore, we extensively summarized the published models
and AUC values for predicting HCC recurrence utilizing various molecular features (Supplementary table 4).

The high-risk group presented worse clinical prognosis

To better understand the influence of risk scores on clinical features and prognosis, we analyzed RFS and clinical
characteristics within both the high and low-risk groups. We utilized the LASSO [fold=10] +RSF algorithm
to conduct Kaplan-Meier curve analysis and log-rank tests across the TCGA, PLANET, and GEO cohorts.
Consistently, the high-risk group showed a lower survival rate in all three cohorts. The Hazard Ratios were 115,
3.5, and 2.3 in the TCGA, PLANET, and GEO cohorts, respectively, with significant differences in log-rank
P-values (log-rank P <0.0001, log-rank P=0.0030, and log-rank P <0.0001). This implied that our risk score
was predictive of HCC prognosis (Fig. 4A). Univariate Cox regression analysis showed that high-risk group was
a significant risk factor (Fig. 4B), and further multivariate Cox regression analyses emphasized that the high-
risk group was an independent poor prognostic factor (Hazard Ratios (95% CI): 100.9 (48.79,208.7)) (Fig. 4C).
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Fig. 2. DDR genes associated with P53 mutations in HCC recurrence. (A) GSEA map of five pathway
enrichment methods with P53 mutation as a grouping in the training and validation set. (B) Pre-batch and
post-batch effects PCA plots in the training and validation sets. (C) Venn diagram of genes significantly
associated with RFS in training and validation sets.

Further analysis of clinical features showed that the high-risk group was linked to recurrence type, pathological
grade, stage, T stage, and presence of P53 mutation, yet it displayed no significant associations with recurrence
site, N stage, M stage, age, or gender (Fig. 4D-L).
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Fig. 3. Development and validation of DDR model for HCC recurrence. (A) Heat map of AUC values and
3-year average AUC values of the top 60 algorithms and parameter combinations in the training and validation
sets. (B) Heat maps of 1-, 2-, 4-, and 5-year AUC and c-index values for the top 10 algorithms and parameter
combinations in the training and validation sets. (C) The lollipop plot showed the three optimal model
combinations to score the importance of DDR genes. (D) The chord plot showed the related pathways enriched
by DDR genes.
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The high-risk group demonstrated lower microenvironment score and decreased CD8 +T cell
infiltration
ESTIMATE Score, xCELL Score, IPS, and TIDE were used to evaluate the immune infiltration of high and
low-risk groups in the model (Fig. 5A; Supplementary table 5). Elevated ESTIMATE, xCELL, and IPS scores
were linked to increased immune infiltration, whereas higher TIDE scores were associated with a poorer
response to immunotherapy. In the training set and the two verification sets, the high-risk group was related
to low StromalScore (ESTIMATEScore), ESTIMATEScore (ESTIMATEScore), StromaScore (xCELL Score)
and MicroenvironmentScore (xCELL Score) and high dysfunction (TIDE Score). In the training set and only
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«Fig. 4. The high-risk group presented worse clinical prognosis. (A) Kaplan-Meier curves of RFS based on
the log-rank test in TCGA, PLANET, and GEO for the high and low-risk groups. (B) Forest plot of univariate
Cox regression of risk scores and clinical parameters. (C) Forest plot of multivariate Cox regression of risk
scores and clinical parameters. (D) Combined violin and box plots of risk scores and type of recurrence. (E)
Combined violin and box plots of risk scores and recurrence tissue. (F) Combined violin and box plots of risk
scores and pathological grades. (G) Combined violin and box plots of risk scores and stages. (H) Combined
violin and box plots of risk scores and T.stage. (I) Combined violin and box plots of risk scores and N.stage.
(J) Combined violin and box plots of risk scores and P53 mutation type. (K) Combined violin and box plots of
risk scores and gender. (L) Combined violin and box plots of risk scores and age.

one validation set, the high-risk group was associated with low ImmuneScore (xCELL Score) scores and high
Exclusion (TIDE Score)) and TIDE (TIDE Score)). In the training set alone, the high-risk group was associated
with low ImmuneScore (ESTIMATE Score), MHC (IPS), and IPS (TIDE) scores. In the PLANET cohort, we
observed no significant differences in Exclusion and TIDE scores between high and low-risk groups, which may
be attributed to the cohort’s limited sample size (N =55). However, analysis of the two larger cohorts (TCGA and
GEO) revealed significant differences in Exclusion and TIDE scores, suggesting enhanced immune exclusion in
high-risk groups. This indicates that the high-risk group resembled cold tumors and may have exhibited limited
responsiveness to immune checkpoint monoclonal antibodies like anti-PD1, whereas the low-risk group may
potentially benefit from immunotherapy. In the TCGA cohort, we applied five immune infiltration algorithms,
including xCELL, CIBERSORT, CIBERSORT absolute, MCPcounter, and TIDE. Among these, four algorithms
consistently indicated lower infiltration of CD8 + T cells in the high-risk group (Fig. 5B; Supplementary table 5).
RNA sequencing of 16 HCC patients in the Xiangya cohort was used to calculate the DDR model-derived risk
score for each sample. Subsequently, matched CyTOF was used to assess the difference in immune infiltration
between the high and low-risk groups. CyTOF analysis demonstrated decreased immune cell infiltration in
the high-risk group. Subsequent examination of cell subsets revealed reduced CD8+T cell infiltration and an
elevated level of depleted CD8 + T cells in the high-risk group (Fig. 5C-F; Supplementary table 5). This indicates
that the low-risk group could potentially respond well to immunotherapy, whereas the high-risk group may
exhibit characteristics resembling a cold tumor phenotype.

The high-risk group exhibited a poorer response to immunotherapy using Atezolizumab

+ Bevacizumab

Drug sensitivity scores were calculated for the high-risk and low-risk groups in a training set and two
validation sets. The overlap of these scores pinpointed two specific drugs (MK-2206 and BI-2536) (Fig. 6A).
The drug sensitivity scores for the two drugs revealed that the high-risk group in all three cohorts exhibited
higher sensitivity to MK-2206, whereas the low-risk group demonstrated a stronger sensitivity to BI-2536. The
sensitivity of MK-2206 was positively correlated with the risk scores in all three cohorts, suggesting that MK-
2206 may be considered to increase the treatment effect in this subset of patients in the high-risk group; However,
the correlation coefficient is limited (R?=0.08). The inverse correlation between the drug sensitivity and risk
score of BI-2536 indicated its potential to improve treatment effectiveness in low-risk patient groups. However,
it was worth noting that the correlation coefficient was moderate (R*=0.36) (Fig. 6B-C). The recurrence risk
score model was utilized to evaluate the three drug regimens within the IMbravel50 and GO30140 cohorts.
The analysis indicated a poorer prognosis for the high-risk group in the IMbrave 150 immunotherapy cohort
(receiving Atezolizumab + Bevacizumab) (Fig. 6D-E; Supplementary table 5). This observation implied a
potential resistance to immunotherapy using Atezolizumab + Bevacizumab within the high-risk group.

POLR3G promoted the proliferation and migration of HCC cells in vitro

One of core gene in the DDR genes set is POLR3G. We explored the expression and function of POLR3G
in vitro in HCC. PCR and western blot results showed that POLR3G levels were significantly higher in HCC
cell lines compared to LO2 cells (Fig. 7A-B). We chose the Hep3B and HCCLM3 cell lines, which exhibited
relatively high POLR3G expression, for gene silencing and functional experiments. CCK-8 and EdU assays in
both cell lines revealed decreased cell proliferation capacity upon POLR3G silencing (Fig. 7C-F). Transwell
migration assays were carried out to validate the role of POLR3G in promoting migration in HCC. Consistently,
the transwell migration tests demonstrated a notable decrease in the migratory capacity of Si-POLR3G-HEP3B
and Si-POLR3G-HCCLMS3 cells compared to the control group (Fig. 7G-H). In summary, our study revealed
that POLR3G enhances the proliferation and migration of HCC cells in vitro.

Discussion

HCC s an aggressive and recurrent malignant tumor that often responds poorly to immunotherapy®’. Identifying
biomarkers that predict recurrence and immune efficacy is therefore essential to optimizing treatment strategies
for those most likely to benefit.

In our study, we examined the role of DDR signatures related to P53 mutations in predicting HCC recurrence
and response to immunotherapy. By employing datasets from TCGA-LIHC, PLANET, GSE76427, GSE14520,
and the Xiangya cohort, we utilized 173 diverse combinations of machine learning algorithms to construct
predictive DDR signatures. We analyzed microenvironment scores, immune cell infiltration, drug sensitivity
analysis, and immunotherapy prognosis in both high and low-risk patient groups. POLR3G was a protein-coding
gene that encoded a critical component of the RNA polymerase III complex and possessed chromatin-binding
activity®®. It localized primarily to the cytoplasm and nucleolus®®. Recent studies have established POLR3G as
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a critical regulator of genomic stability through its direct involvement in homologous recombination-mediated
DNA double-strand break repair®®!. These findings demonstrated POLR3G was essential for maintaining DNA
repair fidelity. Accumulating evidence indicated that POLR3G played a pivotal role in driving the progression
of multiple cancers, including bladder, breast, lung, and prostate cancer®-%°. Based on these findings regarding
POLR3G’s dual roles in DNA damage and repair response and oncogenesis, we investigated its expression and
function in vitro for HCC.

Our analysis of public transcriptomic datasets revealed higher immune microenvironment and CD8+T cell
infiltration scores in the low-risk group compared to the high-risk group. These findings were confirmed by
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«Fig. 5. The high-risk group demonstrated lower microenvironment score and decreased CD8+ T cell
infiltration. (A) Box plots of four immune infiltration scores in the high and low-risk groups in the training
and validation set. The asterisks represented the statistical P-value (*P<0.05; **P<0.01; ***P<0.001;

P <0.0001). (B) Box plot of the scores of five immune infiltration algorithms in the high and low-risk
groups of the TCGA cohort. The asterisks represented the statistical P-value (*P <0.05; **P <0.01; ***P <0.001;
%P <0.0001). (C) CyTOF plot of Xiangya cohort of immune infiltration in the high and low-risk groups. (D)
Quantitative analysis of the proportion of immune cells in the high and low-risk groups in the Xiangya cohort.
The asterisks represented the statistical P-value (*P<0.05). (E) CyTOF plot of Xiangya cohort of CD8+ T cell
infiltration and exhausted CD8 + T cell infiltration in the high and low-risk groups. (F) Quantitative analysis of
the proportion of CD8+ T cells and the proportion of exhausted CD8 + T cells in the high and low-risk groups
of the Xiangya cohort. The asterisks represented the statistical P-value (*P < 0.05).

CyTOF results from the Xiangya cohort. Previous studies have shown that lower levels of tumor-infiltrating
CD8+T cells were associated with worse immunotherapy response®®’. Our analysis of the IMbravel50
immunotherapy cohort revealed poorer OS in the high-risk group, indicating a correlation between DDR and
immunotherapy (Atezolizumab + Bevacizumab) resistance’. Targeting DDR might be a potential combination
strategy for activating the tumor immune microenvironment and enhancing immunotherapy in HCC. For
example, inhibitors of poly ADP-ribose polymerase (PARP), ataxia telangiectasia-mutated (ATM), significantly
up-regulated STING pathway to activate CD8 + T cells and enhanced the efficacy of anti-PD-L1%%-72. The inhibitor
of ataxia telangiectasia and Rad3-related (ATR) induced synthetic lethality in mismatch repair-deficient cells to
augment immunotherapy response”>.

Current post-surgery target therapies and immunotherapies for high-risk recurrent HCC remain ineffective.
Trials like IMbrave050 and STORM failed to demonstrate significant prolongation of survival®!? . In our study,
MK-2206 and BI-2536 showed potential as therapeutic agents, with MK-2206 being more effective in the high-
risk group and BI-2536 in the low-risk subset; however, this correlation needs validation in larger cohorts”*”>.

Our model had several distinct advantages over existing molecular models in predicting HCC recurrence
and therapy response. For instance, in predicting 1-year recurrence, our model achieved an average AUC
value of 0.752, surpassing the earlier models whose AUC values ranged from 0.598 to 0.661. (Tang et al.”®
microvascular invasion-related genes model, AUC=0.655; Long et al.”” DNA methylation driver genes model,
AUC=0.661; Kong et al.”® recurrence-related genes model, AUC =0.598; Wang et al.”® Seven core genes model,
AUC=0.616). Similar results were observed for the 2-5 years AUC values’®”?. Another key strength of our
approach lied in the application of 173 machine learning algorithm combinations, which offered more robust
and reliable predictions. Moreover, unlike models validated solely on publicly available transcriptome data®0-82,
our model underwent validation with the Xiangya cohort, which significantly bolstered its clinical relevance
and stability. Furthermore, unlike other models relying on TIDE algorithms instead of HCC immunotherapy
cohorts to predict immunotherapy response®>34, we utilized real HCC immunotherapy cohorts to demonstrate
the predictive value of our model.

While our study presented promising findings, it also had several limitations. Firstly, the analysis at the single-
cell level is constrained due to the lack of single-cell transcriptome data with RFS information. Subsequent
studies can pay attention to the collection of RFS information in single-cell sequencing experiment. Secondly,
the study’s brevity limited our exploration of the functional roles of the genes involved in the models. To gain a
comprehensive understanding, future research could investigate how these genes contribute to HCC recurrence
and response to immunotherapy, elucidating their mechanisms of action. Thirdly, while MK-2206 and BI-2536
have shown potential as therapeutic agents for HCC, their roles were not comprehensively studied here. Future
investigations should delve deeper into their mechanisms and efficacy, aiming to solidify their potential as viable
drug targets for HCC treatment.

Conclusion
In conclusion, our study identified DDR signatures associated with P53 mutations to predict HCC recurrence
and treatment response, highlighting their potential as prognostic and therapeutic biomarkers.
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Fig. 6. The high-risk group exhibited a poorer response to immunotherapy using Atezolizumab

+ Bevacizumab. (A) Drugs with significant differences in drug sensitivity scores between the high and low-risk
groups were intersected in the three cohorts. (B) The drug sensitivity scores of MK — 2206 and BI —2536 were
compared in the high-low risk groups of the three cohorts. (C) Correlation analysis of risk score and drug
sensitivity score between the high and low-risk groups. (D) Kaplan-Meier curves showed progression-free
survival probability in the high and low-risk groups of the IMbravel50 and GO30140 cohorts. E. Kaplan-
Meier curves showed overall survival probability in the high and low-risk groups of the IMbrave150 and
GO30140 cohorts.

Scientific Reports |

(2025) 15:14939

| https://doi.org/10.1038/s41598-025-99853-5

nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

(]
A g B
8 LO2 o é\l\
s 6 Hep3B oo) § C(D\/ O
= xxx HCCLM3 v & 9 O
= o & O & I
% 2 :;v_* HepG2 ~ T Ny T s
8 MHCC97H ]
s B-Tubulin \.. . - - 55KDa
<< _— ==
Z = POLR3G l l 1 I 26KDa
E 04— T T T T k 5
2 bR © R
E \/O @Q’b O& Q}Qo OO./)\
© e \2\0 Vs Q\O
C & ) D
Hep3B HCCLM3
1.5 NG 1.5 NG
c Si-POLR3G I Si-POLR3G b
S
c 1.0 s 10
3 5
< ke ? kk
8 o0s g s
o.c: L] T 1 0"! T T 1
0 24 48 72 0 24 48 72
Time(hours) Time(hours)
E F
Q
z
o ---
2 O
O ™ NC
I ~ 60 ,
_| S Si-POLR3G
o =
a = _—
=il [0]
wn O 404
2 | . .
) 'S 2p- =
= o
=l
O g LlJ 0 T T
O Hep3B HCCLM3
I g
o
.
=
G H
p Z 800+ NC
o 2 im . Si-POLR3G
Z 3 S 600- -
@
g 400 T
31 P
g ; 2 200+ *
| ©
g & g o : .
n Hep3B HCCLM3

Fig. 7. POLR3G promoted the proliferation and migration of HCC cells in vitro. (A) POLR3G mRNA
expression in normal liver cells and HCC cell lines. (B) POLR3G protein expression in normal liver cells and
HCC cell lines. (C-D) CCK-8 suggested that the knockdown of POLR3G suppressed the proliferation of HCC
cells. The asterisks represented the statistical P-value (*P <0.05; **P<0.01). (E-F) EdU suggested that the
knockdown of POLR3G suppressed the proliferation of HCC cells. The asterisks represented the statistical
P-value (*P<0.05). (G-H) Transwell migration tests suggested that the knockdown of POLR3G suppressed the
migration of HCC cells. The asterisks represented the statistical P-value (*P <0.05).
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Data availability

The datasets analyzed during the current study are available in the TCGA database (https://portal.gdc.cance
r.gov/), the GEO database (https://www.ncbi.nlm.nih.gov/gds/?term=), the PLANET cohort https://figsha
re.com/articles/dataset/PLANET_cohort/23732370, HCC transcriptomic sequencing data with therapy res
ponse information from the European Genome-phenome Archive, with dataset ID EGAD00001008128 and
EGAD00001008130, the transcriptome and CyTOF data from Xiangya can be obtained by contacting the corre-
sponding author with a formal request.

Code availability

All code generated for analysis is available from the corresponding author upon request.

Received: 31 January 2025; Accepted: 23 April 2025
Published online: 29 April 2025

References

1. Forner, A. et al. Hepatocellular carcinoma. Lancet 391(10127), 1301-1314. https://doi.org/10.1016/s0140-6736(18)30010-2 (2018).

2. Peter, R. et al. EASL clinical practice guidelines: Management of hepatocellular carcinoma. J. Hepatol. 69(1), 182-236 (2018).

3. Chan, A. W. H. et al. Development of pre and post-operative models to predict early recurrence of hepatocellular carcinoma after
surgical resection. J. Hepatol. 69(6), 1284-1293. https://doi.org/10.1016/j.jhep.2018.08.027 (2018).

4. Li, T. et al. Positive HBcADb is associated with higher risk of early recurrence and poorer survival after curative resection of HBV-
related HCC. Liver Int. 36(2), 284-292. https://doi.org/10.1111/1iv.12898 (2016).

5. Lee, S. et al. Effect of microvascular invasion risk on early recurrence of hepatocellular carcinoma after surgery and radiofrequency
ablation. Ann. Surg. 273(3), 564-571. https://doi.org/10.1097/s1a.0000000000003268 (2021).

6. Bruix, J. et al. Adjuvant sorafenib for hepatocellular carcinoma after resection or ablation (STORM): a phase 3, randomised,
double-blind, placebo-controlled trial. Lancet Oncol. 16(13), 1344-1354. https://doi.org/10.1016/s1470-2045(15)00198-9 (2015).

7. Wang, Z. et al. Adjuvant transarterial chemoembolization for HBV-related hepatocellular carcinoma after resection: A randomized
controlled study. Clin. Cancer Res. 24(9), 2074-2081. https://doi.org/10.1158/1078-0432.Ccr-17-2899 (2018).

8. Sadagopan, N. et al. Recent progress in systemic therapy for advanced hepatocellular carcinoma. Int. J. Mol. Sci. https://doi.org/10
.3390/ijms25021259 (2024).

9. Finn, R. S. et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med. 382(20), 1894-1905.
https://doi.org/10.1056/NEJMoal915745 (2020).

10. Yopp, A. et al. LBA39 updated efficacy and safety data from IMbrave050: Phase III study of adjuvant atezolizumab (atezo)+
bevacizumab (bev) vs active surveillance in patients (pts) with resected or ablated high-risk hepatocellular carcinoma (HCC).
Ann. Oncol. 35, 51230 (2024).

11. Greten, T. F. et al. Biomarkers for immunotherapy of hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 20(11), 780-798. https://doi
.0org/10.1038/s41571-023-00816-4 (2023).

12. Marei, H. E. et al. p53 signaling in cancer progression and therapy. Cancer Cell Int. 21(1), 703. https://doi.org/10.1186/s12935-02
1-02396-8 (2021).

13. Wang, Z. et al. Should mutant TP53 be targeted for cancer therapy?. Cell Death Differ. 29(5), 911-920. https://doi.org/10.1038/s41
418-022-00962-9 (2022).

14. Hassin, O. et al. Drugging p53 in cancer: one protein, many targets. Nat. Rev. Drug Discov. 22(2), 127-144. https://doi.org/10.103
8/s41573-022-00571-8 (2023).

15. Vaddavalli, P. L. et al. The p53 network: Cellular and systemic DNA damage responses in cancer and aging. Trends Gene.t 38(6),
598-612. https://doi.org/10.1016/j.tig.2022.02.010 (2022).

16. Liu, J. et al. Alterations of TP53 are associated with a poor outcome for patients with hepatocellular carcinoma: Evidence from a
systematic review and meta-analysis. Eur. J. Cancer 48(15), 2328-2338. https://doi.org/10.1016/j.¢jca.2012.03.001 (2012).

17. Groelly, E. J. et al. Targeting DNA damage response pathways in cancer. Nat. Rev. Cancer 23(2), 78-94. https://doi.org/10.1038/s41
568-022-00535-5 (2023).

18. Hopkins, J. L. et al. DNA repair defects in cancer and therapeutic opportunities. Genes Dev. 36(5-6), 278-293. https://doi.org/10.
1101/gad.349431.122 (2022).

19. Hoeijmakers, ]. H. DNA damage, aging, and cancer. N. Engl. ]. Med. 361(15), 1475-1485. https://doi.org/10.1056/NEJMra0804615
(2009).

20. Basu, A. K. DNA damage, mutagenesis and cancer. Int. J. Mol. Sci. https://doi.org/10.3390/ijms19040970 (2018).

21. Filipponi, D. et al. DNA damage signaling-induced cancer cell reprogramming as a driver of tumor relapse. Mol. Cell 74(4), 651-
663.e8. https://doi.org/10.1016/j.molcel.2019.03.002 (2019).

22. Yang, W. B. et al. Histone deacetylase 6 acts upstream of DNA damage response activation to support the survival of glioblastoma
cells. Cell Death Dis. 12(10), 884. https://doi.org/10.1038/s41419-021-04182-w (2021).

23. Reislinder, T. et al. DNA damage and cancer immunotherapy: A STING in the tale. Mol. Cell 80(1), 21-28. https://doi.org/10.101
6/j.molcel.2020.07.026 (2020).

24. Pan, D. et al. When DNA damage responses meet tumor immunity: From mechanism to therapeutic opportunity. Int. J. Cancer
155(3), 384-399. https://doi.org/10.1002/ijc.34954 (2024).

25. Jiang, M. et al. Alterations of DNA damage response pathway: Biomarker and therapeutic strategy for cancer immunotherapy. Acta
Pharm. Sin. B 11(10), 2983-2994. https://doi.org/10.1016/j.apsb.2021.01.003 (2021).

26. Burrell, R. A. et al. Replication stress links structural and numerical cancer chromosomal instability. Nature 494(7438), 492-496.
https://doi.org/10.1038/nature11935 (2013).

27. Brzostek-Racine, S. et al. The DNA damage response induces IFN. J. Immunol. 187(10), 5336-5345. https://doi.org/10.4049/jimm
unol. 1100040 (2011).

28. Heijink, A. M. et al. BRCA2 deficiency instigates cGAS-mediated inflammatory signaling and confers sensitivity to tumor necrosis
factor-alpha-mediated cytotoxicity. Nat. Commun. 10(1), 100. https://doi.org/10.1038/s41467-018-07927-y (2019).

29. Sato, H. et al. DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells. Nat. Commun. 8(1), 1751.
https://doi.org/10.1038/s41467-017-01883-9 (2017).

30. Permata, T. B. M. et al. Base excision repair regulates PD-L1 expression in cancer cells. Oncogene 38(23), 4452-4466. https://doi.o
1rg/10.1038/541388-019-0733-6 (2019).

31. Apetoh, L. et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy.
Nat. Med. 13(9), 1050-1059. https://doi.org/10.1038/nm1622 (2007).

32. Zhang, J. et al. Role of DNA repair defects in predicting immunotherapy response. Biomark. Res. 8, 23. https://doi.org/10.1186/s4
0364-020-00202-7 (2020).

Scientific Reports |

(2025) 15:14939 | https://doi.org/10.1038/s41598-025-99853-5 nature portfolio


https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/gds/?term
https://figshare.com/articles/dataset/PLANET_cohort/23732370
https://figshare.com/articles/dataset/PLANET_cohort/23732370
https://doi.org/10.1016/s0140-6736(18)30010-2
https://doi.org/10.1016/j.jhep.2018.08.027
https://doi.org/10.1111/liv.12898
https://doi.org/10.1097/sla.0000000000003268
https://doi.org/10.1016/s1470-2045(15)00198-9
https://doi.org/10.1158/1078-0432.Ccr-17-2899
https://doi.org/10.3390/ijms25021259
https://doi.org/10.3390/ijms25021259
https://doi.org/10.1056/NEJMoa1915745
https://doi.org/10.1038/s41571-023-00816-4
https://doi.org/10.1038/s41571-023-00816-4
https://doi.org/10.1186/s12935-021-02396-8
https://doi.org/10.1186/s12935-021-02396-8
https://doi.org/10.1038/s41418-022-00962-9
https://doi.org/10.1038/s41418-022-00962-9
https://doi.org/10.1038/s41573-022-00571-8
https://doi.org/10.1038/s41573-022-00571-8
https://doi.org/10.1016/j.tig.2022.02.010
https://doi.org/10.1016/j.ejca.2012.03.001
https://doi.org/10.1038/s41568-022-00535-5
https://doi.org/10.1038/s41568-022-00535-5
https://doi.org/10.1101/gad.349431.122
https://doi.org/10.1101/gad.349431.122
https://doi.org/10.1056/NEJMra0804615
https://doi.org/10.3390/ijms19040970
https://doi.org/10.1016/j.molcel.2019.03.002
https://doi.org/10.1038/s41419-021-04182-w
https://doi.org/10.1016/j.molcel.2020.07.026
https://doi.org/10.1016/j.molcel.2020.07.026
https://doi.org/10.1002/ijc.34954
https://doi.org/10.1016/j.apsb.2021.01.003
https://doi.org/10.1038/nature11935
https://doi.org/10.4049/jimmunol.1100040
https://doi.org/10.4049/jimmunol.1100040
https://doi.org/10.1038/s41467-018-07927-y
https://doi.org/10.1038/s41467-017-01883-9
https://doi.org/10.1038/s41388-019-0733-6
https://doi.org/10.1038/s41388-019-0733-6
https://doi.org/10.1038/nm1622
https://doi.org/10.1186/s40364-020-00202-7
https://doi.org/10.1186/s40364-020-00202-7
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

Chen, Z. et al. A machine learning model to predict the triple negative breast cancer immune subtype. Front. Immunol. 12, 749459.
https://doi.org/10.3389/fimmu.2021.749459 (2021).

Su, Y. et al. Colon cancer diagnosis and staging classification based on machine learning and bioinformatics analysis. Comput. Biol.
Med. 145, 105409. https://doi.org/10.1016/j.compbiomed.2022.105409 (2022).

Chen, D. L. et al. Identification of key prognostic genes of triple negative breast cancer by LASSO-based machine learning and
bioinformatics analysis. Genes (Basel) https://doi.org/10.3390/genes13050902 (2022).

Swanson, K. et al. From patterns to patients: Advances in clinical machine learning for cancer diagnosis, prognosis, and treatment.
Cell 186(8), 1772-1791. https://doi.org/10.1016/j.cell.2023.01.035 (2023).

Chu, G. et al. Integrated multiomics analysis and machine learning refine molecular subtypes and prognosis for muscle-invasive
urothelial cancer. Mol. Ther. Nucleic Acids 33, 110-126. https://doi.org/10.1016/j.omtn.2023.06.001 (2023).

Chen, Y. et al. Comprehensive molecular classification predicted microenvironment profiles and therapy response for HCC.
Hepatology 80(3), 536-551. https://doi.org/10.1097/hep.0000000000000869 (2024).

Zhai, W. et al. Dynamic phenotypic heterogeneity and the evolution of multiple RNA subtypes in hepatocellular carcinoma: the
PLANET study. Natl. Sci. Rev. https://doi.org/10.1093/nsr/nwab192 (2022).

Grinchuk, O. V. et al. Tumor-adjacent tissue co-expression profile analysis reveals pro-oncogenic ribosomal gene signature for
prognosis of resectable hepatocellular carcinoma. Mol. Oncol. 12(1), 89-113. https://doi.org/10.1002/1878-0261.12153 (2018).
Roessler, S. et al. A unique metastasis gene signature enables prediction of tumor relapse in early-stage hepatocellular carcinoma
patients. Cancer Res. 70(24), 10202-10212. https://doi.org/10.1158/0008-5472.Can-10-2607 (2010).

Zhu, A. X. et al. Molecular correlates of clinical response and resistance to atezolizumab in combination with bevacizumab in
advanced hepatocellular carcinoma. Nat. Med. 28(8), 1599-1611. https://doi.org/10.1038/s41591-022-01868-2 (2022).

Liberzon, A. et al. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 1(6), 417-425. https://doi.
0rg/10.1016/j.cels.2015.12.004 (2015).

Ashburner, M. et al. Gene ontology: Tool for the unification of biology the gene ontology consortium. Nat. Genet. 25(1), 25-29.
https://doi.org/10.1038/75556 (2000).

Ogata, H. et al. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 27(1), 29-34. https://doi.org/10.1093/nar/27
.1.29 (1999).

Milacic, M. et al. The reactome pathway knowledgebase 2024. Nucleic Acids Res. 52(D1), D672-d678. https://doi.org/10.1093/nar/
gkad1025 (2024).

Olivieri, M. et al. A genetic map of the response to DNA damage in human cells. Cell 182(2), 481-496.e21. https://doi.org/10.1016
/j.cell.2020.05.040 (2020).

Skubleny, D. et al. The tumor immune microenvironment drives survival outcomes and therapeutic response in an integrated
molecular analysis of gastric adenocarcinoma. Clin. Cancer Res. 30(23), 5385-5398. https://doi.org/10.1158/1078-0432.Ccr-23-35
23 (2024).

Wang, Y. et al. Identifying squalene epoxidase as a metabolic vulnerability in high-risk osteosarcoma using an artificial intelligence-
derived prognostic index. Clin. Transl. Med. 14(2), e1586. https://doi.org/10.1002/ctm2.1586 (2024).

Qin, H. et al. Integrated machine learning survival framework develops a prognostic model based on inter-crosstalk definition of
mitochondrial function and cell death patterns in a large multicenter cohort for lower-grade glioma. J. Transl. Med. 21(1), 588.
https://doi.org/10.1186/s12967-023-04468-x (2023).

Yoshihara, K. et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 4, 2612.
https://doi.org/10.1038/ncomms3612 (2013).

Aran, D. et al. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 18(1), 220. https://doi.org/10.11
86/513059-017-1349-1 (2017).

Charoentong, P. et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of
response to checkpoint blockade. Cell Rep. 18(1), 248-262. https://doi.org/10.1016/j.celrep.2016.12.019 (2017).

Jiang, P. et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24(10), 1550-
1558. https://doi.org/10.1038/s41591-018-0136-1 (2018).

Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12(5), 453-457. https://doi
.org/10.1038/nmeth.3337 (2015).

Maeser, D. et al. oncoPredict: an R package for predicting in vivo or cancer patient drug response and biomarkers from cell line
screening data. Brief. Bioinform. https://doi.org/10.1093/bib/bbab260 (2021).

Xu, E. et al. Immune checkpoint therapy in liver cancer. J. Exp. Clin. Cancer Res. 37(1), 110. https://doi.org/10.1186/s13046-018-0
777-4 (2018).

Renaud, M. et al. Gene duplication and neofunctionalization: POLR3G and POLR3GL. Genome Res. 24(1), 37-51. https://doi.org
/10.1101/gr.161570.113 (2014).

Kessler, A. C. et al. The nuclear and cytoplasmic activities of RNA polymerase III, and an evolving transcriptome for surveillance.
Nucleic Acids Res. 49(21), 12017-12034. https://doi.org/10.1093/nar/gkab1145 (2021).

Liu, S. et al. RNA polymerase III is required for the repair of DNA double-strand breaks by homologous recombination. Cell
184(5), 1314-1329.¢10. https://doi.org/10.1016/j.cell.2021.01.048 (2021).

Liu, S. et al. RNA polymerase III directly participates in DNA homologous recombination. Trends Cell Biol. 32(12), 988-995.
https://doi.org/10.1016/j.tcb.2022.06.007 (2022).

Chen, H. et al. POLR3G promotes EMT via PI3K/AKT signaling pathway in bladder cancer. FASEB J. 37(12), €23260. https://doi.
0rg/10.1096/1).202301095R (2023).

Lautré, W. et al. The POLR3G subunit of human RNA polymerase III regulates tumorigenesis and metastasis in triple-negative
breast cancer. Cancers (Basel) https://doi.org/10.3390/cancers14235732 (2022).

Park, C. R. et al. Regulating POLR3G by MicroRNA-26a-5p as a promising therapeutic target of lung cancer stemness and
chemosensitivity. Noncoding RNA Res. 8(3), 273-281. https://doi.org/10.1016/j.ncrna.2023.03.001 (2023).

Petrie, J. L. et al. Effects on prostate cancer cells of targeting RNA polymerase III. Nucleic Acids Res. 47(8), 3937-3956. https://doi.
org/10.1093/nar/gkz128 (2019).

St Paul, M. et al. The roles of CD8(+) T cell subsets in antitumor immunity. Trends Cell Biol. 30(9), 695-704. https://doi.org/10.10
16/j.tcb.2020.06.003 (2020).

Park, J. et al. Microenvironment-driven metabolic adaptations guiding CD8(+) T cell anti-tumor immunity. Immunity 56(1),
32-42. https://doi.org/10.1016/j.immuni.2022.12.008 (2023).

Sen, T. et al. Targeting DNA damage response promotes antitumor immunity through STING-Mediated T-cell activation in small
cell lung cancer. Cancer Discov. 9(5), 646-661. https://doi.org/10.1158/2159-8290.Cd-18-1020 (2019).

Li, C. et al. ATM inhibition enhance immunotherapy by activating STING signaling and augmenting MHC Class 1. Cell Death Dis.
15(7), 519. https://doi.org/10.1038/s41419-024-06911-3 (2024).

Reisldnder, T. et al. BRCA2 abrogation triggers innate immune responses potentiated by treatment with PARP inhibitors. Nat.
Commun. 10(1), 3143. https://doi.org/10.1038/s41467-019-11048-5 (2019).

Wang, Z. et al. Niraparib activates interferon signaling and potentiates anti-PD-1 antibody efficacy in tumor models. Sci. Rep. 9(1),
2019. https://doi.org/10.1038/s41598-019-38534-6 (1853).

Hu, M. et al. ATM inhibition enhances cancer immunotherapy by promoting mtDNA leakage and cGAS/STING activation. J. Clin.
Invest. https://doi.org/10.1172/jci139333 (2021).

Scientific Reports |

(2025) 15:14939 | https://doi.org/10.1038/s41598-025-99853-5 nature portfolio


https://doi.org/10.3389/fimmu.2021.749459
https://doi.org/10.1016/j.compbiomed.2022.105409
https://doi.org/10.3390/genes13050902
https://doi.org/10.1016/j.cell.2023.01.035
https://doi.org/10.1016/j.omtn.2023.06.001
https://doi.org/10.1097/hep.0000000000000869
https://doi.org/10.1093/nsr/nwab192
https://doi.org/10.1002/1878-0261.12153
https://doi.org/10.1158/0008-5472.Can-10-2607
https://doi.org/10.1038/s41591-022-01868-2
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1038/75556
https://doi.org/10.1093/nar/27.1.29
https://doi.org/10.1093/nar/27.1.29
https://doi.org/10.1093/nar/gkad1025
https://doi.org/10.1093/nar/gkad1025
https://doi.org/10.1016/j.cell.2020.05.040
https://doi.org/10.1016/j.cell.2020.05.040
https://doi.org/10.1158/1078-0432.Ccr-23-3523
https://doi.org/10.1158/1078-0432.Ccr-23-3523
https://doi.org/10.1002/ctm2.1586
https://doi.org/10.1186/s12967-023-04468-x
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1016/j.celrep.2016.12.019
https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1093/bib/bbab260
https://doi.org/10.1186/s13046-018-0777-4
https://doi.org/10.1186/s13046-018-0777-4
https://doi.org/10.1101/gr.161570.113
https://doi.org/10.1101/gr.161570.113
https://doi.org/10.1093/nar/gkab1145
https://doi.org/10.1016/j.cell.2021.01.048
https://doi.org/10.1016/j.tcb.2022.06.007
https://doi.org/10.1096/fj.202301095R
https://doi.org/10.1096/fj.202301095R
https://doi.org/10.3390/cancers14235732
https://doi.org/10.1016/j.ncrna.2023.03.001
https://doi.org/10.1093/nar/gkz128
https://doi.org/10.1093/nar/gkz128
https://doi.org/10.1016/j.tcb.2020.06.003
https://doi.org/10.1016/j.tcb.2020.06.003
https://doi.org/10.1016/j.immuni.2022.12.008
https://doi.org/10.1158/2159-8290.Cd-18-1020
https://doi.org/10.1038/s41419-024-06911-3
https://doi.org/10.1038/s41467-019-11048-5
https://doi.org/10.1038/s41598-019-38534-6
https://doi.org/10.1172/jci139333
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

73. Wang, M. et al. ATR inhibition induces synthetic lethality in mismatch repair-deficient cells and augments immunotherapy. Genes
Dev. 37(19-20), 929-943. https://doi.org/10.1101/gad.351084.123 (2023).

74. Agarwal, E. et al. Akt inhibitor MK-2206 promotes anti-tumor activity and cell death by modulation of AIF and Ezrin in colorectal
cancer. BMC Cancer 14, 145. https://doi.org/10.1186/1471-2407-14-145 (2014).

75. Steegmaier, M. et al. B 2536, a potent and selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo. Curr. Biol. 17(4),
316-322. https://doi.org/10.1016/j.cub.2006.12.037 (2007).

76. Tang, Y. et al. Identification and validation of a prognostic model based on three MVI-related genes in hepatocellular carcinoma.
Int. J. Biol. Sci. 18(1), 261-275. https://doi.org/10.7150/ijbs.66536 (2022).

77. Long, J. et al. DNA methylation-driven genes for constructing diagnostic, prognostic, and recurrence models for hepatocellular
carcinoma. Theranostics 9(24), 7251-7267. https://doi.org/10.7150/thno.31155 (2019).

78. Kong, J. et al. A genomic-clinical nomogram predicting recurrence-free survival for patients diagnosed with hepatocellular
carcinoma. Peer] 7, €7942. https://doi.org/10.7717/peerj.7942 (2019).

79. Wang, W. et al. A gene-based risk score model for predicting recurrence-free survival in patients with hepatocellular carcinoma.
BMC Cancer 21(1), 6. https://doi.org/10.1186/s12885-020-07692-6 (2021).

80. Xie, S. et al. Novel risk model based on angiogenesis-related IncRNAs for prognosis prediction of hepatocellular carcinoma. Cancer
Cell Int. 23(1), 159. https://doi.org/10.1186/s12935-023-02975-x (2023).

81. Li, Y. et al. Competing endogenous RNA network and prognostic nomograms for hepatocellular carcinoma patients who
underwent RO resection. J. Cell. Physiol. 234(11), 20342-20353. https://doi.org/10.1002/jcp.28634 (2019).

82. Kong, W. et al. Prognostic model of patients with liver cancer based on tumor stem cell content and immune process. Aging
(Albany NY) https://doi.org/10.18632/aging.103832 (2020).

83. Hong, W. et al. Deciphering the immune modulation through deep transcriptomic profiling and therapeutic implications of DNA
damage repair pattern in hepatocellular carcinoma. Cancer Lett. 582, 216594. https://doi.org/10.1016/j.canlet.2023.216594 (2024).

84. Yan, Z.]. et al. Development of a TMErisk model based on immune infiltration in tumour microenvironment to predict prognosis
of immune checkpoint inhibitor treatment in hepatocellular carcinoma. Brief. Bioinform. https://doi.org/10.1093/bib/bbad067
(2023).

Author contributions

Jiayao Ma: Writing—original draft, Visualization, Validation, Software, Methodology, Project administration.
Diya Tang: Writing—original draft, Visualization, Validation, Software, Methodology, Investigation. Guangzu
Cui: Writing—review and editing, Validation, Resources. Xiangyang Zhang: Data curation, Visualization, Val-
idation. Xinwen Wang: Formal analysis, Funding acquisition. Yin Li: Software. Erya Hu: Validation. Xin Zhou:
Validation, Resources. Haicong Liu: Software, Resources. Qingping Peng: Software. Changjing Cai: Software.
Xiangying Deng: Validation. Shan Zeng: Supervision, Funding acquisition. Yihong Chen: Supervision, Concep-
tualization. Zemin Xiao: Supervision, Conceptualization.

Fundin

This studg was supported by grants from the National Natural Science Foundation of China (No. 82373275,
81974384, 82173342 & 82203015), the China Postdoctoral Science Foundation (No. 2022M723553), four
projects from the Hunan Provincial Natural Science Foundation of China (No. 2021JJ31092, 2021]J]31048,
2023]J40942, 2025]]70655), Nature Science Foundation of Changsha (No.73201), CSCO Cancer Research Foun-
dation (No. Y-HR2019-0182 & Y-2019Genecast-043) and the Key Research and Development Program of Hain-
an Province (No. ZDYF2020228 & ZDYF2020125). The funders have no roles in study design, data collection,
data analysis, interpretation or the writing of this report.

Declarations

Competing interests
The authors declare no competing interests.

Ethics approval

The studies involving human participants were reviewed and approved by the Ethics Committees of the
Xiangya Hospital (Ethics No. 202401014). The patients/participants provided their written informed consent
to participate in this study. The authors confirming that all methods were performed in accordance with
relevant guidelines and regulations.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/1
0.1038/s41598-025-99853-5.

Correspondence and requests for materials should be addressed to Y.C. or Z.X.
Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Scientific Reports|  (2025) 15:14939 | https://doi.org/10.1038/541598-025-99853-5 nature portfolio


https://doi.org/10.1101/gad.351084.123
https://doi.org/10.1186/1471-2407-14-145
https://doi.org/10.1016/j.cub.2006.12.037
https://doi.org/10.7150/ijbs.66536
https://doi.org/10.7150/thno.31155
https://doi.org/10.7717/peerj.7942
https://doi.org/10.1186/s12885-020-07692-6
https://doi.org/10.1186/s12935-023-02975-x
https://doi.org/10.1002/jcp.28634
https://doi.org/10.18632/aging.103832
https://doi.org/10.1016/j.canlet.2023.216594
https://doi.org/10.1093/bib/bbad067
https://doi.org/10.1038/s41598-025-99853-5
https://doi.org/10.1038/s41598-025-99853-5
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommo
ns.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

Scientific Reports|  (2025) 15:14939 | https://doi.org/10.1038/s41598-025-99853-5 nature portfolio


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿The molecular characteristics of DNA damage and repair related to P53 mutation for predicting the recurrence and immunotherapy response in hepatocellular carcinoma
	﻿Material and methods
	﻿Collection and sequence of clinical HCC samples
	﻿Public data collection and batch effect removal
	﻿Enrichment analysis and survival analysis
	﻿Model training and validation
	﻿Immune infiltration algorithms and CyTOF analysis
	﻿Drug sensitivity analysis
	﻿Cell lines and cell cultures
	﻿Cell count kit-8 (CCK-8) proliferation test
	﻿RNA isolation and real-time quantitative polymerase chain reaction (PCR)
	﻿Western blotting
	﻿EdU detection
	﻿Small interference RNA (siRNA) transfection
	﻿Transwell migration
	﻿Statistics analysis

	﻿Results
	﻿DDR genes associated with P53 mutations in HCC recurrence
	﻿Development and validation of DDR model for HCC recurrence
	﻿The high-risk group presented worse clinical prognosis
	﻿The high-risk group demonstrated lower microenvironment score and decreased CD8 + T cell infiltration
	﻿The high-risk group exhibited a poorer response to ﻿immunotherapy﻿ using Atezolizumab + Bevacizumab
	﻿POLR3G promoted the proliferation and migration of HCC cells in vitro

	﻿Discussion
	﻿Conclusion
	﻿References


