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Surgical considerations towards
inducing proprioceptive feedback
in dental implants
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Periodontal ligament (PDL) consists mainly of collagen fiber bundles with specialized
mechanoreceptors and free nerve endings that connect the cementum of the tooth root to alveolar
bone and are vital for dental proprioceptive function. When a tooth is lost and replaced with a dental
implant, osseointegration occurs without the intervening PDL, leading to a loss of proprioceptive
function. Herein we report the placement, and healthy integration of an advanced dental implant in
the socket of rat study models without facilitating the process of osseointegration, that could possibly
impart proprioceptive features comparable to those noted in natural teeth. The experimental surgical
procedure during dental implant installation in rat models involved various oral tissue structures
surrounding the teeth as analogous to those in human subjects and therefore bears a significant
clinical relevance. Additionally, the surgical procedure detailed here confers the advantages of its use
to investigate not only dental implants but also could be explorative for a wide range of extra-oral
implants for improved neural integration.
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Partial or complete edentulism is the state of being edentulous i.e. without one or all natural teeth,
respectively. Tooth loss, predominantly, occurs due to consequences of dental diseases, such as dental caries or
periodontitis'which may lead to imbalance in the stomatognathic system?and initiating a multitude of extreme
ramifications. It is noteworthy that ageing alone has a minor impact on the ability of patients to reduce food into
smaller particles, if the confounding factor of tooth loss is controlled for®. Furthermore, food stiffness/rigidity
is also perceived through the periodontal proprioceptive feature of a healthy tooth relaying sensory information
to mesencephalic trigeminal nucleus* in the midbrain (Fig. 1) during mastication and affects the masticatory
force, activity of oral musculature, and mandibular movements all contributing to rhythmic jaw movements,
and mashing of food between the teeth®”. Later, the muscle of mastication are inhibited by sensory receptors
in the oropharynx through food bolus and initiates the complicated process of swallowing®®where pharynx
is transformed into a tract for food propulsion, momentarily!!. Thus, periodontal proprioception along with
the neuro-muscular control of chewing contributes to comminution of the food*’and its propulsion'*towards
alimentary canal’®. In cases of edentulism, prosthodontic management through dental implants, secured
through osseointegration are recommended due to numerous advantages'*with an estimated projection of its
use in roughly 23% of US population by 2026'°and an increasing trend in dental implants market share of
approx. USD 13.01 billion globally!®.

However, dental implant replacing a lost tooth bears a substantial physiological consequence due to
absence of intra-dental and periodontal mechanoreceptors that alters the precise coordination of maxillo-
mandibular relation and impacts the discriminatory, directional and masticatory sensation!”. Although, patients
rehabilitated with dental implants have shown enhanced tactile discriminative capabilities & motor function
compared to complete denture patients'®, they do not adequately restore all the oral function to the former
stomatognathic privileges'®. Scientific evidences concludes that the dental implant osseointegration resulting
from secondary stability, lacks the specialized periodontium at the interface and its associated functionality such
as a very subtle tactile sensitivity’®i.e. periodontal proprioception, leading to altering the precise coordination of
oral, pharyngeal, and laryngeal structures'’; further deviating from the ideal norm of subsequential digestion-
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assimilation process indicating towards an largely uncharted “missing of periodontal sensory perception” induced
impact on overall health and well-being in humans!32!-%3,

Hence, to address the limitations of current dental implants'®?** we designed an advanced prototype
for dental implants ((Supplementary Methods, Supplementary Fig. 1-8, Supplementary Table 1) specific for
inducing proprioceptive features (Fig. 1) and were successful in accurately installing (Fig. 2) and integrating
them (Fig. 3) in the tooth socket of rat study models. While confirmatory proprioceptive status will be examined
in animals with the specific procedures in the future, we anticipate that the simple surgery and bioengineering
strategy implemented in our initial trial evaluations could drive progress in creating new design concepts for the
modified dental implant integration that doesn’t involve the conventional osseointegration process. Additionally,
the procedural details here will also provide insight into modifying a wide range of other neuro-prosthetics and
nerve rehabilitation devices in the direction of superior neurophysiological integration.

Methods

Dental implant prototype

The test implants were fabricated with a shorter dimension in comparison to the length of original tooth for
sufficient interocclusal space and were later coated with nanofibers (Supplementary Methods). The Growth
factor was adsorbed during the coating onto the surface intermittently, proving a multi-layer of orderly pile
stack of growth factor adsorbed layers (Supplementary Methods). The undifferentiated immortalized stem cells
(Supplementary Methods) were seeded on the surface of the coating with increased concentration of cells in the
middle 3rd, lingually.

Animals

Male Brown Norway rats (n= 3+ 3) aged 12 weeks, weighing ~225-245 gms upon initiation of the study were
purchased from Charles River Breeding labs. Rats were housed with food and water provided ad libitum, light in
14:10 h light: dark cycles, and housed at ambient 22 °C (+ 1 °C) temperature with 30-70% humidity.

After a 3-day acclimatization period, the rats were assessed and found to be free of clinical signs of diseases,
with normal posture, movement, respiration cycle, cardiovascular status etc. For comparative evaluation
hematological, cytokines parameters, temperature, weight and H&E-stained sections of left submandibular
cervical lymph node of representative rat models (with and without implants) were obtained at the end of the
trail period (Supplementary Fig. 9.) (Supplementary Tables 2-5.). At the end of the trial period the rats were
euthanized using carbon dioxide (CO2) inhalation to induce asphyxiation, followed by cervical dislocation as a
secondary euthanasia.

Implant surgery

Animals (n= 3) were briefly anaesthetized with 70 mg kg™! ketamine and 10 mg kg™! Xylazine. Povidone-iodine
swab sticks (Medline, MDS 093902) and 2% chlorhexidine were used to disinfect the intraoral region. Pre-
surgical evaluations were meticulously performed for the left mandibular tooth, its surgical anatomy, the length
of the crown and its occlusion, interocclusal relationship, alveolar ridge, potential mandibular implant site, etc.
Besides the usual oral surgical instruments, modified surgical blades from the hypodermic needles (Exel Int. 25
G, Ref.26403) were fabricated, by flattening, and sharpening their edges. During the surgery, the sterile modified
blades were placed into the gingival sulcus of the mandibular left incisor, distally, with gradual tearing of the
distal gingival fibers and advancing apically, extending far down, progressing and severing the deeper attachment
fibers. Thereafter, the blade was gently proceeded further, in the periodontal space, moving circumferentially,
surrounding the tooth, gradually towards mesio-apical orientation, carefully maneuvering around the external
contour of the tooth and completely detaching the mesial attachment fibers loosening the tooth (Fig. 2). The
tooth was later grasped with tweezers (Harfington, Uxcell, Ref:1174861) gently luxated and extracted. The dental
implant coated with immortalized undifferentiated rat dental pulp stem cells (Supplementary Methods) was
press fitted and fixed in its natural position in the fresh socket. A cyanoacrylate adhesive dressing (PeriAcryl 90,
GlusStitch Inc., Delta, Canada) was used to seal and secure the interface of titanium implants and peri-implant
soft tissue from rest of the oral cavity (Fig. 2). Meticulous preoperative and postoperative radiological evaluation
(Skyscan 1176 High Resolution Micro-CT Scanner, Bruker) relevant to maxilla-mandibular structures, precise
placement of the dental implant and their relation to adjacent structures (Fig. 3) etc. were carried out. For
management of postoperative pain, analgesics such as buprenorphine hydrochloride 0.05 mg kg™! was used.

Post-operative care and housing
Animals were housed individually and during post-anesthesia warming phase, a heating pad, set at ~37 °C, was
placed beneath each recovery cage. During the post-surgery recovery period, all the animals have 14 h:10 h light/
dark cycle and had access to gel diet (DietGel Recovery & DietGel 76 A, Clear H,0O) along with standard food
and water ad libitum.

We confirm that the animal experiments were executed in conformity with the relevant guidelines and
regulations established by the National Institutes of Health and institutional guidelines with the approval of
Tufts University’s IACUC (Protocol #B2020-156).

Results

All the animals survived the whole experimental time, and no operative or postoperative complications were
encountered. The clinical and macroscopic evaluation revealed that all the prototypes for dental implants were
well fixed in their respective dental sockets at the end of the trial period (Supplementary Video). All the rats
presented healed peri-implant mucosa with no evidence of exudation, inflammation or crusting. Micro-CT
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Fig. 1. Translational implication of the trial investigation: (a) i, The human brain with the maxillary and
mandibular teeth are connected through the trigeminal nerve. For reasons of simplification, only the

inferior alveolar nerve arising from the mandibular branch of the trigeminal nerve (CN V3) providing
sensory innervation to the mandibular teeth, gingiva, and dental sockets is shown. (a) ii, Besides dental pulp
innervation, the roots of the mandibular teeth are covered by the free nerve terminals mostly from the inferior
or mental division of the mandibular branch of the trigeminal nerve. (b) i, Through an experimental surgical
protocol, the left mandibular central incisor in the rat study models were extracted and subsequently the
elastomeric nanofibre coated dental implant with stem cells were placed in the dental socket. Accordingly,
appropriate cues were engineered for guiding the stem cell’s fate and differentiation towards neural cells on the
biodegradable coating (b)iii influencing a modified integration where the differentiated neural cells present

in the regenerated neo-tissue complex may anastomose with the severed/terminal sensory branches in the
interior wall of the dental socket arising from the trigeminal nerve.
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Fig. 2. The details of the intraoperative photographs of the representative rat model manifesting the
experimental surgical technique for installing titanium dental implant in the mandible. (a) i, Unoperated
normal and healthy mandibular central incisors. (a) ii, Careful and gentle insertion of the customized blade
into the gingival sulcus distally, gradually advancing towards the center of the tooth and progressively severing
the attachment fibres towards the apical orientation. (a)iii, Gentle insertion of the customized blade into the
mesial gingival sulcus, and later advancing into the periodontal space with the tip of the blade angled towards
the long axis of the incisor and severing the respective attachment fibres around the entire tooth circumference.
(a) iv, The structural integrity of the tooth socket is well maintained after gently extracting the loose tooth. (a)
v-viii, Elastomeric nanofibrous coated dental implant with stem cells is press-fitted in the dental socket. (a) ix,
A tissue adhesive was used to cover the peri-implant region. (A)x, Peri-implant tissue healing after 48 h. (b)
Gentle holding of the surgical blade during the experimental surgery ensuring the least traumatic way to divide
the tissues.

investigation after 6 weeks post-implantation revealed distinct peri-implant radiolucency as a narrow radiolucent
space in the range of 0.7-0.9 mm between the alveolar bone and the dental implant indicating absence of
osseous/calcified characteristics in the integrating tissue (Fig. 3). Notably, absence of cervical lymphadenopathy
throughout the investigation, along with the comparative histological evaluation (Supplementary Fig. 9).
of the left submandibular lymph node, blood biochemistry, hemogram, cytokine levels, temperature, weight
(Supplementary Tables 2-5) etc. indicated uneventful recovery.

Discussion
As periodontium in the healthy natural tooth are equipped with highly specialized periodontal
mechanoreceptors®32it is unlikely that any regenerative intervention directed towards proprioceptive titanium

dental implant will produce a physiologic outcome that is equivalent to that of a healthy and true periodontium.
Conversely, some reports also highlight about the presence of periodontal mechanoreceptors even after the
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Fig. 3. Radiological evaluation. (a)i-ii, Plain radiographs of dental implant after six weeks of dental implant
surgery. (b) i Micro-CT images of rats with no dental implants., (b)ii, immediately after placing the implant,
and (b) iii, after six weeks post-surgery. Distinct peri-implant radiolucency with no appreciable bone-to-
implant contact is noted for both plain radiographs and micro-CT images. Image scale bar in (b) represents 10
mm.

tooth extraction®*and that had led to investigation of reinnervation in relation to titanium dental implants* but
with no success.

It is largely agreed that the sensory component of the periodontal ligament contains rich sensory non-
encapsulated terminal receptors including free nerve endings and specialized Ruffini-like endings*. In humans,
the periodontium receives innervating nerve fibers*>*’mostly through the apical region and some course
through the lateral foramina in the alveolar bone®. Following routine exodontic procedures, the nerve fibers
innervating the periodontal ligaments and the pulp are crushed and severed. During the subsequent period of
normal socket healing®there is a possibility that these traumatized and residual nerve fibers may regenerate into
and through the soft tissue of the socket, innervating the periosteum or alveolar mucosa. Alternatively, they may
form a traumatic or amputation neuroma within the jawbone®.

Hence, our proof-of-concept trial deals with targeted repairing of these injured terminal nerve endings
instead of the whole periodontium, that are present as an extension of the trigeminal system at the interface of
the immediately placed dental implant and alveolar bone through a significantly less traumatic experimental
surgical protocol, thereby restoring the neural circuitry in an otherwise intact dental proprioceptive route that
communicates from the interface of a tooth root/dental implant to the mesencephalic nucleus in the midbrain.

Consequently, for achieving our objective a modified integration of dental implants is crucial and accordingly
the advanced prototype for dental implants were installed based on the press-fit phenomenon?!. Additionally,
multiple innovative strategies were implemented to engineer the dental implant integration that is different from
the usual or conventional “osseointegrative” way; such as coating dental implants with elastomeric biodegradable
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nanofibers, multilayer incorporation of hyperstable FGF-p in the coating, seeding exogenous rat’s dental pulp
stem cells in the coating that were concentrated in the region corresponding to the alveolar half of the lingual
periodontal ligament and were based on the neuroanatomical details of the rat’s incisor*>- etc.

Finally, and above all, the requisite atraumatic tooth extraction were performed on rat study models by using
customized flexible & sharp blades. These blades were fabricated by flattening and sharpening the edges of the
syringe needles for gently disengaging the periodontium and extracting the complete tooth with least trauma to
the peri-dental tissue for maintaining the structural integrity of the socket and preserving the maximal severed
periodontium is the interior wall of the socket containing the unencapsulated nervous elements such as Ruffini-
like corpuscles and free nerve endings.

Upon completing the immediate dental implant placement in the socket, the deformed and compressed
elastomeric nanofibrous coating, slowly resumes its shape conforming the interior dimension of the socket
ensuring a snug or tight fit and further resulting the attached exogenous dental pulp stem cells on the coating
to directly interface the aforementioned nervous elements. This closely fit status of the dental implant with
no appreciable signs of mobility may be comparable to primary stabilityof the conventional titanium dental
implants, that are observed and favoured during surgical placement and arises from the mechanical friction
between implant surface and the surrounding bone!*%’.

Likewise, herein, over a period of time & under the influence of hyper stable fibroblast growth factor 2 (FGF
2)%in the coating, orthotopic environment***%and experimental surgery, the elastomeric nanofibrous coating
with stem cells in the dental socket slowly deteriorates with progressive repairing of the terminal nerve endings*®
including possible neural anastomosis and gradually replacing the interfacial space occupied by the elastomeric
coating with neo-tissues bridging alveolar bone and implant surface having features dissimilar to osseous
tissue yet could be analogous to well-established secondary stability'*"’, in the healing stages that completes the
osseointegration process, noted in the conventional dental implants. Convincingly, the 6 weeks old integrated
prototypes were neither tender to percussion or pressure nor was mobile (Supplementary video)*!, together with
the distinct per-implant radiolucency (Fig. 3), the occurrence of the purely fibrous integration®or fibro-osseous
integration were therefore excluded.

Although this innovate surgical trial was performed on small sample size of preclinical study models, the
surgical anatomy of peri-dental region specifically the minimally invasive experimental surgical technique
limited only to connective tissue attachment fibers such as periodontium, marginal gingiva, attached gingiva,
etc. and the modifications in the prototype of titanium dental implants, bears a close resemblance to actual
cases managed in clinical scenario and indicates that the modified integration of the prototype dental implants
towards proprioceptive function could be a formidable alternative to its well established oseeointegrative
counterpart. However, such engineered integration results in dental implant to be proprioceptive needs to be
confirmed especially through advanced neurodiagnostic imaging techniques for prompting a clinical trial.

Advantageously, reports in the literature also explains about the rodents such as mole rats where extraordinary
brain organization i.e. nearly one-third (31%) of primary somatosensory cortex is devoted to the representations
of the upper and lower incisors®*. Therefore, assuming homology of the neuro-anatomical organization across
species with aradicular hypsodonty in terms of both somatosensory representation and the resulting functional
connectivity, the similar prototype implants for mandibular incisors with the exact surgical procedures described
here will be investigated for proprioceptive function on Brown Norway rats (Rattus norvegicus) in the next
phase of the trial.

Limitations
Variations in technique among surgeons performing the same procedure can influence the consistency of
outcomes.

Data availability
All data supporting the findings of this study are included within this published article and its supplementary
materials.
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