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Abstract 

The use of Artificial Intelligence (AI) to effectively support human decision making depends 

on whether humans are willing to rely on, and trust in, AI. Understanding human reliance on 

AI is critical given controversial reports of AI inaccuracy and bias. Furthermore, the 

erroneous belief that using technology removes biases may lead to overreliance on AI. To 

examine humans‘ reliance on AI, human participants (N = 295, Mage = 33.79) judged the 

authenticity of 80 faces (40 real, 40 AI-synthesized) presented alongside guidance supposedly 

from humans or from AI. This guidance was correct only half of the time. Participants 

indicated their confidence in each judgement and completed measures to examine propensity 

to trust humans and general attitudes towards AI. Participants who received AI guidance and 

exhibited more positive attitudes towards AI showed poorer discriminability between real and 

synthetic faces than those with less positive attitudes towards AI. For participants who 

received human guidance, level of trust in humans did not affect discriminability. Therefore, 

AI-derived guidance may be uniquely placed to engender biases in humans, leading to less 

effective decision making. To ensure successful human-AI decision making partnerships, 

more research is needed to understand precisely how humans use AI guidance in various 

contexts. 

Keywords: computational social science, AI, decision-making, bias. 

 

Introduction 

Advances in technology and access to ―big data‖ have allowed for the expansion of 

Artificial Intelligence (AI) to help with human decision-making. There are, potentially, 

significant benefits to using AI to support human decision-making, including saving time, 

improving accuracy, and reducing bias. Indeed, one need only consider the use of AI by 

various music and film streaming platforms and dating sites to grasp how accepted and 

expected the use of such technology has become [1, 2]. However, in recent years, the use of 

AI in certain contexts has led to much controversy, with reports indicating inaccuracy and 

unfairness; notably showing biases against certain demographic groups [3]. For example, the 

COMPAS tool used in many US states to predict a defendant‘s risk of recidivism has been 
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shown to be biased against people of colour [4]. Although there is a growing literature 

addressing the technical limitations of AI and trying to improve accuracy and fairness, there 

is insufficient research examining human-AI interactions. Specifically, the impact that 

guidance provided by AI, and a human decision-maker‘s general attitudes towards AI, will 

have on the accuracy and manifestation of biases in the individual‘s decisions. 

The human tendency to over rely on technology is not a novel phenomenon. Over-

trusting or over-relying on automated systems, including AI, is broadly defined as automation 

bias - a cognitive phenomenon whereby human operators tend to favour recommendations 

derived from a technological source over their own judgements [5]. One of the earliest 

critiques of automation came in the context of aviation where questions were raised around 

the safety of shifting from manual to automated flight-desk functions [6]. Even nearly half a 

century ago, the pace at which automation in aviation was advancing was described as 

outstripping the ability to comprehend the consequences for the different demands this 

change placed on human operators [7, 8]. Namely, interacting with automated systems draws 

on human operators in a different way, shifting demands on human cognition—from active 

control to more passive monitoring, where the human is expected to intervene in instances 

that the technology cannot handle [9]. Various aspects of human nature, human understanding 

of automated systems, and automation optimisation can contribute to the manifestation of 

automation bias. For example, much research has shown that when supervising automated 

systems, humans tend to demonstrate a loss of situational awareness which can lead to a 

failure to intervene to correct any errors (e.g., [10, 11]). Although much work has focused on 

the aviation sector, concerns about automation bias extend to other domains such as 

healthcare and military, especially with the relatively recent move to embed AI systems 

within these areas to assist human decision making [12, 13]. Automation bias has long 

presented a challenge in traditional computer-assisted decision-making and now poses critical 

concerns in the face of human-AI interaction.  

Research has begun to reveal the extent to which human cognitive limitations restrict 

human-AI interactions and negatively impact real-world decision-making. People can, for 

example, succumb to a fallacy known as technological protection – the notion that the use of 

technology will remove biases [14]. This misplaced belief in the impartiality of technology 

may result in over reliance and misplaced trust in guidance derived from AI [15]. AI 

frequently provide outputs without the uncertainty cues common to human interaction. 

Response delays, disfluencies, and rephrasing during human interactions allow humans to 

gauge the credibility of incoming information. Without these cues, humans encountering AI 

may mistakenly attribute high confidence and, therefore, trustworthiness to AI outputs [16]. 

AI are also often portrayed as accessing and utilising all human knowledge [17]. Humans 

tend to accept, and form stronger beliefs based on, incoming information believed to be from 

a more credible and knowledgeable source [18, 19]. Furthermore, the widespread willingness 

to discuss and describe AI as anthropomorphic [20] reflects the known tendency of humans to 

readily assign human characteristics such as intentionality and—consequently—certainty to 

AI [21]. Thus, the design and portrayal of AI works with human nature, such that each has the 

potential to facilitate automation bias and, therefore, drive biased use of AI by human 

operators. 

Importantly, greater reliance on and/or trust in automated technologies engendered by 

the aspects of human nature and AI design described above has long been understood to 
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increase use and misuse of such technologies by human operators [22, 23, 24, 25]. Indeed, 

frequent use and, therefore, familiarity with AI that is designed to support humans during 

decision-making tasks, may lead to problematic over-reliance on AI such that it is treated as 

an entirely autonomous decision-maker. One such example is the crash of Continental Flight 

3407 in February 2009, wherein increased automation of cockpit procedures led to failures 

among crew to pay attention [26]. The consequences of human reliance on, and misplaced 

trust in, biased AI can also be seen in the use of Automated Fingerprint Identification Systems 

(AIFS). Human operators tend to over-rely on these systems to provide the most likely match 

at the top of the candidate ranking list, hence they make more false positive decisions on 

candidates on the top of the list and, conversely, more false negative decisions on candidates 

further down the list [27, 28]. 

Currently there is a lack of research and understanding about how humans and AI 

interact in decision-making tasks – do humans use AI effectively, or do they place too much 

reliance in the guidance AI provides, thereby reinforcing and legitimising cognitive biases 

within decision making? Importantly, to isolate the specific effect of AI, the research reported 

here included both AI and human guidance to allow comparison of results across these input 

types. An understanding of the effect of AI guidance on decision-making is important to 

ensure maximal benefit from technological advances while avoiding pitfalls. This research 

will highlight potential ways to use AI more effectively, for example how to reduce bias and 

under what circumstances are biases most likely. As such, beginning to understand the 

characteristics of AI-created bias will allow a more informed appreciation of how AI can 

benefit strategic and operational planning, while a greater understanding of perceptions and 

trustworthiness of AI in the decision making process will increase transparency. Overall, 

understanding the impact of AI on human cognitive bias is crucial before AI is widely 

deployed and integrated into human decision-making procedures. The aim of the current 

research is to provide the initial steps in gaining such an appreciation. 

To do so, this research examined whether humans use AI and human guidance in a 

useful way – that is, rely on the guidance if it is accurate and dismiss it if it is inaccurate. We 

used a relatively simple decision-making task – determining whether a face is real or 

synthetic [29]. There are two clear benefits to using this task: 1) the stimuli set is already 

validated and 2) previous research provides baseline accuracies allowing us to select facial 

images that, although difficult to classify, can be accurately classified by most people 

(accuracy range of 64-84%). The study employed a mixed experimental design: a between-

subjects manipulation wherein participants received either human or AI guidance; within-

subjects manipulations of stimulus authenticity (real vs synthetic faces) and guidance 

accuracy (correct vs incorrect). 

Research questions 

1. Will participants who receive guidance (from AI or humans) show a similar 

decision accuracy to a baseline control comparison group (from [29])? 

2. How will response accuracy (correct identification of faces as either real or 

synthetic) be affected when participants are given incorrect guidance vs. correct 

guidance? 

3. Will participants who receive AI guidance provide more responses consistent with 

that guidance than participants who receive human guidance? 
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Method 

Participants 

Participants were recruited via Prolific, an online participant recruitment platform 

with over 130,000 members vetted to take part in research studies. Prolific users were eligible 

for participation if they: reported themselves to be fluent in English, have >95% approval 

rating, use a desktop computer/laptop with screen size >1024x768 pixels, ≥18 years-of-age, 

and have normal/corrected-to-normal colour vision. A sensitivity power analysis appropriate 

for two-way ANOVA showed that a sample size of 274 yields a power of .80 for a small-to-

medium effect size of .17 and an α of .05. Data were collected from 322 Prolific users (26 

participants‘ data were removed due to: device/operating system check = 9, vision check = 2, 

attention checks = 9, guidance use check = 2, withdrawn consent = 3, non-complete = 1). 

Following data cleaning, a final sample of 295 individuals (Mage = 33.79, SD = 10.76) 

remained. Of these 295 participants, 182 identified as male, 109 as female, 2 as non-

binary/genderqueer/agender/gender fluid, 1 as transgender male, while 1 preferred not to say. 

Additionally, 209 self-reported as White, 58 Black, 12 Mixed, 11 Asian, and 5 Other. 

Participants were paid £5 upon completion of the experiment, and the amount paid did not 

depend on a participant‘s performance in the face classification task. 

Materials 

Stimuli. The real and synthetic faces used in this study were taken from Nightingale 

and Farid (2022; [29]), where a stimulus set of 400 real and 400 synthetic faces was created. 

Thus, the stimuli used here have been previously validated and have baseline accuracies, 

allowing us to select stimuli that fall within a certain mean accuracy range (64-84%) that, 

although difficult to make judgements about, can be accurately categorised as real or 

synthetic by most people. This accuracy range yielded an available stimulus set of 156 faces 

(102 real, 54 synthetic). For the current study, 80 stimuli (40 real, 40 synthetic) were selected. 

 

Table 1 

Number of real and synthetic faces of each available gender and ethnicity. 

Gender/ethnicity  
Real Synthetic 

Count Mean (SD) Count Mean (SD) 

Male 20 .73 (.06) 19 .73 (.06) 

Female 20 .72 (.05) 21 .71 (.06) 

Black 11 .72 (.06) 16 .72 (.06) 

East Asian 6 .72 (.06) 14 .71 (.06) 

South Asian 12 .73 (.06) 9 .73 (.05) 

White 11 .72 (.06) 1 NA 

  .71 (.06)  .71 (.06) 

Note. Mean and standard deviation (SD) accuracy data derived from [17]. 

 

Whereas stimuli were selected to represent a diverse population, the number of real 

and synthetic faces available within the prescribed accuracy range made equal representation 
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of gender (male, female) and ethnicity (Black, East Asian, South Asian, White) impossible. 

The distribution of real and synthetic stimuli across gender and ethnicity identifiers was 

completed as evenly as possible according to the first author‘s discretion (Table 1). The full 

stimuli selection protocol is available in supplementary materials (SM) 1. 

Guidance Information. Each face was paired with correct or incorrect human or AI 

guidance information, producing standardised information cards (Figure 1). In both the 

human and AI guidance conditions, half of the cards provided correct guidance information 

(e.g., stated a real face was real) and half provided incorrect information (e.g., stated a real 

face was synthetic). In both the human and AI conditions, ‗A‘ and ‗B‘ streams were 

constructed to counterbalance the appearance of stimuli alongside correct or incorrect 

information (i.e., if a face appeared alongside correct guidance in A, it appeared alongside 

incorrect guidance in B). All guidance streams included all 80 faces, while 20 of each type of 

face (real or synthetic) were presented alongside correct guidance and 20 alongside incorrect 

guidance. Stimuli appeared in a random order, and participants were unaware of the 

manipulation of real vs. synthetic faces and correct vs. incorrect guidance. 

Face classification task. Participants responded to all 80 faces. In each trial 

participants indicated if the face was of a real person or if it had been artificially synthesized. 

They reported their level of confidence in each judgement using a Likert scale (1 = not at all 

confident, 5 = extremely confident). 

 

Figure 1 

Example stimuli with facial images shown as silhouettes due to licencing permissions: top = 

synthetic face, AI condition; bottom = real face, human condition. Real faces were obtained 

from Flikr-Faces-HQ Dataset [30], made available by NVIDIA Corporation under Creative 

Commons BY-NC-SA 4.0 license. 

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



 

 

Note. ‗Prediction‘ is favoured over alternatives (e.g., ‗conclusion‘) since it suggested an 

estimate that cued participants to evaluate the stimuli before providing a response. Due to 

licensing permissions, facial images are shown here as silhouettes to illustrate where the 

real/synthetic faces appeared. 

 

Attention check stimuli. To ensure participants engaged with the face classification 

task, four attention check trials were presented in the first two thirds of the study. These were 

synthetic faces containing various errors such as missing, misshapen, or discoloured features. 

To ensure participants knew what these attention check images might look like, they were 

given a description of the types of errors they could reasonably expect and were also shown 

four examples of poorly synthesised faces. Participants were informed that these erroneous 

images constituted attention checks following the same presentation format as the 

experimental stimuli, and were screened out from the study if they failed to correctly identify 

at least three of the four attention checks. 

Human trust scale. Participants completed the human trust scale (SM 2), a 17-item 

questionnaire drawing on items from several other scales [31, 32, 33, 34, 35, 36] to measure 

participant beliefs about others‘ honesty and trustworthiness. Items are scored from 1 

(Strongly Disagree) to 5 (Strongly Agree), and items 7, 8, 9, 10, 11, 12, and 13 are reverse-

coded. The score for each item is averaged together to form a continuous measure of 

generalised trust, such that higher scores indicate greater trust in humans. Example items 

include: ―Most people are basically honest‖, ―Most people are trustworthy‖, and ―I usually 

trust people until they give me a reason not to trust them‖. Confirmatory factor analysis 

(CFA) was used to determine the construct validity of this composite measure of human trust. 

Internal consistency for the human trust scale used in data analysis was excellent (Cronbach‘s 

α = .89, 95% CI [.87, .91]; [37]).  
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General Attitudes towards Artificial Intelligence Scale (GAAIS). Participants also 

completed the GAAIS [38], a validated 20-item scale assessing attitudes towards AI across 

positive and negative subscales. Positive subscale items – e.g. ―Artificially intelligent systems 

can help people feel happier‖ – and negative subscale items – e.g. ―I find Artificial 

Intelligence sinister‖ – are scored from 1(Strongly disagree) to 5 (Strongly agree), but 

negative subscale items (3, 6, 8, 9, 10, 15, 19, 20) are reverse-coded. Separate overall scores 

for the positive and negative subscales are computed by taking the mean score of each set of 

items. The higher the score on each subscale, the more positive the attitude toward AI. Both 

the positive and negative subscales demonstrated excellent (α = .91, 95% CI [.89, .92]) and 

good (α =.85, 95% CI [.83, .88]) internal consistency respectively. 

Guidance use check. Participants completed a final survey item examining how 

much they used the guidance to inform their judgements on the face classification task. 

Participants indicated whether they 1) read the guidance information and always used it to 

help them decide if each face was real or synthetic, 2) sometimes used it, 3) read the guidance 

information but did not use it, or 4) did not read the guidance information. Individuals who 

reported not having read the guidance were excluded from data analysis (n = 2). 

Procedure 

This study was constructed and completed using Qualtrics and published online via 

Prolific. Before taking part, participants were informed of the study‘s purpose, their right to 

withdraw and payment details, and researcher contact information. Informed consent was 

obtained electronically, after which participants were subject to a device- and vision-check 

and advised that use of an ineligible device would result in non-payment. Before the 

experimental task began, participants saw several example stimuli and completed three 

practice trials to ensure they understood the task. The practice trials included a real, synthetic, 

and attention check face, and participants received feedback on each of their responses. 

Participants were then informed they would see 84 faces alongside guidance that may be of 

use, although they were not informed that 1) the guidance had been fabricated for the 

purposes of the study, 2) they had been randomly assigned to one of two experimental 

conditions, or 3) the presented stimuli had been deliberately balanced. 

Participants were randomly assigned to one of the four counterbalanced guidance 

streams, wherein they completed the experimental task outlined above. Following the 

experimental task, participants also completed the human trust scale and GAAIS. Finally, 

participants provided age, gender, ethnicity, and guidance use information. Upon completion 

participants were fully debriefed. The previously undisclosed experimental manipulations 

were made clear, as were the true aims of the research. Participants were also reminded of 

their right to withdraw their data from the study and given the option to do so. 

Analyses 

Independent samples t-tests were conducted to determine differences in response 

accuracy and consistency between human and AI guidance conditions. A one-sample t-test 

was performed to compare accuracy scores for both human and AI guidance groups with a 

baseline control group [29]. One- and two-way ANOVAs were carried out to identify 

differences in response accuracy and consistency at different levels of self-reported guidance 

use within and across guidance conditions. For these analyses, accuracy scores reflect the 
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proportion of experimental trials a participant classified correctly, while consistency scores 

reflect the number of trials in which a participant responded in line with the guidance 

provided (regardless of accuracy).  

Signal detection analyses assessed classification accuracy and response bias using 

indices of discriminability and criterion shift (d′ and c respectively, [39, 40]). Independent 

samples t-tests on d′and c values compared face classification task performance between 

guidance conditions. Linear regression analyses assessed the influence of human trust scale 

and GAAIS positive and negative subscale scores on d′ and c.  

Ethical approval was granted by Lancaster University‘s Faculty of Science and 

Technology Research Ethics Committee (FST-2023-3241-RECR-3) and Ministry of Defence 

Research Ethics Committee (2213/MODREC/23), and this experiment was performed in 

accordance with relevant guidelines and regulations. These methods and planned analyses 

were preregistered at https://doi.org/10.17605/OSF.IO/SRTHP. Several additional exploratory 

analyses not preregistered were conducted and have been identified below. Data tidying was 

completed using R (Version 1.4.1106, RStudio Team, 2021) and Microsoft Excel, and all 

analyses were completed in R.  

Results 

Independent samples t-tests indicated no significant differences in response accuracy 

between counterbalanced human and AI guidance streams. Consequently, both sets of A and 

B guidance streams were collapsed into one human and one AI guidance group (see SM 3 for 

preliminary visualisations (Figure S1) and analyses). 

Response accuracy and consistency. Table 2 shows mean response consistency for 

each guidance group. Individuals were more inclined to make judgements consistent with the 

guidance provided when it correctly classified faces as real or synthetic we did not find 

differences in guidance use across demographic characteristics (SM 4 Table S1). A paired-

samples t-test was conducted to compare mean consistency scores for correct and incorrect 

guidance information, revealing a significant difference between the two (t(294) = 29.74, 

95% CI = [12.17, 13.89], p < .001). The effect size (Cohen‘s d, [41]) of 1.73 indicates a large 

effect. It seems reasonable to conclude, therefore, that participants used the guidance 

strategically, relying on it more often when it was useful but disregarding it more frequently 

when it was not. 

Table 2 

Mean and standard error (SE) consistency scores (counts) for stimuli with correct and 

incorrect guidance, and all stimuli, across guidance conditions. 

 

 

 

 

 

Guidance group 

Correct 

(out of 40) 

Incorrect 

(out of 40) 

Correct & Incorrect 

(out of 80) 

Mean (SE) 

AI 30.50 (.36) 17.90 (.58) 51.55 (.86) 

Human 30.20 (.35) 16.70 (.51) 50.12 (.75) 

 30.30 (.25) 17.30 (.38) 50.80 (.57) 
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A Mann-Whitney-Wilcox test, appropriate for non-normally distributed data, 

indicated no significant difference in response consistency between human and AI guidance 

groups (w = 11396, 95% CI = [-1.00, 3.00], p = .46; human mean = 50.12, AI mean = 51.55). 

An independent samples t-test revealed no significant difference in response accuracy 

between human and AI guidance (t(293) = -.99, 95% CI = -.03, .01], p = .32; human mean = 

.67, AI mean = .66). It appears that the accuracy with which individuals correctly classified 

real and synthetic faces, and the extent to which they classified such faces consistently with 

the guidance, did not change with the guidance source. Additionally, a one-sample t-test 

indicated no significant difference (t(294) = -1.28, 95% CI == [.65, .67], p = .20) between 

overall response accuracy (.66) and a baseline accuracy level of 67% [29]. 

A one-way between-subjects ANOVA revealed a significant effect of level of 

guidance use (Always used vs. Sometimes used vs. Did not use) on response accuracy (F(2, 

292) = 11.71, p < .001). The effect size, as measured by generalised eta
2
 (𝜂𝑔

2), was .07 (small 

effect). Pairwise comparisons using the Tukey method (Table 3) revealed the Always used 

group's mean accuracy was significantly lower than the Did not use (coefficient estimate = 

.08, 95% CI = [.04, .12], p < .001), and Sometimes used groups (.05, 95% CI = [.02, .08], p < 

.001). A one-way ANOVA examining the effect of guidance use level on response consistency 

revealed a significant effect of guidance use level (F(2, 292) = 9.35, p < .001, 𝜂𝑔
2  = .06,). 

Pairwise comparisons using the Tukey method (Table 3) revealed that the Always used group 

mean consistency was significantly greater than the Did not use group (-7.48, 95% CI = [-

11.80, -3.20]), as was the Sometimes used group (5.97, 95% CI [2.27, 9.68], p < .001). 

 

 

Table 3 

Mean and standard error (SE) response accuracy (%) and consistency scores (counts) across 

guidance use levels. 

Guidance use 

level 

Accuracy Consistency 

All stimuli 
Correct 

guidance 

Incorrect 

guidance 

Mean (SE) 

Always used .62 (.01) 52.90 (1.42) 29.60 (.64) 20.10 (.90) 

Sometimes used .67 (.01) 51.39 (.68) 30.80 (.30) 17.10 (.46) 

Did not use .70 (.02) 45.41 (1.04) 29.60 (.54) 14.00 (.76) 

 

Individuals who reported using the guidance information at their own discretion or not 

at all performed better than those who claimed to have always used it. This result is not 

surprising given that adherence to all guidance would yield just 50% accuracy. Of particular 

interest, though, is the discrepancy between the mean total response consistency of those 

individuals reporting to have always used the guidance, and the expected consistency of this 

group. Always using the guidance should yield a consistency score of 80, since judgements 

made by these individuals are made in line with the available guidance regardless of whether 

it is correct. It seems, therefore, that some participants misremembered their reliance on the 
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guidance. Visualisations (SM 5, Figure S2) and analyses (SM 5) examining the effect of the 

interaction between guidance use level and guidance stream and response accuracy and 

consistency revealed non-significant effects on both response accuracy (F(2, 289) = .82, p = 

.44) and consistency scores (F(2, 289) = .76, p = .47). 

Signal Detection Analyses. d′ and c (computed in R using the psycho package, [42]) 

represent sensitivity to the difference between real and synthetic faces, and criterion shift 

(inclination to respond more in one direction than another). These values are derived from 

counts of hits (correct classification of a face when guidance is correct), correct rejections 

(correct classification when the guidance is incorrect), misses (incorrect classification when 

the guidance is correct), and false alarms (incorrect classification when the guidance is 

incorrect, [43]). 

Table 4 shows mean d′ and c scores for human and AI guidance groups and for the 

entire dataset. A d′ value of zero indicates no ability to distinguish between real and synthetic 

faces, and a value of 3 represents close to perfect discrimination. For c, a value of zero 

indicates no response bias (equally likely to respond ‗real‘ or ‗synthetic‘), negative values 

indicate that an individual responds ‗real‘ more often, and positive values indicate that an 

individual responds ‗synthetic‘ more often. Mean d′ (.90, 95% CI [.84, .97]) and c (-.28, 95% 

CI [-.33, -.24]) values suggest participants showed an ability to distinguish between real and 

synthetic faces but a tendency toward responses of ‗real‘. To determine if d′ and c values are 

significantly different to 0, one-sample Wilcox t-tests were carried out. These tests revealed 

that at the dataset level (v = 41986, 95% CI = [-.15, .10], p < .001, Cohen‘s d = 1.62) and in 

each guidance group d′ was significantly above 0 (Human: v = 11430, 95% CI = [.83, 1.01], p 

< .001, d = 1.52; AI: v = 9682.50, 95% CI = [.81, .96], p < .001, d = 1.80). The same was 

observed for a series of one-sample Wilcox t-tests performed on c data at the dataset (v = 

1813.50, 95% CI = [-.27, -.21], p < .001, Cohen‘s d = -.81), Human (v = 593, 95% CI = [-.26, 

-.19], p < .001, d = -.83) and AI (v = 334, 95% CI = [-.31, -.21], p < .001, d = -.81) levels. 

Participants displayed a significantly better than chance ability to distinguish between real 

and synthetic faces, but a significant bias toward identifying faces as ‗real‘. These findings 

are supported by the positive skew in d′ distribution and substantial negative c distribution 

illustrated in Figure S3 (SM 6). 

Table 4 

Mean and 95% confidence intervals (CI) of d′and c values for each guidance stream. 

Guidance stream 
d′ c 

Mean (95% CI) 

Human .94 (.84, 1.03) -.27 (-.31, -.21) 

AI .87 (.79, .95) -.32 (-.38, -.25) 

 .90 (.84, .97) -.28 (-.33, -.24) 

 

Mann-Whitney-Wilcox tests appropriate for non-normally distributed data revealed 

no significant difference in d′ (w = 10564, 95% CI = [-.15, .10], p = .69) or c (w = 10256, 

95% CI = [-.08, .03], p = .41) scores between guidance groups. It appears, therefore, that the 

type of guidance an individual receives when making judgements about the nature of real or 
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synthetic faces influences neither their ability to distinguish between the two nor their bias in 

responding. 

To determine if the composite questionnaire used here to examine trust in other 

humans assesses a latent construct of trust, a confirmatory factor analysis (CFA) using 

maximum likelihood estimation was conducted (SM 6, Table S2). The model specified one 

latent variable (trust) underlying all observed indicators (excluding item 11, an attention 

check). Model fit was determined by examining: Chi-square (X
2
), a measure of overall model 

fit; Root Mean Square Error of Approximation (RMSEA) and Standardised Root Mean 

Square Residual (SRMR), measures of how far a model is from perfect fit; Tucker-Lewis 

Index (TLI) and Comparative Fit Index (CFI), which compare model fit to the worst possible 

model. The model demonstrated poor fit to the data, as indicated by a significant X
2
 test 

(X
2
(119) = 967.20, p < .001). TLI and CFI scores of .69 and .73 fall below the commonly 

accepted threshold of .90 for adequate fit [44], while RMSEA and SRMR values of .16 and 

.09 exceed the typical cutoff scores of .08. Together, these results indicate that a one-factor 

structure does not adequately represent the data.  

To address the poor fit of this unidimensional model of trust in humans, only those 

items assessing ‗propensity to trust‘ were taken forward to analysis. These four items – ‗I 

usually trust people until they give me a reason not to trust them‘, ‗ trusting another person is 

not difficult for me‘, ‗My typical approach is to trust new acquaintances until they prove I 

should not trust them‘, and ‗My tendency to trust others is high‘ – were taken from [31] and 

constitute a validated measure of propensity to trust other humans. A confirmatory factor 

analysis (CFA) using maximum likelihood estimation revealed an acceptable fit for this 

model. All item loadings were significant (higher than 0.82) and fit statistics were good CFI = 

.99, TLI = .96, and SRMR = .02, aside from chi square (χ2 (2) = 10.93, p = .004) and 

RMSEA = 0.12 [90 % CI 0.06 – 0.20]. Internal consistency for this new human trust scale 

was excellent (Cronbach‘s α = .89, 95% CI [.87, .91]; [44]). The average inter-item 

correlation was .67, indicating strong internal consistency among the items. Following 

recommendations to report and consider the model indices in combination [45, 46, 47], these 

results suggest that these four items constitute a reasonable measure of propensity to trust 

other humans. A single measure of human trust was created in accordance with [31]‘s 

recommendations by taking the mean score across the four propensity to trust items. Internal 

consistency was assessed for both the positive and negative GAAIS subscales. The positive 

and negative subscales demonstrated excellent (α = .91, 95% CI [.89, .92]) and good (α =.85, 

95% CI [.83, .88]) internal consistency respectively. The items comprising each subscale 

measure a common construct. The full CFA process is described in SM 6. 

To determine if general attitudes towards AI or propensity to trust humans influences 

task performance, linear regressions were conducted with d′ and c as dependent variables and 

GAAIS subscales and propensity to trust other humans scale scores as independent variables. 

A significant effect of the GAAIS negative subscale score on d′ was identified (b = -.15, SE = 

.05, p = .004). Thus, more positive attitudes toward AI yielded a reduced ability to 

discriminate between real and synthetic faces. Interestingly, the effect of greater positive 

attitudes towards AI on discriminability was preserved when the same regression model was 

fit using AI guidance group data only (b = -.19, SE = .07 p = .008), but not when fit using the 

human guidance group data only. A significant effect of human trust scale on c values was 

observed (b = -.05, SE = .02, p = .03), such that a greater propensity to trust other humans 
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predicted a shift toward face classifications of ‗real‘. Exploratory analyses were carried out to 

control for the effects of level of guidance use, guidance stream, participant age, gender, and 

ethnicity. These parameters were entered into each regression model sequentially, and the 

impact of increased model complexity on model fit was assessed using ANOVA tests. The 

full model-building process is described in SM 6. 

A linear regression with d′ as dependent variable and GAAIS positive and negative 

subscale scores, human trust scale score, and self-reported level of guidance use (Always 

used, Sometimes used, Did not use) as independent variables was performed. The previously 

identified effect of GAAIS negative subscale on task performance was preserved (b = -.13, 

SE = .05, p = .008). No effect of GAAIS positive subscale or human trust scale scores were 

observed. A significant effect of self-reported guidance use was observed, so that participants 

who did not use the guidance showed significantly larger d′ scores than those who always 

used it (b  = .38 SE = .10, p < .001), as did those who only sometimes used it (b = .25, SE = 

.08, p = .001). Lower self-reported guidance use predicted an improved ability to discriminate 

between real and synthetic faces. The same regression model was fit with c score as the 

dependent variable. The previously identified effect of human trust scale on c values was 

preserved (b = -.05, SE = .02, p = .009). Additionally, a significant effect of self-reported 

guidance use level on c value was observed – participants who did not use the guidance 

showed significantly larger c values than those who always used it (b = .26, SE = .07, p < 

.001). Thus, less reliance on guidance predicted a reduced likelihood of classifying faces as 

real. ANOVA revealed a significant improvement in model fit (p < .001) with the inclusion of 

guidance use level for both sets of regression models. 

A linear regression with d′ as dependent variable and GAAIS positive and negative 

subscale scores, human trust scale scores, self-reported level of guidance use, and guidance 

stream as independent variables was performed. No significant effect of guidance stream on 

d′ was identified, while the pattern of results for GAAIS subscales, human trust scale, and 

self-reported guidance use level remained identical to that observed in the previous model. 

Furthermore, ANOVA revealed a non-significant (p = .31) improvement in model fit with the 

inclusion of guidance stream. The same regression model was fit with c score as the 

dependent variable. No significant effect of guidance stream on c score was observed. The 

pattern of results for the remaining independent variables were identical to those identified in 

the previous modelling iteration. ANOVA revealed a non-significant (p = .16) improvement 

in model fit with the inclusion of guidance stream. Two final regression models accounting 

for the influence of participant sociodemographic characteristics on d′ and c scores were 

created, revealing significant effects of participant gender on d′ scores (b = .17, SE = .07, p = 

.01), and of age on d′ (b = -.01, SE = .003, p < .001) and c (b = -.004, SE = .002, p = .04), 

and. It appears that women showed an increased ability to discriminate between real and 

synthetic faces, while older participants showed a decreased ability to discriminate between 

real and synthetic faces and a greater likelihood of classifying faces as real. 

 

Figure 2 

Confidence-accuracy curve of mean accuracy scores (and standard error bars) per level of 

confidence for AI and human guidance. 
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Note. Diagonal dashed grey line = perfect calibration. Full black line = chance (50% response 

accuracy). 

 

Confidence-accuracy calibration. Confidence data collected at each trial (5-point 

Likert scale: 1=not at all confident, 5=extremely confident) were combined with response 

accuracy data to examine participants‘ insights into their decisions. The combined data show 

the relationship between response accuracy and confidence in judgements (Figure 2). Those 

participants who were more confident in their judgements performed better than those who 

were less confident, regardless of whether they received human or AI guidance.  

Additionally, meta-d′ values were calculated for each guidance condition. Meta-d′ is a 

statistical counterpart to the confidence-accuracy relationship visualised above, measuring 

‗metacognitive sensitivity‘ [48, 49]. Mean meta-d′ values of .09 (95% CI [.04, .18]) and .13 

[.03, .18] were observed for the human and AI guidance groups respectively. Positive values 

occur when high levels of confidence are reported for correct judgements, and low levels for 

incorrect judgements. In line with the confidence-accuracy curves (Figure 2) it appears that 

participants in both guidance groups showed some ability to recognise whether they were 

making correct and incorrect judgements. 

Discussion 

This study examined how reliance upon AI guidance during decision-making 

influences human judgement and cognitive bias. Participants who received guidance from a 
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supposed human source were as accurate and consistent in their classifications of faces as real 

or synthetic as those who received AI guidance. Furthermore, a significant response bias 

towards face classifications of ‗real‘ was observed for individuals who received AI guidance, 

while regression analyses identified reduced task performance (measured by d′) for 

participants with more positive attitudes towards AI than those with less positive attitudes 

towards AI. 

Task performance was not affected by the source of the guidance an individual 

received. Additionally, it was found that classification consistency did not differ significantly 

with guidance source. This latter finding is surprising given the known tendency for 

individuals to succumb to the fallacy of technological protection [14]. Indeed, we might have 

expected participants who received AI guidance to show increased consistency with this 

guidance regardless of whether it was correct or incorrect. Yet, participants showed a similar 

level of adherence to AI as to human guidance. Furthermore, participants were more inclined 

to follow guidance when it was correct regardless of its source. Humans appear able to follow 

guidance when it is correct and disregard it when it is not. 

The apparent strategic use of AI guidance is encouraging given what we know about 

the tendency for over-reliance by humans on potentially biased AI [15] born out of misplaced 

positivity towards, and/or trust in, such systems. Thus, during human-AI decision-making 

interactions it seems that rather than AI protecting against biases – as the fallacy of 

technological protection might suggest [14] – it is human decision-makers that work to 

mitigate biases. In this regard, discrepancies between AI predictions, the subject of a decision 

(e.g., a real or synthetic face), the specific knowledge of human decision-makers [50], and 

prior experience and familiarity with AI systems and their outputs [21, 51] may prevent 

human operators from following ineffective AI support. Other research, however, highlights 

the human as the problematic component during human-AI decision-making interactions 

[52]; the researchers observed in a face-matching task that humans do not perform as well 

when supported by a simulated automated facial recognition system (sAFRS) as the same 

sAFRS by itself, due to overturning of correct sAFRS predictions but failures to overturn 

sAFRS mistakes.  

If it is true that humans are a mitigating force against AI biases, one must ask whether 

it is worthwhile utilising AI in human decision-making at all. At the very least, our focus 

must be on developing human-AI decision-making interfaces that optimise the regulatory role 

of humans. Supportive AI of this nature has been of interest to the algorithmic fairness 

research community for some time [53], yet how they influence decision-making 

performance remains unclear [54, 55]. If humans are detrimental to human-AI decision-

making interactions then the result is the same. Until the issue of AI bias can be resolved – 

which requires reforms to big data collection practices – it is the human component that we 

must depend on and enhance to ensure effective AI use. 

The stability of response consistency across guidance conditions may also be 

informed by whether participants relied on the guidance. This seems likely given many 

participants reported using the guidance only some of the time, whether it was derived from 

humans or AI. Furthermore, no significant difference in response consistency was observed 

between those who reported having always used the guidance and those who used it only 

some of the time. It seems that participants used the guidance as and when they deemed it 

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



 

necessary. This is a sensible and effective strategy highlighting future opportunities for 

human-AI decision-making partnerships. Occasions under which reliance on available 

guidance was necessary may have arisen when specific experimental trials presented a 

difficult choice, such as faces that appear quite but not entirely either real or synthetic. This 

seems reasonable given previous research identifying increased reliance on advice [56], and 

algorithmic advice [57], by humans when tasks are difficult. Furthermore, automated support 

system research has highlighted reduced trust in systems deployed on simple tasks [58]. The 

perceived difficulty of each trial may have determined participant guidance use and may be 

the mechanism underlying strategic guidance use. Participants likely will have relied on the 

guidance when they struggled with a decision and disregarded it when confident in their 

judgements.  

Linear regression analyses revealed a significant effect of GAAIS negative subscale 

score on discriminability amongst individuals who received AI guidance. For individuals with 

more positive attitudes towards AI, decision-making effectiveness is reduced when they 

encounter AI guidance. Previous research identifying poorer decision-making amongst 

humans more frequently using and therefore trusting AIFS [27, 28] seems to support this 

observation, reaffirming the conclusion that the effectiveness of AI depends on the humans 

being supported, task difficulty, and guidance quality. This finding bolsters those of previous 

research identifying the importance of individual differences in trust in AI on human-AI 

decision-making partnership success, wherein large performance gains have been observed 

amongst humans re-completing a face-matching task with sAFRS support, especially when 

they held favourable beliefs about the system [59]. Under these circumstances, the 

importance of the human at the heart of such interactions is recorded in whether individual 

differences in trust in technology impedes their acceptance of AI support. That greater trust in 

humans did not influence discriminability similarly for those who received human guidance 

suggests AI may be uniquely placed to manifest changes in decision-making ability. 

Interestingly, regression analyses showed a significant effect of propensity to trust 

other humans scale score but not GAAIS score on response bias. Among individuals 

reporting a greater propensity to trust other humans there is an increased likelihood to 

identify faces as real. Given that other analyses identified a tendency to classify faces as real 

regardless of the guidance source, it may be that in a face classification task of this kind 

participants‘ default position is that stimuli depict real faces. For individuals with greater trust 

in humans, classifications may default in this direction more readily. This is at odds with the 

previously discussed notions that humans use guidance strategically and that they can act as a 

regulatory force in human-AI interactions. Why this default position is not overcome and a 

bias toward classifications of faces as synthetic observed amongst individuals displaying 

greater positivity towards AI remains unclear. It is worthwhile noting that the CFA fit indices 

reported here for the propensity to trust other humans scale were mixed, some suggesting a 

good model fit and others suggesting a weak model fit. The use of this scale is theoretically-

driven with it having been developed and validated by existing research [31], nonetheless, we 

have cautiously interpreted the human trust results to ensure that the conclusions of this work 

are valid and useful to the field. 

Confidence-accuracy curves suggest that participants in both guidance conditions 

were able to reflect on their judgements effectively. Positive mean meta- d′ scores for both 

guidance groups support this conclusion. That participants demonstrated a good 

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



 

understanding of their capabilities extends similar observations from previous research 

utilising face stimuli [60] but contradicts other research identifying unjustified confidence 

during decision-making [61, 62]. The difficulty of this experimental task was controlled to 

ensure it was possible (by selecting stimuli between a previously identified classification 

accuracy bracket of 64-84%, [29]). It may be that previous research identifying poor 

participant insight employed more difficult tasks. This would explain the overall good 

performance and fair insight displayed by participants. 

The various and differing findings observed here mean that more work is required to 

understand the circumstances under which AI biases manifest, and the role of the human in 

human-AI interactions. Indeed, given the importance of the human operator being supported 

in determining AI effectiveness, further investigation of the individual differences influencing 

the impact of AI on decision making should be prioritised. Future research should manipulate 

the previously discussed occasions of necessity under which guidance is utilised by humans 

during decision making, by using decision-making tasks of varying difficulty. This may be 

achieved by presenting both correct and incorrect guidance with varied accuracy information 

during a face classification task, yielding scenarios wherein ostensibly highly accurate 

predictions contradict the accompanying stimuli. Additionally, this experimental paradigm 

should be applied to various decision-making contexts. Human-AI interactions in, for 

example, critical military reconnaissance scenarios may manifest biases differently to those in 

low-demand online experiments.  

By developing an increasingly nuanced conceptualisation of human-AI decision-

making interactions, and the variation in these interactions across contexts, more effective AI 

and protocols for their use can be developed. It is imperative, though, that these tools are 

developed with the best interests of human operators in mind and deployed with fully 

informed human decision-makers at the heart. Ultimately, AI without human intervention can 

be useful, but our findings suggest that it is humans who decide how and when.   

Data Availability 

The data collected during this research, and the full, anonymised, reproducible R data tidying 

and analysis code is available at 

https://osf.io/2p3bf/?view_only=868c92c940c947b894d24ac4b4155607 
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