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Abstract

The use of Artificial Intelligence (Al) to effectively support human decision making depends
on whether humans are willing to rely on, and trust in, Al. Understanding human reliance on
Al is critical given controversial reports of Al inaccuracy and bias. Furthermore, the
erroneous belief that using technology removes biases may lead to overreliance on Al To
examine humans’ reliance on Al, human participants (N = 295, M. = 33.79) judged the
authenticity of 80 faces (40 real, 40 Al-synthesized) presented alongside guidance supposedly
from humans or from Al This guidance was correct only half of the time. Participants
indicated their confidence in each judgement and completed measures to examine propensity
to trust humans and general attitudes towards Al. Participants who received Al guidance and
exhibited more positive attitudes towards Al showed poorer discriminability between real and
synthetic faces than those with less positive attitudes towards Al. For participants who
received human guidance, [evel of trust in humans did not affect discriminability. Therefore,
Al-derived guidance may be uniquely placed to engender biases in humans, leading to less
effective decision making. To ensure successful human-Al decision making partnerships,
more research is needed to understand precisely how humans use Al guidance in various
contexts.
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Introduction

Advances in technology and access to “big data” have allowed for the expansion of
Artificial Intelligence (Al) to help with human decision-making. There are, potentially,
significant benefits to using Al to support human decision-making, including saving time,
improving accuracy, and reducing bias. Indeed, one need only consider the use of Al by
various music and film streaming platforms and dating sites to grasp how accepted and
expected the use of such technology has become [1, 2]. However, in recent years, the use of
Al in certain contexts has led to much controversy, with reports indicating inaccuracy and
unfairness; notably showing biases against certain demographic groups [3]. For example, the
COMPAS tool used in many US states to predict a defendant’s risk of recidivism has been



shown to be biased against people of colour [4]. Although there is a growing literature
addressing the technical limitations of Al and trying to improve accuracy and fairness, there
is insufficient research examining human-Al interactions. Specifically, the impact that
guidance provided by Al, and a human decision-maker’s general attitudes towards Al, will
have on the accuracy and manifestation of biases in the individual’s decisions.

The human tendency to over rely on technology is not a novel phenomenon. Over-
trusting or over-relying on automated systems, including Al is broadly defined as automation
bias - a cognitive phenomenon whereby human operators tend to favour recommendations
derived from a technological source over their own judgements [5]. One of the earliest
critiques of automation came in the context of aviation where questions were raised around
the safety of shifting from manual to automated flight-desk functions [6]. Even nearly half a
century ago, the pace at which automation in aviation was advancing was described as
outstripping the ability to comprehend the consequences for the different demands this
change placed on human operators [7, 8]. Namely, interacting with automated systems draws
on human operators in a different way, shifting demands on human cognition—from active
control to more passive monitoring, where the human is expected to intervene in instances
that the technology cannot handle [9]. Various aspects of human nature, human understanding
of automated systems, and automation optimisation can contribute to the manifestation of
automation bias. For example, much research has shown that when supervising automated
systems, humans tend to demonstrate a loss of situational awareness which can lead to a
failure to intervene to correct any errors (e.g., [10, 11]). Although much work has focused on
the aviation sector, concerns about automation bias extend to other domains such as
healthcare and military, especially with the relatively recent move to embed Al systems
within these areas to assist human decision making [12, 13]. Automation bias has long
presented a challenge in traditional computer-assisted decision-making and now poses critical
concerns in the face of human-Al interaction.

Research has begun to reveal the extent to which human cognitive limitations restrict
human-Al interactions and niegatively impact real-world decision-making. People can, for
example, succumb to a fallacy known as technological protection — the notion that the use of
technology will remove biases [14]. This misplaced belief in the impartiality of technology
may result in over reliance and misplaced trust in guidance derived from AI [15]. Al
frequently provide outputs without the uncertainty cues common to human interaction.
Response delays, disfluencies, and rephrasing during human interactions allow humans to
gauge the credibility of incoming information. Without these cues, humans encountering Al
may mistakenly attribute high confidence and, therefore, trustworthiness to Al outputs [16].
Al are also often portrayed as accessing and utilising all human knowledge [17]. Humans
tend to accept, and form stronger beliefs based on, incoming information believed to be from
a more credible and knowledgeable source [18, 19]. Furthermore, the widespread willingness
to discuss and describe Al as anthropomorphic [20] reflects the known tendency of humans to
readily assign human characteristics such as intentionality and—consequently—certainty to
AI [21]. Thus, the design and portrayal of Al works with human nature, such that each has the
potential to facilitate automation bias and, therefore, drive biased use of Al by human
operators.

Importantly, greater reliance on and/or trust in automated technologies engendered by
the aspects of human nature and Al design described above has long been understood to



increase use and misuse of such technologies by human operators [22, 23, 24, 25]. Indeed,
frequent use and, therefore, familiarity with Al that is designed to support humans during
decision-making tasks, may lead to problematic over-reliance on Al such that it is treated as
an entirely autonomous decision-maker. One such example is the crash of Continental Flight
3407 in February 2009, wherein increased automation of cockpit procedures led to failures
among crew to pay attention [26]. The consequences of human reliance on, and misplaced
trust in, biased Al can also be seen in the use of Automated Fingerprint Identification Systems
(AIFS). Human operators tend to over-rely on these systems to provide the most likely match
at the top of the candidate ranking list, hence they make more false positive decisions on
candidates on the top of the list and, conversely, more false negative decisions on candidates
further down the list [27, 28].

Currently there is a lack of research and understanding about how humans and Al
interact in decision-making tasks — do humans use Al effectively, or do they place too much
reliance in the guidance Al provides, thereby reinforcing and legitimising cognitive biases
within decision making? Importantly, to isolate the specific effect of Al, the research reported
here included both Al and human guidance to allow comparison of results across these input
types. An understanding of the effect of AI guidance on decision-making is important to
ensure maximal benefit from technological advances while avoiding pitfalls. This research
will highlight potential ways to use Al more effectively, for example how to reduce bias and
under what circumstances are biases most likely. As such. beginning to understand the
characteristics of Al-created bias will allow a more informed appreciation of how Al can
benefit strategic and operational planning, while a greater understanding of perceptions and
trustworthiness of Al in the decision making process will increase transparency. Overall,
understanding the impact of Al on human cognitive bias is crucial before Al is widely
deployed and integrated into human decision-making procedures. The aim of the current
research is to provide the initial steps in gaining such an appreciation.

To do so, this research examined whether humans use Al and human guidance in a
useful way — that is, rely on the guidance if it is accurate and dismiss it if it is inaccurate. We
used a relatively simple decision-making task — determining whether a face is real or
synthetic [29]. There are two clear benefits to using this task: 1) the stimuli set is already
validated and 2) previous research provides baseline accuracies allowing us to select facial
images that, although difficult to classify, can be accurately classified by most people
(accuracy range of 64-84%). The study employed a mixed experimental design: a between-
subjects manipulation wherein participants received either human or Al guidance; within-
subjects manipulations of stimulus authenticity (real vs synthetic faces) and guidance
accuracy (correct vs incorrect).

Research questions

1. Will participants who receive guidance (from Al or humans) show a similar
decision accuracy to a baseline control comparison group (from [29])?

2. How will response accuracy (correct identification of faces as either real or
synthetic) be affected when participants are given incorrect guidance vs. correct
guidance?

3. Will participants who receive Al guidance provide more responses consistent with
that guidance than participants who receive human guidance?



Method
Participants

Participants were recruited via Prolific, an online participant recruitment platform
with over 130,000 members vetted to take part in research studies. Prolific users were eligible
for participation if they: reported themselves to be fluent in English, have >95% approval
rating, use a desktop computer/laptop with screen size >1024x768 pixels, >18 years-of-age,
and have normal/corrected-to-normal colour vision. A sensitivity power analysis appropriate
for two-way ANOVA showed that a sample size of 274 yields a power of .80 for a small-to-
medium effect size of .17 and an a of .05. Data were collected from 322 Prolific users (26
participants’ data were removed due to: device/operating system check = 9, vision check = 2,
attention checks = 9, guidance use check = 2, withdrawn consent = 3, non-complete = 1).
Following data cleaning, a final sample of 295 individuals (M,e. = 33.79, SD = 10.76)
remained. Of these 295 participants, 182 identified as male, 109 as female, 2 as non-
binary/genderqueer/agender/gender fluid, 1 as transgender male, while 1 preferred not to say.
Additionally, 209 self-reported as White, 58 Black, 12 Mixed, 11 Asian, and 5 Other.
Participants were paid £5 upon completion of the experiment, and the amount paid did not
depend on a participant’s performance in the face classification task.

Materials

Stimuli. The real and synthetic faces used in this study were taken from Nightingale
and Farid (2022; [29]), where a stimulus set of 400 real ana 400 synthetic faces was created.
Thus, the stimuli used here have been previously validated and have baseline accuracies,
allowing us to select stimuli that fall within a certain mean accuracy range (64-84%) that,
although difficult to make judgements about, can be accurately categorised as real or
synthetic by most people. This accuracy range yielded an available stimulus set of 156 faces
(102 real, 54 synthetic). For thie current study, 80 stimuli (40 real, 40 synthetic) were selected.

Table 1

Number of real and synthetic faces of each available gender and ethnicity.

.. Real Synthetic
Gender/ethnicity —c ™ Mean (SD)  Count _ Mean (SD)
Male 20 .73 (.06) 19 .73 (.06)
Female 20 72 (.05) 21 .71 (.06)
Black 11 .72 (.06) 16 .72 (.06)
East Asian 6 .72 (.06) 14 71 (.06)
South Asian 12 .73 (.06) 9 .73 (.05)
White 11 .72 (.06) 1 NA

.71 (.06) .71 (.06)

Note. Mean and standard deviation (SD) accuracy data derived from [17].

Whereas stimuli were selected to represent a diverse population, the number of real
and synthetic faces available within the prescribed accuracy range made equal representation



of gender (male, female) and ethnicity (Black, East Asian, South Asian, White) impossible.
The distribution of real and synthetic stimuli across gender and ethnicity identifiers was
completed as evenly as possible according to the first author’s discretion (Table 1). The full
stimuli selection protocol is available in supplementary materials (SM) 1.

Guidance Information. Each face was paired with correct or incorrect human or Al
guidance information, producing standardised information cards (Figure 1). In both the
human and Al guidance conditions, half of the cards provided correct guidance information
(e.g., stated a real face was real) and half provided incorrect information (e.g., stated a real
face was synthetic). In both the human and AI conditions, ‘A’ and ‘B’ streams were
constructed to counterbalance the appearance of stimuli alongside correct or incorrect
information (i.e., if a face appeared alongside correct guidance in A, it appeared alongside
incorrect guidance in B). All guidance streams included all 80 faces, while 20 of each type of
face (real or synthetic) were presented alongside correct guidance and 20 alongside incorrect
guidance. Stimuli appeared in a random order, and participants were unaware of the
manipulation of real vs. synthetic faces and correct vs. incorrect guidance.

Face classification task. Participants responded to all 80 faces. In each trial
participants indicated if the face was of a real person or if it had been artificially synthesized.
They reported their level of confidence in each judgement using a Likert scale (1 = not at all
confident, 5 = extremely confident).

Figure 1

Example stimuli with facial images shown as silhouettes due to licencing permissions. top =
synthetic face, Al condition; bottom = real face, human condition. Real faces were obtained
from Flikr-Faces-HQ Dataset [30], made available by NVIDIA Corporation under Creative
Commons BY-NC-SA4 4.0 license.



Based on an algorithm trained
to classify real and synthetic
faces, the prediction is:

this is a real face

Based on the responses of 100
humans with expertise in
facial recognition, the
prediction is:

this is a synthetic face

Note. ‘Prediction’ is favoured over alternatives (e.g., ‘conclusion’) since it suggested an
estimate that cued participants to evaluate the stimuli before providing a response. Due to
licensing permissions, facial images are shown here as silhouettes to illustrate where the
real/synthetic faces appeared.

Attention check stimu!li. To ensure participants engaged with the face classification
task, four attention check trials were presented in the first two thirds of the study. These were
synthetic faces containing various errors such as missing, misshapen, or discoloured features.
To ensure participants knew what these attention check images might look like, they were
given a description of the types of errors they could reasonably expect and were also shown
four examples of poorly synthesised faces. Participants were informed that these erroneous
images constituted attention checks following the same presentation format as the
experimental stimuli, and were screened out from the study if they failed to correctly identify
at least three of the four attention checks.

Human trust scale. Participants completed the human trust scale (SM 2), a 17-item
questionnaire drawing on items from several other scales [31, 32, 33, 34, 35, 36] to measure
participant beliefs about others’ honesty and trustworthiness. Items are scored from 1
(Strongly Disagree) to 5 (Strongly Agree), and items 7, 8, 9, 10, 11, 12, and 13 are reverse-
coded. The score for each item is averaged together to form a continuous measure of
generalised trust, such that higher scores indicate greater trust in humans. Example items
include: “Most people are basically honest”, “Most people are trustworthy”, and “I usually
trust people until they give me a reason not to trust them”. Confirmatory factor analysis
(CFA) was used to determine the construct validity of this composite measure of human trust.
Internal consistency for the human trust scale used in data analysis was excellent (Cronbach’s
a=.89,95% CI[.87, .91]; [37]).



General Attitudes towards Artificial Intelligence Scale (GAAIS). Participants also
completed the GAAIS [38], a validated 20-item scale assessing attitudes towards Al across
positive and negative subscales. Positive subscale items — e.g. “Artificially intelligent systems
can help people feel happier” — and negative subscale items — e.g. “I find Artificial
Intelligence sinister” — are scored from 1(Strongly disagree) to 5 (Strongly agree), but
negative subscale items (3, 6, 8, 9, 10, 15, 19, 20) are reverse-coded. Separate overall scores
for the positive and negative subscales are computed by taking the mean score of each set of
items. The higher the score on each subscale, the more positive the attitude toward Al. Both
the positive and negative subscales demonstrated excellent (a = .91, 95% CI [.89, .92]) and
good (a =.85, 95% CI [.83, .88]) internal consistency respectively.

Guidance use check. Participants completed a final survey item examining how
much they used the guidance to inform their judgements on the face classification task.
Participants indicated whether they 1) read the guidance information and always used it to
help them decide if each face was real or synthetic, 2) sometimes used it, 3) read the guidance
information but did not use it, or 4) did not read the guidance information. Individuals who
reported not having read the guidance were excluded from data analysis (n = 2).

Procedure

This study was constructed and completed using Qualtrics and published online via
Prolific. Before taking part, participants were informed of the study’s purpose, their right to
withdraw and payment details, and researcher contact information. Informed consent was
obtained electronically, after which participants were subject to a device- and vision-check
and advised that use of an ineligible device would result in non-payment. Before the
experimental task began, participants saw scveral example stimuli and completed three
practice trials to ensure they understood the task. The practice trials included a real, synthetic,
and attention check face, and participants received feedback on each of their responses.
Participants were then informed they would see 84 faces alongside guidance that may be of
use, although they were not informed that 1) the guidance had been fabricated for the
purposes of the study, 2) they had been randomly assigned to one of two experimental
conditions, or 3) the presented stimuli had been deliberately balanced.

Participants were randomly assigned to one of the four counterbalanced guidance
streams, wherein they completed the experimental task outlined above. Following the
experimental task, participants also completed the human trust scale and GAAIS. Finally,
participants provided age, gender, ethnicity, and guidance use information. Upon completion
participants were fully debriefed. The previously undisclosed experimental manipulations
were made clear, as were the true aims of the research. Participants were also reminded of
their right to withdraw their data from the study and given the option to do so.

Analyses

Independent samples t-tests were conducted to determine differences in response
accuracy and consistency between human and Al guidance conditions. A one-sample t-test
was performed to compare accuracy scores for both human and Al guidance groups with a
baseline control group [29]. One- and two-way ANOVAs were carried out to identify
differences in response accuracy and consistency at different levels of self-reported guidance
use within and across guidance conditions. For these analyses, accuracy scores reflect the



proportion of experimental trials a participant classified correctly, while consistency scores
reflect the number of trials in which a participant responded in line with the guidance
provided (regardless of accuracy).

Signal detection analyses assessed classification accuracy and response bias using
indices of discriminability and criterion shift (d' and ¢ respectively, [39, 40]). Independent
samples t-tests on d’and ¢ values compared face classification task performance between
guidance conditions. Linear regression analyses assessed the influence of human trust scale
and GAAIS positive and negative subscale scores on d' and c.

Ethical approval was granted by Lancaster University’s Faculty of Science and
Technology Research Ethics Committee (FST-2023-3241-RECR-3) and Ministry of Defence
Research Ethics Committee (2213/MODREC/23), and this experiment was performed in
accordance with relevant guidelines and regulations. These methods and planned analyses
were preregistered at https://doi.org/10.17605/OSF.IO/SRTHP. Several additional exploratory
analyses not preregistered were conducted and have been identified below. Data tidying was
completed using R (Version 1.4.1106, RStudio Team, 2021) and Microsoft Excel, and all
analyses were completed in R.

Results

Independent samples t-tests indicated no significant differences in response accuracy
between counterbalanced human and Al guidance streams. Consequently, both sets of A and
B guidance streams were collapsed into one human and one Al guidance group (see SM 3 for
preliminary visualisations (Figure S1) and analyses)

Response accuracy and consistency. Table 2 shows mean response consistency for
each guidance group. Individuals were more inclined to make judgements consistent with the
guidance provided when it correctly classified faces as real or synthetic we did not find
differences in guidance use across demographic characteristics (SM 4 Table S1). A paired-
samples t-test was conducted to compare mean consistency scores for correct and incorrect
guidance information, revealing a significant difference between the two (#(294) = 29.74,
95% CI=[12.17, 13.89], p <.001). The effect size (Cohen’s d, [41]) of 1.73 indicates a large
effect. It seems reasonable to conclude, therefore, that participants used the guidance
strategically, relying on it more often when it was useful but disregarding it more frequently
when it was not.

Table 2

Mean and standard error (SE) consistency scores (counts) for stimuli with correct and
incorrect guidance, and all stimuli, across guidance conditions.

Correct Incorrect Correct & Incorrect
Guidance group (out of 40)  (out of 40) (out of 80)
Mean (SE)
Al 30.50 (.36)  17.90 (.58) 51.55 (.86)
Human 30.20 (.35) 16.70 (.51) 50.12 (.75)

30.30 (:25) 17.30 (.38) 50.80 (.57)




A Mann-Whitney-Wilcox test, appropriate for non-normally distributed data,
indicated no significant difference in response consistency between human and Al guidance
groups (w = 11396, 95% CI =[-1.00, 3.00], p = .46; human mean = 50.12, Al mean = 51.55).
An independent samples t-test revealed no significant difference in response accuracy
between human and Al guidance (#(293) =-.99, 95% CI =-.03, .01], p = .32; human mean =
.67, Al mean = .66). It appears that the accuracy with which individuals correctly classified
real and synthetic faces, and the extent to which they classified such faces consistently with
the guidance, did not change with the guidance source. Additionally, a one-sample t-test
indicated no significant difference (#(294) = -1.28, 95% CI ==[.65, .67], p = .20) between
overall response accuracy (.66) and a baseline accuracy level of 67% [29].

A one-way between-subjects ANOVA revealed a significant effect of level of
guidance use (A/ways used vs. Sometimes used vs. Did not use) on response accuracy (£(2,
292)=11.71, p <.001). The effect size, as measured by generalised eta’ (775), was .07 (small
effect). Pairwise comparisons using the Tukey method (Table 3) revealed the Always used
group's mean accuracy was significantly lower than the Did not use (coefficient estimate =
.08, 95% CI=1[.04, .12], p <.001), and Sometimes used groups (.05, 95% CI=1[.02, .08], p <
.001). A one-way ANOVA examining the effect of guidance use level on response consistency
revealed a significant effect of guidance use level (F(2, 292) =9.35, p <.001, 775 =.06,).
Pairwise comparisons using the Tukey method (Table 3) revealed that the Always used group

mean consistency was significantly greater than the Did not use group (-7.48, 95% CI = [-
11.80, -3.20]), as was the Sometimes used group (5.97, 95% CI [2.27,9.68], p <.001).

Table 3

Mean and standard error (SE) response accuracy (%) and consistency scores (counts) across
guidance use levels.

Accuracy ‘ Consistency
Guidance use . . Correct Incorrect
All stimuli . .
level guidance guidance
Mean (SE)
Always used .62 (.01) 52.90 (1.42) 29.60 (.64) 20.10 (.90)
Sometimes used .67 (.01) 51.39 (.68) 30.80 (.30) 17.10 (.46)
Did not use .70 (.02) 45.41 (1.04) 29.60 (.54) 14.00 (.76)

Individuals who reported using the guidance information at their own discretion or not
at all performed better than those who claimed to have always used it. This result is not
surprising given that adherence to all guidance would yield just 50% accuracy. Of particular
interest, though, is the discrepancy between the mean total response consistency of those
individuals reporting to have always used the guidance, and the expected consistency of this
group. Always using the guidance should yield a consistency score of 80, since judgements
made by these individuals are made in line with the available guidance regardless of whether
it is correct. It seems, therefore, that some participants misremembered their reliance on the



guidance. Visualisations (SM 5, Figure S2) and analyses (SM 5) examining the effect of the
interaction between guidance use level and guidance stream and response accuracy and
consistency revealed non-significant effects on both response accuracy (F(2, 289) = .82, p =
.44) and consistency scores (F(2, 289) =.76, p = .47).

Signal Detection Analyses. d’ and ¢ (computed in R using the psycho package, [42])
represent sensitivity to the difference between real and synthetic faces, and criterion shift
(inclination to respond more in one direction than another). These values are derived from
counts of hits (correct classification of a face when guidance is correct), correct rejections
(correct classification when the guidance is incorrect), misses (incorrect classification when
the guidance is correct), and false alarms (incorrect classification when the guidance is
incorrect, [43]).

Table 4 shows mean d' and ¢ scores for human and Al guidance groups and for the
entire dataset. A d' value of zero indicates no ability to distinguish between real and synthetic
faces, and a value of 3 represents close to perfect discrimination. For ¢, a value of zero
indicates no response bias (equally likely to respond ‘real’ or ‘synthetic’), negative values
indicate that an individual responds ‘real’ more often, and positive values indicate that an
individual responds ‘synthetic’ more often. Mean d' (.90, 95% CI [.84, .97]) and ¢ (-.28, 95%
CI[-.33, -.24]) values suggest participants showed an ability to distiiguish between real and
synthetic faces but a tendency toward responses of ‘real’. To determine if ¢’ and ¢ values are
significantly different to 0, one-sample Wilcox t-tests were carried out. These tests revealed
that at the dataset level (v =41986, 95% CI = [-.15, .10], p <.001, Cohen’s d = 1.62) and in
each guidance group d' was significantly above 0 (Human: v = 11430, 95% CI=1[.83,1.01], p
<.001,d=1.52; Al: v=9682.50, 95% CI = [.81, .96], p <.001, d = 1.80). The same was
observed for a series of one-sample Wilcox t-tests performed on ¢ data at the dataset (v =
1813.50, 95% CI =[-.27, -.21], p <.001, Cohen’s d = -.81), Human (v = 593, 95% CI = [-.26,
-.19], p <.001,d=-.83) and A! (v =334, 95% CI = [-.31, -.21], p <.001, d = -.81) levels.
Participants displayed a significantly better than chance ability to distinguish between real
and synthetic faces, but a significant bias toward identifying faces as ‘real’. These findings
are supported by the positive skew in d' distribution and substantial negative ¢ distribution
illustrated in Figure S3 (SM 6).

Table 4

Mean and 95% confidence intervals (CI) of d and ¢ values for each guidance stream.

Guidance stream d ¢
Mean (95% CI)
Human .94 (.84, 1.03) =27 (-.31,-.21)
Al .87 (.79, .95) -.32 (-.38, -.25)
90 (.84, .97) -.28 (-.33,-.24)

Mann-Whitney-Wilcox tests appropriate for non-normally distributed data revealed
no significant difference in d' (w = 10564, 95% CI = [-.15, .10], p = .69) or ¢ (w = 10256,
95% CI=[-.08, .03], p = .41) scores between guidance groups. It appears, therefore, that the
type of guidance an individual receives when making judgements about the nature of real or



synthetic faces influences neither their ability to distinguish between the two nor their bias in
responding.

To determine if the composite questionnaire used here to examine trust in other
humans assesses a latent construct of trust, a confirmatory factor analysis (CFA) using
maximum likelihood estimation was conducted (SM 6, Table S2). The model specified one
latent variable (trust) underlying all observed indicators (excluding item 11, an attention
check). Model fit was determined by examining: Chi-square (X), a measure of overall model
fit; Root Mean Square Error of Approximation (RMSEA) and Standardised Root Mean
Square Residual (SRMR), measures of how far a model is from perfect fit; Tucker-Lewis
Index (TLI) and Comparative Fit Index (CFI), which compare model fit to the worst possible
model. The model demonstrated poor fit to the data, as indicated by a significant X* test
(X*(119) = 967.20, p < .001). TLI and CFI scores of .69 and .73 fall below the commonly
accepted threshold of .90 for adequate fit [44], while RMSEA and SRMR values of .16 and
.09 exceed the typical cutoff scores of .08. Together, these results indicate that a one-factor
structure does not adequately represent the data.

To address the poor fit of this unidimensional model of trust in humans, only those
items assessing ‘propensity to trust’ were taken forward to analysis. These four items — ‘I
usually trust people until they give me a reason not to trust them’, ¢ tiusting another person is
not difficult for me’, ‘My typical approach is to trust new acquaintances until they prove I
should not trust them’, and ‘My tendency to trust others is high’ — were taken from [31] and
constitute a validated measure of propensity to trust other humans. A confirmatory factor
analysis (CFA) using maximum likelithood estimation revealed an acceptable fit for this
model. All item loadings were significant (higher than 0.82) and fit statistics were good CFI =
.99, TLI = .96, and SRMR = .02, aside from chi square (32 (2) = 10.93, p = .004) and
RMSEA =0.12 [90 % CI 0.06 — 0.20]. Internal consistency for this new human trust scale
was excellent (Cronbach’s o = .89, 95% CI [.87, .91]; [44]). The average inter-item
correlation was .67, indicating strong internal consistency among the items. Following
recommendations to report and consider the model indices in combination [45, 46, 47], these
results suggest that these four items constitute a reasonable measure of propensity to trust
other humans. A single measure of human trust was created in accordance with [31]’s
recommendations by taking the mean score across the four propensity to trust items. Internal
consistency was assessed for both the positive and negative GAAIS subscales. The positive
and negative subscales demonstrated excellent (o = .91, 95% CI [.89, .92]) and good (a =.85,
95% CI [.83, .88]) internal consistency respectively. The items comprising each subscale
measure a common construct. The full CFA process is described in SM 6.

To determine if general attitudes towards Al or propensity to trust humans influences
task performance, linear regressions were conducted with &’ and ¢ as dependent variables and
GAAIS subscales and propensity to trust other humans scale scores as independent variables.
A significant effect of the GAAIS negative subscale score on d' was identified (b =-.15, SE =
.05, p =.004). Thus, more positive attitudes toward Al yielded a reduced ability to
discriminate between real and synthetic faces. Interestingly, the effect of greater positive
attitudes towards Al on discriminability was preserved when the same regression model was
fit using Al guidance group data only (b =-.19, SE = .07 p = .008), but not when fit using the
human guidance group data only. A significant effect of human trust scale on ¢ values was
observed (b =-.05, SE =.02, p = .03), such that a greater propensity to trust other humans



predicted a shift toward face classifications of ‘real’. Exploratory analyses were carried out to
control for the effects of level of guidance use, guidance stream, participant age, gender, and
ethnicity. These parameters were entered into each regression model sequentially, and the
impact of increased model complexity on model fit was assessed using ANOVA tests. The
full model-building process is described in SM 6.

A linear regression with d' as dependent variable and GAAIS positive and negative
subscale scores, human trust scale score, and self-reported level of guidance use (A/ways
used, Sometimes used, Did not use) as independent variables was performed. The previously
identified effect of GAAIS negative subscale on task performance was preserved (b =-.13,
SE = .05, p =.008). No effect of GAAIS positive subscale or human trust scale scores were
observed. A significant effect of self-reported guidance use was observed, so that participants
who did not use the guidance showed significantly larger d’ scores than those who always
used it (b = .38 SE =.10, p <.001), as did those who only sometimes used it (b = .25, SE =
.08, p =.001). Lower self-reported guidance use predicted an improved ability to discriminate
between real and synthetic faces. The same regression model was fit with ¢ score as the
dependent variable. The previously identified effect of human trust scale on ¢ values was
preserved (b = -.05, SE = .02, p = .009). Additionally, a significant effect of self-reported
guidance use level on ¢ value was observed — participants who did not use the guidance
showed significantly larger ¢ values than those who always used it (b = .26, SE = .07, p <
.001). Thus, less reliance on guidance predicted a reduced likeiithood of classifying faces as
real. ANOVA revealed a significant improvement in model fit (p <.001) with the inclusion of
guidance use level for both sets of regression models.

A linear regression with d' as dependent variable and GAAIS positive and negative
subscale scores, human trust scale scores, self-reported level of guidance use, and guidance
stream as independent variables was performed. No significant effect of guidance stream on
d' was identified, while the pattern of results for GAAIS subscales, human trust scale, and
self-reported guidance use level remained identical to that observed in the previous model.
Furthermore, ANOVA revealed a non-significant (p = .31) improvement in model fit with the
inclusion of guidance stream. The same regression model was fit with ¢ score as the
dependent variable. No significant effect of guidance stream on ¢ score was observed. The
pattern of results for the remaining independent variables were identical to those identified in
the previous modelling iteration. ANOVA revealed a non-significant (p = .16) improvement
in model fit with the inclusion of guidance stream. Two final regression models accounting
for the influence of participant sociodemographic characteristics on d' and ¢ scores were
created, revealing significant effects of participant gender on d’ scores (b=.17, SE=.07,p =
.01), and of age on d’ (b =-.01, SE =.003, p <.001) and ¢ (b = -.004, SE =.002, p = .04),
and. It appears that women showed an increased ability to discriminate between real and
synthetic faces, while older participants showed a decreased ability to discriminate between
real and synthetic faces and a greater likelihood of classifying faces as real.

Figure 2

Confidence-accuracy curve of mean accuracy scores (and standard error bars) per level of
confidence for Al and human guidance.
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Confidence-accuracy calibration. Confidence data collected at each trial (5-point
Likert scale: 1=not at all confident, 5=extremely confident) were combined with response
accuracy data to examine participants’ insights into their decisions. The combined data show
the relationship between response accuracy and confidence in judgements (Figure 2). Those
participants who were more confident in their judgements performed better than those who
were less confident, regardless of whether they received human or Al guidance.

Additionally, meta-d’ values were calculated for each guidance condition. Meta-d' is a
statistical counterpart to the confidence-accuracy relationship visualised above, measuring
‘metacognitive sensitivity’ [48, 49]. Mean meta-d’ values of .09 (95% CI [.04, .18]) and .13
[.03, .18] were observed for the human and Al guidance groups respectively. Positive values
occur when high levels of confidence are reported for correct judgements, and low levels for
incorrect judgements. In line with the confidence-accuracy curves (Figure 2) it appears that
participants in both guidance groups showed some ability to recognise whether they were
making correct and incorrect judgements.

Discussion

This study examined how reliance upon Al guidance during decision-making
influences human judgement and cognitive bias. Participants who received guidance from a



supposed human source were as accurate and consistent in their classifications of faces as real
or synthetic as those who received Al guidance. Furthermore, a significant response bias
towards face classifications of ‘real’ was observed for individuals who received Al guidance,
while regression analyses identified reduced task performance (measured by d') for
participants with more positive attitudes towards Al than those with less positive attitudes
towards Al

Task performance was not affected by the source of the guidance an individual
received. Additionally, it was found that classification consistency did not differ significantly
with guidance source. This latter finding is surprising given the known tendency for
individuals to succumb to the fallacy of technological protection [14]. Indeed, we might have
expected participants who received Al guidance to show increased consistency with this
guidance regardless of whether it was correct or incorrect. Yet, participants showed a similar
level of adherence to Al as to human guidance. Furthermore, participants were more inclined
to follow guidance when it was correct regardless of its source. Humans appear able to follow
guidance when it is correct and disregard it when it is not.

The apparent strategic use of Al guidance is encouraging given what we know about
the tendency for over-reliance by humans on potentially biased Al [15] born out of misplaced
positivity towards, and/or trust in, such systems. Thus, during humiaii-Al decision-making
interactions it seems that rather than Al protecting against biases — as the fallacy of
technological protection might suggest [14] — it is human decision-makers that work to
mitigate biases. In this regard, discrepancies between Al predictions, the subject of a decision
(e.g., areal or synthetic face), the specific knowiedge of human decision-makers [50], and
prior experience and familiarity with Al systems and their outputs [21, 51] may prevent
human operators from following ineffective Al support. Other research, however, highlights
the human as the problematic component during human-Al decision-making interactions
[52]; the researchers observed in a face-matching task that humans do not perform as well
when supported by a simulated automated facial recognition system (sAFRS) as the same
sAFRS by itself, due to overturning of correct SAFRS predictions but failures to overturn
sAFRS mistakes.

If it is true that humans are a mitigating force against Al biases, one must ask whether
it is worthwhile utilising AI in human decision-making at all. At the very least, our focus
must be on developing human-Al decision-making interfaces that optimise the regulatory role
of humans. Supportive Al of this nature has been of interest to the algorithmic fairness
research community for some time [53], yet how they influence decision-making
performance remains unclear [54, 55]. If humans are detrimental to human-Al decision-
making interactions then the result is the same. Until the issue of Al bias can be resolved —
which requires reforms to big data collection practices — it is the human component that we
must depend on and enhance to ensure effective Al use.

The stability of response consistency across guidance conditions may also be
informed by whether participants relied on the guidance. This seems likely given many
participants reported using the guidance only some of the time, whether it was derived from
humans or Al. Furthermore, no significant difference in response consistency was observed
between those who reported having always used the guidance and those who used it only
some of the time. It seems that participants used the guidance as and when they deemed it



necessary. This is a sensible and effective strategy highlighting future opportunities for
human-AlI decision-making partnerships. Occasions under which reliance on available
guidance was necessary may have arisen when specific experimental trials presented a
difficult choice, such as faces that appear quite but not entirely either real or synthetic. This
seems reasonable given previous research identifying increased reliance on advice [56], and
algorithmic advice [57], by humans when tasks are difficult. Furthermore, automated support
system research has highlighted reduced trust in systems deployed on simple tasks [58]. The
perceived difficulty of each trial may have determined participant guidance use and may be
the mechanism underlying strategic guidance use. Participants likely will have relied on the
guidance when they struggled with a decision and disregarded it when confident in their
judgements.

Linear regression analyses revealed a significant effect of GAAIS negative subscale
score on discriminability amongst individuals who received Al guidance. For individuals with
more positive attitudes towards Al, decision-making effectiveness is reduced when they
encounter Al guidance. Previous research identifying poorer decision-making amongst
humans more frequently using and therefore trusting AIFS [27, 28] seems to support this
observation, reaffirming the conclusion that the effectiveness of Al depends on the humans
being supported, task difficulty, and guidance quality. This finding bolsters those of previous
research identifying the importance of individual differences in trust in AI on human-Al
decision-making partnership success, wherein large performance gains have been observed
amongst humans re-completing a face-matching task with SAFRS support, especially when
they held favourable beliefs about the system [59]. Under these circumstances, the
importance of the human at the heart of such interactions is recorded in whether individual
differences in trust in technology impedes their acceptance of Al support. That greater trust in
humans did not influence discriminability similarly for those who received human guidance
suggests Al may be uniquely placed to manifest changes in decision-making ability.

Interestingly, regression analyses showed a significant effect of propensity to trust
other humans scale score but not GAAIS score on response bias. Among individuals
reporting a greater propensity to trust other humans there is an increased likelihood to
identify faces as real. Given that other analyses identified a tendency to classify faces as real
regardless of the guidance source, it may be that in a face classification task of this kind
participants’ default position is that stimuli depict real faces. For individuals with greater trust
in humans, classifications may default in this direction more readily. This is at odds with the
previously discussed notions that humans use guidance strategically and that they can act as a
regulatory force in human-Al interactions. Why this default position is not overcome and a
bias toward classifications of faces as synthetic observed amongst individuals displaying
greater positivity towards Al remains unclear. It is worthwhile noting that the CFA fit indices
reported here for the propensity to trust other humans scale were mixed, some suggesting a
good model fit and others suggesting a weak model fit. The use of this scale is theoretically-
driven with it having been developed and validated by existing research [31], nonetheless, we
have cautiously interpreted the human trust results to ensure that the conclusions of this work
are valid and useful to the field.

Confidence-accuracy curves suggest that participants in both guidance conditions
were able to reflect on their judgements effectively. Positive mean meta- d' scores for both
guidance groups support this conclusion. That participants demonstrated a good



understanding of their capabilities extends similar observations from previous research
utilising face stimuli [60] but contradicts other research identifying unjustified confidence
during decision-making [61, 62]. The difficulty of this experimental task was controlled to
ensure it was possible (by selecting stimuli between a previously identified classification
accuracy bracket of 64-84%, [29]). It may be that previous research identifying poor
participant insight employed more difficult tasks. This would explain the overall good
performance and fair insight displayed by participants.

The various and differing findings observed here mean that more work is required to
understand the circumstances under which Al biases manifest, and the role of the human in
human-AlI interactions. Indeed, given the importance of the human operator being supported
in determining Al effectiveness, further investigation of the individual differences influencing
the impact of Al on decision making should be prioritised. Future research should manipulate
the previously discussed occasions of necessity under which guidance is utilised by humans
during decision making, by using decision-making tasks of varying difficulty. This may be
achieved by presenting both correct and incorrect guidance with varied accuracy information
during a face classification task, yielding scenarios wherein ostensibly highly accurate
predictions contradict the accompanying stimuli. Additionally, this experimental paradigm
should be applied to various decision-making contexts. Human-Al interactions in, for
example, critical military reconnaissance scenarios may manifest biases differently to those in
low-demand online experiments.

By developing an increasingly nuanced conceptualisation of human-Al decision-
making interactions, and the variation in these interactions across contexts, more effective Al
and protocols for their use can be developed. It is imperative, though, that these tools are
developed with the best interests of human operators in mind and deployed with fully
informed human decision-makers at the heart. Ultimately, AI without human intervention can
be useful, but our findings suggest that it is humans who decide how and when.

Data Availability

The data collected during this research, and the full, anonymised, reproducible R data tidying
and analysis code is available at
https://osf.i0/2p3bf/?view_only=868c92c940c947b894d24ac4b4155607
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