
Knowledge, attitude, and practice of osteoporosis and hip fracture in older Chinese adults

Received: 14 August 2025

Accepted: 1 January 2026

Published online: 08 January 2026

Cite this article as: Ma F, Wang Z., Luo X. *et al.* Knowledge, attitude, and practice of osteoporosis and hip fracture in older Chinese adults. *Sci Rep* (2026). <https://doi.org/10.1038/s41598-026-35046-y>

Feng Ma, Zhaofu Wang, Xiaohai Luo, Ning Wu, Xiaolin Ma, Yanjun Hu & Bin Yu

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

If this paper is publishing under a Transparent Peer Review model then Peer Review reports will publish with the final article.

1 **Knowledge, attitude, and practice of osteoporosis and hip fracture**
2 **in older Chinese adults**

3

4 **Feng Ma¹, Zhaofu Wang², Xiaohai Luo³, Ning Wu⁴, Xiaolin Ma⁴,**
5 **Yanjun Hu^{5,6,*}, Bin Yu^{5,6,*}**

6 ¹The First School of Clinical Medicine, Southern Medical University,
7 Guangzhou, 510000, Guangdong, China.

8 ²The First Clinical Medical College, Lanzhou University, Lanzhou, 730000,
9 Gansu, China.

10 ³Orthopedics Department, People's Hospital of Ningxia Hui Autonomous
11 Region, Yinchuan, 750000, Ningxia, China.

12 ⁴School of Surgery, Ningxia Medical University, Yinchuan, 750000,
13 Ningxia, China.

14 ⁵Guangdong Provincial Key Laboratory of Bone and Cartilage
15 Regenerative Medicine, Nanfang Hospital, Southern Medical University,
16 Guangzhou, 510000, Guangdong, China.

17 ⁶Department of Orthopaedics, Nanfang Hospital, Southern Medical
18 University, Guangzhou, 510000, Guangdong, China.

19

20 *** Corresponding authors:**

21 **Bin Yu**

22 Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative
23 Medicine, Nanfang Hospital, Southern Medical University; Department of
24 Orthopaedics, Nanfang Hospital, Southern Medical University.

25 Address: No. 1023-1063, shatai South Road, Baiyun District, Guangzhou,
26 510000, Guangdong, China.

27 Email: yubin@smu.edu.cn

28 **Yanjun Hu**

29 Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative
30 Medicine, Nanfang Hospital, Southern Medical University; Department of
31 Orthopaedics, Nanfang Hospital, Southern Medical University.

32 Address: No. 1023-1063, shatai South Road, Baiyun District, Guangzhou,
33 510000, Guangdong, China.

34 Email: drw965@126.com

35 Tel: 13099580217

36

37 **Running title:** Osteoporosis and hip fracture

38

39 **ABSTRACT**

40 This study assessed the knowledge, attitude, and practices (KAP)
41 regarding osteoporosis and hip fracture among older adults in Ningxia,
42 China, to inform better prevention and management strategies through
43 patient education and lifestyle changes. This cross-sectional study
44 surveyed older adults at Ningxia Hui Autonomous Region People's
45 Hospital (Sep 2022-Nov 2023) using a convenience sampling method,
46 collecting demographic data and assessing KAP scores. Structural
47 equation modeling (SEM) analyzed relationships between KAP and
48 demographics. The analysis included 522 (99.4%) valid questionnaires.
49 The mean knowledge, attitude, and practice scores were 22.66 ± 4.29 (/30,
50 75.53%), the mean attitude score was 43.13 ± 4.54 (/60, 71.88%), and the
51 mean practice score was 57.15 ± 10.24 (/80, 71.44%), indicating sufficient
52 knowledge, positive attitude, and proactive practice. In the SEM,
53 knowledge was associated with income ($\beta=1.01$, $P<0.001$), frequency of
54 fall prevention ($\beta=-0.55$, $P<0.001$), residence ($\beta=0.97$, $P=0.030$), and falls
55 in the past year ($\beta=0.76$, $P=0.017$). Attitude was associated with
56 knowledge ($\beta=0.21$, $P<0.001$) and alcohol ($\beta=-1.26$, $P<0.001$). Practice
57 was associated with attitude ($\beta=1.09$, $P<0.001$), frequency of fall
58 prevention ($\beta=-1.86$, $P<0.001$), and use of anti-osteoporosis drugs ($\beta=2.63$,
59 $P<0.001$). Older adults in Ningxia demonstrated generally good KAP
60 toward osteoporosis and hip fracture; however, targeted educational
61 interventions addressing specific knowledge gaps may help further
62 improve preventive practices and support behavior change.

63 **Keywords:** knowledge, attitude, practice; osteoporosis; hip fracture; older
64 adults; cross-sectional study.

65

ARTICLE IN PRESS

66 **INTRODUCTION**

67 Osteoporosis is a generalized skeletal disorder characterized by low bone
68 density, deterioration of bone microarchitecture, and compromised bone
69 strength, often leading to fragility fracture due to excessive bone loading
70 from a fall or certain activities of daily living ¹⁻³. The prevalences of
71 osteoporosis in women ≥ 50 years old across studies ranged from 9.8% to
72 29.9% ^{4, 5}, while the prevalences in men ranged from 2.5% to 9.4% ^{4, 6}.
73 These prevalence vary across studies and regions, as they are influenced
74 by factors such as ethnicity, country of origin, and geographical location.
75 For example, previous epidemiological studies have shown notable
76 differences in the prevalence of osteoporosis between Asian and Western
77 populations, as well as variability among regions within China ^{7, 8}.
78 Osteoporosis is typically a silent disorder until a symptomatic fragility
79 fracture occurs ¹⁻³. The lifetime fracture risk for women and men ≥ 50
80 years is 50% ⁹ and 10%-30% ^{2, 10, 11}, respectively. Hip fracture is one of the
81 most serious and disabling consequences of osteoporosis and represents a
82 key clinical outcome of poor bone health. Hip fracture is a fracture of the
83 upper portion of the femur (anywhere from the femoral head to about 5
84 cm below the lesser trochanter), typically resulting in groin and thigh pain;
85 if the fracture is displaced, the affected extremity generally appears
86 shortened (with hip positioned in external rotation and abduction), and the
87 patient is unable to bear weight ^{12, 13}.
88 Preventing osteoporosis and fractures includes visiting a family physician
89 to evaluate the risk factors, radiological testing, and prescription of
90 calcium and vitamin D supplements and, if necessary, anti-bone resorption

91 drugs ¹⁻³. Proper lifestyle habits, including diet and exercise, and taking
92 medications are also necessary ¹⁴. Still, although straightforward, it
93 requires proper knowledge and attitude to put into practice. Knowledge,
94 attitude, and practice (KAP) surveys can provide quantitative and
95 qualitative data on the gaps, misconceptions, and misunderstandings that
96 constitute barriers to the optimal implementation of a specific set of
97 actions in a particular population ^{15, 16}. A study in two districts in Lebanon
98 revealed poor knowledge and attitude toward osteoporosis among adults
99 ¹⁷. Students ¹⁸, adults ¹⁹, and older adults ²⁰ in Malaysia were revealed to
100 have poor KAP toward osteoporosis. Adult Pakistani women were reported
101 to have a good knowledge of osteoporosis, but there were several gaps ²¹;
102 similar results were reported among university students in the United Arab
103 Emirates ²², but another study revealed poor KAP toward osteoporosis
104 among adults of the same country ²³. Previous studies in China examined
105 the KAP toward osteoporosis in specific patient populations, such as
106 patients with chronic kidney disease ²⁴ and knee osteoarthritis ²⁵. A recent
107 review of the awareness status of osteoporosis in the Chinese general
108 public indicated a low awareness ²⁶. Still, data pertaining to the KAP
109 toward osteoporosis and hip fracture in older Chinese adults remains
110 limited. Considering that hip fracture is one of the most serious and
111 disabling consequences of osteoporosis and represents a key clinical
112 outcome of poor bone health, and also serves as an important clinical
113 indicator of underlying osteoporosis, assessing KAP toward both
114 osteoporosis and hip fracture provides a more comprehensive
115 understanding of patient awareness and preventive behaviors.

116 Therefore, this study aimed to examine the KAP of osteoporosis and hip
117 fracture in older adults. By identifying gaps in knowledge, negative or
118 neutral attitude, and suboptimal practices, KAP findings can guide the
119 development of tailored educational and motivational intervention
120 materials that directly target the specific deficiencies of the population
121 studied. The results could help design educational and motivational
122 interventions that could improve the management and health of older
123 Chinese adults.

124

125 **METHODS**

126 **Study design and participants**

127 This cross-sectional study survey was conducted at The People's Hospital
128 of Ningxia Hui Autonomous Region between September 1, 2022, and
129 November 30, 2023. The study participants were older adults. The
130 inclusion criteria were 1) middle-aged and older adults >50 years of age
131 and 2) the patients and their families were informed and agreed to
132 participate in the study. The exclusion criteria were 1) older adults who
133 were unable to complete the questionnaire independently due to cognitive,
134 visual, or physical limitations, or those without access to a device to
135 complete the electronic questionnaire or 2) patients with cachexia, as
136 severe physical weakness and poor health status may influence their
137 participation and could bias the assessment of knowledge, attitude, and
138 practices related to osteoporosis and hip fracture. The study was approved
139 by the Medical Ethics Committee of the People's Hospital of Ningxia Hui
140 Autonomous Region (Approval No. ZDYF-020). Written electronic

141 informed consent was obtained from all participants before completing the
142 questionnaire.

143 **Questionnaire design**

144 The questionnaire was designed based on relevant guidelines ²⁷⁻²⁹. After
145 the initial design, the questionnaire was modified based on the opinions of
146 three experts in orthopaedics and public health (each with working
147 experience \geq 10 years). A small-scale pilot study (30 participants) showed
148 an overall Cronbach's α of 0.894, indicating good internal consistency. The
149 questionnaire was self-developed in Chinese and underwent preliminary
150 validation through expert review (content validity) and a pilot test (face
151 validity). For content validity, three experts reviewed each questionnaire
152 item to assess its correctness, relevance, and alignment with the study
153 objectives. For face validity, participants in the pilot test were asked to
154 report any item that was difficult to understand or answer, and no such
155 feedback was received, indicating good clarity and feasibility.

156 The final questionnaire was in Chinese (a version translated into English
157 was attached as an **Appendix**) and included information collection in four
158 dimensions, comprising 41 items in total. Among them, basic information
159 included 16 items, the knowledge dimension included 15 items, the
160 attitude dimension included 12 items, and the practice dimension included
161 nine items, wherein item P7 comprised five sub-items, and item P8
162 comprised four sub-items. For the knowledge dimension, 2 points were
163 given for correct answers, 1 for unclear answers, and 0 for incorrect
164 answers, with a possible score range of 0 to 30 points. The attitude and
165 practice dimensions used a 5-point Likert scale, with options ranging from

166 very positive (5 points) to very negative (1 point) according to the degree
167 of positivity. The attitude dimension was scored as follows: items A1 and
168 A5-A12 scored 5 to 1, while items A2-A4 scored 1 to 5; the possible score
169 range was 12 to 60 points. For the practice dimension, scores were 5 to 1
170 for all items, with a possible range of 16 to 80 points. For knowledge, 0-15
171 points indicated insufficient knowledge, 16-21 points indicated moderate
172 knowledge, and 21-30 points indicated sufficient knowledge. For attitude,
173 scores of 12-30 points indicated negative attitude, 31-42 points indicated
174 neutral attitude, and 42-60 points indicated positive attitude. For practice,
175 16-40 points indicated negative practice behaviors, 41-56 points indicated
176 moderate practice behaviors, and 57-80 points indicated proactive
177 practice behaviors.

178 **Questionnaire distribution and quality control**

179 The investigators contacted the communities in advance to obtain
180 permission to conduct the study by communicating with the community
181 administrative staff and obtaining their approval to recruit residents for
182 participation. The electronic questionnaire was hosted on Sojump
183 (<http://www.sojump.com>), an online survey platform. The questionnaire
184 link was distributed to the participants using a QR code or through a
185 WeChat group, and a convenience sampling method was used. Before
186 completing the questionnaire, the participants were required to click the
187 option "I agree to participate in this study" at the beginning of the e-
188 questionnaire. Participants were recruited on-site during community free
189 clinic activities, where they were invited to join the study after being
190 informed of its purpose and procedures. If participants had any questions

191 while completing the questionnaire, they could contact the research team
192 for clarification in person, via WeChat, or by telephone.

193 The study involved 13 orthopedic surgeons, including one chief physician,
194 two associate chief physicians, four attending physicians, and six resident
195 physicians, all of whom had a graduate degree or above. In addition, a
196 professional with a master's degree in orthopedics was enrolled as a
197 research assistant for this project. After 1 week of project training, the
198 research assistant was responsible for coordinating all research activities,
199 such as questionnaire collection and analysis.

200 All data were collected anonymously, but only one questionnaire
201 submission was allowed for a given IP address to prevent duplication. Each
202 questionnaire was supervised and reviewed by at least one orthopedic
203 surgeon. All incomplete questionnaires were discarded during the
204 collection process and were not included in the overall data. After
205 questionnaire collection, questionnaire screening was carried out, and two
206 investigators checked each questionnaire individually. Incomplete or
207 illogical questionnaires were discarded, and controversial questionnaires
208 were examined by the research assistant and chief physicians to make
209 decisions. Questionnaires with missing responses, all KAP items answered
210 using the same option, with an obvious pattern, or a response time <60 s
211 or >1800 s were considered invalid.

212 **Statistical analysis**

213 The sample size was calculated using the formula for cross-sectional
214 studies:

215
$$n = \left(\frac{Z_{1-\alpha/2}}{\delta} \right)^2 \times p \times (1 - p)$$

216 Using $\alpha=0.05$, $Z_{1-\alpha/2}=1.96$, the assumed degree of variability of $p=0.5$
 217 (which maximizes the required sample size), and the admissible error
 218 $\delta=0.05$, the theoretical sample size was 480 when including an extra 20%
 219 to allow for subjects lost during the study.

220 All analyses were performed using Stata 17.0 (Stata Corporation, College
 221 Station, TX, USA). Two-sided P-values <0.05 were considered statistically
 222 significant. The continuous variables were tested for normal distribution
 223 using the Kolmogorov-Smirnov test. Variables conforming to the normal
 224 distribution were presented as means \pm standard deviations. They were
 225 analyzed using Student's t-test (comparison of two groups) or ANOVA
 226 (comparisons of more than two groups). Variables with a skewed
 227 distribution were presented as medians (interquartile range (IQR)) and
 228 analyzed using the Mann-Whitney U-test (comparisons of two groups) or
 229 the Kruskal-Wallis H-test (comparison of more than two groups).
 230 Categorical data were presented as n (%) and analyzed using the chi-
 231 squared test. Pearson correlation analysis was used to evaluate the
 232 correlation between the three dimensions. Structural equation modeling
 233 (SEM) was used to explore the path relationships between KAP and
 234 demographic information.

235

236 **RESULTS**

237 **Characteristics of the participants**

238 A total of 525 participants were included in the study, but three
239 questionnaires had missing values for the 8th demographic question ("Do
240 you have any underlying medical conditions? (multiple choices allowed).").
241 Hence, the final dataset consisted of 522 (99.4%) valid responses. In the
242 final sample, the Cronbach's α for all participants was 0.877, supporting
243 acceptable internal consistency.

244 The participants were 70.1 ± 7.5 years old. The highest frequencies of
245 participants for each variable were female (50.8%), urban residence
246 (74.3%), primary school education and below (38.5%), retired (62.5%),
247 monthly income 2000-5000 (53.6%), living with someone (91.0%), with
248 comorbidities (97.9%), never smoked (72.2%), never drank alcohol (72.2%),
249 with medical insurance (98.5%), no fracture in the past 2 years (84.3%),
250 not aware the hospital had an osteoporosis clinic (58.0%), never took anti-
251 osteoporosis drugs (54.0%), did not fall in the past year (75.5%), and never
252 was about to fall but prevented the fall in time (33.1%) (**Table 1**).

253 **Summary of key findings**

254 The findings indicated that older adults in Ningxia demonstrated sufficient
255 knowledge, positive attitude, and proactive practices regarding
256 osteoporosis and hip fracture. Significant variations in KAP scores were
257 observed across sociodemographic factors, particularly residence,
258 education level, and income. Knowledge showed a weak positive
259 correlation with both attitude and practice, whereas attitude exhibited a
260 moderate positive correlation with practice.

261 **Knowledge, attitude, and practices**

262 The mean knowledge, attitude, and practice scores were 22.66 ± 4.29 (/30,
263 75.53%), the mean attitude score was 43.13 ± 4.54 (/60, 71.88%), and the
264 mean practice score was 57.15 ± 10.24 (/80, 71.44%), indicating sufficient
265 knowledge, positive attitude, and proactive practice.

266 Significant differences in knowledge scores were observed according to
267 type of residence ($P < 0.001$), education ($P = 0.002$), occupation ($P = 0.003$),
268 income ($P = 0.001$), living with someone ($P = 0.041$), anti-osteoporosis drugs
269 ($P = 0.038$), fell in the last year ($P < 0.001$), and was about to fall but
270 prevented the fall ($P < 0.001$) (**Table 1**). The knowledge item with the
271 highest correctness rate was K14 (82.76%; “There are many factors
272 contributing to falls, such as environmental factors like carpets, wet floors,
273 as well as lack of exercise and immobility. (Correct)”), and the item with
274 the lowest score was K10 (22.99%; “Having had a fracture does not greatly
275 affect the risk of recurrent fractures. (Incorrect)”). (**Supplementary**
276 **Table 1**).

277 Significant differences in attitude scores were observed according to sex
278 ($P = 0.001$), type of residence ($P = 0.002$), education ($P = 0.025$), occupation
279 ($P = 0.003$), income ($P < 0.001$), living with someone ($P = 0.010$), smoking
280 ($P < 0.001$), alcohol ($P < 0.001$), medical insurance ($P = 0.005$), and was
281 about to fall but prevented the fall ($P = 0.028$) (**Table 1**). The attitude item
282 with the highest score was A12 (88.69%; “I think if a fall occurs and there
283 is a mobility impairment, seeking medical attention immediately is
284 necessary. (P)”), while the item with the lowest score was A3 (2.11%; “I
285 would be very concerned about fracturing a bone if I accidentally fell or
286 experienced trauma. (N)”) (**Supplementary Table 2**).

287 Significant differences in practice scores were observed according to type
288 of residence ($P=0.017$), education ($P=0.001$), occupation ($P=0.015$),
289 income ($P=0.002$), smoking ($P=0.001$), alcohol ($P<0.001$), awareness of
290 osteoporosis clinic ($P=0.001$), anti-osteoporosis drugs ($P<0.001$), and was
291 about to fall but prevented the fall ($P<0.001$) (**Table 1**). The practice item
292 with the highest score was P7.4 (79.50%; "Regarding factors in the
293 environment that may contribute to falls, the frequency with which you
294 will pay attention to are: Being mindful of obstacles. (P)"), while the item
295 with the lowest score was P8.1 (51.73%; "Regarding the following fall-
296 related risk factors, the frequency with which you will address them are:
297 Avoiding anxiety and excitement. (P)") (**Supplementary Table 3**).

298 **Correlations**

299 As shown in **Table 2**, the knowledge scores were correlated to the attitude
300 ($r=0.2155$, $P<0.001$) and practice ($r=0.2276$, $P<0.001$) scores. The
301 attitude scores were correlated to the practice scores ($r=0.5007$, $P<0.001$).

302 **Structural equation modeling**

303 The fit of the adjusted SEM (**Figure 1**) was good (**Table 3**). Knowledge
304 was associated with income ($\beta=1.01$, $P<0.001$), frequency of fall
305 prevention ($\beta=-0.55$, $P<0.001$), residence ($\beta=0.97$, $P=0.030$), and falls in
306 the past year ($\beta=0.76$, $P=0.017$). The attitude was associated with
307 knowledge ($\beta=0.21$, $P<0.001$) and alcohol ($\beta=-1.26$, $P<0.001$). The
308 practice was associated with attitude ($\beta=1.09$, $P<0.001$), frequency of fall
309 prevention ($\beta=-1.86$, $P<0.001$), and anti-osteoporosis drugs ($\beta=2.63$,
310 $P<0.001$) (**Table 4**).

311

312 **DISCUSSION**

313 The prevention and management of osteoporosis require patient action
314 (e.g., visiting a physician and maintaining proper lifestyle habits). This
315 cross-sectional study examined the KAP of osteoporosis and hip fracture
316 in older Chinese adults. The findings showed that participants generally
317 had sufficient knowledge, positive attitude, and proactive practices toward
318 osteoporosis and hip fracture. Nevertheless, specific areas of knowledge
319 could be improved by educational interventions, which should translate
320 into better practice.

321 Ningxia is the 25th region in terms of population density in China, the 29th
322 in terms of total gross domestic product (GDP), and the 18th in terms of
323 per-capita GDP. It is, therefore, a region with a middle socioeconomic
324 status in China. In the present study, older Chinese adults showed good
325 levels of knowledge, positive attitude, and proactive practices toward
326 osteoporosis and hip fracture, which aligns with some previous findings in
327 populations with higher health awareness. A previous study in Chinese
328 patients with chronic kidney disease, a population at high risk of
329 osteoporosis, revealed a moderate KAP toward osteoporosis ²⁴. Another
330 study revealed moderate KAP toward osteoporosis among Chinese patients
331 with knee osteoarthritis ²⁵. A recent review of the awareness status of
332 osteoporosis in the general Chinese public indicated a low awareness, but
333 that awareness was better in older adults than in middle-aged individuals,
334 probably due to older adults being a population at higher risk of
335 osteoporosis and hip fractures ²⁶. Nevertheless, various KAP levels can be
336 observed in different countries. A study from Pakistan showed that women

337 had a good KAP toward osteoporosis ²¹, possibly because women are more
338 affected than men and that more public health efforts are deployed for
339 them. University students in the United Arab Emirates also showed good
340 KAP ²², likely reflecting the influence of higher education and greater
341 access to health information. Still, a study in adults in the United Arab
342 Emirates also showed good KAP ²³. On the other hand, studies reported
343 poor KAP toward osteoporosis among Malaysian students ¹⁸, adults ¹⁹, and
344 older adults ²⁰. The differences among countries could be related to the
345 public health education provided to the general population and the quality
346 of the healthcare systems.

347 The present study showed that a higher income, urban residence (often
348 associated with a better socioeconomic status), and the number of falls in
349 the past year were positively associated with knowledge. The
350 socioeconomic status is a well-known determinant of health literacy ³⁰. In
351 addition, the number of falls in the past year could encourage the patients
352 to seek more information about osteoporosis and fractures, or they could
353 receive information from healthcare providers if they had to consult. These
354 findings suggest that exposure to health information and access to
355 healthcare services may play an important role in improving knowledge
356 levels. On the other hand, the frequency of fall prevention was negatively
357 associated with knowledge and practice but positively associated with
358 attitude, which could be related to a false security feeling that the patient
359 could prevent all falls until the one time he could not. Taking anti-
360 osteoporosis drugs was positively associated with practice, indicating that

361 the patient is taking active measures to manage osteoporosis and prevent
362 complications.

363 Osteoporosis and hip fractures in older adults are important public health
364 issues associated with significant morbidity and mortality ^{31, 32}. Although
365 the present study showed a good knowledge of the participants toward
366 osteoporosis and hip fracture, some knowledge areas could be improved,
367 including osteoporosis in men vs. women, the association between falls
368 and osteoporosis, the importance of preventing falls, the relationship
369 between age and hip fracture, the relationship between a history of
370 fracture and the risk of future fractures, and the prevention of osteoporosis.

371 The correlations among knowledge, attitude, and practice support the
372 importance of strengthening health education to enhance overall disease
373 management. Such targeted interventions may help translate knowledge
374 into sustained behavior change and reduce the risk of fragility fractures
375 among older adults. Nevertheless, the correlations were weak, and could
376 not be interpreted as evidence of causality, the effectiveness of such
377 interventions needs evidence from further studies.

378 This study had limitations. It was performed at a single center and used a
379 convenience sampling method, resulting in a relatively small sample size
380 (considering the prevalence of osteoporosis) covering a single
381 geographical area in one Chinese province (Ningxia), which limited the
382 representativeness. The study was cross-sectional, preventing the analysis
383 of causality. A SEM analysis was performed to estimate causality, but it
384 must be stressed that in such cases, causality is statistically inferred rather
385 than observed ³³⁻³⁵. Therefore, the observed associations should be

386 interpreted with caution and cannot be considered evidence of true causal
387 relationships. Local investigators designed the questionnaire and could be
388 influenced by local practices and policies, limiting exportability and
389 generalizability. In addition, the exclusion of individuals who were unable
390 to complete the questionnaire or lacked access to an electronic device may
391 have introduced selection bias, likely leading to an overestimation of KAP
392 and potentially limiting the representativeness of the sample. Finally, all
393 KAP studies are at risk of social desirability bias, in which the participants
394 can be tempted to answer what they know they should think or do instead
395 of what they are thinking or doing ^{36, 37}. Considering that knowledge was
396 sufficient, bias is possible. Despite these limitations, the findings provide
397 useful implications for clinical practice, as strengthening patient education
398 and early preventive strategies could help reduce the risk of osteoporosis-
399 related fractures among older adults.

400 In future research, we plan to conduct longitudinal follow-up studies to
401 examine changes in KAP over time and to evaluate the effectiveness of
402 targeted educational interventions based on the gaps identified in this
403 study. This will help determine whether improvements in knowledge can
404 lead to lasting changes in attitude and practices. In addition, expanding
405 the study to multiple regions in China would allow for comparisons across
406 different sociodemographic backgrounds and improve the generalizability
407 of the findings.

408 In conclusion, older adults in Ningxia (China) have a good KAP toward
409 osteoporosis and hip fracture. Still, specific areas of knowledge could be
410 improved by educational interventions. Since knowledge was related to

411 attitude and practice, improving knowledge may contribute to better
412 preventive practices toward osteoporosis and hip fracture. These findings
413 highlight the importance of strengthening health education and early
414 prevention strategies to support better self-management and reduce the
415 risk of osteoporotic fractures among older adults.

ARTICLE IN PRESS

417 **Acknowledgments**

418 None.

419 **Authors' contributions**

420 Feng Ma, Zhaofu Wang, Xiaohai Luo, Ning Wu, and Xiaolin Ma carried out
421 the studies, participated in collecting data, and drafted the manuscript.

422 Feng Ma, Yanjun Hu, and Bin Yu performed the statistical analysis and
423 participated in its design. Feng Ma and Zhaofu Wang participated in the
424 acquisition, analysis, or interpretation of data and drafted the manuscript.

425 All authors read and approved the final manuscript.

426 **Data availability statement**

427 All data generated or analyzed during this study are included in this article
428 and supplementary information files.

429 **Competing interests statement**

430 The authors declare that they have no competing interests.

431 **Ethics approval and consent to participate**

432 This work has been carried out in accordance with the Declaration of
433 Helsinki (2000) of the World Medical Association. This study was approved
434 by the Medical Ethics Committee of Ningxia Hui Autonomous Region
435 People's Hospital ([2021]-ZDYF-020), and all participants provided written
436 informed consent.

437 **Consent for publication**

438 Not applicable

439 **Funding**

440 This study was supported by the Ningxia Hui Autonomous Region's Key
441 R&D Program for Foreign Scientific and Technological Cooperation
442 Projects (2022BFH02010).

443

ARTICLE IN PRESS

444 **REFERENCES**

445 1. Camacho, P. M., *et al.* American Association of Clinical
446 Endocrinologists/American College of Endocrinology Clinical Practice
447 Guidelines for the Diagnosis and Treatment of Postmenopausal
448 Osteoporosis-2020 Update. *Endocr Pract.* **26**, 1-46 (2020).

449 2. Watts, N. B., *et al.* Osteoporosis in men: an Endocrine Society clinical
450 practice guideline. *J Clin Endocrinol Metab.* **97**, 1802-1822 (2012).

451 3. LeBoff, M. S., *et al.* The clinician's guide to prevention and treatment
452 of osteoporosis. *Osteoporos Int.* **33**, 2049-2102 (2022).

453 4. Looker, A. C., Sarafrazi Isfahani, N., Fan, B. & Shepherd, J. A. Trends
454 in osteoporosis and low bone mass in older US adults, 2005-2006 through
455 2013-2014. *Osteoporos Int.* **28**, 1979-1988 (2017).

456 5. Wright, N. C., Saag, K. G., Dawson-Hughes, B., Khosla, S. & Siris, E. S.
457 The impact of the new National Bone Health Alliance (NBHA) diagnostic
458 criteria on the prevalence of osteoporosis in the USA. *Osteoporos Int.* **28**,
459 1225-1232 (2017).

460 6. Ensrud, K. E., *et al.* Implications of expanding indications for drug
461 treatment to prevent fracture in older men in United States: cross
462 sectional and longitudinal analysis of prospective cohort study. *BMJ.* **349**,
463 g4120 (2014).

464 7. Salari, N., *et al.* Global prevalence of osteoporosis among the world
465 older adults: a comprehensive systematic review and meta-analysis. *J*
466 *Orthop Surg Res.* **16**, 669 (2021).

467 8. Zheng, M., *et al.* Differences in the prevalence and risk factors of
468 osteoporosis in chinese urban and rural regions: a cross-sectional study.
469 *BMC Musculoskelet Disord.* **24**, 46 (2023).

470 9. Eastell, R., Rosen, C. J., Black, D. M., Cheung, A. M., Murad, M. H.&
471 Shoback, D. Pharmacological Management of Osteoporosis in
472 Postmenopausal Women: An Endocrine Society* Clinical Practice
473 Guideline. *J Clin Endocrinol Metab.* **104**, 1595-1622 (2019).

474 10. Adler, R. A. Osteoporosis in men: a review. *Bone Res.* **2**, 14001 (2014).

475 11. Gennari, L.& Bilezikian, J. P. New and developing pharmacotherapy for
476 osteoporosis in men. *Expert Opin Pharmacother.* **19**, 253-264 (2018).

477 12. Florschutz, A. V., Langford, J. R., Haidukewych, G. J.& Koval, K. J.
478 Femoral neck fractures: current management. *J Orthop Trauma.* **29**, 121-
479 129 (2015).

480 13. Sheehan, S. E., Shyu, J. Y., Weaver, M. J., Sodickson, A. D.& Khurana,
481 B. Proximal Femoral Fractures: What the Orthopedic Surgeon Wants to
482 Know. *Radiographics.* **35**, 1563-1584 (2015).

483 14. Sheng, B., Li, X., Nussler, A. K.& Zhu, S. The relationship between
484 healthy lifestyles and bone health: A narrative review. *Medicine*
485 (*Baltimore*). **100**, e24684 (2021).

486 15. Andrade, C., Menon, V., Ameen, S.& Kumar Praharaj, S. Designing and
487 Conducting Knowledge, Attitude, and Practice Surveys in Psychiatry:
488 Practical Guidance. *Indian J Psychol Med.* **42**, 478-481 (2020).

489 16. World Health Organization. Advocacy, communication and social
490 mobilization for TB control: a guide to developing knowledge, attitude and
491 practice surveys.
492 http://whqlibdoc.who.int/publications/2008/9789241596176_eng.pdf.
493 Accessed November 22, 20222008.

494 17. Nohra, J., Sacre, Y., Abdel-Nour, A.& Mannan, H. Evaluation of
495 Knowledge, Attitudes, and Practices Related to Osteoporosis and
496 Correlates of Perceived High Risk among People Living in Two Main
497 Districts of Lebanon. *J Osteoporos.* **2022**, 1188482 (2022).

498 18. Khan, Y. H., Sharriff, A., Khan, A. H.& Mallhi, T. H. Knowledge, Attitude
499 and Practice (KAP) Survey of Osteoporosis among Students of a Tertiary
500 Institution in Malaysia. *Trop J Pharmaceutical Res.* **13**, 155-162 (2014).

501 19. Tay, C. L., Ng, W. L., Beh, H. C., Lim, W. C.& Hussin, N. Screening and
502 management of osteoporosis: a survey of knowledge, attitude and practice

503 among primary care physicians in Malaysia. *Arch Osteoporos.* **17**, 72
504 (2022).

505 20. Chan, C. Y., *et al.* Knowledge, Beliefs, Dietary, and Lifestyle Practices
506 Related to Bone Health among Middle-Aged and Elderly Chinese in Klang
507 Valley, Malaysia. *Int J Environ Res Public Health.* **16**, (2019).

508 21. Ahmed, S., *et al.* Assessing the knowledge, attitude and practice of
509 osteoporosis among Pakistani women: A national social-media based
510 survey. *PLoS One.* **18**, e0288057 (2023).

511 22. Al-Hemyari, S. S., Jairoun, A. A., Jairoun, M. A., Metwali, Z. & Maumoun,
512 N. Assessment of knowledge, attitude and practice (KAP) of osteoporosis
513 and its predictors among university students: cross sectional study, UAE *J*
514 *Adv Pharm Educ Res.* **8**, 43-48 (2018).

515 23. Alani, Q., *et al.* Knowledge, Attitude, and Practices Towards
516 Osteoporosis Among Adults in the United Arab Emirates (UAE) in 2023.
517 *Cureus.* **16**, e56084 (2024).

518 24. Xu, P., Zhao, N. & Wang, J. Knowledge, attitude, and practice toward
519 osteoporosis among patients with chronic kidney disease in Zhejiang.
520 *Medicine (Baltimore).* **103**, e38153 (2024).

521 25. Wu, Y., Xu, Z., Dong, J., Zhang, W., Li, J. & Ji, H. Knowledge, Attitudes,
522 and Practices of Patients with Knee Osteoarthritis Regarding Osteoporosis

523 and Its Prevention: A Cross-Sectional Study in China. *Int J Gen Med.* **17**,
524 3699-3709 (2024).

525 26. Ran, J., Yang, X., Li, S.& Peng, W. A Systematic Review of Research
526 Tools, Research Status and Improvement Measures for Osteoporosis
527 Awareness in Chinese and International. *Int J Gen Med.* **18**, 801-813
528 (2025).

529 27. Chandran, M., *et al.* Development of the Asia Pacific Consortium on
530 Osteoporosis (APCO) Framework: clinical standards of care for the
531 screening, diagnosis, and management of osteoporosis in the Asia-Pacific
532 region. *Osteoporos Int.* **32**, 1249-1275 (2021).

533 28. Cheng, X., *et al.* Chinese expert consensus on the diagnosis of
534 osteoporosis by imaging and bone mineral density. *Quant Imaging Med
535 Surg.* **10**, 2066-2077 (2020).

536 29. Xie, Y. M., *et al.* [Clinical practice guideline for postmenopausal
537 osteoporosis with traditional Chinese medicine]. *Zhongguo Zhong Yao Za
538 Zhi.* **46**, 5992-5998 (2021).

539 30. Svendsen, M. T., *et al.* Associations of health literacy with
540 socioeconomic position, health risk behavior, and health status: a large
541 national population-based survey among Danish adults. *BMC Public Health.*
542 **20**, 565 (2020).

543 31. Clemens, K. K., Ouedraogo, A., Speechley, M., Richard, L., Thain, J.&
544 Shariff, S. Z. Hip Fractures in Older Adults in Ontario, Canada-Monthly
545 Variation, Insights, and Implications. *Can Geriatr J.* **22**, 148-164 (2019).

546 32. Azevedo, D. C., Hoff, L. S., Kowalski, S. C., de Andrade, C. A. F.,
547 Trevisani, V. F. M.& de Melo, A. K. G. Risk factors for osteoporotic hip
548 fracture among community-dwelling older adults: a real-world evidence
549 study. *Adv Rheumatol.* **64**, 8 (2024).

550 33. Beran, T. N.& Violato, C. Structural equation modeling in medical
551 research: a primer. *BMC Res Notes.* **3**, 267 (2010).

552 34. Fan, Y., Chen, J.& Shirkey, G. Applications of structural equation
553 modeling (SEM) in ecological studies: an updated review. *Ecol Process.* **5**,
554 19 (2016).

555 35. Kline, R. B. *Principles and Practice of Structural Equation Modeling*
556 (Fifth Edition). New York: The Guilford Press; 2023.

557 36. Bergen, N.& Labonte, R. "Everything Is Perfect, and We Have No
558 Problems": Detecting and Limiting Social Desirability Bias in Qualitative
559 Research. *Qual Health Res.* **30**, 783-792 (2020).

560 37. Latkin, C. A., Edwards, C., Davey-Rothwell, M. A.& Tobin, K. E. The
561 relationship between social desirability bias and self-reports of health,
562 substance use, and social network factors among urban substance users
563 in Baltimore, Maryland. *Addict Behav.* **73**, 133-136 (2017).

ARTICLE IN PRESS

565 **Figure Legends:**

566 **Figure 1. Structural equation model after adjustment.**

567

ARTICLE IN PRESS

568 **Table 1. Characteristics of the participants**

n=522	N (%)	Knowledge			Attitude score			Practice score		
		score			(12-60)			(16-80)		
		Mean	±	P	Mean	± SD	P	Mean	±	P
SD										
Total		22.66	±	4.	43.13	±4.54		57.15	±10.2	
		29						4		
Sex					0.363			0.001		0.149
Male	257 (49.2)	22.4	±	4.3	42.47	±4.56		56.48	±10.3	
		0						3		
Female	265 (50.8)	22.8	±	4.2	43.77	±4.43		57.79	±10.1	
		6						2		
Age (years)	70.10±7.53									
Residence					<0.00			0.002		0.017
					1					

Non-urban	134 (25.7)	21.3 ± 4.0	42.18 ± 4.71	55.48 ± 9.47
		4		4
Urban	388 (74.3)	23.1 ± 4.2	43.46 ± 4.43	57.72 ± 10.4
		8		3
Education		0.002	0.025	0.001
Primary school and below	201 (38.5)	21.9 ± 4.0	42.66 ± 4.70	55.49 ± 10.1
		3		9
Middle school	175 (33.5)	23.4 ± 4.3	43.2 ± 4.43	58.50 ± 10.1
		7		4
High school/secondary	73 (14.0)	21.9 ± 4.2	42.83 ± 4.39	55.19 ± 10.3
		0		6
College/Undergraduate and above	73 (14.0)	23.5 ± 4.4	44.57 ± 4.21	60.43 ± 9.31
		0		
Occupation		0.003	0.003	0.015
Retired	326 (62.5)	23.1 ± 4.4	43.54 ± 4.47	58.15 ± 10.2

		1		7
Not retired	14 (2.7)	21.5±4.2	43.5±4.41	59.35±10.9
Farming	86 (16.5)	22.0±4.0	43.24±4.55	54.93±10.8
Not working	96 (18.4)	21.6±3.8	41.57±4.47	55.40±8.99
Family's monthly per capita income		<0.001	<0.001	0.002
<2000	140 (26.8)	21.4±3.7	41.62±4.49	54.91±9.68
2000-5000	280 (53.6)	22.7±4.4	43.66±4.60	57.40±10.6
>5000	102 (19.5)	24.1±3.9	43.75±3.94	59.51±9.34
Cohabitant		0.041	0.010	0.178

Yes	475 (91.0)	22.7 ± 4.2	43.29 ± 4.54	57.30 ± 10.3		
		5			2	
No	47 (9.0)	21.2 ± 4.4	41.55 ± 4.22	55.61 ± 9.24		
		4				
Comorbidities						
(Multiple choice possible)	86 (16.5)	-	-	-	-	-
Diabetes	225 (43.1)	-	-	-	-	-
Hypertension	34 (6.5)	-	-	-	-	-
Kidney disease		-	-	-	-	-
Coronary heart disease	19 (3.6)	-	-	-	-	-
Hepatobiliary disease	15 (2.9)	-	-	-	-	-
Peptic ulcer or bleeding	17 (3.3)	-	-	-	-	-

Cerebrovascular disease	15 (2.9)	-	-	-	-	-
Respiratory diseases	156 (29.9)	-	-	-	-	-
No comorbidities	11 (2.1)	-	-	-	-	-
Smoking		0.062		<0.001		0.001
Never smoked	377 (72.2)	22.9 ± 4.3	43.67 ± 4.42	58.15 ± 10.1		
Used to smoke	74 (14.2)	21.7 ± 4.2	42.14 ± 4.62	55.62 ± 9.46		
Still smoke	71 (13.6)	22.1 ± 3.7	41.26 ± 4.43	53.42 ± 10.3		
Drinking alcohol		0.120		<0.001		<0.001
Never	377 (72.2)	22.8 ± 4.2	43.66 ± 4.53	58.21 ± 10.2		
Used to drink	88 (16.9)	21.8 ± 4.2	42.13 ± 4.68	55.22 ± 8.56		

alcohol	6			
Still drink alcohol	57 (10.9)	22.2 ± 4.2	41.19 ± 3.48	53.08 ± 10.9
	2			5
Medical insurance		0.171	0.005	0.284
Yes	514 (98.5)	22.6 ± 4.2	43.20 ± 4.52	57.20 ± 10.2
	8			7
No	8 (1.5)	20.6 ± 4.4	38.75 ± 3.19	53.75 ± 7.47
	7			
Fractures in the past		0.688	0.169	0.270
2 years				
Yes	82 (15.7)	22.4 ± 4.6	42.46 ± 4.20	56.06 ± 9.72
	4			
No	440 (84.3)	22.6 ± 4.2	43.25 ± 4.59	57.35 ± 10.3
	2			2
Aware that the		0.076	0.060	0.001
hospital has an				

osteoporosis clinic

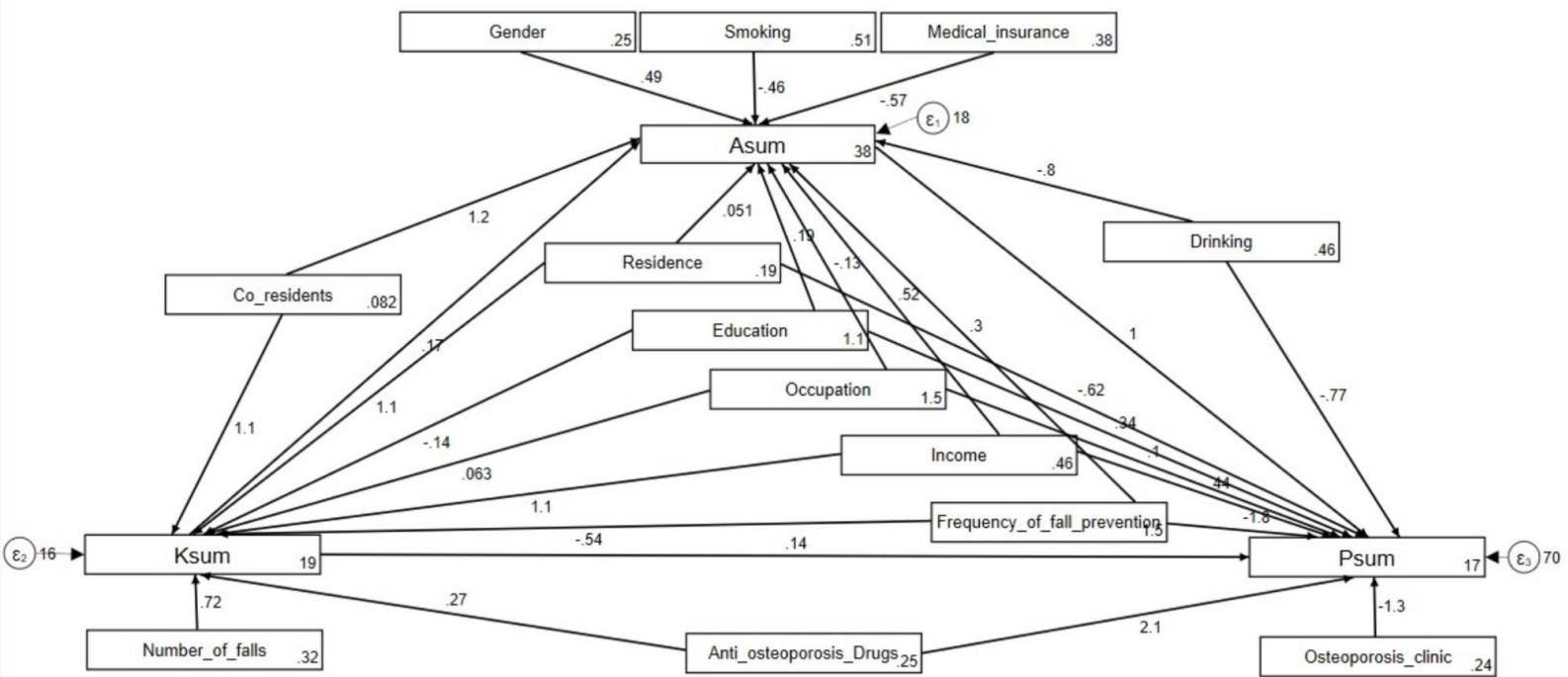
Yes	219 (42.0)	22.9 ± 4.4	43.61 ± 4.39	59.10 ± 10.1
		9		7
No	303 (58.0)	22.4 ± 4.1	42.78 ± 4.61	55.73 ± 10.0
		2		6
Anti-osteoporosis drugs use		0.038	0.964	<0.001
Yes	240 (46.0)	23.0 ± 4.3	43.14 ± 4.16	58.85 ± 9.53
		0		
No	282 (54.0)	22.3 ± 4.2	43.12 ± 4.84	55.69 ± 10.6
		5		0
Number of falls in the past years		<0.00	0.895	0.055
0	394 (75.5)	22.2 ± 4.1	43.09 ± 4.61	56.59 ± 10.2
		5		8
1	100 (19.2)	24.2 ± 4.4	43.21 ± 4.32	58.82 ± 10.4

		7		8
≥2	28 (5.3)	22.8±4.2	43.42±4.35	59±7.76
		5		
Prevented the fall in time		<0.00	0.028	<0.001
Always	23 (4.4)	26±4.51	45±4.32	67.21±6.82
Often	100 (19.2)	23.6±4.1	42.94±4.54	60.77±9.39
		1		
Sometimes	87 (16.7)	22.7±4.0	42.33±4.49	54.90±9.76
		1		
Occasionally	139 (26.6)	21.6±4.3	42.78±4.53	56.69±9.98
		4		
Never	173 (33.1)	22.3±4.0	43.68±4.50	55.21±10.2
		9		
		8		7

570 **Table 2. Correlation analysis**

	Knowledge	Attitude	Practice
Knowledge	1		
Attitude	0.2155 (P<0.001)	1	
Practice	0.2276 (P<0.001)	0.5007 (P<0.001)	1

571


572 **Table 3. SEM model fit.**

Indicators	Reference	Results
RMSEA	<0.08 Good	0.041
SRMR	<0.08 Good	0.029
TLI	>0.8 Good	0.931
CFI	>0.8 Good	0.965

573

574 **Table 4. SEM model.**

		β	P
Asum <-	Ksum	0.21	<0.001
	Frequency of fall prevention	0.29	0.062
	whether or not drinking alcohol	-1.26	<0.001
Psum <-	Asum	1.09	<0.001
	Ksum	0.15	0.091
	Frequency of fall prevention	-1.86	<0.001
	whether or not using anti-osteoporosis drugs	2.63	<0.001
Ksum <-	Per capita income in the past year	1.01	<0.001
	Frequency of fall prevention	-0.55	<0.001
	Residence	0.97	0.03
	Number of falls in the past year	0.76	0.017
	Whether there are co-residents	1.12	0.072

