
Root-associated protein 
prediction using a protein large 
language model and hypergraph 
convolutional networks
Lei Chen1, Xingyu Xun1 & Bo Zhou2

Plant root-associated proteins promote plant growth and enhance stress tolerance. They participate 
in signaling and plant growth regulation. It is clear that they play key roles in plant growth, 
development and environmental adaptation. At present, the root-associated proteins have not 
been fully discovered. It is essential to identify latent root-associated proteins. Traditional methods 
(proteomic analysis, transcriptome and expression analysis) for determining root-associated proteins 
are highly relied on the data generated by biochemical experiments, which are always expensive and 
time-consuming. On the other hand, the current computational models show weak ability, providing 
great spaces for improvement. In this study, we propose a new computational model, Hypergraph-
Root, for predicting root-associated proteins. The model employed several feature types to represent 
proteins, which were derived from proteins BLOSUM62 and position-specific scoring matrices as well 
as by a protein language model. These features were improved by hypergraph convolutional network 
and multi-head attention. The final predicted result was yielded by a fully connected layer. The model 
yielded high performance with AUC about 0.9 on training and independent datasets. It had evident 
advantages compared with existing models. Some additional tests were conducted to prove the 
rationality of the model’s structure.
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The plant root system is the main organ for water and mineral uptake, which is crucial for plant growth and 
development1. Root-associated proteins play multiple roles in this process, which not only promote root growth 
and development, enhance plant stress tolerance, but also participate in the regulation of signaling and growth-
regulating mechanisms in the plant and interact with soil microbes2. In agricultural production, root-associated 
proteins have an important impact on the growing environment and yield quality of crops through their 
direct involvement in plant growth and development, as well as their indirect influence on the soil microbial 
community, which is a key factor in improving crop resilience and productivity3.

Among the traditional biological approaches, proteomic analysis, and transcriptome and expression analysis 
are the two main techniques for identifying root-associated proteins4. Proteomics analysis mainly relies on mass 
spectrometry to identify and compare protein expression differences in different samples, while transcriptome 
sequencing combined with real-time quantitative PCR (qRT-PCR) is used to probe the expression patterns of 
specific genes under different environmental conditions. Of course, these two approaches can yield reliable 
references for studying the functions and regulatory mechanisms of root-associated proteins. Although both 
techniques are valuable in root-associated protein research at the biomolecular level, they also have some 
drawbacks, such as high cost, high complexity of data analysis, technical limitations, sample handling limitations, 
and problems with reproducibility and accuracy of results. Therefore, it is still necessary to develop accurate and 
reliable computational methods to predict root-associated proteins.

In recent years, machine learning methods have been widely applied to tackle protein-related problems. 
They can deeply analyze known data and mine hidden associations, thereby learning special patterns for making 
predictions. Generally, the execution of machine learning methods must be supported by a large amount of 
data. For the prediction of root-associated proteins, the public RGPDB database5 collects many root-associated 
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genes, providing a strong support for building machine learning-based models. It is known that a protein’s final 
localization and function are directly determined by intrinsic signals encoded in its amino acid sequence, such 
as signal peptides and transmembrane domains6,7. Crucially, root proteomic studies consistently demonstrate 
that root tissues specifically enrich proteins bearing these sequence features (e.g., plasma membrane-localized 
transporters and receptor kinases), which are directly responsible for root-specific functions, like nutrient uptake 
and stress response8,9. The special sequence patterns that are associated with root-related biological processes are 
waiting for exploration. On the other hand, protein sequences are always the first-hand materials to investigate 
protein-related problems because they are easily to obtain. The models based on protein sequence only always 
have wide applications. Thus, it is feasible and necessary to identify root-associated proteins only using their 
sequence information. To date, two machine learning-based models have been proposed, which all adopted 
protein sequence information. Kumar et al. first designed a machine learning-based model, named SVM-
Root10, for the prediction of root-associated proteins. This model adopted five feature types derived from protein 
sequences and employed support vector machine (SVM) as the prediction engine. However, its performance 
was not high. The accuracies on training and test datasets were all lower than 0.75. Later, the second model, 
named Graph-Root11, employed more protein features, such as network features, domain features, as well as 
deep learning algorithms, including graph convolutional network (GCN) and multi-head attention. This model 
was superior to SVM-Root. However, it was still not efficient enough. Its accuracies on training and test datasets 
were between 0.75 and 0.80. Evidently, there still exist great spaces for improvement. Existing two models have 
evident limitations. The first model (SVM-Root) adopted traditional machine learning algorithms, which cannot 
fully mine the associations between features and root-associated proteins. The second model (Graph-Root) 
improved the SVM-Root by employing more information of proteins and deep learning algorithms (GCN and 
multi-head attention). The GCN can capture the relationships between amino acids in one protein sequence and 
refine protein features at amino acid level. However, GCN can only capture binary relationships between amino 
acids. The complex relationships beyond such relationships cannot be captured by GCN as GCN uses a general 
graph as an input, which does not contain the complex relationships. The hypergraph is a generalized version 
of graph, which can contain more complex relationships between nodes as more than two nodes can comprise 
one hyperedge. The employment of hypergraph to build the model for identifying root-associated proteins 
can help the model to make use of the complex relationships between amino acids, thereby enhancing model’s 
performance. On the other hand, the protein language model (pLM) provides new protein representations, 
which may also be useful to identify root-associated proteins.

In this study, a new computational model was designed to predict root-associated proteins, which was 
called Hypergraph-Root. This model adopted two general feature types derived from protein sequences, say 
BLOSUM62 and Position-Specific Scoring Matrix (PSSM) features. It also employed the features yielded by a 
pLM, ProtT5, which contain high-level information hidden in protein sequences. In addition, the hypergraph 
was employed for each protein to represent complex relationships between amino acids in this protein sequence 
and the hypergraph convolutional network (HGCN)12 was applied to above features and hypergraphs to yield 
high-order features. After the high-order features were processed by a multi-head attention, the fully connected 
layer (FCL) was designed to make predictions. The cross-validation on training dataset and the independent test 
shown that the accuracies were higher than 0.83, which exceeded the accuracies generated by SVM-ROOT and 
Graph-ROOT. Furthermore, we also conducted some tests to prove the reasonability of the model’s structure.

Materials and methods
Dataset
The root-associated proteins were obtained from one previous study11. These proteins were original extracted 
from the RGPDB database (http://sysbio.unl.edu/RGPDB/, assessed on 20 March 2023)5, a public database 
collecting more than 1200 candidates of root-associated genes and their corresponding promoter sequences, 
including 592, 363, and 400 genes for maize, sorghum, and soybean, respectively. These genes were identified 
by analyzing multiple types of omics datasets for maize, soybean, and sorghum, including tissue transcriptomic 
and proteomic data. After mapping above genes to STRING database (https://cn.string-db.org/, version 11.5)13 
and Ensembl Genomes (https://www.ensemblgenomes.org, accessed on 10 April 2023)14, 1259 root-associated 
proteins were obtained. These proteins were termed as positive samples. The purpose of this study was to design 
a computational method for identifying root-associated proteins. To this end, we further employed negative 
samples, which were also retrieved from the previous study11, including 41,538 non-root-associated proteins. 
These proteins were downloaded from UniProt (https://www.uniprot.org/, Release 2023_01)15. All above 
proteins constituted the initial dataset of this study.

To further construct a well-defined dataset, all proteins were processed by the following two steps: (1) 
Proteins with sequence length larger than 1000 were removed; (2) Homologous proteins were also excluded 
using CD-HIT (with cutoff 0.4)16. As a result, 525 root-associated proteins and 9260 non-root-associated 
proteins were retained. Above root-associated proteins were randomly divided into two sets, denoted by SP

tr  and 
SP

te. The first set SP
tr  contained 90% root-associated proteins and the remaining 10% root-associated proteins 

constituted the second set SP
te. The same operation was performed on non-root-associated proteins, yielding 

two sets, denoted as SN
tr  and SN

te . Generally, proteins in SP
tr  and SN

tr  can be combined to train the model. 
However, proteins in SN

tr  was much more than those in SP
tr . The model trained on such imbalanced dataset may 

produce bias. Thus, we randomly selected non-root-associated proteins from SN
tr , which were as many as root-

associated proteins in SP
tr . Their combination constituted one training dataset. As the selection of proteins in 

SN
tr  may influence model’s performance, above procedures were executed 50 times, yielding 50 training datasets, 

denoted as S1
tr, S2

tr, . . . , S50
tr . Furthermore, we constructed two test datasets. The first test dataset, denoted by 

S1
te, contained all proteins in SP

te and SN
te , that is S1

te = SP
te ∪ SN

te . Clearly, this test dataset was imbalanced as 
non-root-associated proteins were much more than root-associated proteins. Thus, we called this test dataset as 
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imbalanced test dataset. In addition, we also constructed a balanced test dataset, denoted by S2
te. This test dataset 

contained all proteins in SP
te and randomly selected non-root-associated proteins in SN

te , which were as many 
as proteins in SP

te. The model built on the training datasets will be applied to the test datasets for evaluating its 
generalization ability.

Original protein feature extraction
Traditionally, the accuracy of samples’ features can directly influence the models’ performance. In this study, 
we first extracted general features from proteins, which were then processed by some advanced computational 
methods. Three feature types were extracted from protein sequences, indicating the essential properties of 
proteins at amino acid level. They were described as below.

Protein language model feature
Large language models (LLMs) have achieved remarkable success in processing massive amounts of unlabeled 
natural language data and learning linguistic embeddings17. Utilizing deep learning techniques, these models are 
able to accurately capture the nuances and complex structures of language, and thus have demonstrated superior 
performance in several areas of natural language processing (NLP). Inspired by this, the pLMs were designed 
for protein sequence analysis, which treat protein sequences as a “language” and employs NLP techniques to 
recognize parse patterns as well as connections in the sequences. Trained on large-scale protein sequences in 
some databases, such as UniProt15, pLMs can efficiently capture potential structural and functional features in 
sequences. The protein embeddings generated by pLMs are valuable in the protein-related researches.

In this study, we employed one newly proposed pLM, named ProtT518, to generate protein embeddings. 
ProtT5 is a 24-layer transformer-based language model that was initially pre-trained on a comprehensive protein 
dataset from the Big Fantastic Database (BFD)19,20, and subsequently fine-tuned using the UniRef 50 dataset21. 
In detail, ProtT5 consists of one encoder and one decoder, where the encoder is responsible for converting the 
primary sequence of a protein into a numeric vector, while the decoder reconstructs the target sequence based 
on the embeddings yielded by the encoder.

This study directly adopted the pre-trained ProtT5, which was downloaded at ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​a​g​e​m​a​g​
i​c​i​a​n​/​P​r​o​t​T​r​a​n​s​​​​​. The root-associated and non-root-associated proteins were fed into ProtT5. The output of its 
encoder was picked up as the features of one input protein, which was a L × 1024 embedding matrix, where 
L represents the length of the protein sequence. It can be seen that each row was the representation of the 
corresponding amino acid in the sequence. For easy descriptions, this original protein feature was called ProtT5 
feature.

BLOSUM62 feature
The BLOSUM62 matrix22 is a scoring matrix for protein sequence comparison based on the frequency of 
amino acid substitutions observed in conserved sequence blocks. It is suitable for protein alignment at various 
evolutionary distances. When two proteins were aligned, the amino acid sequences within each cluster or block 
were at least 62% identical. It has been widely used to construct various computational models for tackling 
protein-related problems23–25. Compared with other protein scoring matrices, BLOSUM62 matrix has higher 
sensitivity to the sequences with long evolutionary distances and can detect homologous sequences with weak 
similarity26. Based on this matrix, each protein sequence can be encoded into a L × 20 feature matrix, where L 
is the length of the protein sequence and each row contains the statistical likelihood between one amino acid and 
all 20 amino acids. This protein feature type was called BLOSUM62 feature.

PSSM feature
Protein evolutionary information is usually useful in tackling protein-related problems. PSSM27 is a commonly 
used type of evolutionary information. In this study, we adopted PSI-BLAST28 using Swiss-Prot database29 to 
generate the PSSM matrix for each root-associated and non-root-associated protein, which was executed with 
e-value of 0.001, three iterations, and other default parameters. For a protein with sequence length L, its PSSM 
matrix contains L rows and 20 columns, that is, each amino acid in the sequence is represented by 20 features. 
This feature type was termed as PSSM feature.

Protein representation
As mentioned above, each protein can be represented by ProtT5, BLOSUM62, and PSSM features. Their detailed 
information is listed in Table 1. After combining them together, we obtained an L × d feature matrix for each 
protein, where d = 1064 (1024 + 20 + 20) in this study. For the following formulation, this matrix is denoted by X, 
which will be refined in subsequent procedures.

Feature type Dimensiona

ProtT5 feature L × 1024

BLOSUM62 feature L × 20

PSSM feature L × 20

Table 1.  Information of three protein feature types. aL in this column stands for the length of protein 
sequences.
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Protein feature improved by HGCN
In recent years, most proposed prediction models contain a feature improving procedure to yield informative 
features, which are helpful for the following prediction procedure. This study adopted HGCN to improve the 
original protein features.

Protein contact map prediction
In “Original protein feature extraction” section, each protein is assigned a feature matrix, where each row 
represents one amino acid in the sequence. To refine this feature matrix, we need to measure the associations 
between any two amino acids in the sequence so that a hypergraph can be constructed. In view of this, SPOT-
Contact-LM30 was employed, which is a neural network-based contact map prediction method. It processes 
the one-dimensional sequence features with one-hot encoding using the ESM-1b attention map and generates 
a contact map via ResNet network. For a protein sequence of length L, a contact probability matrix C ∈ RL×L 
can be generated, where Cij  denotes the contact probability between the i-th and j-th amino acids. The contact 
probability matrix indicates the associations between any two amino acids in the sequence, revealing the 
structural characteristics of proteins.

Hypergraph construction
Hypergraphs are an extended form of graphs, which allow hyperedges to connect any number of vertices. In 
this way, hypergraphs can represent higher-order relationships between nodes. A hypergraph is defined as 
G = (V, E, W ), where V is the set of vertices, denoted as V = {v1, v2, v3, . . . , vn}; E is the set of hyperedges, 
denoted as E = {e1, e2, e3, . . . , em}; each hyperedge is assigned a weight collected in a diagonal matrix 
W, denoted as W = {w1, w2, w3, . . . , wm}. Generally, the hypergraph can be represented by a |V | × |E| 
correlation matrix H, defined as

	
H (v, e) =

{ 1, v ∈ e
0, v /∈ e .� (1)

To capture the high-order relationships between amino acids in one protein sequence, a hypergraph was 
constructed based on the contact probability matrix yielded by SPOT-Contact-LM. In this hypergraph, amino 
acids in a given protein sequence were defined as vertices. The hyperedges were determined by the K-Nearest 
Neighbors (KNN) algorithm, which is a popular method to construct hypergraphs31,32. In detail, for each amino 
acid, its K nearest neighbors were determined based on the Euclidean distances between it and other amino acids, 
where each amino acid was represented by the corresponding row in the contact probability matrix. Then, this 
amino acid and its K nearest neighbors constituted a hyperedge. Under this operation, the number of hyperedges 
was equal to the number of vertices (amino acids). Accordingly, the correlation matrix H was a square matrix. As 
for the weights of hyperedges, they were set to one. The obtained hypergraph was denoted by HG.

HGCN
In recent years, GCN has successful applications in several fields. It can capture the pairwise relations in a graph 
and combine this information with the input features of vertices. For hypergraphs, the newly proposed HGCN12 
can encode high-order relations in them. As mentioned in “Hypergraph construction” section, a hypergraph can 
be represented by a correlation matrix H and weight W of hyperedges. Based on them, a hyperedge convolution 
layer of HGCN is defined as

	 X(l+1) = σ
(
D−1/2

v HW D−1
e HT D−1/2

v X(l)W (l))� (2)

where X(0) = X  (X is the input feature matrix of all vertices, see “Original protein feature extraction” section), 
X(l) is the output feature matrix at the l-th layer, W (l) is the learnable filter matrix at the l-th layer, σ represents the 
nonlinear activation function (it was set to LeakyReLU function in this study). De denotes the diagonal matrices 
of hyperedge degrees. The degree of an hyperedge e is defined as d (e) =

∑
v∈V

H (v, e). Dv  stands for the 
diagonal matrices of vertex degrees. The degree of a vertex v can be computed by d (v) =

∑
e∈E

w (e) H (v, e).
In this study, we improved the original feature matrix X of a protein by HGCN. In detail, the original feature 

matrix X and the constructed hypergraph HG were fed into HGCN. The output feature matrix was denoted by 
F ∈ RL×f , where f  denotes the output dimension corresponding to each amino acid.

Multi-head attention
To further highlight important information in F ∈ RL×f  and tackle the problem of different sizes of F for 
different proteins, we employed multi-head attention33 to process F. The attention matrix M ∈ Rr×L can be 
calculated by

	 M = SoftMax
(
M1 tanh

(
M2F T

))
� (3)

where M1 ∈ Rr×k  and M2 ∈ Rk×f  represent the two attention weight matrices. Subsequently, the learned 
attention matrix M ∈ Rr×L is multiplied with F to generate the final feature matrix of one protein. Given that 
the FCL was selected for prediction, the feature matrix was flattened into a feature vector Y ∈ Rrf  with a unified 
length, that is

	 Y = F latten (MF ) .� (4)

Scientific Reports |         (2026) 16:4876 4| https://doi.org/10.1038/s41598-026-35110-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


This feature vector contains key information in the protein sequence, which is helpful for the following prediction 
task.

Prediction and loss function
This study adopted FCL as the prediction function, which contained two layers. The weight matrices of these 
layers are denoted by M3 ∈ Rm×(rf) and M4 ∈ Rm, respectively. The Sigmoid function is used to calculate the 
probability P to determine whether the input protein is root-associated or not, that is,

	 P = Sigmoid
(
M4M3Y T

)
.� (5)

The probability P is between 0 and 1. If it is higher than the predefined threshold 0.5, the input protein is 
predicted to be root-associated; otherwise, it is predicted to be non-root-associated.

Based on the predictions, the loss function is used to estimate the quality of prediction. Here, we adopted the 
widely used loss function of binary cross-entropy, which is defined as

	
L = −

∑
(ylogp (x) + (1 − y) log (1 − p (x))) ,� (6)

where p (x) is the outcome of the model and y stands for the true label. According to the result of loss function, 
Adam optimizer34 was employed to optimize the parameters in this model, including W (l) (l = 1, 2) in HGCN, 
M1 and M2 in multi-head attention, and M3 and M4 in FCL.

Model evaluation
In “Dataset” section, 50 training datasets and two test datasets were constructed. On each training dataset, 
the model was built and evaluated by five-fold cross-validation35–39. The average performance was calculated 
to assess model’s performance. Furthermore, the models built on 50 training datasets were applied to the test 
datasets. Also, the average performance was picked up to estimate the generalization ability of the model.

As a binary classification problem, several metrics have been proposed to assess models’ performance. This 
study selected sensitivity, specificity, accuracy, precision, F-score, Matthews correlation coefficient (MCC), and 
AUC40–45. Before calculating these metrics, it is necessary to determine the four key numbers: true positives 
(TP), false positives (FP), true negatives (TN), and false negatives (FN). Then, above metrics, except AUC, can 
be computed by

	
Sensitivity = T P

T P + F N
� (7)

	
Specificity = T N

T N + F P
� (8)

	
Accuracy = T P + T N

T P + F P + T N + F N
� (9)

	
P recision = T P

T P + F P
� (10)

	
F − score = 2 × T P

2 × T P + F P + F N
� (11)

	
MCC = T P × T N − F P × F N√

(T P + F P ) (T P + F N) (T N + F P ) (T N + F N)
.� (12)

Among these metrics, sensitivity, specificity, accuracy, precision, F-score are all between 0 and 1, whereas MCC 
is between − 1 and 1. The high values suggest the high performance. AUC is quite different from above metrics, 
which can evaluate model performance under a set of thresholds for the probability of predicting positive 
samples. A group of sensitivity and 1-specificity were obtained by setting various thresholds. Then, a curve with 
sensitivity as Y-axis and 1-specificity as X-axis is plotted in a coordinate system, which is generally called the 
receiver operating characteristic curve (ROC). AUC is defined as the area under this curve. Generally, the higher 
the AUC, the higher the performance of the model.

Among above metrics, sensitivity, specificity, and precision only evaluate models’ performance from a special 
aspect, whereas accuracy, F-score, MCC, and AUC can give an overall evaluation. Thus, we mainly used overall 
metrics when comparing the performance of different models.

Outline of the Hypergraph-Root
In this study, a computational model was designed for the prediction of root-associated proteins. The entire 
construction procedures are illustrated in Fig. 1. Three feature types were extracted from each protein sequence, 
including PSSM, ProtT5, and BLOSUM62 features. At the same time, a contact probability matrix was built 
from each protein sequence through SPOT-Contact-LM, which was further used to construct a hypergraph 
graph. Tree feature types and the hypergraph graph were fed into HGCN to yield high-order features. After 
the high-order features processed by multi-head attention and flattening, they were subject to the FCL to make 
predictions. For easy descriptions, the constructed model was called Hypergraph-Root.
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Results and Discussion
Hyperparameter adjustment
The proposed model Hypergraph-Root contained several modules, including original feature extraction, 
hypergraph construction, HGCN, multi-head attention, and FCL. The hyperparameters in some modules 
should be tuned for improving the performance of Hypergraph-Root. We used a two-step strategy to tune main 
hyperparameters.

In the first step, we mainly focused on the parameter K when constructing the hypergraph HG, which 
determined the number of vertices in each hyperedge, and the number of attention heads (k and r) in multi-
head attention. For K, we attempted several values, including 5, 10, 15, …, 30, 35. For k and r, they were set to 
the same value in {32, 64, 128}. We used grid research to build models and evaluated them using five-fold cross-
validation on 50 training datasets. The average values on seven metrics are listed in Supplementary Table S1. It 
can be found that when K = 10 and k = r = 64, the model yielded the best performance. Although its sensitivity 
and specificity were not highest, they only assessed model’s performance on one aspect. The overall metrics 
(e.g. accuracy, F-score, MCC, and AUC) of this model were consistently the highest. Thus, we determined these 
hyperparameters as above values.

After determining above hyperparameters, we tuned the sizes of layers in HGCN and the number of neurons 
(m) in the first layer of FLC. First, the number of layers in HGCN was set two, similar to the general setting of 
GCN. The sizes of two layers were set to various values in {64, 128, 256, 512}. The number of neurons in the 
first layer of FLC was set to 256, 512 and 1024. The models under different settings of above hyperparameters 
were also evaluated by five-fold cross-validation on 50 training datasets. The average performance is provided in 
Supplementary Table S2. It can be observed that when the sizes of two layers in HGCN were set to 256 (first layer) 
and 64 (second layer), and the number of neurons in the first layer of FLC was set to 1024, the model consistently 
yielded the highest values on all seven metrics. Thus, above values were set to these hyperparameters.

With above argument, we determined the settings of main hyperparameters, which are listed in Table 2.

Module Hyperparameter Value

Hypergraph construction K 10

HGCN
Number of layers 2

Size of layers 256 (first layer)
64 (second layer)

Multi-head attention Number of attention heads (k, r) 64

Fully connected layer Number of neurons (m) 1024

Table 2.  The settings of hyperparameters in Hypergraph-Root.

 

Fig. 1.  Construction procedures of Hypergraph-Root. Three protein feature types are derived from sequences. 
These features are improved by a hypergraph convolutional network and then deeply optimized by a multi-
head attention. The refined features are fed into a fully connected layer to make predictions.
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Performance of Hypergraph-Root on the training and test datasets
The Hypergraph-Root was constructed using the hyperparameter settings listed in Table 2. Its performance was 
evaluated by five-fold cross-validation on 50 training datasets. Each training dataset contained same positive 
samples and randomly selected negative samples. The predicted results were counted as metrics mentioned in 
“Model evaluation” section. The average and standard deviation values were calculated for each metric, which 
is listed in Table 3. The accuracy, precision, sensitivity, specificity, F-score, MCC, and AUC are 0.8372, 0.8316, 
0.8475, 0.8270, 0.8389, 0.6755, and 0.8988, respectively. Evidently, all metrics except MCC exceeded 0.8, whereas 
MCC was higher than 0.65. All these results suggested the high performance of Hypergraph-Root. Furthermore, 
the standard deviation values were low, suggesting the stability of Hypergraph-Root.

Two test datasets (imbalanced and balanced test datasets S1
te and S2

te) were fed into Hypergraph-Root built 
on 50 training datasets. The average performance was calculated, which is listed in Table 3. On the imbalanced 
test dataset S1

te, the average accuracy, sensitivity, specificity, AUC were quite high (> 0.82) and they were similar 
to or even higher than those on training datasets. These results implied that Hypergraph-Root had a strong 
generalization ability. The average precision, F-score, and MCC were low (< 0.4) and they were evidently lower 
than those on training datasets. However, this comparison was not fair. In S1

te, the negative samples were 17.8 
times as many as positive samples, whereas negative samples were as many as positive samples in training 
datasets. Thus, the metrics were obtained under quite different sample distributions. Simple comparisons cannot 
yield reliable results, especial for precision, F-score, and MCC, which are quite sensitive to the data imbalanced 
problem. According to sensitivity (0.8947) and specificity (0.8207), meaning the prediction accuracy on positive 
and negative samples, respectively, Hypergraph-Root can correctly predict most positive and negative samples, 
confirming its strong generalization ability.

On the balanced test dataset S2
te, the average accuracy, F-score, MCC, AUC were slightly higher than those 

on the training datasets. The average sensitivity was evidently higher than that on the training datasets and the 
average precision and specificity were slightly lower than those on the training datasets. Accordingly, the overall 
performance on the balanced test dataset and training datasets was quite similar, further proving the strong 
generalization ability of Hypergraph-Root.

Ablation tests
The Hypergraph-Root was constructed by employing three feature types, which were processed by several 
modules. Here, we proved that the employment of these feature types and module design were reasonable.

Three feature types were extracted to represent proteins, including BLOSUM62, PSSM, and ProtT5 features. 
There were six different combinations of feature types except the combination of all three feature types. The 
models using above six feature combinations were built on 50 training datasets and evaluated by five-fold cross-
validation. The results are listed in Table 4. By comparing the metrices in Table 3, Hypergraph-Root provided the 
highest performance on all metrics. We further performed the paired student’s t-test on AUC values yielded by 
Hypergraph-Root and above models, obtaining the p-values. The significance level is marked in Table 4, where 
“**” and “*” indicate the p-values less than 0.01 and between 0.01 and 0.05, respectively. It can be found that five 
models yielded significant lower AUC values than Hypergraph-Root, suggesting the superiority of Hypergraph-
Root. As the six models lacked at least one feature type, it was proved that all feature types can bring positive 

Feature type Accuracy Precision Sensitivity Specificity F-score MCC AUC

PSSM feature 0.6626 ± 0.0179 0.6519 ± 0.0174 0.7027 ± 0.0211 0.6224 ± 0.0237 0.6755 ± 0.0171 0.3271 ± 0.0358 0.7066 ± 0.0182**

BLOSUM62 feature 0.7232 ± 0.0100 0.7243 ± 0.0118 0.7233 ± 0.0111 0.7229 ± 0.0152 0.7231 ± 0.0095 0.4470 ± 0.0198 0.7611 ± 0.0098**

ProtT5 feature 0.8284 ± 0.0100 0.8271 ± 0.0107 0.8321 ± 0.0137 0.8248 ± 0.0117 0.8291 ± 0.0103 0.6576 ± 0.0201 0.8941 ± 0.0094**

PSSM and BLOSUM62 features 0.7479 ± 0.0132 0.7372 ± 0.0147 0.7725 ± 0.0134 0.7230 ± 0.0185 0.7540 ± 0.0123 0.4969 ± 0.0264 0.7927 ± 0.0144**

PSSM and ProtT5 features 0.8343 ± 0.0094 0.8298 ± 0.0111 0.8429 ± 0.0113 0.8256 ± 0.0131 0.8357 ± 0.0092 0.6696 ± 0,0187 0.8973 ± 0.0084

ProtT5 and BLOSUM62 features 0.8307 ± 0.0115 0.8275 ± 0.0147 0.8372 ± 0.0108 0.8241 ± 0.0171 0.8319 ± 0.0109 0.6621 ± 0.0231 0.8945 ± 0.0102**

Table 4.  Results of ablation tests on features. “**” in the last column indicates that the p-value between the 
AUC of Hypergraph-Root and AUC in this column is less than 0.01.

 

Measurement Training dataset Imbalanced test dataset Balanced test dataset

Accuracy 0.8372 ± 0.0086 0.8245 ± 0.0104 0.8482 ± 0.0052

Precision 0.8316 ± 0.0099 0.2193 ± 0.0109 0.8035 ± 0.0129

Sensitivity 0.8475 ± 0.0117 0.8947 ± 0.0316 0.9227 ± 0.0195

Specificity 0.8270 ± 0.0116 0.8207 ± 0.0115 0.7737 ± 0.0225

F-score 0.8389 ± 0.0087 0.3521 ± 0.0149 0.8588 ± 0.0048

MCC 0.6755 ± 0.0173 0.3894 ± 0.0176 0.7050 ± 0.0103

AUC 0.8988 ± 0.0088 0.9254 ± 0.0096 0.9232 ± 0.0091

Table 3.  Performance of Hypergraph-Root on 50 training datasets under five-fold cross-validation and two 
test datasets.
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contributions to Hypergraph-Root. To further confirm this conclusion, we picked up the metrics yielded by 
models using one or two feature types and calculate the average value for each metric, which is illustrated in 
Fig. 2. It can be observed that on each metric, its value followed an increasing trend when more feature types 
were added, indicating more features can bring higher performance. This result was reasonable because more 
features can give more complete representations on proteins, thereby improving model’s performance.

With above arguments, all three feature types provided positive contributions to Hypergraph-Root. However, 
their contributions were not same. According to the performance of models using one feature type (first three 
rows in Table 4), the model using ProtT5 feature yielded the highest performance, followed by the models using 
BLOSUM62 and PSSM features. Thus, ProtT5 feature gave the highest contributions to Hypergraph-Root, 
followed by BLOSUM62 and PSSM features. The result that BLOSUM62 feature was more important than PSSM 
feature in predicting root-associated proteins was same as that in the previous study11. As for ProtT5 feature, it 
was yielded by a pLM, which deeply integrates lots of information of protein sequences and their associations. Its 
information is more abundant than BLOSUM62 and PSSM features, inducing higher performance of the model 
using this feature type.

Among several modules of Hypergraph-Root, HGCN may play an essential role. To verify this, we constructed 
two models. The first model directly removed HGCN. In this case, the BLOSUM62, PSSM, and ProtT5 features 
were directly fed into the multi-head attention. This model is called Hypergraph-Root (no HGCN). The second 
model was obtained by replacing HGCN with GCN, which was called Hypergraph-Root (GCN). Both models 
were built on 50 training datasets and evaluated by five-fold cross validation. The evaluation results are presented 
in the Table 5. The significance level on AUC of Hypergraph-Root is also marked in this table, which was 
obtained by the paired student’s t-test. It was clear that Hypergraph-Root provided the best performance on five 
metrics and ranks second on two metrics (sensitivity and AUC) by comparing the performance of Hypergraph-
Root (Table 3). This suggests that the use of the HGCN can improve model performance, suggesting its positive 
contribution to Hypergraph-Root.

Comparison with models using traditional machine learning algorithms
In this study, some deep learning algorithms, such as HGCN and multi-head attention, were employed to 
construct Hypergraph-Root. To validate that they were helpful to accurately predict root-associated proteins, 
some traditional machine learning algorithms were adopted to construct models, which were further compared 
with Hypergraph-Root.

Three feature types: ProtT5, BLOSUM62, and PSSM features, were used in Hypergraph-Root. They were 
also used to construct traditional machine learning based models. Due to the different sizes of feature matrices 
for proteins of different lengths, they were processed as follows. For BLOSUM62 and PSSM features, Bigram 
method46 was adopted to convert each feature type into a 20 × 20 feature matrix, which was further flattened 
into a 400-dimensional feature vector. As for ProtT5 features, the average operation was adopted to yield a 
1024-dimensional feature vector. Finally, each protein was represented by an 1824-dimensional feature vector. 

Module Accuracy Precision Sensitivity Specificity F-score MCC AUC

Hypergraph-Root (no HGCN) 0.8355 ± 0.0092 0.8283 ± 0.0117 0.8483 ± 0.0094 0.8228 ± 0.0137 0.8377 ± 0.0088 0.6719 ± 0.0184 0.9017 ± 0.0066*

Hypergraph-Root (GCN) 0.8343 ± 0.0074 0.8297 ± 0.0084 0.8431 ± 0.0116 0.8255 ± 0.0102 0.8358 ± 0.0078 0.6695 ± 0.0149 0.8971 ± 0.0086

Table 5.  Results of ablation tests on model architectures. “*” in the last column indicates that the p-value 
between the AUC of Hypergraph-Root and AUC in this column is between 0.01 and 0.05.

 

Fig. 2.  Bar chart to show the performance of models using one, two, or three feature types. Models using more 
feature types yield higher performance.
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Then, four traditional machine learning algorithms: multilayer perceptron (MLP), decision tree (DT)47, SVM48 
and random forest (RF)49 were used to construct prediction models based on above feature representation. These 
algorithms have wide applications in tackling various problems in bioinformatics36,37,50–53. For convenience, 
the corresponding packages in scikit-learn54 were directly employed to implement above four algorithms. They 
were executed with their default parameters. For each feature type combination, four models were built based 
on above four algorithms. All models were trained on 50 training datasets and evaluated by five-fold cross-
validation. Their average performance is listed in Table 6. It can be found that Hypergraph-Root yielded the 
highest performance on all metrics except AUC by comparing the metrics of Hypergraph-Root (Table 3). Its 
AUC (0.8988) was slightly lower than the highest AUC, which was 0.9032. The significance level on AUC of 
Hypergraph-Root comparing with AUC values in Table 6 is also marked in this table. Evidently, Hypergraph-
Root generally outperformed traditional machine learning based models, implying using deep learning 
techniques can indeed improve the performance of the model. Furthermore, by observing the models using 
PSSM, BLOSUM62, and ProtT5 features, we can find that models using ProtT5 features generally generated the 
best performance, whereas models using BLOSUM62 features were better than those using PSSM features. These 
results further confirmed the different importance of three feature types in predicting root-associated proteins, 
that is, ProtT5 feature was the most important, followed by BLOSUM62 and PSSM features.

Comparison with previous models
To date, two models (SVM-Root10 and Graph-Root11) have been proposed to predict root-associated proteins. 
Here, they were compared with Hypergraph-Root to show its superiority. The five-fold cross-validation results 
of three models on training datasets are shown in Fig. 3. The MCC of SVM-Root was not reported in Kumar 
Meher et al.’s study. It was inferred by reconstructing confusion matrix based on sensitivity and specificity. It 
can be observed that Hypergraph-Root generated much better performance than SVM-Root and Graph-Root. 
Furthermore, the paired student t-test was performed on AUC values yielded by Hypergraph-Root and above two 
models, resulting in the p-values of 3.699 × 10−46 and 3.928 × 10−49. It was suggested the significant superiority 
of Hypergraph-Root on the training datasets. Furthermore, the independent test results are shown in Fig. 4. As 
the SVM-Root and Graph-Root were both tested on an imbalanced test dataset, we also listed the metrics of 

Feature
Classification 
algorithm Accuracy Precision Sensitivity Specificity F-score MCC AUC

PSSM

MLP 0.6725 ± 0.0170 0.6757 ± 0.0179 0.6664 ± 0.0235 0.6794 ± 0.0209 0.6694 ± 0.0184 0.3464 ± 0.0344 0.7382 ± 0.0178**

DT 0.5835 ± 0.0149 0.5847 ± 0.0152 0.5811 ± 0.0198 0.5867 ± 0.0208 0.5812 ± 0.0159 0.1680 ± 0.0291 0.5839 ± 0.0145**

SVM 0.6591 ± 0.0139 0.6716 ± 0.0159 0.6318 ± 0.0306 0.6895 ± 0.0262 0.6479 ± 0.0185 0.3230 ± 0.0270 0.7218 ± 0.0141**

RF 0.6578 ± 0.0161 0.6640 ± 0.0163 0.6434 ± 0.0204 0.6744 ± 0.0177 0.6516 ± 0.0175 0.3180 ± 0.0316 0.7200 ± 0.0154**

BLOSUM62

MLP 0.7032 ± 0.0156 0.7105 ± 0.0173 0.6877 ± 0.0190 0.7194 ± 0.0200 0.6976 ± 0.0162 0.4076 ± 0.0316 0.7627 ± 0.0149**

DT 0.6045 ± 0.0189 0.6056 ± 0.0201 0.6014 ± 0.0237 0.6083 ± 0.0284 0.6020 ± 0.0192 0.2097 ± 0.0382 0.6048 ± 0.0191**

SVM 0.7186 ± 0.0105 0.7353 ± 0.0140 0.6857 ± 0.0146 0.7526 ± 0.0174 0.7082 ± 0.0110 0.4396 ± 0.0216 0.7886 ± 0.0101**

RF 0.6960 ± 0.0109 0.7101 ± 0.0137 0.6654 ± 0.0146 0.7281 ± 0.0178 0.6853 ± 0.0111 0.3945 ± 0.0220 0.7644 ± 0.0095**

ProtT5

MLP 0.8206 ± 0.0113 0.8219 ± 0.0138 0.8196 ± 0.0126 0.8217 ± 0.0160 0.8199 ± 0.0110 0.6418 ± 0.0226 0.8993 ± 0.0089

DT 0.6909 ± 0.0153 0.6932 ± 0.0161 0.6872 ± 0.0267 0.6956 ± 0.0219 0.6886 ± 0.0178 0.3832 ± 0.0313 0.6914 ± 0.0157**

SVM 0.8227 ± 0.0111 0.8182 ± 0.0132 0.8308 ± 0.0143 0.8150 ± 0.0161 0.8236 ± 0.0110 0.6460 ± 0.0221 0.9003 ± 0.0085

RF 0.8044 ± 0.0123 0.8085 ± 0.0150 0.7992 ± 0.0128 0.8108 ± 0.0177 0.8026 ± 0.0117 0.6102 ± 0.0245 0.8850 ± 0.0102**

PSSM + BLOSUM62

MLP 0.7405 ± 0.0153 0.7484 ± 0.0177 0.7272 ± 0.0160 0.7544 ± 0.0204 0.7363 ± 0.0152 0.4821 ± 0.0309 0.8107 ± 0.0151**

DT 0.6093 ± 0.0161 0.6104 ± 0.0155 0.6076 ± 0.0240 0.6117 ± 0.0205 0.6075 ± 0.0180 0.2196 ± 0.0321 0.6097 ± 0.0161**

SVM 0.7345 ± 0.0102 0.7472 ± 0.0136 0.7116 ± 0.0166 0.7590 ± 0.0186 0.7274 ± 0.0108 0.4709 ± 0.0206 0.8082 ± 0.0096**

RF 0.7015 ± 0.0137 0.7084 ± 0.0148 0.6877 ± 0.0189 0.7170 ± 0.0188 0.6962 ± 0.0146 0.4050 ± 0.0268 0.7751 ± 0.0139**

PSSM + ProtT5

MLP 0.8221 ± 0.0120 0.8250 ± 0.0144 0.8186 ± 0.0127 0.8255 ± 0.0169 0.8210 ± 0.0116 0.6444 ± 0.0240 0.9032 ± 0.0110*

DT 0.6879 ± 0.0149 0.6894 ± 0.0170 0.6867 ± 0.0192 0.6899 ± 0.0229 0.6868 ± 0.0149 0.3769 ± 0.0306 0.6883 ± 0.0153**

SVM 0.8194 ± 0.0110 0.8166 ± 0.0130 0.8257 ± 0.0152 0.8149 ± 0.0153 0.8199 ± 0.0112 0.6402 ± 0.0220 0.8991 ± 0.0085

RF 0.8028 ± 0.0107 0.8076 ± 0.0126 0.7965 ± 0.0131 0.8102 ± 0.0143 0.8009 ± 0.0109 0.6067 ± 0.0213 0.8834 ± 0.0079**

ProtT5 + BLOSUM62

MLP 0.8186 ± 0.0135 0.8187 ± 0.0143 0.8197 ± 0.0159 0.8182 ± 0.0154 0.8181 ± 0.0137 0.6383 ± 0.0269 0.8991 ± 0.0101

DT 0.6889 ± 0.0168 0.6905 ± 0.0161 0.6859 ± 0.0247 0.6923 ± 0.0188 0.6870 ± 0.0184 0.3786 ± 0.0334 0.6891 ± 0.0167**

SVM 0.8198 ± 0.0114 0.8172 ± 0.0141 0.8249 ± 0.0115 0.8156 ± 0.0169 0.8200 ± 0.0109 0.6404 ± 0.0231 0.8969 ± 0.0086

RF 0.8011 ± 0.0109 0.8105 ± 0.0130 0.7878 ± 0.0143 0.8154 ± 0.0141 0.7977 ± 0.0114 0.6037 ± 0.0224 0.8827 ± 0.0096**

ProtT5 + BLOSUM62 + PSSM

MLP 0.8192 ± 0.0105 0.8201 ± 0.0123 0.8187 ± 0.0132 0.8202 ± 0.0146 0.8184 ± 0.0106 0.6391 ± 0.0211 0.8989 ± 0.0088

DT 0.6849 ± 0.0168 0.6857 ± 0.0175 0.6836 ± 0.0222 0.6864 ± 0.0211 0.6834 ± 0.0177 0.3703 ± 0.0337 0.6850 ± 0.0170**

SVM 0.8193 ± 0.0114 0.8189 ± 0.0145 0.8215 ± 0.0168 0.8180 ± 0.0173 0.8191 ± 0.0115 0.6396 ± 0.0230 0.8986 ± 0.0074

RF 0.7989 ± 0.0095 0.8093 ± 0.0110 0.7834 ± 0.0155 0.8156 ± 0.0125 0.7948 ± 0.0106 0.5994 ± 0.0187 0.8810 ± 0.0073**

Table 6.  Comparison with different traditional machine learning based models. “**” and “*” in the last column 
indicate that the p-value between the AUC of Hypergraph-Root and AUC in this column is less than 0.01 and 
between 0.01 and 0.05 , respectively.
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Hypergraph-Root on the imbalanced test dataset. The metrics of SVM-Root and Graph-Root not mentioned 
in their original studies were also inferred by reconstructing confusion matrices. However, this method cannot 
infer the AUC of SVM-Root, which is not listed in Fig. 4. Hypergraph-Root also yielded the highest performance 
on most metrics, proving it had stronger generalization ability than SVM-Root and Graph-Root.

SVM-Root extracted protein features from sequences and used the classical classification algorithm, SVM, 
as the prediction engine. It cannot yield high-order features and the prediction ability of SVM was not very 
high, which was the main reason why its performance was low. As for, Graph-Root, although it utilized some 
deep learning algorithms, the original features cannot contain enough essential information of proteins. The 
Hypergraph-Root proposed in this study employed the features generated by a pLM, which included very 
abundant information of proteins. Furthermore, the HGCN in Hypergraph-Root can capture complicated 
relationships among amino acids in one protein sequence, which was helpful to refine protein features. Above 
two aspects induced the higher performance of Hypergraph-Root.

Influence of hypergraph on Hypergraph-Root
In this study, we employed HGCN to generate high-order features of proteins. The hypergraph clearly plays a key 
role in HGCN. The KNN was adopted to construct the hypergraph, where the hyperparameter K was essential. 
Here, we investigated its influence on the performance of Hypergraph-Root. It was set to seven values between 
5 and 35 for constructing different hypergraphs and thus seven different models were built. These models were 
evaluated by five-fold cross-validation on training datasets. Four overall metrics (accuracy, F-score, MCC, and 
AUC) yielded by Hypergraph-Root with different values of K are illustrated in Fig. 5. It can be observed that 
when K = 10, the Hypergraph-Root yielded the highest overall performance. This result was reasonable because 
the small K cannot reflect the high-order relations between amino acids in sequences, whereas the large K may 
bring useless noises.

Case studies
In this study, a root-associated prediction model, Hypergraph-Root, was proposed. To prove its practicality, a 
case study was conducted. According to “Performance of Hypergraph-Root on the training and test datasets” 
section, each protein in the imbalanced test dataset was predicted 50 times by Hypergraph-Root with different 

Fig. 4.  Bar chart to compare Hypergraph-Root and two previous models on imbalanced test dataset. 
Hypergraph-Root has stronger generalization ability than SVM-Root and Graph-Root.

 

Fig. 3.  Bar chart to compare Hypergraph-Root and two previous models on training datasets. Hypergraph-
Root outperforms SVM-Root and Graph-Root.
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training datasets. Thus, each negative sample in this test dataset was assigned 50 labels (positive or negative). 
We picked up negative samples in this test dataset, which were all predicted to be positive by Hypergraph-Root, 
obtaining 56 proteins. These proteins may be latent root-associated proteins with high likelihoods. To show they 
were related to root, they were fed into InterProScan (Release 105.0)55 to extract their gene ontology (GO) terms. 
Among the GO terms annotated to above 56 proteins, membrane (GO:0016020) was annotated to three proteins 
(Q10LN5, Q6ZJ91, B0YPQ4) and protein ubiquitination (GO:0016567) was annotated to two proteins (O82353, 
Q10PI9). This information is listed in Table 7.

Tsay et al. reveal the functions of nitrate transporters in the root, whereas most nitrate transporters are 
membrane proteins56. In addition, aquaporin PIP2;1 has been confirmed to affect water transport and root 
growth in rice57. The aquaporin is also a type of membrane protein. Above references proved the strong 
associations between membrane (GO:0016020) and root. Thus, the three proteins (Q10LN5, Q6ZJ91, B0YPQ4) 
annotated by this GO term may also have special associations with root, i.e., they may be latent root-associated 
proteins.

As for another GO term, protein ubiquitination (GO:0016567), Marrocco et al. reported that APC/C 
(anaphase promoting complex or cyclosome), a master ubiquitin protein ligase (E3), plays a role in plant 
vasculature development and organization58. OsHRZ1 and OsHRZ2 possess ubiquitination activity, which are 
susceptible to degradation in roots irrespective of iron conditions59. Accordingly, this GO term is also related 
to root in plant, inducing the special relationships between the proteins (O82353, Q10PI9) annotated by it and 
root.

GO ID Description Proteins References

GO:0016020 Membrane Q10LN5, Q6ZJ91, B0YPQ4 56,57

GO:0016567 Protein ubiquitination O82353, Q10PI9 58,59

Table 7.  Latent root-associated proteins and their gene ontology terms.

 

Fig. 5.  Effect of the hyperparameter K for constructing the hypergraph on Hypergraph-Root. The X-axis 
represents the parameter K when constructing hypergraph, which determines the number of nodes in 
hyperedges. The Y-axis denotes the metrics, including accuracy, AUC, MCC, and F-score. When K = 10, the 
model yields the highest performance.
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With above argument, five proteins (Q10LN5, Q6ZJ91, B0YPQ4, O82353, Q10PI9) identified by Hypergraph-
Root can be confirmed to be related to root. It implied that Hypergraph-Root had an ability for discovering novel 
root-associated proteins.

Conclusion
This study proposed a computational model for predicting root-associated proteins. The model employed some 
informative protein features and adopted several advanced computational methods, yielding a strong ability to 
identify root-associated proteins. The protein features yielded by ProtT5 were deemed to give high contributions 
to determine root-associated proteins. At present, our model provided the higher performance than all existing 
models. With the help of our model, the latent root-associated proteins can be identified. Then, the biochemistry 
experiments can be designed to validate the identified proteins, thereby reducing costs and time. It is hopeful 
that the proposed model can be a useful tool for identifying plant root-associated proteins. The data and codes 
in this study are available at https://github.com/Xxy0413-1119/Hypergraph-Root.

Data availability
The data underlying this study are openly available in RGPDB database at http://sysbio.unl.edu/RGPDB/. The 
codes and refined data are available at https://github.com/Xxy0413-1119/Hypergraph-Root.

Received: 17 September 2025; Accepted: 2 January 2026

References
	 1.	 Hodge, A., Berta, G., Doussan, C., Merchan, F. & Crespi, M. Plant root growth, architecture and function. Plant Soil 321, 153–187 

(2009).
	 2.	 Huang, B., Rachmilevitch, S. & Xu, J. Root carbon and protein metabolism associated with heat tolerance. J. Exp. Bot. 63, 3455–

3465 (2012).
	 3.	 Fageria, N. K. The Role of Plant Roots in Crop Production (CRC Press, 2012).
	 4.	 Dawson, N., Sillitoe, I., Marsden, R. L. & Orengo, C. A. The classification of protein domains. In Bioinformatics: Volume I: Data, 

Sequence Analysis, and Evolution, 137–164 (2017).
	 5.	 Moisseyev, G. et al. RGPDB: database of root-associated genes and promoters in maize, soybean, and sorghum. Database J. Biol. 

Databases Curation 2020, baaa038. https://doi.org/10.1093/database/baaa038 (2020).
	 6.	 Almagro Armenteros, J. J. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 

420–423. https://doi.org/10.1038/s41587-019-0036-z (2019).
	 7.	 Yang, L., Gao, J., Gao, M., Jiang, L. & Luo, L. Characterization of plasma membrane proteins in stylosanthes leaves and roots using 

simplified enrichment method with a nonionic detergent. Front. Plant Sci. 13, 1071225. https://doi.org/10.3389/fpls.2022.1071225 
(2022).

	 8.	 Iwasaki, Y. et al. Proteomics analysis of plasma membrane fractions of the root, leaf, and flower of rice. Int. J. Mol. Sci. 21, 6988. 
https://doi.org/10.3390/ijms21196988 (2020).

	 9.	 Voothuluru, P., Anderson, J. C., Sharp, R. E. & Peck, S. C. Plasma membrane proteomics in the maize primary root growth zone: 
Novel insights into root growth adaptation to water stress. Plant Cell Environ. 39, 2043–2054 (2016).

	10.	 Kumar Meher, P. et al. SVM-root: Identification of root-associated proteins in plants by employing the support vector machine 
with sequence-derived features. Curr. Bioinform. 19, 69–80. https://doi.org/10.2174/1574893618666230417104543 (2024).

	11.	 Zhou, B., Liu, S. Y., Chen, L. & Dai, Q. Graph-root: Prediction of root-associated proteins in maize, sorghum, and soybean based 
on graph convolutional network and network embedding method. Curr. Bioinform. ​h​t​t​p​s​:​​​/​​/​d​o​​i​.​o​r​​g​/​​1​0​.​2​1​​7​​4​/​0​1​1​​5​7​4​8​9​3​​6​3​4​3​4​1​​0​2​4​
1​0​0​​8​1​0​3​2​1​9 (2024).

	12.	 Feng, Y., You, H., Zhang, Z., Ji, R. & Gao, Y. in Proceedings of the AAAI Conference on Artificial Intelligence 3558–3565.
	13.	 Szklarczyk, D. et al. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for 

any sequenced genome of interest. Nucleic Acids Res. 51, D638–D646. https://doi.org/10.1093/nar/gkac1000 (2022).
	14.	 Yates, A. D. et al. Ensembl Genomes 2022: An expanding genome resource for non-vertebrates. Nucleic Acids Res. 50, D996-d1003. 

https://doi.org/10.1093/nar/gkab1007 (2022).
	15.	 UniProt Consortium. UniProt: The universal protein knowledgebase in 2023. Nucleic Acids Res. 51, D523–D531. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​

0​.​1​0​9​3​/​n​a​r​/​g​k​a​c​1​0​5​2​​​​ (2023).
	16.	 Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 

3150–3152. https://doi.org/10.1093/bioinformatics/bts565 (2012).
	17.	 Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S. & Dean, J. in 26th International Conference on Neural Information Processing 

Systems 3111–3119 (2013).
	18.	 Elnaggar, A. et al. Prottrans: Toward understanding the language of life through self-supervised learning. IEEE Trans. Pattern Anal. 

Mach. Intell. 44, 7112–7127 (2022).
	19.	 Steinegger, M., Mirdita, M. & Söding, J. Protein-level assembly increases protein sequence recovery from metagenomic samples 

manyfold. Nat. Methods 16, 603–606 (2019).
	20.	 Steinegger, M. & Söding, J. Clustering huge protein sequence sets in linear time. Nat. Commun. 9, 2542 (2018).
	21.	 Suzek, B. E. et al. UniRef clusters: A comprehensive and scalable alternative for improving sequence similarity searches. 

Bioinformatics 31, 926–932 (2015).
	22.	 Henikoff, S. & Henikoff, J. G. Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. U. S. A. 89, 10915–10919. 

https://doi.org/10.1073/pnas.89.22.10915 (1992).
	23.	 Yao, L. et al. DeepAFP: An effective computational framework for identifying antifungal peptides based on deep learning. Protein 

Sci. 32, e4758. https://doi.org/10.1002/pro.4758 (2023).
	24.	 Fang, Y. et al. AFP-MFL: Accurate identification of antifungal peptides using multi-view feature learning. Brief. Bioinform. 24, 

bbac606. https://doi.org/10.1093/bib/bbac606 (2023).
	25.	 Ning, Q. & Li, J. DLF-Sul: A multi-module deep learning framework for prediction of S-sulfinylation sites in proteins. Brief. 

Bioinform. 23, bbac323. https://doi.org/10.1093/bib/bbac323 (2022).
	26.	 Pearson, W. R. An introduction to sequence similarity (“homology”) searching. Curr. Protoc. Bioinform. 42, 3–1 (2013).
	27.	 Cheol Jeong, J., Lin, X. & Chen, X.-W. On position-specific scoring matrix for protein function prediction. IEEE/ACM Trans. 

Comput. Biol. Bioinform. 8, 308–315 (2010).
	28.	 Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25, 

3389–3402. https://doi.org/10.1093/nar/25.17.3389 (1997).

Scientific Reports |         (2026) 16:4876 12| https://doi.org/10.1038/s41598-026-35110-7

www.nature.com/scientificreports/

https://github.com/Xxy0413-1119/Hypergraph-Root
http://sysbio.unl.edu/RGPDB/
https://github.com/Xxy0413-1119/Hypergraph-Root
https://doi.org/10.1093/database/baaa038
https://doi.org/10.1038/s41587-019-0036-z
https://doi.org/10.3389/fpls.2022.1071225
https://doi.org/10.3390/ijms21196988
https://doi.org/10.2174/1574893618666230417104543
https://doi.org/10.2174/0115748936343410241008103219
https://doi.org/10.2174/0115748936343410241008103219
https://doi.org/10.1093/nar/gkac1000
https://doi.org/10.1093/nar/gkab1007
https://doi.org/10.1093/nar/gkac1052
https://doi.org/10.1093/nar/gkac1052
https://doi.org/10.1093/bioinformatics/bts565
https://doi.org/10.1073/pnas.89.22.10915
https://doi.org/10.1002/pro.4758
https://doi.org/10.1093/bib/bbac606
https://doi.org/10.1093/bib/bbac323
https://doi.org/10.1093/nar/25.17.3389
http://www.nature.com/scientificreports


	29.	 Boeckmann, B. et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–
370. https://doi.org/10.1093/nar/gkg095 (2003).

	30.	 Singh, J., Litfin, T., Singh, J., Paliwal, K. & Zhou, Y. SPOT-Contact-LM: Improving single-sequence-based prediction of protein 
contact map using a transformer language model. Bioinformatics 38, 1888–1894. https://doi.org/10.1093/bioinformatics/btac053 
(2022).

	31.	 Ouyang, D. et al. HGCLAMIR: Hypergraph contrastive learning with attention mechanism and integrated multi-view 
representation for predicting miRNA-disease associations. PLoS Comput. Biol. 20, e1011927. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​3​7​1​/​j​o​u​r​n​a​l​.​p​c​b​i​
.​1​0​1​1​9​2​7​​​​ (2024).

	32.	 Peng, W., He, Z., Dai, W. & Lan, W. MHCLMDA: Multihypergraph contrastive learning for miRNA–disease association prediction. 
Brief. Bioinform. 25, bbad524. https://doi.org/10.1093/bib/bbad524 (2024).

	33.	 Lin, Z. et al. A structured self-attentive sentence embedding. arXiv preprint https://arxiv.org/abs/1703.03130. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​4​
8​5​5​0​/​a​r​X​i​v​.​1​7​0​3​.​0​3​1​3​0​​​​ (2017).

	34.	 Kingma, D. P. & Ba, J. in 3rd International Conference on Learning Representations (Louisiana, 2019).
	35.	 Kohavi, R. in International Joint Conference on Artificial Intelligence 1137–1145 (Lawrence Erlbaum Associates Ltd).
	36.	 Bao, Y. et al. Recognizing SARS-CoV-2 infection of nasopharyngeal tissue at the single-cell level by machine learning method. Mol. 

Immunol. 177, 44–61 (2025).
	37.	 Liao, H. et al. Machine learning analysis of CD4+ T cell gene expression in diverse diseases: Insights from cancer, metabolic, 

respiratory, and digestive disorders. Cancer Genet. 290–291, 56–60. https://doi.org/10.1016/j.cancergen.2024.12.004 (2025).
	38.	 Chen, L., Gu, J. & Zhou, B. PMiSLocMF: Predicting miRNA subcellular localizations by incorporating multi-source features of 

miRNAs. Brief. Bioinfor. 25, bbae386 (2024).
	39.	 Chen, L., Chen, Y. & Zhou, B. HCLAMCMI: Prediction of circRNA-miRNA interactions based on hypergraph contrastive learning 

and an attention mechanism. J. Chem. Inf. Model. 65, 12099–12115 (2025).
	40.	 Powers, D. Evaluation: From precision, recall and f-measure to roc., informedness, markedness & correlation. J. Mach. Learn. 

Technol. 2, 37–63 (2011).
	41.	 Matthews, B. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta 

(BBA)-Protein Structure 405, 442–451 (1975).
	42.	 Chen, L. & Li, J. PDTDAHN: Predicting drug-target-disease associations using a heterogeneous network. Curr. Bioinform. in press 

(2025).
	43.	 Chen, L., Zhang, S. & Zhou, B. Herb-disease association prediction model based on network consistency projection. Sci. Rep. 15, 

3328 (2025).
	44.	 Chen, L., Lu, Y., Xu, J. & Zhou, B. Prediction of drug’s anatomical therapeutic chemical (ATC) code by constructing biological 

profiles of ATC codes. BMC Bioinform. 26, 86 (2025).
	45.	 Chen, L., Zhu, W. & Chen, D. An end-to-end 3D graph neural network for predicting drug-target-disease associations. Curr. 

Bioinform. (2025).
	46.	 Chowdhury, S. Y., Shatabda, S. & Dehzangi, A. iDNAProt-ES: identification of DNA-binding proteins using evolutionary and 

structural features. Sci. Rep. 7, 14938 (2017).
	47.	 Swain, P. H. & Hauska, H. The decision tree classifier: Design and potential. IEEE Trans. Geosci. Electron. 15, 142–147 (1977).
	48.	 Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 (1995).
	49.	 Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
	50.	 Tang, S. & Chen, L. iATC-NFMLP: Identifying classes of anatomical therapeutic chemicals based on drug networks, fingerprints 

and multilayer perceptron. Curr. Bioinform. 17, 814–824 (2022).
	51.	 Chen, L. & Zhao, X. PCDA-HNMP: Predicting circRNA-disease association using heterogeneous network and meta-path. Math. 

Biosci. Eng. 20, 20553–20575 (2023).
	52.	 Wang, Y., Xu, Y., Yang, Z., Liu, X. & Dai, Q. Using recursive feature selection with random forest to improve protein structural 

class prediction for low-similarity sequences. Comput. Math. Methods Med. 2021, 5529389. https://doi.org/10.1155/2021/5529389 
(2021).

	53.	 Onesime, M., Yang, Z. & Dai, Q. Genomic island prediction via chi-square test and random forest algorithm. Comput. Math. 
Methods Med. 2021, 9969751. https://doi.org/10.1155/2021/9969751 (2021).

	54.	 Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
	55.	 Jones, P. et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).
	56.	 Tsay, Y. F., Chiu, C. C., Tsai, C. B., Ho, C. H. & Hsu, P. K. Nitrate transporters and peptide transporters. FEBS Lett. 581, 2290–2300. 

https://doi.org/10.1016/j.febslet.2007.04.047 (2007).
	57.	 Ding, L. et al. Aquaporin PIP2;1 affects water transport and root growth in rice (Oryza sativa L.). Plant Physiol. Biochem. 139, 

152–160. https://doi.org/10.1016/j.plaphy.2019.03.017 (2019).
	58.	 Marrocco, K., Thomann, A., Parmentier, Y., Genschik, P. & Criqui, M. C. The APC/C E3 ligase remains active in most post-mitotic 

Arabidopsis cells and is required for proper vasculature development and organization. Development 136, 1475–1485. ​h​t​t​p​s​:​/​/​d​o​i​.​
o​r​g​/​1​0​.​1​2​4​2​/​d​e​v​.​0​3​5​5​3​5​​​​ (2009).

	59.	 Kobayashi, T. et al. Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation. Nat. 
Commun. 4, 2792. https://doi.org/10.1038/ncomms3792 (2013).

Author contributions
L.C. designed the research; L.C., X.X. and B.Z. conducted the experiments; X.X. and B.Z. analyzed the results; 
L.C. and X.X. wrote the manuscript. All authors have read and approved the manuscript.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​2​6​-​3​5​1​1​0​-​7​​​​​.​​

Correspondence and requests for materials should be addressed to L.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Scientific Reports |         (2026) 16:4876 13| https://doi.org/10.1038/s41598-026-35110-7

www.nature.com/scientificreports/

https://doi.org/10.1093/nar/gkg095
https://doi.org/10.1093/bioinformatics/btac053
https://doi.org/10.1371/journal.pcbi.1011927
https://doi.org/10.1371/journal.pcbi.1011927
https://doi.org/10.1093/bib/bbad524
https://arxiv.org/abs/1703.03130
https://doi.org/10.48550/arXiv.1703.03130
https://doi.org/10.48550/arXiv.1703.03130
https://doi.org/10.1016/j.cancergen.2024.12.004
https://doi.org/10.1155/2021/5529389
https://doi.org/10.1155/2021/9969751
https://doi.org/10.1016/j.febslet.2007.04.047
https://doi.org/10.1016/j.plaphy.2019.03.017
https://doi.org/10.1242/dev.035535
https://doi.org/10.1242/dev.035535
https://doi.org/10.1038/ncomms3792
https://doi.org/10.1038/s41598-026-35110-7
https://doi.org/10.1038/s41598-026-35110-7
http://www.nature.com/scientificreports


Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2026 

Scientific Reports |         (2026) 16:4876 14| https://doi.org/10.1038/s41598-026-35110-7

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Root-associated protein prediction using a protein large language model and hypergraph convolutional networks
	﻿Materials and methods
	﻿﻿Dataset
	﻿﻿Original protein feature extraction
	﻿Protein language model feature
	﻿BLOSUM62 feature
	﻿PSSM feature
	﻿Protein representation


	﻿Protein feature improved by HGCN
	﻿Protein contact map prediction
	﻿﻿Hypergraph construction
	﻿HGCN

	﻿Multi-head attention
	﻿Prediction and loss function
	﻿﻿Model evaluation
	﻿Outline of the Hypergraph-Root
	﻿Results and Discussion
	﻿Hyperparameter adjustment
	﻿Performance of Hypergraph-Root on the training and test datasets
	﻿Ablation tests
	﻿Comparison with models using traditional machine learning algorithms
	﻿Comparison with previous models
	﻿Influence of hypergraph on Hypergraph-Root
	﻿Case studies

	﻿Conclusion
	﻿References


