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Abstract

This study compares the structural, optical, and mechanical characteristics of chitin
nanopapers fabricated through mechanical fibrillation and TEMPO-mediated
oxidation. The TEMPO-oxidized nanopaper exhibited higher optical transparency
(approximately 92%) than the mechanically fibrillated sample (around 60%),
primarily due to enhanced nanofiber dispersion and smaller fibril diameters. In
contrast, the mechanically produced nanopaper showed greater crystallinity (above
90%) and stronger hydrogen bonding, resulting in higher tensile strength and
Young's modulus compared with the oxidized counterpart. Microscopic analyses
confirmed the more homogeneous and well-dispersed network in TEMPO-treated
samples, while spectroscopic results indicated the presence of carboxylate groups
introduced by oxidation. The research overall highlights the usability of both
nanopaper types in different applications and how TEMPO-oxidized nanopaper fits
best under transparent and biodegradable packaging and mechanically treated
nanopaper in applications requiring more strength.

Keywords:
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1. Introduction

The global seafood industry generates a substantial amount of waste,
particularly from the processing of crustaceans such as shrimp and crabs,
leading to significant environmental concerns 1.2, Each year, millions of tons
of chitin-containing shellfish waste are discarded, mostly resulting in waste
and pollution 34, In the sustainability and circular economy, chitin
valorization as a green and functional biomaterial is a viable path forward >.
A more efficient application of chitin to produce high-sustainability products
not only reduces wastage of raw materials, but also adds to economic
production whilst maximizing the crude materials, turning waste into high-
grade materials -8, This method is in line with worldwide initiatives to
decrease waste and make greener alternatives a priority, and cements the
promise of chitin as a key material in future eco-friendly technologies °:10,

Chitin, the second most abundant biopolymer after cellulose in nature,
has drawn much attention for its excellent physicochemical properties such
as biocompatibility, biodegradability, and antimicrobial activity 3.

Chitin, derived from crustacean exoskeletons and fungal cell walls,
possesses a hierarchical structure that can be broken down into nanoscale
fibers using various processing strategies. Among these, top-down
approaches such as mechanical fibrillation 11 and TEMPO (2,2,6,6-
tetramethylpiperidine-1-oxyl)-mediated oxidation 12 are the most widely
used for producing chitin nanofibers. Unlike these methods, electrospinning
is primarily a down-top approache technique applied to chitin or its
derivatives in solution form and is less common for producting individual
nanofibrils from bulk chitin 13. Mechanical processing can serve to physically
separate the chitin fibrils in the absence of significant chemical
transformation 11, whilst TEMPO oxidation leads to the introduction of
carboxylated groups at the surface of the nanofibers, which give rise to
altered dispersion characteristics, charge properties, and inherent reactivity
12,14-16

Nanopaper is a high-density, flexible sheet made up of interwoven
nanofibers that has become an attractive, sustainable alternative to regular
paper because of its enhanced mechanical strength and gas barrier
characteristics, along with adjustable surface chemistry 17-19, The properties
of chitin nanopaper greatly depend on the particular processing route used
to extract the nanofibers 11.20, The chitin nanofiber obtained through
mechanical disintegration maintains the original chitin structure, with a
reduced surface charge and a higher intrinsic crystallinity. Conversely,
TEMPO-oxidized chitin nanofiber has more dispersed and higher colloidal
stability due to their negatively charged surfaces, which can considerably
influence the formation, density, and mechanical integrity of the nanopaper.
The extent to which these processing methods influence the final chitin
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nanopaper properties remains an unanswered question and must be
examined through a comprehensive analysis.

Although extensive research has been conducted on chitin nanofibrils
obtained through mechanical fibrillation and TEMPO-mediated oxidation, the
underlying mechanisms linking these processing routes to the resultant
nanopaper properties remain insufficiently understood. The novelty of this
work lies in the systematic, side-by-side comparison of these two major top-
down approaches using identical chitin sources under controlled conditions
to isolate the influence of surface chemistry, fibril morphology, and inter-
fibrillar interactions on the mechanical strength, porosity, and water
resistance of the resulting nanopapers. Unlike previous studies that
examined either mechanical disintegration or chemical oxidation
independently, this study integrates both processes (Fig. 1) within a unified
experimental framework and provides quantitative correlations between
processing parameters and functional performance. Furthermore, by
combining morphological, physicochemical, and barrier analyses, this
research establishes a clearer structure property relationship that advances
the rational design of chitin-based nanopapers for sustainable packaging and
coating applications.
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Fig. 1. Schematic of the research steps in this study.

Chemical oxidation
(TEMPO-oxidation)

2. Materials and methods

2.1. Raw materials

Chitin nanofibers with different surface morphologies were produced by
using mechanical grinding and a chemical oxidation (TEMPO-oxidation)
process. The mechanical treatment was performed using bleached dry chitin
(extracted from shrimp shells, supplied by Nano Novin Polymer Co. (Gorgan,
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Iran), 50 g of which was ground 3 times in a super disk grinding (Masuko
MKCAG6-2, Japan) to obtain well-dispersed chitin nanofibers at the speed of
rotation of 1800 rpm. In the chemical process, 0.16 g of TEMPO was
dissolved in 1 L of deionized water and stirred for 24 h; thereupon, 1.0 g of
sodium bromide was added, and the stirring continued for 1 h. Then, 10 g of
bleached dry chitin was added to the solution, and then sodium hypochlorite
was slowly added until the pH was brought to the value of 10. To ensure the
oxidation reaction proceeds continuously, reducing the processing error, the
pH was maintained at 10-11 for 6 h. The obtained gel was washed with
deionized water 3 times (500 mesh polyester filter bags to eliminate residual
chemicals). It was finally passed through the disk grinding to get uniform
TEMPO-oxidized chitin nanofibers.

2.2. Nanopaper preparation

For the preparation of 60 g/m?2 chitin nanopaper samples, an appropriate
amount of each chitin nanofiber gel, including mechanically processed and
TEMPO-oxidized variants, was weighed separately. For uniform dispersion,
each suspension was stirred for 15 min at room temperature with a
magnetic stir plate set at 250 rpom. A prepared suspension was poured onto a
vacuum filtration system equipped with a 500-mesh (12 cm diameter)
polyester filter. Removing water from the suspension with a vacuum
pressure of 0.5 MPa resulted in the generation of a primary wet film. After
dewatering, the as-prepared films were subjected to drying in a vacuum
oven at 70 °C for 15 h between two pieces of glass plates to ensure
sediment formation of nanopaper and provide enough structural stability.

2.3. Characterization

2.3.1. Transmission electron microscope (TEM)

The specimens were vacuum-dried and gold-coated before TEM examination.
The nanopaper specimens were investigated by a TEM (CM 120) with an
accelerating voltage of between 1.5 and 5 kV. Additionally, the average
diameter of 100 fibers was determined utilizing digimizer image software (v.
4.1.1.0).

2.3.2. Field emission scanning electron microscopy (FESEM)
FESEM was used to evaluate the sample morphology. The samples were
coated with a layer of platinum <0.2 nm thick, in a vacuum environment
using a sputter coater machine. Finally, the coated samples were
characterized by FESEM (Zeiss Sigma 300-HV, Germany) using an
accelerating voltage of 5.0 kV.

2.3.3. X-ray diffraction (XRD)

X-ray Diffraction (XRD) is a widely utilized method for assessing the
crystallinity index 21, In this study, an XRD diffractometer (D8-Advance
Bruker Cu Kal, Germany) was employed to expose the samples to Cu-Ka
radiation under operating conditions of 50 kV and 30 mA. The X-ray analysis
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was conducted with a step size of 0.02°, and the scanning range was set
between 10° and 60° (26). The crystallinity index of samples was calculated
using Eq. 1.

Crl (%) = [(I200-lam) / l200] x 100

(1)

where I5p9 was the maximum intensity of the [200] lattice diffraction, which is typically in the
range 20 = 21°-23° and l;m was the intensity diffraction at 26 = 18°

2.3.4. Fourier transform infrared (FTIR) spectroscopy

FTIR is an analytical tool used to determine the adventitious or attributable
chemistry of materials by the way the materials absorb IR light at their
distances. Films were investigated for their functional groups and the
chemical change features by FTIR spectrometers (Perkin-Elmer, Spectrum RX
[). Spectra were acquired from 4000 to 500 cm~?! (64 scans at 4 cm~?
resolution) 22,

2.3.5. Optical transparency

Optical transparency was evaluated through both quantitative and
qualitative methods using a double-beam UV-vis spectrophotometer (U-
2000, Hitachi Ltd., Japan) for precise measurements and a digital camera for
visual assessment.

2.3.6. Mechanical properties

The tensile properties were evaluated following the ASTM D882-18 standard
using a SANTAM universal tensile machine (model STM-1, Santam Co.,
Tehran, Iran) equipped with a 1 kN load cell and a cross-head speed of 10
mm/min. Samples were prepared in standard dimensions and secured
between the tensile grips. Before testing, three specimens from each sample
were conditioned at 30 °C and 50% relative humidity for 24 h. The reported
tensile parameters included tensile strength and elongation at break.

2.4. Statistical analysis

All measurements were performed in triplicate, and the results are reported
as mean = standard deviation (n = 3). Statistical variability was evaluated
using descriptive statistics, and error bars representing standard deviation
were included in the corresponding figures to ensure data reliability.

3. Results and discussion

3.1. Morphology

The TEM micrographs and the corresponding diameter distributions of
nanochitin obtained from mechanically processed chitin nanofibers and
TEMPO-oxidized processes are presented in Fig. 2. The TEM micrographs are
primarily used to illustrate the overall fibrillar morphology and network
structure rather than to provide high-precision measurements of individual
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FESEM micrographs show that the morphology of the nanostructures used
is in the form of fibers, so they are one-dimensional nanostructures; that is,
two of their dimensions are in the nanoscale and one of their dimensions
(length) is in the non-nanometric scale (more than 5 um) (Fig. 3). The
TEMPO-oxidized nanofiber structure, owing to the generation of carboxylate
groups on its surface, is highly dispersed and uniform, offering greater clarity
and homogeneity compared to mechanically processed nanofibers;
moreover, the reduced diameter of the TEMPO-oxidized nanofibers results in
a higher specific surface area, which is particularly significant for
applications such as drug delivery and biosensors.
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265 sample could be due to the non-uniform distribution of fibers and the

266 presence of voids within the structure. These voids increase light scattering
267 and lead to lower transparency. Fukuzumi, et al. 24 demonstrated in their
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study that increased porosity and reduced fiber alignment lead to greater
light scattering and lower transparency. In contrast, the high transparency of
TEMPO-oxidized nanochitin is attributed to its more uniform structure and
decreased fiber size. The TEMPO oxidation process produces nanopaper with
lower porosity and better fiber alignment. Isogai, et al. 2> found that TEMPO
oxidation enhances the transparency of nanopaper by generating thinner
fibers and reducing internal porosity.

The transparency of mechanically processed and TEMPO-oxidized
nanochitin was evaluated using a UV-Vis spectrophotometer. At a
wavelength of 600 nm, TEMPO-oxidized nanochitin exhibited approximately
92% transparency, whereas mechanically processed nanochitin showed only
60% (Fig. 4b). The higher transparency of the TEMPO-oxidized nanochitin is
attributed to its homogeneous architecture, smaller nanofiber diameters, and
decreased scattering of light owing to its refined microstructural feature 26,
Moreover, light transmission is much smoother in the visible region. This
characteristic is a consequence of the chemically modified structure
(carboxylate groups introduction) and the increased surface negative charge,
which induces electrostatic repulsion between the fibers. This repulsion
leads to improved fiber orientation and better matrix formation 27. In
contrast, the lower transparency of the mechanically processed nanochitin is
attributed to surface roughness, structural heterogeneity, and enhanced
light scattering 2°. This heterogeneity results from the mechanical processing
method, which partially damages the internal hydrogen bonds and crystalline
structure of the fibers without changing their chemical structure 27. Due to
the high transparency, TEMPO-oxidized nanochitin shows great potential in
biodegradable transparent packaging, optical display panels, and protective
light coatings. On the other hand, mechanically processed nanochitin with
lesser transparency fits towards the requirements of opaque packaging or
shading against the plant light. TEMPO-oxidized nanochitin can be prepared
into films that could replace common plastic films like polyethylene or PET as
biodegradable thin films in the conventional plastic film sector.
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Fig. 4. a) Digital photograph of nanopapers on the Gorgan University of Agricultural
Sciences and Natural Resources logo, and b) transparency value of nanopapers.

3.3. X-ray diffraction (XRD)

Figure 5 illustrates the XRD patterns for the mechanocycled and TEMPO-
oxidized nanofibers of chitin, and since XRD is a strong tool for probing the
crystalline structure of the material, the nanofibers of chitin were confirmed
to be crystalline with the diffraction peaks characteristic of the chitin at 26
values of approximately 9°, 19°, 20°, and 21° for the crystallographic planes
of chitin. Mechanical and TEMPO-oxidized chitin nanofiber crystallinity
indexes were 91.23% and 91.19%, respectively. The increase in chitin
crystallinity after the formation of nanofibers has also been reported in the
study of Ye, et al. 28 and confirms that at the nanoscale, the crystalline
structure of chitin is more regular in shape and compact, biasing the
increasing hardness and strength of chitin.

Notably, the TEMPO-oxidized nanofibers show a weaker and slightly
broader peak at around 9° compared to the mechanically processed
nanofibers; in the XRD pattern of the TEMPO-oxidized sample, the diffraction
peaks may appear relatively shorter or broader due to the reduction in
crystallinity induced by oxidation, while additionally exhibiting stronger
peaks at around 14°, 20°, and 21°. The presence of extra peaks or shifts in
peak positions may indicate potential alterations in the crystal lattice
structure resulting from introducing carboxylate groups 29. Nonetheless, no
dramatic differences in the peaks of the two samples in their XRD patterns
were noted, implying that the crystalline structure of the chitin is mostly
preserved throughout the TEMPO-mediated oxidation procedure 39, It is
important to note that variations in preparation methods, the degree of
oxidation, and the presence of impurities can affect the XRD patterns of both
mechanically processed and TEMPO-oxidized chitin nanofibers.
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Fig. 5. X-ray diffraction (XRD) pattern of nanochitin nanopapers.

3.4. FTIR

FTIR analysis of the nanopapers reveals distinct absorption peaks that
elucidate the chemical structure and modifications resulting from the
different processing methods (Fig. 6). The reduced intensity of amine-related
bands is in agreement with TEMPO-mediated surface modification, which
replaces surface amino functionalities with carboxylate groups, as similarly
reported by Salem, et al. 22, The spectra of both mechanically processed and
TEMPO-oxidized nanopapers exhibit characteristic bands around 3400 cm~1,
corresponding to O-H stretching vibrations that indicate the presence of
hydroxyl groups and extensive hydrogen bonding within the chitin matrix 31,
The peaks near 1630cm-! and 1560 cm-! are attributed to the amide | (C=0
stretching) and amide Il (N-H bending) vibrations 12, respectively, which
confirm the preservation of the chitin backbone. Other bands, such as those
near 1310 cm~! and 1150 cm~?, further reflect CH bending and C-O
stretching vibrations, underscoring the chemical complexity of the
nanostructured films. FTIR findings demonstrate that while the fundamental
chitin structure is maintained in both samples, the TEMPO oxidation process
induces specific chemical modifications that enhance the functional
properties of the resulting nanopapers.
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3.5. Mechanical properties

The tensile strength, Young’s modulus, and strain of nanopapers made with
mechanically processed nanochitin and TEMPO-oxidized nanochitin are
shown in Fig. 7. The value of tensile strength for the mechanically processed
nanochitin (60.3 MPa) is almost two times higher than that for TEMPO-
oxidized nanochitin (33.2 MPa), which may be related to more strong
hydrogen bonding of the mechanically processed nanochitin, leading to
greater resistance to tensile stresses 32. In the TEMPO-oxidation process, the
introduction of carboxyl groups into the nanochitin structure impairs these
hydrogen bonds, which may lead to lower tensile strength 2°. The Young’s
modulus of the mechanical nanochitin (3.52 GPa) is higher than that of the
TEMPO-oxidized nanochitin (2.70 GPa). The higher Young's modulus of
mechanical nanochitin indicates higher stiffness and greater resistance to
small deformations. This property is very suitable for preparing films that
require high structural strength (such as robust packaging or protective
layers) 17. Moreover, this difference also stems from the more ordered
crystalline structure of the mechanically processed nanochitin, as during the
mechanical milling process, molecular chains are broken and reconstructed
into a denser packing, thus increasing the Young's modulus 18, Whereas
TEMPO oxidation disrupts some hydrogen bonds between the chains and
reduces the density of the crystalline structure resulting in a lower Young's
modulus 27, The mechanically processed nanopaper exhibits slightly higher
crystallinity, which likely contributes to its superior tensile performance. This
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is because increased crystallinity enhances inter-fibril hydrogen bonding and
load transfer efficiency. These observations are in line with recent findings
on the role of nanoscale ordering in polysaccharide materials 33.

The strain of mechanical nanochitin (1.83%) was higher than that of
TEMPO-oxidized nanochitin (1.24%). In general, the greater flexibility of the
nanochitin structure results in films with thinner thickness and higher specific
surface area, which distributes stress better 34. Although the TEMPO-oxidized
chitin exhibited a more uniform fibril distribution, the mechanical properties
were lower than those of the mechanically processed nanopaper because the
TEMPO treatment introduced carboxylate groups that reduced hydrogen
bonding and decreased crystallinity, thereby limiting stress transfer between
adjacent nanofibrils. The TEMPO-oxidation process creates defects in the
chitin chains that limit the flexibility of the material 27. TEMPO-oxidized
nanochitin, although less flexible, can be well integrated with other materials
or used in environments that require chemical interaction due to its specific
chemical surface (the presence of carboxyl groups) 12.
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Fig. 7. a) Digital photograph of nanopaper specimen in the tensile test, b) fracture modes,
c) tensile test, d) Young’s modulus, and e) strain.

4. Conclusions

The study revealed that both nanopapers prepared from chitin nanofibers
produced through chemical (TEMPO-oxidized) and mechanical (super disk
grinding) processes exhibited high crystallinity values exceeding 90%, with
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slightly higher crystallinity in the mechanically processed samples. This
structural feature contributed to their greater tensile strength and Young'’s
modulus, which are related to stronger hydrogen bonding and a more
compact fibrillar network. In contrast, the TEMPO-oxidized nanopapers
showed higher optical transmittance (~92%) and better transparency,
attributed to finer fibril diameters and more uniform dispersion. These results
indicate that mechanical processing favors the formation of stronger and
denser nanopapers, while TEMPO oxidation enhances optical uniformity and
light transmittance. Overall, the findings demonstrate that the choice of
processing method has a direct influence on the structure and properties of
chitin nanopapers, allowing their characteristics to be adjusted according to
specific performance requirements.
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