

---

# Comparison of the properties of nanopaper from chitin nanofibers prepared by mechanical and TEMPO-oxidized methods

---

Received: 21 August 2025

---

Accepted: 2 January 2026

---

Published online: 17 January 2026

Cite this article as: Mohammadlou A., Dehghani Firouzabadi M. & Yousefi H. Comparison of the properties of nanopaper from chitin nanofibers prepared by mechanical and TEMPO-oxidized methods. *Sci Rep* (2026). <https://doi.org/10.1038/s41598-026-35116-1>

---

Alireza Mohammadlou, Mohammadreza Dehghani Firouzabadi & Hossein Yousefi

---

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

If this paper is publishing under a Transparent Peer Review model then Peer Review reports will publish with the final article.

1    **Title page**

2

3    **Comparison of the properties of nanopaper from**  
4    **chitin nanofibers prepared by mechanical and**  
5    **TEMPO-oxidized methods**

6

7    **Alireza Mohammadlou <sup>a</sup>, Mohammadreza Dehghani Firouzabadi <sup>a\*</sup>, Hossein**  
8    **Yousefi <sup>b</sup>**

9

10    <sup>a</sup> *Department of Paper Science and Engineering, Gorgan University of Agricultural Sciences*  
11    *and Natural Resources, Gorgan, Iran.*

12    <sup>b</sup> *Laboratory of Sustainable Nanomaterials, Department of Wood Engineering and*  
13    *Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan,*  
14    *Iran.*

15

16

17    **Corresponding Author:**

18    **Mohammadreza Dehghani Firouzabadi (✉)**

19    **Tel.:** +98-17-32427050

20    **P.O. Box:** 4918943464

21    **Mobile phone:** +98-912-2044207

22    **E-mail:** mdehghani@gau.ac.ir

23

24    **Abstract**

25    This study compares the structural, optical, and mechanical characteristics of chitin  
26    nanopapers fabricated through mechanical fibrillation and TEMPO-mediated  
27    oxidation. The TEMPO-oxidized nanopaper exhibited higher optical transparency  
28    (approximately 92%) than the mechanically fibrillated sample (around 60%),  
29    primarily due to enhanced nanofiber dispersion and smaller fibril diameters. In  
30    contrast, the mechanically produced nanopaper showed greater crystallinity (above  
31    90%) and stronger hydrogen bonding, resulting in higher tensile strength and  
32    Young's modulus compared with the oxidized counterpart. Microscopic analyses  
33    confirmed the more homogeneous and well-dispersed network in TEMPO-treated  
34    samples, while spectroscopic results indicated the presence of carboxylate groups  
35    introduced by oxidation. The research overall highlights the usability of both  
36    nanopaper types in different applications and how TEMPO-oxidized nanopaper fits  
37    best under transparent and biodegradable packaging and mechanically treated  
38    nanopaper in applications requiring more strength.

39

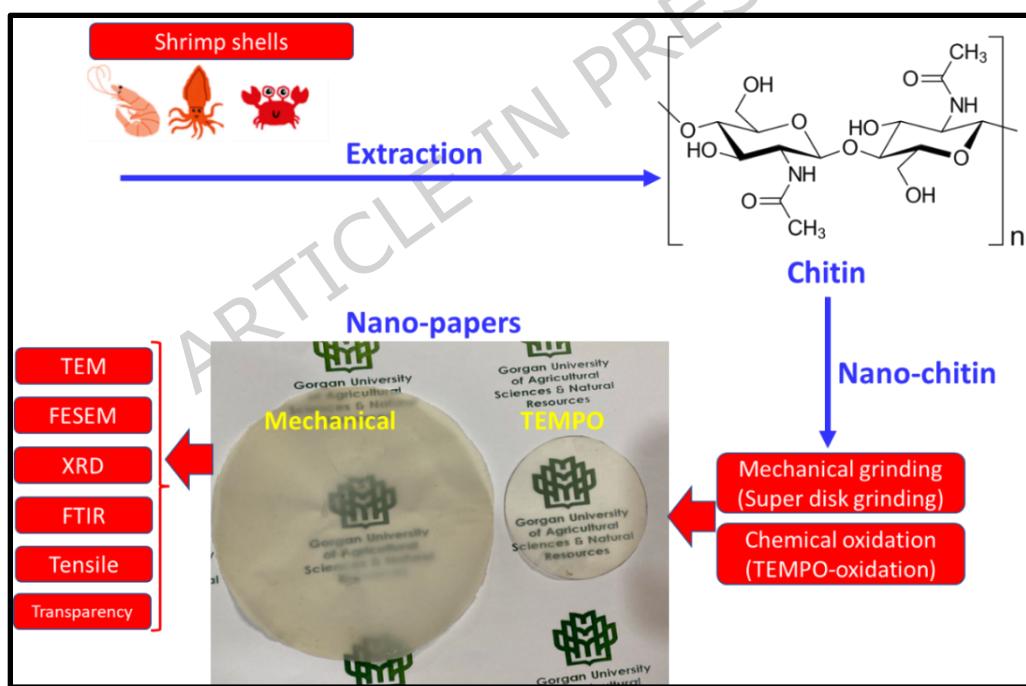
40    **Keywords:**

41    Nanochitin, TEMPO-oxidation, Mechanical properties, Nanopapers, Optical  
42    transparency.

51  
52  
53  
54**55 1. Introduction**

56 The global seafood industry generates a substantial amount of waste,  
57 particularly from the processing of crustaceans such as shrimp and crabs,  
58 leading to significant environmental concerns <sup>1,2</sup>. Each year, millions of tons  
59 of chitin-containing shellfish waste are discarded, mostly resulting in waste  
60 and pollution <sup>3,4</sup>. In the sustainability and circular economy, chitin  
61 valorization as a green and functional biomaterial is a viable path forward <sup>5</sup>.  
62 A more efficient application of chitin to produce high-sustainability products  
63 not only reduces wastage of raw materials, but also adds to economic  
64 production whilst maximizing the crude materials, turning waste into high-  
65 grade materials <sup>6-8</sup>. This method is in line with worldwide initiatives to  
66 decrease waste and make greener alternatives a priority, and cements the  
67 promise of chitin as a key material in future eco-friendly technologies <sup>9,10</sup>.

68 Chitin, the second most abundant biopolymer after cellulose in nature,  
69 has drawn much attention for its excellent physicochemical properties such  
70 as biocompatibility, biodegradability, and antimicrobial activity <sup>3</sup>.


71 Chitin, derived from crustacean exoskeletons and fungal cell walls,  
72 possesses a hierarchical structure that can be broken down into nanoscale  
73 fibers using various processing strategies. Among these, top-down  
74 approaches such as mechanical fibrillation <sup>11</sup> and TEMPO (2,2,6,6-  
75 tetramethylpiperidine-1-oxyl)-mediated oxidation <sup>12</sup> are the most widely  
76 used for producing chitin nanofibers. Unlike these methods, electrospinning  
77 is primarily a down-top approach technique applied to chitin or its  
78 derivatives in solution form and is less common for producing individual  
79 nanofibrils from bulk chitin <sup>13</sup>. Mechanical processing can serve to physically  
80 separate the chitin fibrils in the absence of significant chemical  
81 transformation <sup>11</sup>, whilst TEMPO oxidation leads to the introduction of  
82 carboxylated groups at the surface of the nanofibers, which give rise to  
83 altered dispersion characteristics, charge properties, and inherent reactivity  
84 <sup>12,14-16</sup>.

85 Nanopaper is a high-density, flexible sheet made up of interwoven  
86 nanofibers that has become an attractive, sustainable alternative to regular  
87 paper because of its enhanced mechanical strength and gas barrier  
88 characteristics, along with adjustable surface chemistry <sup>17-19</sup>. The properties  
89 of chitin nanopaper greatly depend on the particular processing route used  
90 to extract the nanofibers <sup>11,20</sup>. The chitin nanofiber obtained through  
91 mechanical disintegration maintains the original chitin structure, with a  
92 reduced surface charge and a higher intrinsic crystallinity. Conversely,  
93 TEMPO-oxidized chitin nanofiber has more dispersed and higher colloidal  
94 stability due to their negatively charged surfaces, which can considerably  
95 influence the formation, density, and mechanical integrity of the nanopaper.  
96 The extent to which these processing methods influence the final chitin

97 nanopaper properties remains an unanswered question and must be  
 98 examined through a comprehensive analysis.

99 Although extensive research has been conducted on chitin nanofibrils  
 100 obtained through mechanical fibrillation and TEMPO-mediated oxidation, the  
 101 underlying mechanisms linking these processing routes to the resultant  
 102 nanopaper properties remain insufficiently understood. The novelty of this  
 103 work lies in the systematic, side-by-side comparison of these two major top-  
 104 down approaches using identical chitin sources under controlled conditions  
 105 to isolate the influence of surface chemistry, fibril morphology, and inter-  
 106 fibrillar interactions on the mechanical strength, porosity, and water  
 107 resistance of the resulting nanopapers. Unlike previous studies that  
 108 examined either mechanical disintegration or chemical oxidation  
 109 independently, this study integrates both processes (Fig. 1) within a unified  
 110 experimental framework and provides quantitative correlations between  
 111 processing parameters and functional performance. Furthermore, by  
 112 combining morphological, physicochemical, and barrier analyses, this  
 113 research establishes a clearer structure property relationship that advances  
 114 the rational design of chitin-based nanopapers for sustainable packaging and  
 115 coating applications.

116



117  
 118 **Fig. 1.** Schematic of the research steps in this study.  
 119

120 **2. Materials and methods**

121 **2.1. Raw materials**

122 Chitin nanofibers with different surface morphologies were produced by  
 123 using mechanical grinding and a chemical oxidation (TEMPO-oxidation)  
 124 process. The mechanical treatment was performed using bleached dry chitin  
 125 (extracted from shrimp shells, supplied by Nano Novin Polymer Co. (Gorgan,

126 Iran), 50 g of which was ground 3 times in a super disk grinding (Masuko  
 127 MKCA6-2, Japan) to obtain well-dispersed chitin nanofibers at the speed of  
 128 rotation of 1800 rpm. In the chemical process, 0.16 g of TEMPO was  
 129 dissolved in 1 L of deionized water and stirred for 24 h; thereupon, 1.0 g of  
 130 sodium bromide was added, and the stirring continued for 1 h. Then, 10 g of  
 131 bleached dry chitin was added to the solution, and then sodium hypochlorite  
 132 was slowly added until the pH was brought to the value of 10. To ensure the  
 133 oxidation reaction proceeds continuously, reducing the processing error, the  
 134 pH was maintained at 10-11 for 6 h. The obtained gel was washed with  
 135 deionized water 3 times (500 mesh polyester filter bags to eliminate residual  
 136 chemicals). It was finally passed through the disk grinding to get uniform  
 137 TEMPO-oxidized chitin nanofibers.

138

## 139 **2.2. Nanopaper preparation**

140 For the preparation of 60 g/m<sup>2</sup> chitin nanopaper samples, an appropriate  
 141 amount of each chitin nanofiber gel, including mechanically processed and  
 142 TEMPO-oxidized variants, was weighed separately. For uniform dispersion,  
 143 each suspension was stirred for 15 min at room temperature with a  
 144 magnetic stir plate set at 250 rpm. A prepared suspension was poured onto a  
 145 vacuum filtration system equipped with a 500-mesh (12 cm diameter)  
 146 polyester filter. Removing water from the suspension with a vacuum  
 147 pressure of 0.5 MPa resulted in the generation of a primary wet film. After  
 148 dewatering, the as-prepared films were subjected to drying in a vacuum  
 149 oven at 70 °C for 15 h between two pieces of glass plates to ensure  
 150 sediment formation of nanopaper and provide enough structural stability.

151

## 152 **2.3. Characterization**

### 153 **2.3.1. Transmission electron microscope (TEM)**

154 The specimens were vacuum-dried and gold-coated before TEM examination.  
 155 The nanopaper specimens were investigated by a TEM (CM 120) with an  
 156 accelerating voltage of between 1.5 and 5 kV. Additionally, the average  
 157 diameter of 100 fibers was determined utilizing digitizer image software (v.  
 158 4.1.1.0).

159

### 160 **2.3.2. Field emission scanning electron microscopy (FESEM)**

161 FESEM was used to evaluate the sample morphology. The samples were  
 162 coated with a layer of platinum <0.2 nm thick, in a vacuum environment  
 163 using a sputter coater machine. Finally, the coated samples were  
 164 characterized by FESEM (Zeiss Sigma 300-HV, Germany) using an  
 165 accelerating voltage of 5.0 kV.

166

### 167 **2.3.3. X-ray diffraction (XRD)**

168 X-ray Diffraction (XRD) is a widely utilized method for assessing the  
 169 crystallinity index <sup>21</sup>. In this study, an XRD diffractometer (D8-Advance  
 170 Bruker Cu K $\alpha$ 1, Germany) was employed to expose the samples to Cu-K $\alpha$   
 171 radiation under operating conditions of 50 kV and 30 mA. The X-ray analysis

172 was conducted with a step size of  $0.02^\circ$ , and the scanning range was set  
 173 between  $10^\circ$  and  $60^\circ$  ( $2\theta$ ). The crystallinity index of samples was calculated  
 174 using Eq. 1.

175

$$176 \text{ CrI (\%)} = [(I_{200} - I_{\text{am}}) / I_{200}] \times 100$$

177 (1)

178 where  $I_{200}$  was the maximum intensity of the [200] lattice diffraction, which is typically in the  
 179 range  $2\theta = 21^\circ\text{--}23^\circ$  and  $I_{\text{am}}$  was the intensity diffraction at  $2\theta = 18^\circ$

180

181 **2.3.4. Fourier transform infrared (FTIR) spectroscopy**

182 FTIR is an analytical tool used to determine the adventitious or attributable  
 183 chemistry of materials by the way the materials absorb IR light at their  
 184 distances. Films were investigated for their functional groups and the  
 185 chemical change features by FTIR spectrometers (Perkin-Elmer, Spectrum RX  
 186 I). Spectra were acquired from  $4000$  to  $500 \text{ cm}^{-1}$  ( $64$  scans at  $4 \text{ cm}^{-1}$   
 187 resolution) <sup>22</sup>.

188

189 **2.3.5. Optical transparency**

190 Optical transparency was evaluated through both quantitative and  
 191 qualitative methods using a double-beam UV-vis spectrophotometer (U-  
 192 2000, Hitachi Ltd., Japan) for precise measurements and a digital camera for  
 193 visual assessment.

194

195

196

197 **2.3.6. Mechanical properties**

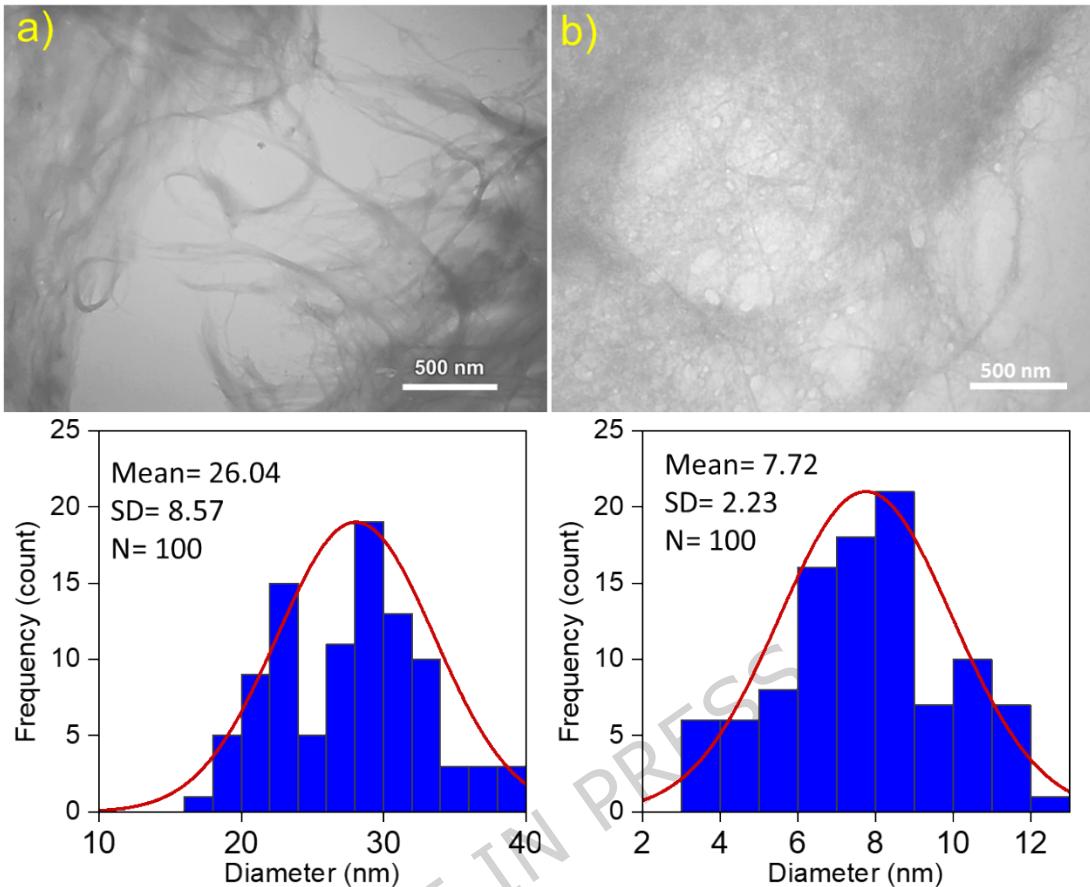
198 The tensile properties were evaluated following the ASTM D882-18 standard  
 199 using a SANTAM universal tensile machine (model STM-1, Santam Co.,  
 200 Tehran, Iran) equipped with a  $1 \text{ kN}$  load cell and a cross-head speed of  $10$   
 201  $\text{mm/min}$ . Samples were prepared in standard dimensions and secured  
 202 between the tensile grips. Before testing, three specimens from each sample  
 203 were conditioned at  $30^\circ\text{C}$  and  $50\%$  relative humidity for  $24 \text{ h}$ . The reported  
 204 tensile parameters included tensile strength and elongation at break.

205

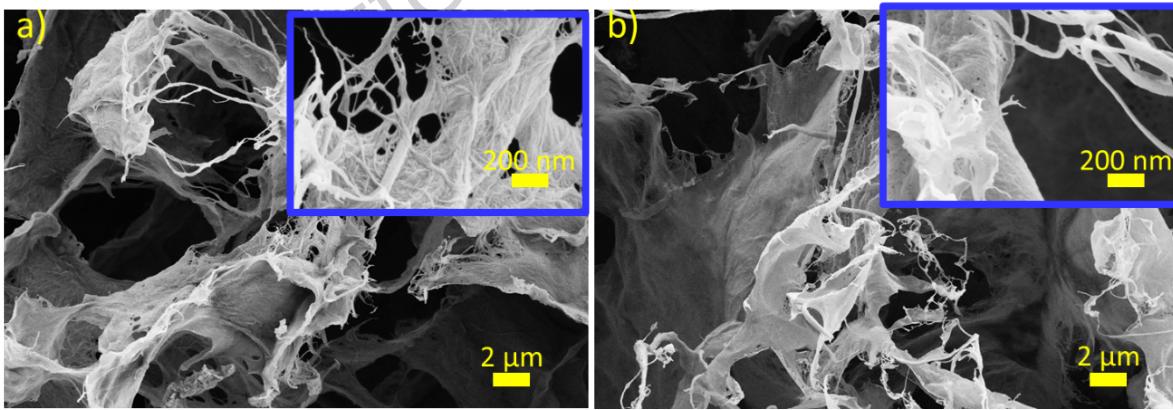
206 **2.4. Statistical analysis**

207 All measurements were performed in triplicate, and the results are reported  
 208 as mean  $\pm$  standard deviation ( $n = 3$ ). Statistical variability was evaluated  
 209 using descriptive statistics, and error bars representing standard deviation  
 210 were included in the corresponding figures to ensure data reliability.

211


212 **3. Results and discussion**

213 **3.1. Morphology**


214 The TEM micrographs and the corresponding diameter distributions of  
 215 nanochitin obtained from mechanically processed chitin nanofibers and  
 216 TEMPO-oxidized processes are presented in Fig. 2. The TEM micrographs are  
 217 primarily used to illustrate the overall fibrillar morphology and network  
 218 structure rather than to provide high-precision measurements of individual

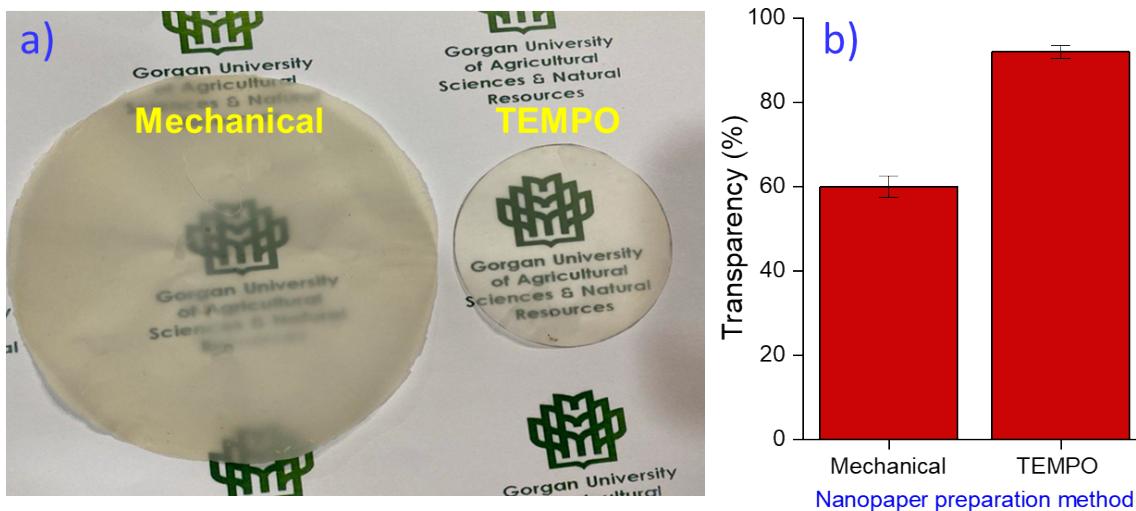
219 fibril diameters. As shown in Fig. 2a, the mechanically processed nanofibers  
220 form an entangled and partially aggregated network, within which individual  
221 fibrils are not always clearly distinguishable. Accordingly, the reported  
222 average diameter of  $26.04 \pm 8.57$  nm is derived from representative  
223 measurable regions, while acknowledging the inherent uncertainty caused  
224 by fibril overlapping and limited contrast at this magnification. This behavior  
225 can be attributed to the disk grinding process and the absence of sufficient  
226 electrostatic repulsion to achieve complete fibril separation, resulting in non-  
227 uniformity and aggregation consistent with the previous report<sup>23</sup>. In  
228 contrast, Fig. 2b demonstrates that TEMPO-oxidized chitin nanofibers exhibit  
229 a more homogeneous and finer fibrillar structure, with an average diameter  
230 of  $7.72 \pm 2.23$  nm, reflecting the effectiveness of surface oxidation in  
231 promoting fibril individualization, while it is emphasized that quantitative  
232 diameter values are interpreted cautiously and supported by statistical  
233 analysis, and the TEM observations mainly serve to qualitatively confirm the  
234 morphological differences and fibrillar network characteristics between the  
235 two processing routes in accordance with the resolving capability of the  
236 presented images. Although TEMPO-mediated oxidation generally enhances  
237 fibril dispersion due to the introduction of negatively charged carboxylate  
238 groups, some degree of aggregation can still occur. This is primarily  
239 attributed to charge screening and partial re-association of nanofibrils during  
240 the drying stage, especially when residual counterions (e.g.,  $\text{Na}^+$ ) and  
241 hydrogen bonding forces reduce electrostatic repulsion between oxidized  
242 fibrils. Moreover, an excessively high degree of oxidation may lead to  
243 localized fibril damage, generating shorter fragments that tend to cluster  
244 through secondary interactions.

245 FESEM micrographs show that the morphology of the nanostructures used  
246 is in the form of fibers, so they are one-dimensional nanostructures; that is,  
247 two of their dimensions are in the nanoscale and one of their dimensions  
248 (length) is in the non-nanometric scale (more than 5  $\mu\text{m}$ ) (Fig. 3). The  
249 TEMPO-oxidized nanofiber structure, owing to the generation of carboxylate  
250 groups on its surface, is highly dispersed and uniform, offering greater clarity  
251 and homogeneity compared to mechanically processed nanofibers;  
252 moreover, the reduced diameter of the TEMPO-oxidized nanofibers results in  
253 a higher specific surface area, which is particularly significant for  
254 applications such as drug delivery and biosensors.



**Fig. 2.** TEM micrographs and diameter distribution of nanochitin of a) mechanical and b) TEMPO.




**Fig. 3.** FESEM micrographs of nanochitin of a) mechanical and b) TEMPO-oxidized.

### 3.2. Transparency

Figure 4 shows that the apparent transparency of TEMPO-oxidized nanochitin nanopapers is significantly higher than that of mechanical nanopapers (Fig. 4a). The lower transparency in the mechanical nanochitin sample could be due to the non-uniform distribution of fibers and the presence of voids within the structure. These voids increase light scattering and lead to lower transparency. Fukuzumi, et al.<sup>24</sup> demonstrated in their

268 study that increased porosity and reduced fiber alignment lead to greater  
 269 light scattering and lower transparency. In contrast, the high transparency of  
 270 TEMPO-oxidized nanochitin is attributed to its more uniform structure and  
 271 decreased fiber size. The TEMPO oxidation process produces nanopaper with  
 272 lower porosity and better fiber alignment. Isogai, et al.<sup>25</sup> found that TEMPO  
 273 oxidation enhances the transparency of nanopaper by generating thinner  
 274 fibers and reducing internal porosity.

275 The transparency of mechanically processed and TEMPO-oxidized  
 276 nanochitin was evaluated using a UV-Vis spectrophotometer. At a  
 277 wavelength of 600 nm, TEMPO-oxidized nanochitin exhibited approximately  
 278 92% transparency, whereas mechanically processed nanochitin showed only  
 279 60% (Fig. 4b). The higher transparency of the TEMPO-oxidized nanochitin is  
 280 attributed to its homogeneous architecture, smaller nanofiber diameters, and  
 281 decreased scattering of light owing to its refined microstructural feature<sup>26</sup>.  
 282 Moreover, light transmission is much smoother in the visible region. This  
 283 characteristic is a consequence of the chemically modified structure  
 284 (carboxylate groups introduction) and the increased surface negative charge,  
 285 which induces electrostatic repulsion between the fibers. This repulsion  
 286 leads to improved fiber orientation and better matrix formation<sup>27</sup>. In  
 287 contrast, the lower transparency of the mechanically processed nanochitin is  
 288 attributed to surface roughness, structural heterogeneity, and enhanced  
 289 light scattering<sup>25</sup>. This heterogeneity results from the mechanical processing  
 290 method, which partially damages the internal hydrogen bonds and crystalline  
 291 structure of the fibers without changing their chemical structure<sup>27</sup>. Due to  
 292 the high transparency, TEMPO-oxidized nanochitin shows great potential in  
 293 biodegradable transparent packaging, optical display panels, and protective  
 294 light coatings. On the other hand, mechanically processed nanochitin with  
 295 lesser transparency fits towards the requirements of opaque packaging or  
 296 shading against the plant light. TEMPO-oxidized nanochitin can be prepared  
 297 into films that could replace common plastic films like polyethylene or PET as  
 298 biodegradable thin films in the conventional plastic film sector.



300 **Fig. 4. a)** Digital photograph of nanopapers on the Gorgan University of Agricultural  
301 Sciences and Natural Resources logo, and b) transparency value of nanopapers.

302  
303

304 **3.3. X-ray diffraction (XRD)**

305 Figure 5 illustrates the XRD patterns for the mechanocycled and TEMPO-  
306 oxidized nanofibers of chitin, and since XRD is a strong tool for probing the  
307 crystalline structure of the material, the nanofibers of chitin were confirmed  
308 to be crystalline with the diffraction peaks characteristic of the chitin at 2 $\theta$   
309 values of approximately 9°, 19°, 20°, and 21° for the crystallographic planes  
310 of chitin. Mechanical and TEMPO-oxidized chitin nanofiber crystallinity  
311 indexes were 91.23% and 91.19%, respectively. The increase in chitin  
312 crystallinity after the formation of nanofibers has also been reported in the  
313 study of Ye, et al. <sup>28</sup> and confirms that at the nanoscale, the crystalline  
314 structure of chitin is more regular in shape and compact, biasing the  
315 increasing hardness and strength of chitin.

316 Notably, the TEMPO-oxidized nanofibers show a weaker and slightly  
317 broader peak at around 9° compared to the mechanically processed  
318 nanofibers; in the XRD pattern of the TEMPO-oxidized sample, the diffraction  
319 peaks may appear relatively shorter or broader due to the reduction in  
320 crystallinity induced by oxidation, while additionally exhibiting stronger  
321 peaks at around 14°, 20°, and 21°. The presence of extra peaks or shifts in  
322 peak positions may indicate potential alterations in the crystal lattice  
323 structure resulting from introducing carboxylate groups <sup>29</sup>. Nonetheless, no  
324 dramatic differences in the peaks of the two samples in their XRD patterns  
325 were noted, implying that the crystalline structure of the chitin is mostly  
326 preserved throughout the TEMPO-mediated oxidation procedure <sup>30</sup>. It is  
327 important to note that variations in preparation methods, the degree of  
328 oxidation, and the presence of impurities can affect the XRD patterns of both  
329 mechanically processed and TEMPO-oxidized chitin nanofibers.

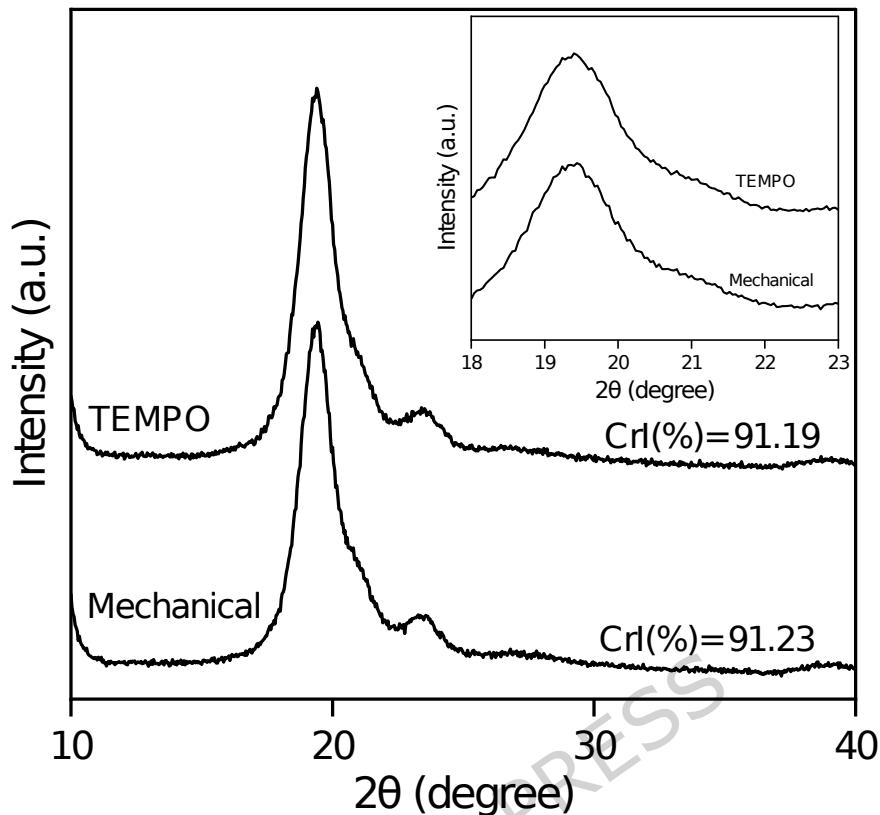


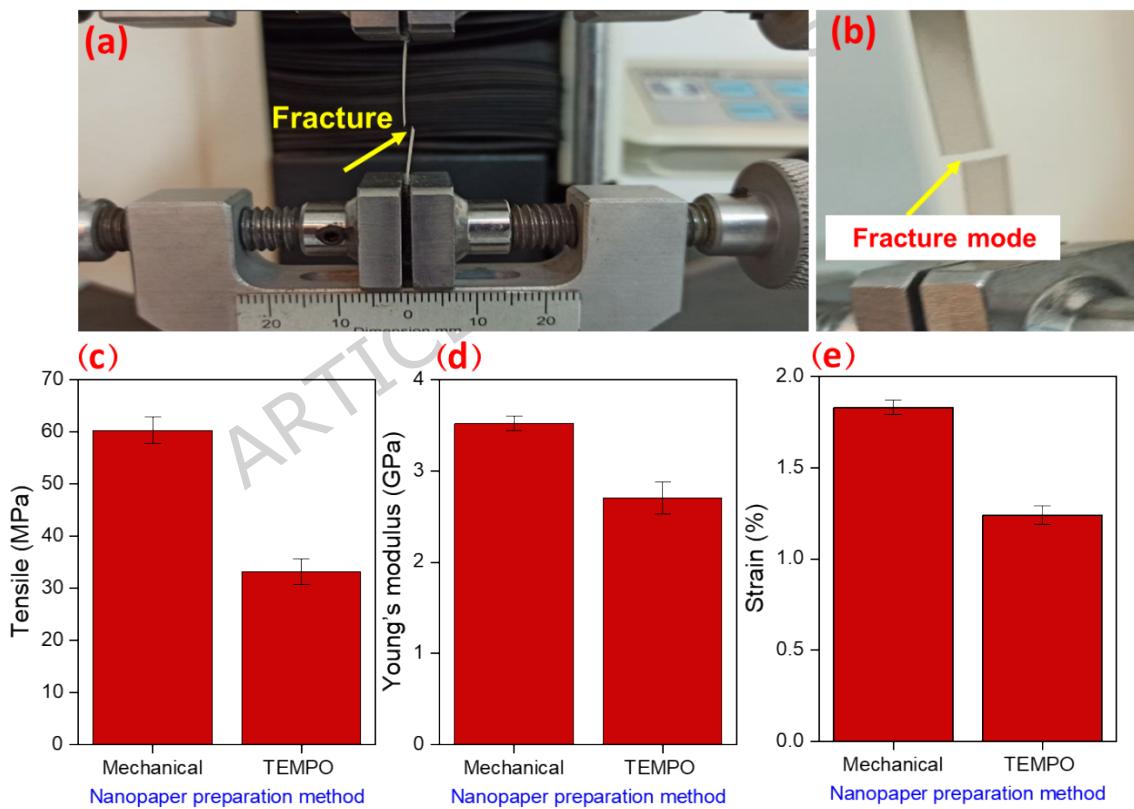

Fig. 5. X-ray diffraction (XRD) pattern of nanochitin nanopapers.

### 3.4. FTIR

FTIR analysis of the nanopapers reveals distinct absorption peaks that elucidate the chemical structure and modifications resulting from the different processing methods (Fig. 6). The reduced intensity of amine-related bands is in agreement with TEMPO-mediated surface modification, which replaces surface amino functionalities with carboxylate groups, as similarly reported by Salem, et al. <sup>22</sup>. The spectra of both mechanically processed and TEMPO-oxidized nanopapers exhibit characteristic bands around  $3400\text{ cm}^{-1}$ , corresponding to O-H stretching vibrations that indicate the presence of hydroxyl groups and extensive hydrogen bonding within the chitin matrix <sup>31</sup>. The peaks near  $1630\text{ cm}^{-1}$  and  $1560\text{ cm}^{-1}$  are attributed to the amide I ( $\text{C}=\text{O}$  stretching) and amide II ( $\text{N}-\text{H}$  bending) vibrations <sup>12</sup>, respectively, which confirm the preservation of the chitin backbone. Other bands, such as those near  $1310\text{ cm}^{-1}$  and  $1150\text{ cm}^{-1}$ , further reflect CH bending and C-O stretching vibrations, underscoring the chemical complexity of the nanostructured films. FTIR findings demonstrate that while the fundamental chitin structure is maintained in both samples, the TEMPO oxidation process induces specific chemical modifications that enhance the functional properties of the resulting nanopapers.



352  
353 **Fig. 6.** FTIR spectra of nanochitin nanopapers: a) mechanical and b) TEMPO.  
354


355 **3.5. Mechanical properties**

356 The tensile strength, Young's modulus, and strain of nanopapers made with  
357 mechanically processed nanochitin and TEMPO-oxidized nanochitin are  
358 shown in Fig. 7. The value of tensile strength for the mechanically processed  
359 nanochitin (60.3 MPa) is almost two times higher than that for TEMPO-  
360 oxidized nanochitin (33.2 MPa), which may be related to more strong  
361 hydrogen bonding of the mechanically processed nanochitin, leading to  
362 greater resistance to tensile stresses <sup>32</sup>. In the TEMPO-oxidation process, the  
363 introduction of carboxyl groups into the nanochitin structure impairs these  
364 hydrogen bonds, which may lead to lower tensile strength <sup>25</sup>. The Young's  
365 modulus of the mechanical nanochitin (3.52 GPa) is higher than that of the  
366 TEMPO-oxidized nanochitin (2.70 GPa). The higher Young's modulus of  
367 mechanical nanochitin indicates higher stiffness and greater resistance to  
368 small deformations. This property is very suitable for preparing films that  
369 require high structural strength (such as robust packaging or protective  
370 layers) <sup>17</sup>. Moreover, this difference also stems from the more ordered  
371 crystalline structure of the mechanically processed nanochitin, as during the  
372 mechanical milling process, molecular chains are broken and reconstructed  
373 into a denser packing, thus increasing the Young's modulus <sup>18</sup>. Whereas  
374 TEMPO oxidation disrupts some hydrogen bonds between the chains and  
375 reduces the density of the crystalline structure resulting in a lower Young's  
376 modulus <sup>27</sup>. The mechanically processed nanopaper exhibits slightly higher  
377 crystallinity, which likely contributes to its superior tensile performance. This

378 is because increased crystallinity enhances inter-fibril hydrogen bonding and  
 379 load transfer efficiency. These observations are in line with recent findings  
 380 on the role of nanoscale ordering in polysaccharide materials <sup>33</sup>.

381 The strain of mechanical nanochitin (1.83%) was higher than that of  
 382 TEMPO-oxidized nanochitin (1.24%). In general, the greater flexibility of the  
 383 nanochitin structure results in films with thinner thickness and higher specific  
 384 surface area, which distributes stress better <sup>34</sup>. Although the TEMPO-oxidized  
 385 chitin exhibited a more uniform fibril distribution, the mechanical properties  
 386 were lower than those of the mechanically processed nanopaper because the  
 387 TEMPO treatment introduced carboxylate groups that reduced hydrogen  
 388 bonding and decreased crystallinity, thereby limiting stress transfer between  
 389 adjacent nanofibrils. The TEMPO-oxidation process creates defects in the  
 390 chitin chains that limit the flexibility of the material <sup>27</sup>. TEMPO-oxidized  
 391 nanochitin, although less flexible, can be well integrated with other materials  
 392 or used in environments that require chemical interaction due to its specific  
 393 chemical surface (the presence of carboxyl groups) <sup>12</sup>.

394



395

396 **Fig. 7.** a) Digital photograph of nanopaper specimen in the tensile test, b) fracture modes,  
 397 c) tensile test, d) Young's modulus, and e) strain.

398

#### 399 **4. Conclusions**

400 The study revealed that both nanopapers prepared from chitin nanofibers  
 401 produced through chemical (TEMPO-oxidized) and mechanical (super disk  
 402 grinding) processes exhibited high crystallinity values exceeding 90%, with

403 slightly higher crystallinity in the mechanically processed samples. This  
404 structural feature contributed to their greater tensile strength and Young's  
405 modulus, which are related to stronger hydrogen bonding and a more  
406 compact fibrillar network. In contrast, the TEMPO-oxidized nanopapers  
407 showed higher optical transmittance (~92%) and better transparency,  
408 attributed to finer fibril diameters and more uniform dispersion. These results  
409 indicate that mechanical processing favors the formation of stronger and  
410 denser nanopapers, while TEMPO oxidation enhances optical uniformity and  
411 light transmittance. Overall, the findings demonstrate that the choice of  
412 processing method has a direct influence on the structure and properties of  
413 chitin nanopapers, allowing their characteristics to be adjusted according to  
414 specific performance requirements.

#### 415 **Declarations**

##### 416 **Ethical Approval**

417 Humans or animals are not the subjects of this study. No animals or humans  
418 have been studied in this study.

419

##### 420 **Funding**

421 The authors received no financial support for the research, authorship,  
422 and/or publication of this paper.

##### 423 **Competing interests**

424 The authors declare that they have no known competing financial interests  
425 or personal relationships that could have appeared to influence the work  
426 reported in this paper.

427

428

##### 429 **Authors' contributions**

430 **Alireza Mohammadlou:** Data curation, Software, Resources, Formal  
431 analysis, Writing-original draft, supervision, and visualization.

432 **Mohammadreza Dehghani Firouzabadi:** Conceptualization, Methodology,  
433 Validation, Investigation, Writing-original draft. **Hossein Yousefi:** Project  
434 administration and Methodology. All authors read and approved the final  
435 manuscript.

436

##### 437 **Data availability**

438 The data provided in this study are available to the corresponding author  
439 and can be presented on considerable request.

440

##### 441 **Acknowledgment**

442 The authors are grateful for the support provided by the Gorgan University of  
443 Agricultural Sciences and Natural Resources.

444

445

446

##### 447 **References**

448 1 Venugopal, V. Green processing of seafood waste biomass towards blue  
449 economy. *Current Research in Environmental Sustainability* **4**, 100164  
450 (2022).

451 2 Lal, J. *et al.* Diverse uses of valuable seafood processing industry waste for  
452 sustainability: a review. *Environmental Science and Pollution Research*, 1-15  
453 (2023).

454 3 Iber, B. T., Kasan, N. A., Torsabo, D. & Omuwa, J. W. A review of various  
455 sources of chitin and chitosan in nature. *Journal of Renewable Materials* **10**,  
456 1097 (2022).

457 4 Chakravarty, J. & Edwards, T. A. Innovation from waste with biomass-derived  
458 chitin and chitosan as green and sustainable polymer: a review. *Energy  
459 Nexus* **8**, 100149 (2022).

460 5 Tan, H. W., Lim, Z. Y. J., Muhamad, N. A. & Liew, F. F. Potential economic  
461 value of chitin and its derivatives as major biomaterials of seafood waste,  
462 with particular reference to southeast asia. *Journal of Renewable Materials*  
463 **10**, 909 (2022).

464 6 Maraksa, K., Suyotha, W. & Cheirsilp, B. Production of alpha-and beta-chitin,  
465 chitosan and protein hydrolysate from seafood processing wastes using an  
466 integration of lactic acid and digestive protease from fish viscera as  
467 alternative green extraction. *Biocatalysis and Agricultural Biotechnology*,  
468 103496 (2025).

469 7 Ezekiel Mushi, N., Butchosa, N., Zhou, Q. & Berglund, L. A. Nanopaper  
470 membranes from chitin-protein composite nanofibers—structure and  
471 mechanical properties. *Journal of applied polymer science* **131** (2014).

472 8 Zanchetta, E. *et al.* Purification of Cellulose and Chitin Polymers and Other  
473 Value-Added Products from the Microalga *Chlorella vulgaris* Using a Green  
474 Biorefinery Process. *Fermentation* **11**, 120 (2025).

475 9 Mohan, K. *et al.* Green and eco-friendly approaches for the extraction of chitin  
476 and chitosan: A review. *Carbohydrate Polymers* **287**, 119349 (2022).

477 10 Aoun, R. B., Trabelsi, N., Abdallah, M., Mourtzinos, I. & Mhamdi, R. Towards a  
478 greener future: Exploring the challenges of extraction of chitin and chitosan  
479 as bioactive polysaccharides. *Materials Today Communications*, 108761  
480 (2024).

481 11 Ifuku, S. & Saimoto, H. Chitin nanofibers: preparations, modifications, and  
482 applications. *Nanoscale* **4**, 3308-3318 (2012).

483 12 Liu, L. *et al.* TEMPO-oxidized nanochitin based hydrogels and inter-structure  
484 tunable cryogels prepared by sequential chemical and physical crosslinking.  
485 *Carbohydrate Polymers* **272**, 118495 (2021).

486 13 Min, B.-M. *et al.* Chitin and chitosan nanofibers: electrospinning of chitin and  
487 deacetylation of chitin nanofibers. *Polymer* **45**, 7137-7142 (2004).

488 14 Ye, W., Liu, L., Wang, Z., Yu, J. & Fan, Y. Investigation of pretreatment  
489 methods for improving TEMPO-mediated oxidation and nanofibrillation  
490 efficiency of  $\alpha$ -chitin. *ACS Sustainable Chemistry & Engineering* **7**, 19463-  
491 19473 (2019).

492 15 Ye, W., Yokota, S., Fan, Y. & Kondo, T. A combination of aqueous counter  
493 collision and TEMPO-mediated oxidation for doubled carboxyl contents of  $\alpha$ -  
494 chitin nanofibers. *Cellulose* **28**, 2167-2181 (2021).

495 16 Liu, D., Huang, S., Wu, H. & Zhang, J. Using TEMPO oxidation to tailor  
496 deacetylation of carboxyl  $\beta$ -chitin nanofibers from squid pen. *Cellulose* **29**,  
497 8539-8549 (2022).

498 17 Yousefi, H. *et al.* Comparative study of paper and nanopaper properties  
499 prepared from bacterial cellulose nanofibers and fibers/ground cellulose  
500 nanofibers of canola straw. *Industrial Crops and Products* **43**, 732-737  
501 (2013).

502 18 Yousefi, H., Faezipour, M., Nishino, T., Shakeri, A. & Ebrahimi, G. All-cellulose  
503 composite and nanocomposite made from partially dissolved micro-and  
504 nanofibers of canola straw. *Polymer Journal* **43**, 559-564 (2011).

505 19 González, I. *et al.* From paper to nanopaper: evolution of mechanical and  
506 physical properties. *Cellulose* **21**, 2599-2609 (2014).

507 20 Fan, Y., Saito, T. & Isogai, A. Preparation of chitin nanofibers from squid pen  
508  $\beta$ -chitin by simple mechanical treatment under acid conditions.  
*Biomacromolecules* **9**, 1919-1923 (2008).

509 21 French, A. D. Idealized powder diffraction patterns for cellulose polymorphs.  
*Cellulose* **21**, 885-896 (2014).

512 22 Salem, K. S., Starkey, H. R., Pal, L., Lucia, L. & Jameel, H. The topochemistry  
513 of cellulose nanofibrils as a function of mechanical generation energy. *ACS  
514 Sustainable Chemistry & Engineering* **8**, 1471-1478 (2019).

515 23 Chen, R., Huang, W.-C., Wang, W. & Mao, X. Characterization of TEMPO-  
516 oxidized chitin nanofibers with various oxidation times and its application as  
517 an enzyme immobilization support. *Marine Life Science & Technology* **3**, 85-  
518 93 (2021).

519 24 Fukuzumi, H., Saito, T., Iwata, T., Kumamoto, Y. & Isogai, A. Transparent and  
520 high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated  
521 oxidation. *Biomacromolecules* **10**, 162-165 (2009).

522 25 Isogai, A., Saito, T. & Fukuzumi, H. TEMPO-oxidized cellulose nanofibers.  
*Nanoscale* **3**, 71-85 (2011).

524 26 Fang, Z. *et al.* Novel nanostructured paper with ultrahigh transparency and  
525 ultrahigh haze for solar cells. *Nano letters* **14**, 765-773 (2014).

526 27 Saito, T., Kimura, S., Nishiyama, Y. & Isogai, A. Cellulose nanofibers prepared  
527 by TEMPO-mediated oxidation of native cellulose. *Biomacromolecules* **8**,  
528 2485-2491 (2007).

529 28 Ye, W. *et al.* Comparison of cast films and hydrogels based on chitin  
530 nanofibers prepared using TEMPO/NaBr/NaClO and TEMPO/NaClO/NaClO<sub>2</sub>  
531 systems. *Carbohydrate Polymers* **237**, 116125 (2020).

532 29 Sajomsang, W. & Gonil, P. Preparation and characterization of  $\alpha$ -chitin from  
533 cicada sloughs. *Materials Science and Engineering: C* **30**, 357-363 (2010).

534 30 Mushi, N. E., Utsel, S. & Berglund, L. A. Nanostructured biocomposite films of  
535 high toughness based on native chitin nanofibers and chitosan. *Frontiers in  
536 Chemistry* **2**, 99 (2014).

537 31 Hossin, M. A., Al Shaqsi, N. H. K., Al Touby, S. S. J. & Al Sibani, M. A. A review  
538 of polymeric chitin extraction, characterization, and applications. *Arabian  
539 Journal of Geosciences* **14**, 1870 (2021).

540 32 Sehaqui, H., Salajková, M., Zhou, Q. & Berglund, L. A. Mechanical  
541 performance tailoring of tough ultra-high porosity foams prepared from  
542 cellulose I nanofiber suspensions. *Soft Matter* **6**, 1824-1832 (2010).

543 33 Salem, K. S. *et al.* Comparison and assessment of methods for cellulose  
544 crystallinity determination. *Chemical Society Reviews* **52**, 6417-6446 (2023).

545 34 Habibi, Y., Lucia, L. A. & Rojas, O. J. Cellulose nanocrystals: chemistry, self-  
546 assembly, and applications. *Chemical reviews* **110**, 3479-3500 (2010).

547